KAJIAN PENGARUH UAP AIR TERHADAP PERUBAHAN IKLIM

dokumen-dokumen yang mirip
ATMOSFER BUMI A BAB. Komposisi Atmosfer Bumi

seribu tahun walaupun tingkat emisi gas rumah kaca telah stabil. Ini mencerminkan besarnya kapasitas panas dari lautan.

Atmosfer Bumi. Meteorologi. Peran Atmosfer Bumi dalam Kehidupan Kita. Atmosfer Bumi berperan dalam menjaga bumi agar tetap layak huni.

PEMANASAN GLOBAL: Dampak dan Upaya Meminimalisasinya

TIN206 - Pengetahuan Lingkungan Materi #10 Genap 2016/2017. TIN206 - Pengetahuan Lingkungan

Seputar ATMOSFER Asal katanya dari atmos dan shaira (bahasa Yunani), yang artinya atmos : uap, shaira : bulatan. Jadi, atmosfer adalah lapisan gas

POLUSI UDARA DI KAWASAN CEKUNGAN BANDUNG

Udara & Atmosfir. Angga Yuhistira

BAB IV HASIL DAN PEMBAHASAN

Unsur gas yang dominan di atmosfer: Nitrogen : 78,08% Oksigen : 20,95% Argon : 0,95% Karbon dioksida : 0,034%

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER)

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.1. argon. oksigen. nitrogen. hidrogen

STRUKTURISASI MATERI

Analisis Hujan Ekstrim Berdasarkan Parameter Angin dan Uap Air di Kototabang Sumatera Barat Tia Nuraya a, Andi Ihwan a*,apriansyah b

Infeksi di lapisan ozon

Wiwi Widia Astuti (E1A012060) :Pengetahuan Lingkungan ABSTRAK

RADIASI MATAHARI DAN TEMPERATUR

Atmosfer Bumi. Ikhlasul-pgsd-fip-uny/iad. 800 km. 700 km. 600 km. 500 km. 400 km. Aurora bagian. atas Meteor 300 km. Aurora bagian. bawah.

Pemanasan Bumi. Suhu dan Perpindahan Panas

Perubahan iklim dunia: apa dan bagaimana?

PEMANASAN GLOBAL PENYEBAB PEMANASAN GLOBAL

PROFIL VERTIKAL OZON, ClO DAN TEMPERATUR DI BANDUNG DAN WATUKOSEK BERBASIS OBSERVASI SENSOR MLS SATELIT AURA

IV. HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. Agro Klimatologi ~ 1

POTENSI EMISI METANA KE ATMOSFER AKIBAT BANJIR

VARIASI TEMPORAL KONSENTRASI KARBON DIOKSIDA (CO 2 ) DAN TEMPERATUR DI INDONESIA BERBASIS DATA OBSERVASI AQUA-AIRS

ATMOSFER I. A. Pengertian, Kandungan Gas, Fungsi, dan Manfaat Penyelidikan Atmosfer 1. Pengertian Atmosfer. Tabel Kandungan Gas dalam Atmosfer

Angin Meridional. Analisis Spektrum

TUGAS PRESENTASI ILMU PENGETAHUAN BUMI & ANTARIKSA ATMOSFER BUMI

PENDAHULUAN. Latar Belakang. Rataan suhu di permukaan bumi adalah sekitar K (15 0 C ), suhu

Suhu, Cahaya dan Warna Laut. Materi Kuliah 6 MK Oseanografi Umum (ITK221)

A. EFEK RUMAH KACA Efek rumah kaca (green house effect) memegang peranan penting dalam melindungi kelangsungan makhluk hidup di muka bumi.

PENIPISAN LAPISAN OZON

PENGAMATAN GAS RUMAH KACA MENGGUNAKAN WAHANA SATELIT

Atmosphere Biosphere Hydrosphere Lithosphere

Dinamika Atmosfer Bawah (Skala Ketinggian dan Mixing Ratio)

BAB I PENDAHULUAN. banyak sekali dampak yang ditimbulkan oleh pemanasan global ini.

