Penerapan Aljabar Vektor pada GPS (Global Positioning System)

dokumen-dokumen yang mirip
Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi

Aplikasi Aljabar Vektor bagi Pengembang Game (Game Developer)

Penggunaan Transformasi Matriks dalam Enkripsi dan Dekripsi

Matriks Sebagai Representasi Orientasi Objek 3D

Penerapan Operasi Matriks dalam Kriptografi

Penerapan Sistem Persamaan Lanjar dalam Penyetaraan Reaksi Kimia

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia

Aplikasi Aljabar Geometri dalam Menentukan Volume Parallelepiped Beserta Penurunan ke Rumus Umum dengan Memanfaatkan Sifat Aljabar Vektor

Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar

Aplikasi Interpolasi Polinom dalam Tipografi

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Prinsip Kerja GPS (Sumber :

Penyelesaian SPL dalam Rangkaian Listrik

Penerapan Logika dan Peluang dalam Permainan Minesweeper

Aplikasi Aljabar Lanjar untuk Penyelesaian Persoalan Kriptografi dengan Hill Cipher

Penerapan Matriks dalam Kriptografi

BAB I PENDAHULUAN. 1.1 Latar Belakang

Pemanfaatan Matriks dalam Penyeimbangan Persamaan Reaksi Kimia

Representasi Matriks dan Transformasi Lanjar dalam Gerakan Contra Dance

Pemanfaatan Permodelan Ruang Vektor untuk Pengecekan Kemiripan

Teknologi Automatic Vehicle Location (AVL) pada Sistem Komunikasi Satelit

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik

Implementasi Vektor dalam Penyelesaian Car Travelling at The Speed of Light

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

BAB I PENDAHULUAN. 1.1 Latar Belakang

Aplikasi Perkalian dan Invers Matriks dalam Kriptografi Hill Cipher

A. Vektor dan Skalar I. PENDAHULUAN. B. Proyeksi Vektor II. DASAR TEORI

Pengaplikasian Aljabar Linier untuk Menghitung Pertumbuhan Populasi Hewan Ternak

Ilustrasi Penggunaan Quaternion untuk Penanggulangan Gimbal Lock

SISTEM PERSAMAAN LINEAR

Penerapan Algoritma Greedy dan Breadth First Search pada Permainan Kartu Sevens

Sistem Persamaan Linier dan Matriks

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik

SOLUSI SISTEM PERSAMAAN LINEAR

ALJABAR VEKTOR MATRIKS. oleh: Yeni Susanti

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

Aplikasi Transformasi Lanjar dalam Permainan Dragon Nest

Aplikasi OBE Untuk Mengurangi Kompleksitas Algoritma Program Penghitung Determinan Matriks Persegi

Aplikasi Aljabar Vektor dalam Dermatoglyphics

Solusi Persamaan Linier Simultan

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Bab 10 Global Positioning System (GPS)

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

BAB 2 LANDASAN TEORI

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

Pencarian Lintasan Terpendek Pada Aplikasi Navigasi Menggunakan Algoritma A*

BAB 4 : SISTEM PERSAMAAN LINIER

Pertemuan 14. persamaan linier NON HOMOGEN

Penerapan Dynamic Programming pada sistem GPS (Global Positioning System)

Perbandingan Algoritma Brute Force dan Backtracking dalam Permainan Word Search Puzzle

ALJABAR LINEAR [LATIHAN!]

Ruang Vektor Euclid R 2 dan R 3

Aplikasi Aljabar Lanjar pada Teori Graf dalam Menentukan Dominasi Anggota UATM ITB

Penerapan Aljabar Lanjar pada Grafis Komputer

Materi Aljabar Linear Lanjut

GPS (Global Positioning Sistem)

Penggunaan Algoritma Brute Force dan Greedy dalam Permainan Atomas

Aplikasi Operasi Baris Elementer Matriks dalam Kriptografi

Menyelesaikan Kakuro Puzzle dengan Kombinatorial

Aplikasi Matriks pada Model Input-Output Leontief

SISTEM PERSAMAAN LINEAR

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Penerapan Algoritma Greedy dalam Pembuatan Artificial Intelligence Permainan Reversi

Algoritma Greedy dalam Strategi Permainan Centipede

Telaah Teoretis dan Perhitungan Komputasional untuk Penentuan Posisi Geogras dengan Menggunakan Global Positioning System (GPS)

