Hill Estimator untuk Mendeksi Cacat Sederhana pada Texture

dokumen-dokumen yang mirip
Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711

PEMILIHAN BANDWIDTH PADA ESTIMATOR NADARAYA-WATSON DENGAN TIPE KERNEL GAUSSIAN PADA DATA TIME SERIES

Adi Setiawan Program Studi Matematika, Fakultas Sains dan Matematika Universitas Kristen Satya Wacana Jl. Diponegoro Salatiga 50711

BAB II LANDASAN TEORI

1. BAB I PENDAHULUAN

KONTROL ROBOT MOBIL PENJEJAK GARIS BERWARNA DENGAN MEMANFAATKAN KAMERA SEBAGAI SENSOR

BAB I PENDAHULUAN 1.1 Latar Belakang

ESTIMASI CONFIDENCE INTERVAL BOOTSTRAP UNTUK ANALISIS DATA SAMPEL TERBATAS

STK643 PEMODELAN NON-PARAMETRIK. Pendugaan Fungsi Kepekatan

PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA

BAB 3 MODEL ESTIMASI REGRESI NONPARAMETRIK

BAB I PENDAHULUAN. sewajarnya untuk mempelajari cara bagaimana variabel-variabel itu dapat

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

Klasifikasi Kualitas Keramik Menggunakan Metode Deteksi Tepi Laplacian of Gaussian dan Prewitt

APLIKASI DETEKSI MIKROKALSIFIKASI DAN KLASIFIKASI CITRA MAMMOGRAM BERBASIS TEKSTUR SEBAGAI PENDUKUNG DIAGNOSIS KANKER PAYUDARA

APLIKASI DIGITAL MATTING MENGGUNAKAN METODE BAYESIAN APPROACH

Kata Kunci: Bagan kendali nonparametrik, estimasi fungsi kepekatan kernel

BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR)

BAB II TINJAUAN PUSTAKA

PENGARUH PENCAHAYAAN TERHADAP KINERJA SEGMENTASI

OTOMASI PEMISAH BUAH TOMAT BERDASARKAN UKURAN DAN WARNA MENGGUNAKAN WEBCAM SEBAGAI SENSOR

BAB II LANDASAN TEORI

RESTORASI CITRA. Budi s

STMIK AMIKOM PURWOKERTO PENGOLAHAN CITRA ABDUL AZIS, M.KOM

PENENTUAN THRESHOLD CITRA MULUT DENGAN METODE NORMAL PROBABILITY DENSITY FUNCTION (NPDF) GUNA MENDETEKSI MULUT PEMELAJAR

PENGENALAN KARAKTER DENGAN MENGGUNAKAN HAMMING NETWORK

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

PENENTUAN GENERALIZED CROSS VALIDATION (GCV) SEBAGAI KRITERIA DALAM PEMILIHAN MODEL REGRESI B-SPLINE TERBAIK

BAB 1 PENDAHULUAN. seperti suhu udara, keindahan, kecantikan adalah hal-hal yang samar, yang

Implementasi Noise Removal Menggunakan Wiener Filter untuk Perbaikan Citra Digital

SISTEM KONTROL GERAK SEDERHANA PADA ROBOT PENGHINDAR HALANGAN BERBASIS KAMERA DAN PENGOLAHAN CITRA

TINJAUAN PUSTAKA. Menurut Hardle (1994) analisis regresi adalah suatu metode analisis data yang

STUDI SIMULASI GRAFIK PENGENDALI BERDASARKAN ESTIMASI FUNGSI DENSITAS KERNEL BIVARIAT

PERBANDINGAN ANALISA IMAGE WAJAH DIGITAL MENGGUNAKAN METODE COSINUS PAKET (CPT)

Implementasi VB 6.0 pada Face Detection Berbasis Image Processing untuk Sistem Identifikasi

BAB I PENDAHULUAN. teknologi pengolahan citra (image processing) telah banyak dipakai di berbagai

BAB 2 LANDASAN TEORI

Pendugaan Kepekatan Data Nilai Akhir Mahasiswa

Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc

SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM)

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Analisis Kualitas Interpolasi Terhadap Fitur Statistik pada Citra

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC

BAB 4 PENGUJIAN DAN EVALUASI. teknik pemrosesan citra dengan menggunakan logika samar dan dengan teknikteknik

BAB I PENDAHULUAN 1.1. Latar Belakang

Image Restoration. Aditya Wikan Mahastama

Cb Cb. jarak = x = w b. SNR(dB) = log( I N ) (1) (y y k) 2 n MSE = Y = 0.59G R B Cr = (R Y ) (3) Cb = 0.