02. Jika laju fotosintesis (v) digambarkan terhadap suhu (T), maka grafik yang sesuai dengan bacaan di atas adalah (A) (C)

Jurnal Sains Dirgantara Vol. 10 No. 2 Juni 2013 :

Jurnal Fisika Unand Vol. 3, No. 3, Juli 2014 ISSN

BAB 1 PENDAHULUAN. Hubungan faktor..., Amah Majidah Vidyah Dini, FKM UI, 2009

lingkungan untuk kepentingan generasi sekarang dan mendatang.

BAB VII TATA SURYA. STANDAR KOMPETENSI : Memahami Sistem Tata Surya dan Proses yang terjadidi dalamnya.

Penggunaan Model Simulasi Atmosfer Sebagai Alat Pembelajaran Dalam Pendidikan

SMP kelas 9 - FISIKA BAB 4. SISTEM TATA SURYALatihan Soal 4.10

DAMPAK AKTIVITAS MATAHARI TERHADAP KENAIKAN TEMPERATUR GLOBAL

Skema proses penerimaan radiasi matahari oleh bumi

SMA/MA IPS kelas 10 - GEOGRAFI IPS BAB 5. DINAMIKA ATMOSFERLATIHAN SOAL 5.5. La Nina. El Nino. Pancaroba. Badai tropis.

STRUKTUR BUMI. Bumi, Tata Surya dan Angkasa Luar

FIsika PEMANASAN GLOBAL. K e l a s. Kurikulum A. Penipisan Lapisan Ozon 1. Lapisan Ozon

4. Apakah pemanasan Global akan menyebabkan peningkatan terjadinya banjir, kekeringan, pertumbuhan hama secara cepat dan peristiwa alam atau cuaca yan

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

2 BAB II TEORI DASAR

PEMANASAN GLOBAL. 1. Pengertian Pemanasan Global

Atmosf s e f r e B umi

6massa udara yg terdapat pd seluas 1 cm 2 : 1,02 kg6. Massa total atmosfer : 1,02 kg x ( luas permukaan bumi) : kg

Atmosfer. 1. Bahan 2. Struktur 3. Peranan Atmosfer. Meteorology for better life

Ikhlasul-pgsd-fip-uny/iad. Bumi, Berlian biru alam semesta

ATMOSFER & PENCEMARAN UDARA

HASIL DAN PEMBAHASAN. Tabel 5 Komposisi poliblen PGA dengan PLA (b) Komposisi PGA (%) PLA (%)

Alberth Christian Nahas dan Budi Setiawan Stasiun Pemantau Atmosfer Global Bukit Kototabang Badan Meteorologi Klimatologi dan Geofisika.

IV. HASIL DAN PEMBAHASAN

APA & BAGAIMANA PEMANASAN GLOBAL?

KISI-KISI SOAL UJI COBA TES. : Efek Pemanasan Global : 3.9 Menganalisis gejala pemanasan global dan dampaknya bagi kehidupan dan lingkungan

Luas Luas. Luas (Ha) (Ha) Luas. (Ha) (Ha) Kalimantan Barat

ANALYSISOFOZONECONCENTRATIONBEFOREANDAFTEROCCUR RINGOFLAPINDOMUDFLOWINPERIOD AND 2013

PEMANASAN GLOBAL Dampak terhadap Kehidupan Manusia dan Usaha Penanggulangannya

STUDI IDENTIFIKASI POLA UTAMA DATA RADIOSONDE MELALUI ANALISIS KOMPONEN UTAMA DAN ANALISIS SPEKTRUM (STUDI KASUS BANDUNG) SATRIYANI

4 Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN. Pada pembuatan dispersi padat dengan berbagai perbandingan

BAB I PENDAHULUAN. A. Latar Belakang

Pelatihan-osn.com C. Siklus Wilson D. Palung samudera C. Campuran B. Salinitas air laut C. Rendah C. Menerima banyak cahaya matahari A.