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA

PENGENALAN GPS NAVIGASI DAN APLIKASINYA

BAB X SISTEM PERSAMAAN LINIER

Penerapan TSP pada Penentuan Rute Wahana dalam Taman Rekreasi

Penggunaan Aljabar Lanjar di Metode Prediksi Statistika

ALJABAR LINEAR ELEMENTER

I. PENDAHULUAN. 1.1 Permainan Rush Hour

Memantau apa saja dengan GPS

Aljabar Linear Elementer MUG1E3 3 SKS

PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM

Bab VIII. Penggunaan GPS

Pengkajian Metode dan Implementasi AES

Adri Priadana. ilkomadri.com

BAB IV PENGUJIAN DAN ANALISIS

MONITORING AKTIVITAS KELUARGA BERBASIS GPS TRACKING

Penggunaan Bilangan Kompleks dalam Pemrosesan Signal

AKUISISI DATA GPS UNTUK PEMANTAUAN JARINGAN GSM

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Matematika II : Vektor. Dadang Amir Hamzah

MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli

Vektor Ruang 2D dan 3D

BAB II TINJAUAN PUSTAKA

Aplikasi Aljabar Vektor dalam Algoritma Page Rank

Pemanfaatan Vektor pada Permainan Super Mario Bros

Penerapan Algoritma Brute Force pada Teka-teki Magic Square 3 x 3

SIMPLE 3D OBJECTS AND THEIR ANIMATION USING GRAPH

Implementasi Pohon Keputusan untuk Membangun Jalan Cerita pada Game Engine Unity

BAB IV HASIL AKHIR DAN PEMBAHASAN

9.1. Skalar dan Vektor

BAB I Pengertian Sistem Informasi Geografis

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

Penerapan Program Dinamis Pada Sistem Navigasi Otomotif

MUH1G3/ MATRIKS DAN RUANG VEKTOR

Transkripsi:

Penerapan Aljabar Vektor pada GPS (Global Positioning System) Kharis Isriyanto54064 Program StudiInformatika SekolahTeknikElektrodanInformatika InstitutTeknologiBandung, Jl. Ganesha 0 Bandung402, Indonesia 54064@std.stei.itb.ac.id Abstract Pada jaman sekarang ini, saat teknologi informasi sudah banyak berkembang seiring dengan perkembangan internet, ada satu teknologi yang juga berkembang yaitu GPS (Global Positioning System). GPS dapat menentukan posisi pengguna. Vektor sangat berperan dalam menentukan posisi tersebut karena GPS menerima sinyal dari satelit dan mendapat info jarak satelit dan koordinat satelit. Dengan memanfaatkan info dari -4 satelit dapat ditentukan posisi penerima sinyal GPS tersebut. mengenai penerapan vektor pada penentuan posisi pada GPS. Keywords vektor, ruang, koordinat, trilateration I. PENDAHULUAN GPS (Global Positioning System) atau Sistem Pemosisi Global adalah suatu sistem yang dibangun untuk menentukan letak di permukaan bumi dengan bantuan penyelarasan sinyal satelit. Pada awalnya GPS dikembangkan oleh departemen pertahanan Amerika Serikat dan penggunaannya hanya diperuntukkan untuk militer Amerika Serikat. Akan tetapi saat ini GPS dapat digunakan oleh siapapun. Penerapannya pun sudah merambah ke berbagai bidang. Dalam navigasi sudah tidak diragukan lagi betapa pentingnya GPS saat ini. Pada pesawat terbang dan kapal, GPS digunakan untuk menentukan jalur terbang atau pelayaran mereka agar mereka dapat mencapai tujuan. Saat ini mobil pun sudah banyak yang memakai GPS untuk navigasi mereka. GPS juga digunakan untuk pemetaan geografis, salah satunya dalam pembuatan peta digital yang saat ini dapat diakses oleh siapapun melalui penyedia layanan seperti Google Maps. Selain pembuatan peta, GPS juga dapat digunakan sebagai referensi pengukuran suatu wilayah. Selain beberapa manfaat GPS yang diuraikan di atas, GPS juga dapat digunakan sebagai sarana hiburan. Saat ini ada beberapa permainan perangkat berjalan(mobile device) yang memanfaatkan lokasi untuk permainannya. GPS berperan sangat besar untuk menentukan lokasi. Dalam menentukan lokasi pengguna, aljabar vektor dapat berperan dalam penghitungan koordinat pengguna GPS berdasarkan informasi yang didapatkannya dari satelit-satelit GPS. Pada makalah ini akan dibahas Gambar Dua aplikasi yang menggunakan GPS, yaitu Google Maps dan game Ingress www.digicution.com dan cnet.cbsistatic.com II. DASAR TEORI A. Sistem Persamaan Lanjar Untuk menyelesaikan persamaan-persamaan pada aljabar vektor, kita memerlukan sistem persamaan lanjar atau sistem persamaan linier. Sistem persamaan lanjar adalah metode untuk menyelesaikan persamaan lanjar. Untuk menyelesaikan persamaan lanjar, kita dapat memakai matriks augmented dan metode eliminasi Gauss untuk menghasilkan matriks eselon, atau menggunakan metode eliminasi Gauss Jordan untuk menghasilkan matriks tereduksi. [] Misalnya kita mempunyai persamaan yang harus diselesaikan seperti di bawah ini 2x + x 2 x = 5 4x + 4x 2 x = -2x + x 2 x = Dalam bentuk matriks augmented, persamaan tersebut dituliskan sebagai berikut. 2 4 4 2 5 Makalah IF22 AljabarGeometri Informatika ITB Semester I Tahun 2006