BAB I PENDAHULUAN. 1.1 Latar Belakang

DEFICIENCY PENAKSIR PARAMETER PADA DISTRIBUSI GAMMA

INFERENSI PARAMETER SIMPANGAN BAKU POPULASI NORMAL DENGAN METODE BAYESIAN OBYEKTIF

BAB 3 ANALISA DAN PERANCANGAN

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 1, Tahun 2014, Halaman Online di:

APLIKASI TRANSFORMASI WATERSHED UNTUK SEGMENTASI CITRA DENGAN SPATIAL FILTER SEBAGAI PEMROSES AWAL

BAB IV PENGOLAHAN DATA

Penjejakan Objek Visual berbasis Algoritma Mean Shift dengan menggunakan kamera Pan-Tilt

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) Abstract

PENGHAPUSAN NOISE PADA CITRA DENGAN FILTER ADAPTIVE- HIERARCHICAL

BAB I PENDAHULUAN Latar Belakang

BAB II TINJAUAN PUSTAKA. pembahasan pada bab selanjutnya. Pembahasan teori meliputi pengertian data

REGRESI SEMIPARAMETRIK SPLINE TRUNCATED DENGAN SOFTWARE R. Abstract. Keywords: Spline Truncated, GCV, Software R.

PREDIKSI INFLASI DI PROVINSI JAWA TENGAH DENGAN MENGGUNAKAN REGRESI KERNEL

ROBUST BLIND WATERMARKING PADA CITRA DIGITAL MENGGUNAKAN TEKNIK KUANTISASI KOEFISIEN DISCRETE WAVELET TRANSFORM

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

KAJIAN TELBS PADA REGRESI LINIER DENGAN KASUS PENCILAN

BAB II LANDASAN TEORI

Penaksiran Parameter Regresi Linier Logistik dengan Metode Maksimum Likelihood Lokal pada Resiko Kanker Payudara di Makassar

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula,

6. PENDETEKSIAN SERANGAN GULMA. Pendahuluan

Segmentasi Dan Pelabelan Pada Citra Panoramik Gigi

PENGGUNAAN latar belakang dalam proses pembuatan VIDEO COMPOSITING MENGGUNAKAN POISSON BLENDING. Saiful Yahya, Mochamad Hariadi, and Ahmad Zaini,

Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan Gempa Bumi

PENGENALAN DAN PEWARNAAN PADA CITRA GRAY-SCALE ABSTRAK

METODE FAIR-SHARE AMOUNT UNTUK KOMPRESI MENGGUNAKAN KUANTISASI VEKTOR PADA BASIS DATACITRA GRAY LEVEL SEMBARANG DENGAN DERAJAT KEABUAN

PERBANDINGAN TINGKAT AKURASI REGRESI NONPARAMETRIK SPLINE DAN REGRESI NONPARAMETRIK KERNEL PADA PERTUMBUHAN BALITA DI KOTA SURAKARTA

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B

Perbaikan Kualitas Citra Permukaan Jalan Raya Menggunakan Metode Pyramida Gaussian

SAMPLING DAN KUANTISASI

Pengantar PENGOLAHAN CITRA. Achmad Basuki PENS-ITS Surabaya 2007

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Rancangan antarmuka (interface) program terdiri dari form cover, form

PENAKSIR RATA-RATA DISTRIBUSI EKSPONENSIAL TERPOTONG. Agustinus Simanjuntak ABSTRACT

BAB 2 LANDASAN TEORI

ESTIMASI PARAMETER REGRESI RANK BERDISTRIBUSI EKSPONENSIAL DENGAN MENGGUNAKAN METODE KUADRAT TERKECIL TERBOBOTI

KOMBINASI METODE MORPHOLOGICAL GRADIENT DAN TRANSFORMASI WATERSHED PADA PROSES SEGMENTASI CITRA DIGITAL

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE

ESTIMATOR SPLINE KUBIK

ESTIMASI INTERVAL KEPERCAYAAN (CONFIDENCE INTERVAL) PARAMETER MODEL PROSES GEOMETRIK WEIBULL PADA ANALISIS UJI HIDUP UNTUK DATA TERSENSOR TIPE II