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 71 TAHUN 2011 TENTANG PENYELENGGARAAN INVENTARISASI GAS RUMAH KACA NASIONAL

Keterkaitan Variasi Sinar Kosmik dengan Tutupan Awan Riza Adriat 1)

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA)

INFORMASI PENGGUNAAN BAHAN PERUSAK OZON (BPO) DI PROVINSI JAMBI

4024 Sintesis enantioselektif pada etil (1R,2S)-cishidroksisiklopentana

ESTIMASI NILAI TPW (TOTAL PRECIPITABLE WATER) DI ATAS DAERAH PADANG DAN BIAK BERDASARKAN HASIL ANALISIS DATA RADIOSONDE IRE PRATIWI

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 71 TAHUN 2011 TENTANG PENYELENGGARAAN INVENTARISASI GAS RUMAH KACA NASIONAL

MENGAMATI ARUS KONVEKSI, MEMBANDINGKAN ENERGI PANAS BENDA, PENYEBAB KENAIKAN SUHU BENDA DAN PENGUAPAN

BAB I PENDAHULUAN. dipancarkan lagi oleh bumi sebagai sinar inframerah yang panas. Sinar inframerah tersebut di

Dinamika Atmosfer Bawah (Tekanan, Konsentrasi, dan Temperatur)

STAF LAB. ILMU TANAMAN

APA ITU GLOBAL WARMING???

BAB I PENDAHULUAN 1.1. Latar Belakang

KAJIAN PERKEMBANGAN TEKNOLOGI UNTUK MENGUKUR KONSENTRASI CO2 DI ATMOSFER

Kunci Jawaban Kompetisi Sains Madrasah GEOGRAFI Madrasah Aliyah Tingkat Provinsi 2015

ATMOSFER BUMI A. Pengertian Atmosfer Bumi B. Lapisan Atmosfer Bumi

FENOMENA GAS RUMAH KACA

PEMANASAN GLOBAL. Efek Rumah Kaca (Green House Effect)

Hidrometeorologi. Pertemuan ke I

Geografi. Kelas X ATMOSFER VII KTSP & K Iklim Junghuhn

Model Sederhana Penghitungan Presipitasi Berbasis Data Radiometer dan EAR

4. HASIL DAN PEMBAHASAN

PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 71 TAHUN 2011 TENTANG PENYELENGGARAAN INVENTARISASI GAS RUMAH KACA NASIONAL

Jaman dahulu Sekarang

PENGINDERAAN JAUH D. SUGANDI NANIN T

BAB I PENDAHULUAN. utama yang dihadapi dunia saat ini. Pemanasan global berhubungan dengan proses. infra merah diserap oleh udara dan permukaan bumi.

Karakteristik Air. Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017

Transkripsi:

KAJIAN PENGARUH UAP AIR TERHADAP PERUBAHAN IKLIM Novita Ambarsari Peneliti Bidang Pengkajian Ozon dan Polusi Udara, LAPAN e-mail: novitaambar@yahoo.com RINGKASAN Gas Rumah Kaca (GRK) dianggap komponen atmosfer yang paling berperan dalam terjadinya perubahan iklim dan pemanasan global. Selain CO 2, komponen atmosfer lain yang bersifat GRK adalah uap air. Uap air menjadi GRK utama karena efek pemanasan yang ditimbulkan lebih besar dibandingkan efek yang ditimbulkan oleh CO 2. Efek pemanasan oleh uap air sebesar 75 W/m 2 sedangkan oleh CO 2 hanya 32 W/m 2. Hasil kajian menunjukkan perubahan konsentrasi uap air di atmosfer sangat berpengaruh terhadap perubahan temperatur dan anomalinya. Uap air menjadikan kenaikan temperatur oleh peningkatan konsentrasi CO 2 meningkat dari 1 C menjadi 3 C. 1 PENDAHULUAN Air, dalam berbagai fasenya menjadi bagian penting yang menghubungkan antara komponen kimia di atmosfer dengan perubahan global juga dengan proses dinamika, radiasi, dan komponen iklim. Di troposfer atas dan stratosfer bawah efek radiatif dan kimia dari uap air sangat besar dan konsentrasinya di atmosfer sangat berpengaruh terhadap temperatur dan kelembaban relatif. Pada model iklim global, hampir setengah dari seluruh penelitian mengenai kenaikan temperatur karena konsentrasi CO 2 yang meningkat dua kali juga karena meningkatnya konsentrasi uap air. Peningkatan konsentrasi uap air di stratosfer telah menghasilkan efek pendinginan sama halnya dengan proses penipisan ozon. Penelitian terbaru menunjukkan pendinginan di stratosfer di daerah yang konsentrasi uap airnya meningkat, hampir sama dengan akibat penguraian molekul ozon di stratosfer, menunjukkan adanya peningkatan penyebab yang mengakibatkan penurunan temperatur stratosfer (Jain, et.al, 2005). Selain itu, uap air di troposfer merupakan gas telusur yang paling penting karena berperan sebagai faktor kunci dalam pengaturan dinamika troposfer dan merupakan gas rumah kaca yang sangat kuat. Penelitian jangka panjang mengenai uap air di troposfer tengah/atas menjadi fokus penelitian komunitas peneliti perubahan iklim karena pada ketinggian tersebut uap air berperan sangat baik sebagai gas rumah kaca (Scheneider, et.al, 2010). Seberapa besar pemanasan yang terjadi akibat peningkatan konsentrasi gas rumah kaca di atmosfer masih belum diketahui secara kuantitatif. Berdasarkan pertemuan IPCC tahun 1996 menyimpulkan bahwa peningkatan konsentrasi CO 2 menjadi dua kali lipat menyebabkan kesetimbangan dengan terjadinya peningkatan temperatur antara 1,5 hingga 4,5 C. Penyebab dari ketidakpastian ini adalah ketidakmampuan kita untuk menentukan mekanisme arus balik (feedback) dalam sistem iklim termasuk uap air, awan, lapse rate, dan albedo. Uap air telah dalam waktu lama dikatakan memiliki mekanisme arus balik yang positif. Hal ini disebabkan ketergantungan uap air pada proses pelarutannya terhadap temperatur. CO 2 akan mengakibatkan pemanasan di troposfer yang kemudian meningkatkan jumlah uap air di atmosfer. Uap air termasuk gas rumah kaca sehingga 93