Untuk menyelesaikannya, kita harus melakukan OBE (Operasi Baris Elementer) sampai matriks x di sebelah kiri menjadi salah satu dari matriks di bawah ini. Bintang adalah angka apa saja. Metode di atas adalah metode eliminasi Gauss. Jika kita ingin melakukan eliminasi Gauss-Jordan kita hanya tinggal melanjutkan sampai didapatkan matriks identitas x di sebelah kiri. Untuk lebih jelasnya lihat proses berikut. 0 0 0 atau 0 0 0 /2 7/2R2-/2R OBE dilakukan dengan cara membagi suatu baris dengan konstanta, mengurangi suatu baris dengan n kali baris lainnya, atau menukar suatu baris dengan baris lainnya. Pertama kita harus membuat utama pada kolom pertama di baris pertama. Kemudian kurangi semua baris yang lain dengan n kali baris pertama agar elemen matriks di bawah utama tersebut harus sama dengan 0. Begitu seterusnya sampai didapatkan matriks eselon. Untuk lebih jelasnya kita akan melakukan OBE tersebut. 2 4 4 2 R+2R 0 2 2 0 2 0 6 2 0 /2 0 6 2 0 /2 0 0 5 0 /2 5 R/2 4 4 2 7 R2/-2 6 7/2R-6R2 6 7/2 R/-5 5 7/2 R/2 7R/2 Sampai sini kita mendapat matriks eselon dan kita sudah bisa mendapatkan nilai x, y, dan z dengan cara substitusi satu persatu mulai dari baris paling bawah ke atas, seperti di bawah ini. x = x 2 = 7/2 - /2x = 7/2 - ½() = 4/2 = 2 x = - /2x 2 +/2 x = - /2(2) + ½ () = + /2 = 0 0 /2 0 0 0 2 R + /2R 4 0 0 2 R-/2R20 0 2 Setelah didapatkan matriks eselon tereduksi kita sudah dapat melihat masing-masing nilai x, x 2, dan x, yaitu, 2, dan. Kita hanya tinggal melihat dari atas ke bawah. B. Aljabar Vektor Kuantitas fisik dibagi menjadi dua jenis yaitu skalar dan vektor. [] Skalar hanya memiliki magnitude atau besaran saja. Vektor selain memiliki magnitude juga mempunyai arah. Arah tersebut biasanya dilambangkan dengan anak panah. Vektor dapat dilambangkan dengan huruf kecil yang dicetak tebal atau dengan huruf kecil yang diberi anak panah di atasnya. Contohnya v, w, r atau,,. Vektor mempunyai beberapa komponen. Di R 2 dan di R berbeda. Pada R 2 vektor mempunyai 2 komponen yaitu v dan v 2. v = (v, v 2) atau v = Kita dapat menjumlahkan atau mengurangi dua vektor dengan menjumlahkan komponen-komponennya. Misalnya kita mempunyai vektor v dan w pada R n dengan v = (v, v 2,..., v n) dan w = (w, w 2,..., w n), maka hasil penjumlahan dan pengurangannya adalah sebagai berikut. v +w = (v + w, v 2 + w 2,..., v n + w n) v -w = (v - w, v 2 - w 2,..., v n - w n) Vektor dapat dikalikan dengan skalar. Jika kita mengalikan suatu vektor v dengan konstanta skalar k, maka hasil penjumlahannya menjadi seperti berikut. kv = (kv, kv 2,..., kv n) Panjang atau magnitude dari sebuah vektor disebut sebagai norma dari vektor. Norma dari vektor v dilambangkan dengan v. Norma vektor pada R n dihitung sebagai berikut. v = + + + Makalah IF22 AljabarGeometri Informatika ITB Semester I Tahun 2006

