Pengaruh Kecepatan Angin pada Karakteristik Performansi Konduktor SUTET

dokumen-dokumen yang mirip
MAKARA, TEKNOLOGI, VOL. 11, NO. 1, APRIL 2007: KAJIAN MEKANIS PENGGUNAAN PENGHANTAR TERMAL ACCR PADA SUTET 500KV. Suprihadi Prasetyono.

Analisis Unjuk Kerja Mekanis Konduktor ACCR Akibat Perubahan Arus Saluran

Muhammad Ihsan #1, Ira Devi Sara *2, Rakhmad Syafutra Lubis #3

ANALISA PENGARUH EKSTERNAL DAN INTERNAL TERHADAP ANDONGAN DAN TEGANGAN TARIK PADA SALURAN TRANSMISI 150 KV

Pengaruh Perubahan Arus Saluran Terhadap Tegangan Tarik dan Andongan pada Sutet 500 KV di Zona Krian

Static Line Rating untuk Integrasi PLTB di Jaringan Tegangan Menengah : Studi Kasus Master Plan Pembangkit Hibrid di Krueng Raya

Studi Perencanaan Upgrade Transmisi Tegangan Tinggi 150 kv Perak-Ujung Menggunakan Konduktor HTLS (High Temeprature-Low Sag)

ANALISIS PERHITUNGAN JARAK ANTAR KAWAT DAN CLEARANCE SALURAN TRANSMISI UDARA

EVALUASI PENGARUH FAKTOR EKSTERNAL TERHADAP MEKANISME KINERJA KONDUKTOR AC3 DAN ACSR. PADA SUTT 150 kv

2 BAB II TINJAUAN PUSTAKA

PERENCANAAN SALURAN UDARA TRANSMISI TEGANGAN TINGGI APLIKASI TANJUNG JABUNG - SABAK JAMBI

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. Dalam penyaluran daya listrik akan terjadi rugi-rugi daya penyaluran dan

STUDI PERENCANAAN SALURAN TRANSMISI 150 kv BAMBE INCOMER

Gambar 11 Sistem kalibrasi dengan satu sensor.

Bab 4 SALURAN TRANSMISI

PERENCANAAN STRUKTUR MENARA LISTRIK TEGANGAN TINGGI

KAJIAN KUAT MEDAN LISTRIK PADA KONFIGURASI HORISONTAL SALURAN TRANSMISI 150 KV

Bahan Listrik. Bahan penghantar padat

STUDI INTENSITAS MEDAN LISTRIK DI SUTT 150 kv KONFIGURASI VERTIKAL UNTUK LINGKUNGAN PEMUKIMAN

Bab 3 SALURAN TRANSMISI

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL DIREKTORAT JENDERAL KETENAGALISTRIKAN

Ruang bebas dan jarak bebas minimum pada Saluran Udara Tegangan Tinggi (SUTT) dan Saluran Udara Tegangan Ekstra Tinggi (SUTET)

ANALISIS RUGI- RUGI DAYA PADA PENGHANTAR SALURAN TRANSMISI TEGANGAN TINGGI 150 KV DARI GARDU INDUK KOTO PANJANG KE GARDU INDUK GARUDA SAKTI PEKANBARU

INFRASTRUKTUR ENERGI LISTRIK

Dielektrika, [P-ISSN ] [E-ISSN X] 85 Vol. 4, No. 2 : 85-92, Agustus 2017

Bab 3 SALURAN TRANSMISI

ANALISA PENGARUH KONFIGURASI SALURAN UDARA TEGANGAN EKSTRA TINGGI

Kata Kunci Pentanahan, Gardu Induk, Arus Gangguan Ketanah, Tegangan Sentuh, Tegangan Langkah, Tahanan Pengetanahan. I. PENDAHULUAN

KEGIATAN BELAJAR 6 SUHU DAN KALOR

BAB 7 ANALISIS ANDONGAN JARINGAN DISTRIBUSI

MENGHITUNG ANDONGAN KAWAT PENGHANTAR PADA SALURAN TRANSMISI 150 KV

PERENCANAAN SISTEM TRANSMISI TENAGA LISTRIK

ANALISA PENGUJIAN SIFAT MEKANIK OPTICAL PHASA CONDUCTOR BUATAN UNTUK KONDISI IKLIM TROPIS INDONESIA ABSTRAK

PERENCANAAN SISTEM PENGETANAHAN PERALATAN UNTUK UNIT PEMBANGKIT BARU DI PT. INDONESIA POWER GRATI JURNAL

ANALISIS TEORITIS PENEMPATAN TRANSFORMATOR DISTRIBUSI MENURUT JATUH TEGANGAN DI PENYULANG BAGONG PADA GARDU INDUK NGAGEL

BAB II LANDASAN TEORI

PT PLN (Persero) PUSAT PENDIDIKAN DAN PELATIHAN. SUTT/SUTET Dan ROW. Belajar & Menyebarkan Ilmu Pengetahuan Serta Nilai Nilai Perusahaan