PERBAIKAN CITRA BER-NOISE MENGGUNAKAN SWITCHING MEDIAN FILTER DAN BOUNDARY DISCRIMINATIVE NOISE DETECTION

PENDUGAAN IPM PADA AREA KECIL DI KOTA SEMARANG DENGAN PENDEKATAN NONPARAMETRIK

PERTEMUAN 2-3 SIFAT DASAR ANALISIS REGRESI

Pengukuran Blok Window Terbaik Berdasarkan MSE...

PENGOLAHAN CITRA DIGITAL

Implementasi Reduksi Noise Citra Berwarna dengan Metode Filter Median dan Filter Rata-rata

ANALISIS MODEL REGRESI NONPARAMETRIK SIRKULAR-LINEAR BERGANDA

PENDUGAAN TINGKAT KEMISKINAN DI KABUPATEN SUMENEP DENGAN PENDEKATAN SAE

BAB 1 PENDAHULUAN. hubungan antara variabel respon dengan satu atau beberapa variabel prediktor.

BAB III LANDASAN TEORI. analisis kesintasan bertujuan menaksir probabilitas kelangsungan hidup, kekambuhan,

SMALL AREA ESTIMATION UNTUK PEMETAAN ANGKA MELEK HURUF DI KABUPATEN REMBANG. Program Studi Statistika, UNIMUS

BAB 2 LANDASAN TEORI

Ishafit

BAB III METODE PENELITIAN. tracking obyek. Pada penelitian tugas akhir ini, terdapat obyek berupa bola. Gambar 3.1. Blok Diagram Penelitian

Transkripsi:

Hill Estimator untuk Mendeksi Cacat Sederhana pada Texture Siana Halim Jurusan Teknik Industri Universitas Kristen Petra Surabaya Jl. Siwalankerto 121-131 Surabaya Email: halim@petra.ac.id Abstrak Pada makalah ini akan dipaparkan sebuah metode untuk mendeksi cacat sederhana pada texture. Cacat sederhana yang dimaksudkan di sini adalah cacat yang dapat dideteksi pada histogram dari image dengan menggunakan thresholding point. Hill estimator akan digunakan untuk menentukan thresholding point secara automatis. Selain itu akan digunakan kernel density estimator sebagai pengganti image histogram. Kata kunci: Texture, Hill estimator, kernel density estimate, thresholding point. PENDAHULUAN Pada dasarnya, texture adalah penampakan visual yang merepresentasikan inforasi spasial yang terdapat pada permukaan sebuat obyek (Haindl [4]). Berdasarkan sifat regularitasnya, texture dapat diklasifikasikan atas tiga bagian, yaitu, regular, random dan semi random texture (lihta Gambar 1) a b c Gambar 1. Klasifikasi texture: (a) regular, (b) random dan (c) semi random Mendapatkan cacat pada Texture secara automatis, saat ini merupakan kebutuhan untuk menjawab tantangan zero defect pada proses produksi yang berkaitan langsung dengan Texture. Automatisasi visual ini dimaksudkan untuk menggantikan proses quality control yang biasanya dilakukan oleh mata manusia dengan kamera beserta perangkat lunaknya. Oleh sebab itu, saat ini penelitian-penelitian di bidang ini telah banyak dilakukan, misalnya Cavalin, et al.[1], mengembangkan metode pendeksi cacat pada texture kayu. Yang, et al. [7] memaparkan metode untuk mendeksi cacat pada fabric dengan mengaplikasikan adaptive wavelet. Franke dan Halim