Arah dari vektor dapat dihitung dengan sudut antara vektor dengan sumbu-sumbu pada koordinat kartesian. Misalnya jika vektor v=(v, v 2,v ) maka berdasarkan gambar berikut, nilai setiap sudut ditunjukkan di bawah. Gambar 2 Arah vektor dan sudut-sudutnya https://yosprens.wordpress.com/205/08/0/hasil-kalititik-dua-vektor// mengorbit bumi yang berarti mereka dapat mengelilingi bumi 2 kali sehari. Kemiringan mereka terhadap ekuator bumi adalah 55 o yang memungkinkan mereka dapat bekerja optimal. Setiap satelit mengirimkan sinyal L dan L2 pada frekuensi masing-masing 575,42 MHz dan 227,6 MHz. L mengirimkan kode C/A (Coarse Acquisition) dan P (Precise). Sementara sinyal L2 hanya mengirimkan P. [5] L dapat digunakan oleh masyarakat umum sementara L2 hanya dapat dipakai untuk kebutuhan militer saja. [] Karena militer dapat menggunakan sinyal L dan juga sinyal L2, maka akurasi posisi yang didapat akan lebih tinggi dibanding masyarakat umum yang hanya menggunakan sinyal L. cos= cos= cos= Perkalian titik (dot product) atau perkalian dalam euclides antara dua vektor v dan w adalah sebagai berikut, di mana α adalah sudut antara dua vektor tersebut. v. w = v w + v 2 w 2 +... +v n w n v. w = v w cos α Perkalian silang atau cross product dari dua vektor pada R dapat dicari dengan persamaan berikut. v x w =,, III. PEMBAHASAN A. Prinsip Kerja GPS Dalam menentukan posisi, GPS mempunyai tiga komponen utama yang saling bekerja sama untuk menghitung posisi pengguna. Ketiga komponen tersebut adalah GPS ground control stations, GPS sattelites, dan GPS receivers. [2] Ground control stations adalah stasiun-stasiun yang terdapat di bumi. Stasiun-stasiun tersebut mengontrol kinerja satelit dan jam atomnya. Mereka juga mengoreksi sinyal-sinyal yang diterima dari satelit, kemudian mengembalikannyadan sinyal itulah yang akan dikirimkan ke pengguna. [] Saat ini control stations berada di Falcon Air Force, Colorado Springs, Ascension Island, Hawaii, Diego Garcia, dan Kwajalein. Komponen luar angkasa dari GPS memakai minimal 24 satelit yang mengorbit bumi di ketinggian.000 nautical miles atau sekitar 20.72 km di atas permukaan bumi. [4] Satelit-satelit tersebut berada dalam enam orbit. Masing-masing orbit mempunyai 4 satelit yang terusmenerus berputar mengelilingi bumi. Satelit-satelit tersebut membutuhkan waktu sekitar 2 jam untuk Gambar Ilustrasi 24 satelit GPS mengelilingi bumi http://www.gps.gov/multimedia/images/constellation.jpg Komponen yang ketiga adalah GPS receiver atau penerima. Ini adalah alat yang digunakan untuk menerima sinyal GPS. Receiver inilah yang biasa kita gunakan dalam smartphone kita saat menyalakan fitur GPS. Receiver mempunyai antena dan processor receiver yang menyediakan positioning, kecepatan, dan ketepatan waktu ke pengguna. Receiver menerima data dari satelit-satelit setelah sebelumnya dikoreksi oleh stasiun pengendali. [] Saat mengirimkan sinyal, ada perbedaan waktu antara jam atom yang terdapat pada satelit dengan jam yang terdapat di bumi atau yang terdapat pada receiver disebabkan adanya relativitas waktu yang terjadi. Jam di bumi bergerak lebih lambat dikarenakan adanya gravitasi. [4] Akan tetapi hal itu sudah diatasi oleh pengembang GPS tersebut. Untuk mendapatkan data posisi yang cukup akurat, GPS receiver harus mendapat sinyal dari -4 satelit. Dengan mendapat sinyal dari satelit kita bisa mengetahui latitude dan longitude atau garis lintang dan garis bujur. Jika mendapat 4 sinyal, kita bisa mengetahui altitude atau ketinggian juga. Akan tetapi sebenarnya dengan menggunakan satelit kita bisa mengetahui kemungkinan 2 titik, dan GPS bisa mengeliminasi salah Makalah IF22 AljabarGeometri Informatika ITB Semester I Tahun 2006