BAB III LANDASAN TEORI

BAB II SISTEM SALURAN TRANSMISI ( yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

Analisis Aliran Daya Pada Sistem Distribusi Radial 20KV PT. PLN (Persero) Ranting Rasau Jaya

KONDUKTOR ALUMUNIUM PADA SISTEM GROUNDING. Galuh Renggani Wilis Dosen Prodi Teknik Mesin Universitas Pancasakti Tegal

ANALISIS KETIDAKSEIMBANGAN BEBAN TRAFO 1 GI SRONDOL TERHADAP RUGI-RUGI AKIBAT ARUS NETRAL DAN SUHU TRAFO MENGGUNAKAN ETAP

REKONFIGURASI JARINGAN DISTRIBUSI TEGANGAN 20 KV PADA FEEDER PANDEAN LAMPER 5 RAYON SEMARANG TIMUR

BAB I PENDAHULUAN. seiring dengan pesatnya pertumbuhan penduduk, ekonomi, industri, dan perumahan.

BAB III METODOLOGI PENELITIAN

Oleh: Dedy Setiawan IGN SatriyadiI H., ST., MT. 2. Dr. Eng. I Made Yulistya N., ST., M.Sc

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

ANALISIS KOORDINASI ISOLASI SALURAN UDARA TEGANGAN TINGGI 150 KV TERHADAP SAMBARAN PETIR DI GIS TANDES MENGGUNAKAN PERANGKAT LUNAK EMTP RV

RANCANG BANGUN KONVERSI ENERGI SURYA MENJADI ENERGI LISTRIK DENGAN MODEL ELEVATED SOLAR TOWER

ANALISIS PENGARUH TEMPERATUR TERHADAP PENGHANTAR LISTRIK NFA2X 2x10mm rm 0.6/1kV SKRIPSI

BAB III METODOLOGI PENELITIAN

BAB 6 KAWAT PENGHANTAR JARINGAN DISTRIBUSI

II. TINJAUAN PUSTAKA

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2005

1 BAB I PENDAHULUAN. menyalurkan daya listrik dari pembangkit ke konsumen yang letaknya dapat

ANALISIS TEGANGAN JATUH PADA JARINGAN DISTRIBUSI RADIAL TEGANGAN RENDAH oleh : Fitrizawati ABSTRACT

Jurnal Flywheel, Volume 1, Nomor 2, Desember 2008 ISSN :

2 b. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a, serta untuk melaksanakan ketentuan Pasal 36 ayat (2) Peraturan Pemerintah Nomo

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

STUDI PERENCANAAN SISTEM PERLINDUNGAN PETIR EKSTERNAL DI GARDU INDUK 150 KV NEW-TUREN

STUDI RUGI DAYA SISTEM KELISTRIKAN BALI AKIBAT PERUBAHAN KAPASITAS PEMBANGKITAN DI PESANGGARAN

STUDI TEGANGAN LEBIH IMPULS AKIBAT PENGGUNAAN KONFIGURASI MIXED LINES (HIGH VOLTAGE OVERHEAD-CABLE LINES) 150 KV

PENGARUH POSISI STUB ISOLATOR TERHADAP DISTRIBUSI TEGANGAN PADA ISOLATOR PIRING GELAS

III. METODE PENELITIAN

I. PENDAHULUAN. Untuk pengukuran kuat medan listrik dan kuat medan magnet di bawah konduktor

ANALISIS SUSUT ENERGI PADA SISTEM KELISTRIKAN BALI SESUAI RENCANA OPERASI SUTET 500 kv

PERBANDINGAN PERENCANAAN SAMBUNGAN KAYU DENGAN BAUT DAN PAKU BERDASARKAN PKKI 1961 NI-5 DAN SNI 7973:2013

LAMPIRAN B. Jarak Bebas Minimum Horisontal dari Sumbu Vertikal Menara/Tiang. Jarak Horisont al Akibat Ayunan Kondukt or H (m)