[2,3], menggunakan pendekatan secara statistics dengan melakukan bootstrap testing hipotesa pada signal. Pada makalah ini, uraian tentang pendeksian cacat pada texture akan diberikan, terutama untuk mendeteksi cacat yang sederhana. Cacat sederhana yang dimaksudkan di sini adalah cacat yang dapat dideteksi pada histogram dari image dengan menggunakan thresholding point. Biasanya densitas dari cacat seperti ini akan memiliki distribusi yang miring, entah ke kiri (gray level gelap) ataupun ke kanan (gray level terang) tergantung pada area yang cacat. Bila cacat area lebih gelap dari yang tidak cacat, maka distribusi dari gray level-nya akan miring ke kiri, dan sebaliknya (Gambar 2). Gambar 2. Contoh cacat sederhana dan distribusi gray-levelnya Pada umumnya distribusi dari gray level didekati dengan menggunakan histogram, paparan kali ini akan menggunakan pendekatan kernel densitas agar didapat distribusi yang lebih mulus (smooth). Titik thresholds akan ditentukan dari densitas tersebut. Metode ini akan dijelaskan pada bagian kedua dari makalah ini. Beberapa hasil eksperimen akan diberikan bagian selanjutnya, sedangkan kesimpulan serta catatan untuk penelitian selanjutnya akan diberikan sebagai penutup dari makalah ini. METODE Pada bagian ini akan dipaparkan secara singkat tentang kernel density estimate (kde), penjelasan secara detail dapat dilihat pada Wand dan Jones [8]. Selanjutnya, Hill estimator [5] akan dieksplorasi sebagai metode untuk mendeteksi cacat sederhana pada texture.

Kernel Density Estimate (KDE) Misalkan (x 1,, x n ) adalah identical independent distributed (iid) sampel yang diperoleh dari suatu distribusi dengan densitas ƒ tak diketahui. Estimasi dari bentuk fungsi ƒ, dapat didekati dengan menggunakan kernel density estimator, yaitu f ĥ (x) = 1 n K n h(x x i ) = 1 n K nh (x x i i=1 i=1 ) (1) h dimana K(. ) adalah fungsi kernel dan adalah bandwidth. Beberapa sifat dari dari KDE adalah (a) K harus simetri dan memiliki maksimum di 0 dan juga K(u)du = 1, sehingga K memiliki sifat dari fungsi kepadatan densitas. (b) uk(u)du = 0,, K 2 (u)du < dan u 2 K(u)du <. (c) K h (. ) mewakili h 1 K(./h) untuk kernel K. Beberapa fungsi kernel yang sering digunakan adalah rectangular kernel: K R (u) = 1 2 I ( 1,1)(u) ; Gaussian kernel: K G (x) = 1 2π exp ( x2 2 ) dan Epanechnikov kernel: K E(x) = 0.75(1 x 2 ), x 1 Sangatlah umum diketahui bahwa pilihan terhadap fungsi kernel tidak akan mengubah estimasi secara signifikan. Namun, pilihan terhadap bandwidth sangatlah mempengaruhi estimasi terhadap fungsi densitas. Apabila bandwidth terlalu kecil maka bias dari kernel estimator akan kecil, tetapi variansnya akan meningkat, dan kebalikannya (Gambar 4). Lebih lanjut lagi, bandwidth terlalu kecil akan membuat kernel estimator menjadi bergerigi, dan apabila bandwidth tersebut terlalu besar akan membuat kernel estimator menjadi terlalu mulus. Tantangan untuk mendapatkan bandwidth optimal harus mengkompromikan bias dan varians pada KDE. density.default(x = precip, bw = 1) Density 0.00 0.01 0.02 0.03 0.04 bw=1 bw=3.848 bw=8 10 20 30 40 50 60 70 N = 70 Bandwidth = 1 Gambar 4 Kernel density estimate denagn bandwidth yang berbeda