satu karena salah satu titik tersebut tidak ada di bumi. [6] B. Peran Vektor dalam Menentukan Posisi Cara GPS menentukan posisi didapat dengan menghitung data-data yang diterima dari satelit-satelit. Pada subbab sebelumnya sudah dibahas bahwa receiver harus menerima sinyal dari satelit. Receiver menghitung jarak dari setiap satelit dan menentukan posisinya. Metode ini disebut sebagai trilateration. [5] Ilustrasi dari trilateration dapat dilihat sebagai berikut. membuat persamaan sehingga tersisa variabel bebas x, y, dan z. u = + () u 2 = + (2) u 2 = 2 + + 2 + () u 2 + + + + = 2 2 (4) Dengan melakukan hal yang sama pada vektor v dan w didapatkan v 2 + + + + = 2 2 (5) w 2 + + + + = 2 2 (6) Gambar 4 Ilustrasi trilateration pada GPS http://www.buzzle.com/images/electronics/gps-trackingtechnology.jpg Misalkan kita mempunyai kasus trilateration pada R 2 sebagai berikut Gambar 4 Kasus trilateration https://plus.maths.org/content/sites/plus.maths.org/files/ne ws/202/homeoffice/trilateration.jpg Dalam bentuk vektor, dapat digambarkan trilateration tersebut sebagai berikut. x,y u x,y Gambar 5 Vektor pada trilateration Kita mengetahui jarak setiap satelit ke receiver, yaitu norma dari vektor dari setiap satelit ke receiver. Selain itu kita juga mengetahui koordinat dari setiap receiver. Dengan mengetahui dua komponen tersebut kita dapat v w x,y x 2,y 2 Karena variabel yang mengandung kuadrat pada sebelah kiri identik, maka kita dapat mengurangi persamaan 5 dan 6 dengan persamaan 4 sehingga didapatkan kedua persamaan berikut. 2 2 = v 2 + + (7) 2 2 = w 2 + + (8) Kedua persamaan tersebut dapat diselesaikan dengan menggunakan sistem persamaan lanjar. 2 variabel x dan y yang menunjukkan posisi hasil trilateration dapat ditemukan. Seperti yang sudah disinggung sebelumnya, kita dapat menentukan koordinat longitude dan latitude dengan bantuan satelit. Hal itu dibuktikan dengan persamaan di atas. Untuk menentukan altitude atau ketinggian dibutuhkan satu lagi satelit agar dapat menentukan koordinat ketinggiannya. Untuk lebih jelasnya akan dibahas pada subbab selanjutnya dengan studi kasus. C. Studi Kasus Studi kasus dan solusi di bawah ini diambil dari paperberjudul An Undetermined Linear System for GPS yang disusun oleh Dan Kalman. Dan Kalman menjelaskan dasar dari penentuan posisi pada GPS dengan jelas dan sederhana. [7] GPS akan menentukan letak sebuah kapal yang berlayar di lautan. Untuk menyederhanakan perhitungan, kita akan mengasumsikan ada koordinat kartesian xyz dengan titik (0,0,0) adalah inti bumi dan panjang satuan x, y, dan z setara dengan radius bumi sehingga nilai dari x 2 + y 2 + z 2 = adalah sama dengan tinggi permukaan laut. Kecepatan cahaya yang dipakai kira-kira sama dengan 0.047 radii /ms. Data yang diterima dari satelit adalah sebagai berikut, meskipun pada kenyataannya data yang diterima tidak akan seperti di bawah ini. Makalah IF22 AljabarGeometri Informatika ITB Semester I Tahun 2006