Analisis Rugi Daya Pada Jaringan Distribusi Penyulang Barata Jaya Area Surabaya Selatan Menggunakan Software Etap 12.6

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2006

DASAR TEORI. Kata kunci: Kabel Single core, Kabel Three core, Rugi Daya, Transmisi. I. PENDAHULUAN

STUDI SUSUT UMUR TRANSFORMATOR DISTRIBUSI 20 kv AKIBAT PEMBEBANAN LEBIH DI PT.PLN (PERSERO) KOTA PONTIANAK

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

BAB III PELAKSANAAN PENELITIAN

Analisa Kemampuan Hantar Arus Dengan Menggunakan Metode Penggabungan Silang Selubung Kabel Antar Fasa Pada Kabel Bawah Tanah 150 kv

PERHITUNGAN BESAR RUGI-RUGI DAYA KORONA PADA SISTEM SALURAN TRANSMISI 275 KV GI MAMBONG MALAYSIA GI BENGKAYANG INDONESIA

3. besarnya gaya yang bekerja pada benda untuk tiap satuan luas, disebut... A. Elastis D. Gaya tekan B. Tegangan E. Gaya C.

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan

Suhu dan kalor 1 SUHU DAN KALOR

BAB III PROTEKSI SALURAN UDARA TEGANGAN MENENGAH (SUTM) TERHADAP SAMBARAN PETIR

STUDI PENENTUAN KAPASITAS PEMUTUS TENAGA SISI 20 KV PADA GARDU INDUK SEKAYU

BAB 3 METODE PENGUJIAN

STUDI KARAKTERISASI PEMBUATAN OPTICAL PHASA CONDUCTOR UNTUK KONDISI IKLIM TROPIS INDONESIA

BAB IV PENGUJIAN DAN ANALISIS

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN

Analisis Perbandingan Shielding Gardu Induk Menggunakan Model Electrogeometric

BAB IV HASIL DAN ANALISIS

BAB 4 HASIL SIMULASI DAN DISKUSI

STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE

BAB II KAJIAN PUSTAKA

ANALISIS PENGARUH SUHU TERHADAP KONSTANTA PEGAS DENGAN VARIASI JUMLAH LILITAN DAN DIAMETER PEGAS BAJA

BAB I PENDAHULUAN. dibangkitkan oleh sebuah sistem pembangkit perlu mengalami peningkatan nilai

I Gusti Ngurah Satriyadi Hernanda, ST. MT Dr. Eng. I Made Yulistya Negara, ST. M.Sc

PERANCANGAN ALAT PENGUKUR BESAR MEDAN LISTRIK PADA SALURAN TRANSMISI

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

SISTEM PROTEKSI TERHADAP TEGANGAN LEBIH PADA GARDU TRAFO TIANG 20 kv

PERHITUNGAN RUGI ENERGI LISTRIK PADA PENYULANG KIMA PT. PLN (PERSERO) AREA MAKASSAR

Transkripsi:

Pengaruh Kecepatan Angin pada Karakteristik Performansi Konduktor SUTET Suprihadi Prasetyono shabri_prasetyo@yahooo.com Universitas Jember Abstrak Perubahan kecepatan angin terhadap konduktor SUTET selain memberikan pengaruh pendinginan sehingga kemampuan hantar arus saluran meningkat juga akan memberikan pengaruh terhadap unjuk kerja konduktor. Penelitian ini bertujuan untuk mengetahui seberapa besar pengaruh kecepatan angin terhadap unjuk kerja konduktor yang meliputi temperatur, panjang, tegangan tarik (tension), andongan, dan kemampuan hantar arus konduktor Dari hasil analisis perhitungan yang dilakukan disimpulkan bahwa kecepatan angin dapat digunakan sebagai pendinginan konduktor. Pendinginan berkisar antara 1-3 derajat celcius setiap kenaikan 0,5 m/s. Sedangkan kareakteristik mekanis konduktor meliputi panjang, tegangan tarik, dan andongan cenderung tidak mengalami perubahan yang signifikan. Kata kunci Karakteristik mekanis, Saluran transmisi, konduktor. Abstract Wind speed changes at SUTET conductor besides having cooling effects it also improves the transmission line capacities and will give influence to conductor performances. This research aimed to know the influence of the wind speed to performance conductor characteristics such as temperature, tension, length, sag and current carrying capacity of conductor. As simulation model, an extra high voltage transmission line 500kV Paiton Kediri span no 10 is used. Temperature of Conductor is calculated based on hotbalance equation, whereas Catenary method and Rulling span method used to determine sag conductor and length. The result of calculation shows, that the wind speed can be used to cool conductor with the range from 1-3 degree of celcius each for every increase of wind speed for 0,5 m / s. While conductor mechanical characteristics such as tension, length, and sag does not having any significant changes. Keyword : Mechanical performance, Transmission line, Conductor. I. PENDAHULUAN Konduktor adalah salah satu komponen utama saluran transmisi yang berfungsi untuk menyalurkan arus dari satu bagian ke bagian yang lain dan juga untuk menghubungkan bagian-bagian yang dirancang bertegangan sama. Konduktor yang biasa digunakan untuk saluran udara pada saat ini adalah kawat almunium dari jenis (Aluminium Conductor Steel Reinforce) yaitu kawat berlilit dengan inti serat baja ditengah yang dikelilingi oleh lapisan-lapisan serat aluminium [7]. Konduktor konvensional ini mempunyai batas temperatur yang diijinkan tidak melebihi 75 C pada pembebanan harian dan pada keadaan beban darurat boleh meningkat sampai 90 C [8]. Beberapa penelitian mengenai unjuk kerja mekanis konduktor saluran transmisi udara telah banyak dilakukan antara lain, penelitian tentang pengaruh perubahan lingkungan dan kecepatan angin terhadap unjuk kerja mekanis saluran transmisi udara pada konduktor konvensional menggunakan metode rulling span dilakukan oleh Seppa. Hasil penelitiannya menunjukkan bahwa rating saluran transmisi dipengaruhi oleh temperatur lingkungan dan kecepatan angin. Apabila temperatur lingkungan meningkat, menyebabkan menurunnya kemampuan hantar arus, sementara apabila kecepatan angin bertambah, menyebabkan kemampuan hantar arus bertambah []. Kemampuan hantar arus saluran transmisi merupakan fungsi elektris, mekanis dan termis dari konduktor dan alatalat pendukungnya, demikian dipaparkan oleh Jakubiak dan Matusz. Arus maksimum dari saluran dibatasi oleh penurunan kekuatan konduktor, andongan dan batas temperatur yang diperbolehkan dari alat-alat pendukungnya. Melalui pengujian laboratoris, studi ini menunjukkan bahwa peralatan pendukung saluran transmisi dapat dioperasikan dengan aman sampai pada temperatur 00 o C [5]. Kriteria unjuk kerja mekanis penghantar adalah penghantar harus tahan terhadap perubahan temperatur dan harus tahan terhadap segala gaya-gaya atau tekanan/tarikan yang ada padanya akibat pembebanan mekanik maupun elektrik. Arus yang diperbolehkan (allowable current) untuk saluran transmisi udara dibatasi oleh kenaikan suhu yang disebabkan oleh mengalirnya arus dalam saluran tersebut. Pemuluran (creep) dan andongan (sag) yang terjadi tidak boleh melebihi batas aman dari ruang dan jarak bebas minimum (Clearence) [1]. Dengan mengetahui pengaruh perubahan kecepatan angin terhadap unjuk kerja konduktor yang meliputi tegangan tarik konduktor, andongan dan panjang pemuluran konduktor, diharapkan akan berguna dalam perencanaan dan pembangunan struktur konstruksi saluran transmisi udara yang sesuai dengan sifat dari konduktor. 19