Hal ini dapat terjawab melalui mean square error (MSE) dari estimator tersebut, karena secara definisi MSE x = E [(f (x) f(x)) 2 ] = E [(f (x) E[f (x)] + E[f (x)] f(x)) 2 ] = (E[f (x)] f(x)) 2 + V[f (x)] (2) = Bias[f (x)] 2 + Variance[f (x)] Integral dari (2) didaptakan MISE x = E [ (f (x) f(x)) 2 dx] = E [(f (x) f(x)) 2 ] dx (3) Bias dan varians dari (3) dapat dituliskan secara berturutan sebagai berikut: Bias (f (x)) = 1 2 h2 f (x)k 2 + O(h 4 ) (4) V[f (x)] = f(x)r(k) nh f(x)2 n dimana k 2 = t 2 K(t)dt 0; R(K) = K(t) 2 dt + O(h n) (5) Substistusikan persamaan (4) dan (5) ke persamaan (3) dan biarkan n maka MISE asimptotik akan didapatkan sebagai berikut: AMISE(h) = 1 nh R(K) + h4 R(f )K 2 2 Dengan menarik derivative para persaman (6) terhadap h dan menyelesaikan persamaan derivative ini terhadap nol, maka akan didapatkan global bandwidth optimal. Global bandwidth yang dimaksudkan di sini adalah bandwidth yang diturunkan akan sama untuk seluruh fungsi estimasi. h AMISE = [ 1/5 R(K) nr(f 2 ] )K 2 ~n 1/5 (7) (6) Threshold Sederhana Tergantung pada bentuk distribusi dari gray level, threshold satu sisi (jika distribusi dari gray level miring ke kiri atau ke kanan) ataupun dua sisi (bila bentuk dari distribusi simetri) dapat ditentukan (Gambar 3). Misalkan t adalah nilai threshold, maka bila bentuk dari distribusi adalah miring ke kiri, nilai threshold tersebut adalah batas atas dari integral t f(x)dx α, dimana f(x) adalah fungsi densitas yang dapat didekati dengan fungsi kernel densitas (1), α diasumsikan sebagai probabilitas gray level dari area yang cacat, misalnya, α = 0.05. Threshold untuk

distribusi yang miring ke kanan ditentukan melalui dengan f(x)dx α/2; dan f(x)dx α. t 1 t 2 t f(x)dx α, dan untuk distribusi simetri Miring kiri Simetri Miring kanan Gambar 3 Threshold sederhana Tentu saja threshold sederhana ini tergantung pada nilai α yang harus ditentukan terlebih dahulu., dan belum tentu dapat dengan tepat merepresentasikan probabilitas dari daerah yang cacat pada texture. Untuk itu diperlukan suatu pendeteksi threshold secara automatis yang merepresentasikan daerah cacat tersebut. Hal ini akan dapat diselesaikan dengan menggunakan Hill Estimator yang akan dijelaskan pada sub bab berikut ini. Hill Estimator Misalkan X (1),, X (n) dari distribusi F memiliki algebraic tail 1 F(X)~Cx α bila x 0, maka X (1) merupakan reversed order statistics, α disebut sebagai upper tail index. Hill [5], memperkenalkan estimator α H (r) = r+1 r i ln( x(i) i=1 x (i+1)) dimana r + 1 adalah jumlah observasi di atas threshold T. Persamaan (8) membutuhkan pilihan r. Menentukan nilai r Untuk menentukan nilai r akan digunakan theorema representasi Renyi, sebagai berikut: x (i) = F 1 [Exp ( e 1 + e 2 + + e i )] (9) n n 1 n i+1 dimana e i ~ exp(λ = 1) secara identik. (8)

Selanjutnya akan digunakan teori dasar dari rank statistics yang menyebutkan bahwa F(X) Udan log U e. Melalui invers dan penyelesaian dari e i didapatkan e i = (n i + 1) (ln F(X (i 1) ) ln F (X (i) )) (10) Secara definisi F(X (0) ) = 1, i = 1,, n Sekarang (8) dapat diformulasikan sebagai α r = (r 1 r i=1 iv i ) 1 dan V i = ln ( X(i) X (i+1)) for i = 1,, n 1. (11) Uji hipotesa terhadap iv i muncul dari distribusi exponential untuk i = 1,, r. Bila hipotesa iv i ditolak pada nilai r tertentu maka disitulah nilai threshold diperoleh (Hsieh, [6]). HASIL DAN PEMBAHASAN Hasil perbandingan dari kedua pendekatan di atas untuk sebuah image, memberikan performansi yang berbeda. Pertama, digunakan threshold sederhana untuk mendeteksi cacat area pada texture. Namun, percobaan ini belum mampu mendeteksi cacat area walaupun telah digunakan rentang nilai probabilats gray level yang cukup besar (pemilihan α besar, hingga α kecil). Pixel pada daerah cacat tersebar pada seluruh image. (Gambar 4a) Selanjutnya, digunakan hill estimator, dan didapatkan bahwa nilai r berhenti pada titik ke-20. Pixel pada daerah cacat dapat terkelompok pada satu daerah saja. (Gambar 4b). a. Threshold sederhana α = 0.001 gagal b. Hill estimator dengan r = 20 mendeteksi cacat Gambar 4. Perbandingan antara metode threshold sederhana dan Hill estimator. Apabila pada sebuah texture terdapat cacat lebih dari satu, maka dapat digunakan teknik clustering pada statistik multivariat untuk mendeteksi letak kecacatan tersebut. Berikut diberikan beberapa contoh dari pedeteksian cacat pada texture (Gambar 5). Terlihat metode ini dapat