Satelit Posisi Waktu (,2,0) 9,9 2 (2,0,2) 2,4 (,,) 2,6 4 (2,,0) 9,9 Tabel Data yang diterima dari satelit Pertama kita akan mencari jarak dari satelit pertama ke kapal. Jarak tersebut dapat dicari dengan persamaan di bawah. d = 0.047(t-9,9) Jarak tersebut atau norma vektor dapat dicari dengan d = + 2 + 0 Sehingga didapat persamaan berikut + 2 + 0 = 0,047 9,9 + 2 + 0 = 0,047 9,9 () 2+4 20,047 9,9 = +2 0,047 9,9 + + + 0,047 Ketiga data satelit bisa diturunkan dengan cara yang sama. 4+4 20,047 2,4 =2 +2 0,047 2,4 + + + 0,047 2+2+2 20,047 2,6 = +2 + 0,047 2,6 + + + 0,047 4+2 20,047 9,9 =2 + 0,047 9,9 + + + 0,047 (5) Kurangi persamaan 2,, dan 4 dengan persamaan. 2 4+4+20,047 7,5 =8+5 0,047 9,9 2,4 (6) 2+2 20,047 2,7 =+5 0,047 9,9 2,6 (7) 2 2 20,047 0 =8+5 0,047 9,9 9,9 (8) Dalam bentuk matriks augmented persamaanpersamaan tersebut dapat ditulis sebagai berikut (2) () (4) 2 4 4 0,077,86 0 2 2 0,056,47 2 2 0 0 0 Menyelesaikan persamaan tersebut didapat matriks berikut. 0 00,095 5,4 0 00,095 5,4 0,067,67 Jadi kita mendapatkan solusi umum sebagai berikut. =5,4 0,095 =5,4 0,095 =,67 0,067 Substitusi solusi tersebut pada persamaan didapatkan: 5,4 0,095 +5,4 0,095 2 +,67 0,067 = 0,047 9,9 0,02,88+4,56=0 Dari persamaan tersebut didapat nilai t adalah 4, atau 50. Jika kita memakai nilai t=4, kita mendapat posisi kapal pada (,7,,7, 0,790) yang mempunyai panjang 2. Itu berarti kapal kita tidak berada di lautan karena jarak inti bumi dengan permukaan laut adalah. Jika kita memakai nilai t=50, kita mendapat posisi kapal (0,667, 0,667, 0,2) yang mempunyai panjang 0,997. Nilai tersebut mendekati yang berarti kapal berada di permukaan laut. Jadi kita dapat menyimpulkan posisi kapal tersebut ada di posisi (0,667, 0,667, 0,2). V. KESIIMPULAN Vektor dapat digunakan untuk menentukan posisi di permukaan bumi dengan GPS. Konsep yang digunakan adalah trilateration dan penyelesaiannya banyak menggunakan sistem persamaan lanjar. Pada bab pembahasan sudah dibahas pengunaan vektor meskipun hanya mencakup dasar-dasarnya dan tidak memakai sistem GPS sungguhan. VI. UCAPAN TERIMA KASIH Penulis mengucap syukur kepada Tuhan Yang Maha Esa atas berkat dan rahmatnya makalah ini dapat selesai tepat pada waktunya. Penulis berterima kasih kepada Bapak Dr. Ir. Rinaldi Munir, M.T. dan Bapak Drs. Judhi Santoso, M.Sc. selaku dosen mata kuliah aljabar geometri. Tidak lupa juga penulis berterimakasih kepada orangtua dan teman-teman yang telah mendukung pengerjaan makalah ini. Makalah IF22 AljabarGeometri Informatika ITB Semester I Tahun 2006

REFERENSI [] Strang, Gilbert. Linear Algebra and It s Application, 4th ed.publisher, Thomson, Brooks/Cole, 2006. [2]http://www.streetdirectory.com/travel_guide/229/gps_vehicle_trac king/how_global_positioning_system_gps_works.html) diakses pada 5 Desember 205 pukul.00 [] http://www.mandalamaya.com/pengertian-gps-cara-kerja-gps-danfungsi-gps/ Diakses pada 5 Desember 205 pukul.00. [4] http://www.astronomy.ohio-state.edu/~pogge/ast62/unit5/gps.html Diakses pada 5 Desember 205 pukul 20.00. [5] http://mio.com/technology-trilateration.htm Diakses pada 5 Desember pukul 20.00. [6] http://www.montana.edu/gps/understd.html diakses pada 5 Desember 205 pukul.00. [7]Dan Kalman, An underdetermined linear system for GPS, The MathematicalAssociation of America :5 (2002) 84-90 PERNYATAAN Dengan ini saya menyatakan bahwa makalah yang saya tulis ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari makalah orang lain, dan bukan plagiasi. Bandung, 5Desember 205 ttd Kharis Isriyanto 54064 Makalah IF22 AljabarGeometri Informatika ITB Semester I Tahun 2006