II. TINJAUAN PUSTAKA Apabila sebuah kawat konduktor dibentangkan antara dua buah titik ikat, konduktor tidak akan mengikuti garis lurus, akan tetapi karena beratnya sendiri akan melengkung kebawah. Besar lengkungan ini tergantung berat dan panjang kawat konduktor. Berat konduktor akan menimbulkan tegangan tarik pada penampang kawat konduktor. Kalau tegangan tarik ini besar dapat menyebabkan kawat konduktor putus, atau dapat merusak menara penyangga. Tegangan tarik tergantung dari berat konduktor dan beban-beban lain yang bekerja pada kawat konduktor, misalnya angin, es dan temperatur. Menurut hukum Stokes, karena adanya tegangan tarik ini, konduktor akan bertambah panjang, tergantung modulus elastisitas dan panjang konduktor itu sendiri. Sedang karena perubahan-perubahan temperatur yang terjadi di sekitar konduktor, akan menyebabkan memuai atau menyusut tergantung besarnya perubahan temperatur, koefisioen muai dan panjang konduktor. Panjang konduktor ditentukan oleh panjang gawang (span) dan besarnya andongan (sag). Sebaliknya, andongan tergantung dari panjang konduktor, tegangan tarik dan temperatur konduktor dan ketiga besaran ini saling mempengaruhi satu sama lain. Dengan mempertimbangkan tegangan kerja kawat konduktor yang tinggi, besar andongan akan mempengaruhi perencanaan ketinggian tower agar aman bagi manusia ataupun obyek lain, yakni jarak bebas antara konduktor terendah dengan permukaan tanah atau terhadap benda-benda yang dilalui. Jarak bebas untuk tegangan 100 kv adalah 6 meter dan apabila melalui jalan adalah sebasar 7 meter [3]. Besar jarak bebas untuk tegangan yang lebih besar dari 100 kv harus ditambah dengan : h = V 100 (1) 150 h = penambahan jarak bebas (m) V = Tegangan (kv) sehingga diperoleh ketinggian tower : h= D m + 7 + h + t () dengan : h = tinggi tower (m) D m = andongan maksimum (m) t = tinggi yang dilewati (m) A. Perhitungan Tegangan Tarik dan Andongan Konduktor P Gbr. 1 Konduktor yang dibentang pada dua menara dengan : L = Panjang kawat penghantar l = Lebar gawang (span) D = Andongan (sag) w = Berat kawat penghantar per satuan panjang T = Kuat tarik pada titik A. To = Kuat tarik pada titik O (tegangan tarik horisontal) Jika ditinjau busur kecil misalnya S = OA, maka berat kawat penghantar sepanjang busur S adalah ws, pada busur S akan bekerja gaya-gaya T, ws dan To. Untuk menghitung tegangan tarik dan andongan pada kawat konduktor dapat diperoleh dari persamaan (metode Catenary) dibawah ini [3] : 3 t + A t = B (3) A = l m E + E(t t 1 ) t1 (4) 4 t 1 To D O B = l m E (5) 4 dengan : l = panjang kawat penghantar (m) m = berat total spesifik kawat (kg. m -1.mm - ). t = t -t 1 = perubahan temperatur ( o C) Tegangan tarik yang terjadi tidak boleh melebihi tegangan tarik nominal kawat pada keadaan temperatur t 1, sehingga, T t1 r k. q (6) dengan : T r = tegangan tarik nominal penghantar (kg) t1 = teg. tarik spesifik permulaan (kg.mm - ) k = faktor keamanan ( - 5) q = luas penampang penghantar (mm ) l Y Dengan demikian tegangan tarik horizontal pada temperatur t dapat dihitung sebagai berikut : T ot = t.q (7) A Wo T X Q 0