mendeteksi cacat sederhana pada texture, bahkan bila cacat tersebut terjadi pada banyak area (Gambar 5c). a b c d Gambar 5. Contoh pendeteksian cacat pada texture Namun, metode ini akan gagal untuk mendetksi cacat bila cacat yang terjadi merupakan cacat pada pola (pattern). Hal ini disebabkan, distribusi cacat pada pola tidak menunjukkan kecenderungan untuk miring ke kiri ataupun ke kanan. Artinya cacat tersebut terjadi bukan karena adanya perbedaan gray-level yang cukup mencolok dari daerah yang tidak cacat (Gambar 6). Terlihat pada Gambar 6b, bahwa densitas dari gray-level tidak memiliki ekor (tail) yang memanjang, ataupun miring ke kiri atau ke kanan. Untuk itu diperlukan metode lain agar cacat pola ini dapat terdeteksi. density.default(x = y) Density 0 1 2 3 4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 N = 20880 Bandwidth = 0.009719 a. Cacat pada pola b. Densitas dari image a Gambar 6. Contoh cacat pada pola KESIMPULAN Pada makalah ini telah diuraikan Hill estimator untuk mendeteksi cacat sederhana pada texture. Bila dikombinasikan dengan metode clustering pada statistik multivariate, metode ini mampu untuk mendeksi lebih dari satu cacat pada texture. Namun demikian, bila kecacatan yang timbul pada texture muncul karena pola yang berubah, metode ini belum mampu mendeteksinya. Diperlukan alat pendeteksi kecacatan yang lain untuk mampu mengatasi masalah di atas. Hal tersebut akan menjadi tujuan dari penelitian selanjutnya.

UCAPAN TERIMA KASIH Penelitian ini dilaksanakan di Lab. Kawanaka, Sophia University Tokyo melalui Sophia University Lecturing and Research Grant. Penulis mengucapkan terima kasih kepada Prof. Akira Kawanaka atas ide dan diskusi yang bermanfaat untuk penelitian ini. DAFTAR PUSTAKA 1. Cavalin, P., Oliveira, L. S., Koerich, A. L., and Britto Jr, A.S., Wood Defect Detection using Grayscale Images and an Optimized Feature Set. IEEE Industrial Electronics, IECON 2006-32 nd Annual conferenceproceeding, Paris 2006. 2. Franke, J., and Halim, S., Wild Bootstrap Tests: Regression Models for Comparing Signal and Images, IEEE Signal Processing Magazine, July 2007, pp. 31-37. 3. Franke, J., and Halim, S., A Bootstrap Test for Comparing Images in Surface Inspection, presented at DFG-Priority Program 1114 Technical Report 150. [Online] Available: www.math.uni-bremen.de/zetem/dfg-schwerpunkt/ 4. Haindl, M., Texture Synthesis, CWI Quaterly,1991,pp. 305-331. 5. Hill, B. M., A Simple General Approach to Inference about the Tail of Distribution. Annals of Statistics, 3, 1975, pp. 1063-1174. 6. Hsieh, P. H., Robustness of Tail Index Estimation, Journal of Computational and Graphical Statistics, 8(2), 1999,pp.318-332. 7. Yang Xue Zhi; Pang, G. K. H and Yung, N.H.C, Fabric defect detection using adaptive wavelet, Acoustics, Speech and Signal Processing, Proceedings (ICASSP`01), Salt Lake city USA, 2001. 8. Wand, M.P and Jones, M.C; Kernel Smoothing, Chapman & Hall, 1995.