Berita Dirgantara Vol. 11 No. 3 September 2010:93-98 peningkatan konsentrasinya akan mengurangi jumlah radiasi infra merah yang dibuang atmosfer akibat temperatur yang tidak normal dan mengakibatkan pemanasan yang lebih besar dibandingkan saat sebaliknya (Hall and Manabe, 1999). Seperti telah diketahui bahwa dua kunci penting dalam penelitian tentang iklim adalah perubahan iklim dan penipisan ozon. Uap air terlibat dalam kedua topik tersebut sebagai gas rumah kaca terpenting dan sebagai sumber dari awan polar stratosfer dan radikal OH dalam penipisan ozon. Mixing ratio (rasio campuran) uap air memiliki konsentrasi sangat kecil di stratosfer dan sangat besar di troposfer (Muller, et.al, 2007). Uap air merupakan gas rumah kaca yang paling dominan dengan efek rumah kaca sebesar 75 W/m 2 sedangkan karbon dioksida hanya 32 W/m 2. Nilai ini diperoleh dengan mengukur radiasi infra merah yang dikembalikan ke permukaan Bumi. Uap air juga merupakan gas rumah kaca dengan efek pengaruh arus balik (feedback) yang paling dominan dalam sistem iklim di Bumi dan menjadi penyebab utama temperatur sangat sensitif terhadap perubahan konsentrasi CO 2. Meningkatnya temperatur akan meningkatkan proses evaporasi yang mengakibatkan jumlah uap air semakin terakumulasi di atmosfer. Sebagai gas rumah kaca, uap air menyerap lebih banyak panas, kemudian memanaskan udara dan meningkatkan evaporasi. Pada saat CO 2 masuk ke atmosfer, sifatnya sebagai gas rumah kaca memiliki efek pemanasan yang mengakibatkan semakin banyak air yang menguap ke atmosfer dan membuat udara menjadi lebih panas lagi. Oleh karena itu, efek pemanasan CO 2 diperkuat dengan adanya uap air di 94 atmosfer. Tanpa adanya efek pengaruh arus balik (feedback) dari uap air, peningkatan konsentrasi CO 2 menjadi 2 kali lipat hanya menaikkan temperatur 1 C. Akan tetapi, dengan efek mekanisme arus balik dari uap air, total peningkatan temperatur oleh kenaikan CO 2 menjadi 3 C (www. skepticalscience. com). Hasil kajian bertujuan untuk memberikan bahan pertimbangan dalam mencari penyelesaian permasalahan perubahan iklim dan pemanasan global akibat peningkatan konsentrasi GRK. 2 PROFIL VERTIKAL UAP AIR DI ATMOSFER Profil uap air di troposfer atas secara tradisional ditentukan dengan mengoperasikan radiosonde. Selain itu, beberapa teknologi lain dikembangkan seperti Fourier Transform Infra Red (FTIR) yang menjadi penelitian Network for Detection of Atmospheric Composition Change (NDACC) telah mengukur spektrum penyerapan radiasi Matahari berkualitas tinggi selama bertahuntahun yang menghasilkan pemantauan berbagai jenis gas telusur di atmosfer meliputi data total kolom dan profil termasuk uap air dengan tingkat keakuratan yang sangat tinggi (Schneider, et.al, 2010). Gambar 2-1 menunjukkan spektrum serapan infra merah (IR) hasil pengukuran FTIR yang memperlihatkan daerah serapan untuk uap air (H 2O) pada panjang gelombang 700-1350 cm -1. Gambar 2-1 bagian atas menunjukkan banyaknya informasi yang dapat diperoleh dari spektrum IR beresolusi tinggi tersebut sedangkan Gambar 2-1 bawah perbesaran spektrum yang menunjukkan dua jendela spektrum mikro dengan skala panjang gelombang diperbesar 200 kali. Spektrum rotasi dan vibrasi untuk masing-masing unsur penyerap (O 3, H 2O, HDO, CH 4, dan lainlain) terlihat lebih jelas.

Absolute radiances [VW[cm 2 storad cm 4 ]] Wavenumber [cm -1 ] Gambar 2-1: Atas: spektrum infra merah hasil pengukuran FTIR dengan panjang gelombang diatur antara 700-1350 cm -1 dengan waktu integrasi 8 menit. Bawah : perbesaran spektrum yang mengandung H 2O. Spektrum ini direkam pada tanggal 25 Juli 2005 (Schneider, et.al, 2010) Profil vertikal uap air juga diukur oleh instrumen lainnya di antaranya Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) yang ditempatkan pada satelit ESA ENVISAT dan Airborne Microwave Stratospheric Observing System (AMSOS) yang dibawa oleh pesawat Learjet milik Angkatan Udara Swiss. Keduanya mencakup wilayah stratosfer dan troposfer atas. Profil vertikal hasil pengukuran kedua instrumen tersebut ditunjukkan pada Gambar 2-2. Pada Gambar 2-2 kiri, dibandingkan profil vertikal hasil pengukuran MIPAS dan AMSOS yang menunjukkan warna ungu merupakan profil hasil pengukuran MIPAS yang diperhalus dibandingkan dengan warna biru sebagai hasil pengukuran AMSOS. Keduanya menunjukkan profil vertikal uap air maksimum pada level 1 hpa. Perbedaan rata-rata antara MIPAS dan AMSOS ditunjukkan pada Gambar 2-2 tengah. Perbedaan rata-rata menunjukkan angka 10-15 % dengan kesalahan ± 10 %. Perbedaan rata-rata AMSOS dengan MLS ditunjukkan pada Gambar 2-2 kanan dengan nilai sekitar 8 % di stratosfer dan meningkat hingga 15 % dengan meningkatnya ketinggian (Muller, et.al, 2007). Gambar 2-3 menunjukkan profil uap air hasil pengukuran microwave radiometry juga dalam AMSOS di Jungfraujoch, Swizterland yang dibandingkan dengan profil uap air hasil pengukuran Halogen Occultation Experiment (HALOE). 95

Berita Dirgantara Vol. 11 No. 3 September 2010:93-98 Gambar 2-2: Profil vertikal uap air hasil pengukuran MIPAS dan AMSOS (kiri), perbedaan rata-rata AMOS dan MIPAS (tengah), perbedaan rata-rata AMSOS dan MLS AURA (kanan) (Muller, et.al, 2007) Gambar 2-3: Distribusi vertikal uap air hasil pengukuran Microwave Radiometry AMSOS di International Scientific Station Jungfraujoch (Swiss) (ISSJ, 47_ N, 7_ E, 3580 m di atas permukaan laut) untuk musim dingin 1999-2001 Profil merupakan rata-rata bulan Oktober (bulat), November (segitiga), Desember (wajik), dan Januari (persegi). Area abu-abu adalah nilai minimal dan maksimal profil rata-rata bulan dan zonal dari HALOE untuk bulan Oktober hingga Januari 1999. Garis putus-putus berwarna putih adalah rata-rata untuk keempat bulan tersebut dari HALOE. Garis abu-abu putus-putus dengan garis kesalahan merupakan rata-rata bulan untuk empat bulan Oktober- Januari 1999-2001 tersebut dari AMSOS (Gerber et.al, 2004). Dari gambar dapat diketahui bahwa profil uap air di stratosfer hasil pengukuran microwave radiometry menunjukkan puncak pada ketinggian 96

di atas 40 km sedangkan profil dari HALOE menunjukkan puncak pada 50 km. Pada ketinggian di atas 45 km, profil uap air dari microwave cenderung lebih kecil rasio campurannya dibandingkan dengan HALOE. Hal ini disebabkan pada ketinggian di atas 45 km, terjadi banyak gangguan (noise) pada alat microwave radiometry sehingga konsentrasi rasio campuran uap air selalu lebih kecil dibandingkan HALOE. Profil uap air di troposfer cenderung lebih bervariasi berdasarkan waktu dan lokasi karena adanya peristiwa konveksi dan turbulensi. Akibat adanya variasi ini, profil uap air di troposfer memiliki karakteristik musiman. Misalnya, pada musim panas, saat letak tropopause lebih tinggi dibandingkan musim lainnya, rasio campuran uap air cenderung lebih tinggi dibandingkan musim panas. Hal ini karena pada musim panas, intensitas sinar Matahari lebih tinggi sehingga memicu konveksi yang lebih besar dan meningkatkan rasio campuran uap air. Oleh karena itu, variabilitas uap air lebih kuat pada musim panas [Gerber, at.al, 2004]. 3 UAP AIR DAN PEMANASAN GLOBAL Pada Gambar 3-1 dapat dilihat hubungan antara perubahan fraksi uap air dengan temperatur permukaan, kelembaban relatif dengan temperatur permukaan, dan temperatur troposfer dengan temperatur permukaan untuk menganalisis pengaruhnya terhadap pemanasan global. Untuk Gambar 3-1a yang ditunjukkan dengan garis lurus, menggambarkan hubungan perubahan fraksi uap air dengan temperatur permukaan, dapat dilihat adanya hubungan positif yang kuat di troposfer. Pada kasus pemanasan global, perubahan temperatur pemukaan semakin besar dengan perubahan fraksi uap air yang semakin besar. Hal ini benar adanya untuk wilayah troposfer dan lebih terlihat di troposfer atas, dimana perubahan absorptivitas kemungkinan memberikan efek yang lebih besar pada gas rumah kaca di atmosfer dibandingkan bila perubahan yang sama terjadi di troposfer bawah. Bukti ini sesuai dengan fakta bahwa pengaruh uap air lebih efektif dalam meningkatkan pemanasan global dibandingkan memicu anomali rata-rata global. Gambar 3-1: a. Hubungan antara perubahan fraksi uap air dengan temperatur permukaan ( C), b. Hubungan antara kelembaban relatif (%) dengan temperatur permukaan, dan c. hubungan antara temperatur troposfer dengan temperatur permukaan (Hall, et.al, 1999) 97

Berita Dirgantara Vol. 11 No. 3 September 2010:93-98 Pada ketiga gambar di atas, garis lurus menunjukkan hubungan antara parameter atmosfer dengan temperatur permukaan untuk kasus pemanasan global. Garis putus menunjukkan regresi antara nilai rata-rata global dengan rata-rata global temperatur permukaan dari kontrol variabilitas eksperimen yang tidak berperturbasi. Perubahan kelembaban relatif juga terjadi dengan temperatur yang menghangat akibat CO 2 dapat dilihat pada Gambar 3-1b. Peningkatan yang terjadi sangat kecil, beberapa persen per derajat kenaikan temperatur di troposfer bawah, sedangkan di troposfer tengahatas hubungannya mendekati nol. Hal ini dapat dilihat pada kedua garis lurus dan putus yang mewakili pemanasan global dan variabilitas eksperimen yang tidak berperturbasi, bahwa kelembaban relatif di troposfer berpengaruh kecil sekali terhadap anomali temperatur. Gambar 3-1c menunjukkan profil penghangatan secara vertikal dibandingkan dengan temperatur permukaan. Dari gambar diketahui adanya hubungan yang sangat kuat antara anomali temperatur pada ketinggian yang lebih tinggi dengan anomali temperatur di permukaan. Bagaimanapun, hubungan yang lebih kuat ditunjukkan pada kasus pemanasan global, dimana penghangatan terjadi sama di seluruh troposfer. Pada kasus variabilitas yang tidak berperturbasi, regresi antara temperatur troposfer dengan temperatur permukaan menurun dari 1 pada daerah dekat permukaan menjadi sekitar 0,3 pada 200 hpa. Hal ini berarti anomali temperatur global tidak menembus troposfer seefektif penghangatan akibat peningkatan konsentrasi CO 2 (Hall, et.al, 1999). 4 PENUTUP Uap air sebagai gas rumah kaca utama berperan dalam perubahan iklim terutama pemanasan global. Profil vertikal uap air di beberapa lokasi dengan beberapa instrumen pengukur menunjukkan konsentrasi maksimum 98 pada ketinggian di atas 40 km. Uap air berpengaruh terhadap peningkatan temperatur permukaan sebagai salah satu tanda pemanasan global. Semakin besar perubahan fraksi uap air di atmosfer, semakin besar perubahan temperatur permukaan. Pengaruh ini lebih kuat di troposfer atas. Pengaruh uap air juga diwakili oleh kelembaban relatif yang menunjukkan peningkatan sangat kecil, beberapa persen per derajat kenaikan temperatur permukaan. Efek pemanasan oleh uap air lebih besar dibandingkan CO 2. Efek pemanasan oleh uap air sebesar 75 W/m 2 sedangkan oleh CO 2 hanya 32 W/m 2 sehingga uap air menambah efek pemanasan yang terjadi akibat peningkatan konsentrasi CO 2 dari 1 C menjadi 3 C. DAFTAR RUJUKAN Gerber, D., Balin I., Feist G., 2004. Ground-based Water Vapour Soundings by Microwave Radiometry and Raman Lidar on Jungfraujoch (Swiss Alps), Atmos. Chem. Phys., 4, 2171 2179. Hall, A., Manabe, S., 1999. The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming, Journal of Climate Vol. 12. Jain S.L., Ghude D., Arya C.B., 2005. Signature of Increasing Total Column Water Vapour and Surface Temperatur at Maitri, Antarctica, CURRENT SCIENCE, Vol.89, No. 11. Muller, S., Kampfer N., Milz M., 2007. Comparison of Water Vapour Measurement Between The Satellite Limb Sounder MIPAS/ ENVISAT and The Air Borne Microwave Radiometer AMSOS, Proc. Envisat Symposium 2007. www.skepticalscience.com, Water Vapor Is The Most Powerful Greenhouse Gas, tanggal akses 29 Juni 2010. Schneider, K., Kirtman P., Lindzen R., 1999. Tropospheric Water Vapor and Climate Sensitivity, American Meteorological Society.

79