Tegangan tarik pada temperatur t adalah : T t = T ot + l w (8) 8T ot Panjang kawat penghantar pada temperatur t adalah : 3 L t = l + l w (9) 4T ot Andongan pada temperatur t adalah : D t = l w (10) 8T ot dengan : L = lebar gawang (span) (m) D = andongan (sag) (m) w = berat kawat penghantar per satuan panjang (kg.m -1 ) T = tegangan tarik konduktor (kg) T o = tegangan tarik horizontal konduktor (kg) B. Perhitungan Temperatur Konduktor Perhitungan kapasitas hantar arus pada saluran transmisi udara menurut IEEE Std.738 (1993) memenuhi persamaan keseimbangan panas yaitu panas yang dibangkitkan oleh konduktor (panas rugi-rugi listrik + panas penyerapan matahari) sama dengan panas yang dilepaskan konduktor secara konveksi dan radiasi [4]. W e + W s = W c + W r (11) Untuk, W e = I R (Watt/meter) (1) dengan : W e = rugi listrik I = Arus penghantar (A) R = Tahanan (Ohm/meter) Panas yang diserap dari matahari W s diberikan oleh : W s =.E.d c (Watt/meter) (13) dengan : = Koefisien serap matahari (1 untuk konduktor lama, 0,6 untuk konduktor baru). E = Intensitas radiasi matahari (1000 1500 Watt/m ) d = Diameter konduktor (meter) Panas menyebar dari penghantar dengan cara radiasi dan konveksi. (a) Radiasi : Panas yang disebarkan secara radiasi sesuai dengan hukum Stefan Boltzman yang menyatakan bahwa jumlah panas tersebar oleh radiasi berbanding pangkat empat dari suhu mutlak penghantar. W r =.e(t 4 c T 4 a ).d c (Watt/m) (14) dengan : = konstanta Stefan Boltzman (5,70 x 10-8 Watt/m ) e = emisivitas relatif permukaan konduktor yang bernilai antara 0,-1,0 (untuk benda hitam = 1 dan Al atau Cu = 0,5 ) T c = temperatur konduktor ( o K) T a = Temperatur sekeliling (ambient temperature) ( o K) Atau dapat dituliskan menjadi ; W r = 17,9 x 10-8 e(t c 4 T a 4 )d c (15) b) Konveksi : Penyebaran panas secara konveksi, hubungan umumnya adalah : W c = 5.73 pvm d c. t (Watt/m ) (16) dengan : p = tekanan udara (atm) V m = kecepatan angin (m/detik) t = kenaikan temperatur ( o C) Sehingga dari persamaan (11) menjadi : I R +.E.d c = 18.t. p. V m. d + c 17,9. 10-8 e(t 4 c -T 4 a )d c (17) C. Metode span ekivalen (Rulling Span) Metode rulling span berguna untuk menghitung andongan dan tegangan tarik pada struktur dua dead end yang terdiri atas multi span yang berjarak tak sama. Jika ada n span dengan panjang L 1, L, L 3,L 4,.,L n pada setiap bagian dan L e adalah ekuivalen span atau dinamakan rulling span pada setiap bagian [9]. Panjang total dari jarak antar menara adalah : L e = (L 1,+L +L 3 +L 4 +.+L n ) L e = 3 3 3 3 L1 L L3... Ln (18) L1 L L3... Ln D. Pengaruh Temperatur Panjang konduktor bergantung kepada perubahan temperatur konduktor, apabila temperatur konduktor meningkat maka akan menyebabkan pemuluran (creep) konduktor [3]. Misalkan : l o = panjang kawat tidak ditegang pada 0 0 C. l t = panjang kawat tidak ditegang pada temperatur t 0 C. L o = panjang kawat ditegang pada 0 0 C. L t = panjang kawat ditegang pada t 0 C. = koefisien muai panjang. t = perpanjangan ideal kawat karena tegangan pada t 0 C. E = modulus elastisitas kawat. t = temperatur kawat 0 C. t = tegangan spesifik kawat pada t 0 C. Maka, lt 1 = lo (1 + t 1 ) dan lt = lo (1 + t ) Perubahan panjang kawat karena perubahan temperatur, lt - lt 1 = lo.(t t 1 ) Perubahan temperatur akan menyebabkan perubahan tegangan (stress) dalam kawat sesuai dengan hukum Hooke, Lt = lt (1 + t ) = lt (1 + t /E) = lo (1 + t ) (1 + t /E) 1

Perubahan kawat yang ditegang karena perubahan temperatur dari t 1 ke t adalah ; Lt Lt 1 =lo(1+t )(1+ t /E) lo(1+t 1 ) (1+ t1 /E) Lt Lt 1 =l 0 [(t -t 1 )+ E 1 (t t1 )+(/E)(t t t 1 t1 )] (19) Suku baris kedua dari persamaan terakhir ini kecil sekali sehingga dapat diabaikan. Jadi secara pendekatan, 1 Lt Lt 1 = l 0 [(t -t 1 ) + ( t t1 )] (0) E E. Pengaruh Tekanan Angin Tekanan angin akan mempengaruhi berat spesifik kawat. Berat sendiri kawat bekerja vertikal sedang tekanan angin dianggap seluruhnya bekerja horizontal. Jumlah vektoris kedua gaya ini menjadi berat total spesifik kawat [3]. Tekanan angin dinyatakan oleh : P = f.p.f (1) dengan : P = tekanan angin (kg) f = factor bentuk. p = tekanan angin spesifik (kg/mm ) = v /16 kg/mm v = kecepatan angin (m/dt) F = Luas permukaan kawat yang tegak lurus arah angin (m ) Karena tekanan angin tidak merata maka digunakan koefisien ketidaksamaan (d=0.75 di Indonesia) [3], jadi : P = f.d.p.f () dengan p bergantung dari tinggi kawat penghantar diatas permukaan tanah dan f bergantung dari diameter kawat penghantar. Nilai dari F diambil = panjang kawat dikalikan dengan diameter kawat konduktor. Sehingga berat total spesifik kawat penghantar (Kg/m/mm ) adalah sebagai berikut: m = (3) dengan : w w = tekanan angin spesifik = P/q (kg.m -1.mm - ). = berat sendiri spesifik kawat = W/q (kg.m -1.mm - ). m = berat total spesifik kawat (kg. m -1.mm - ). III. METODE Penelitian dilakukan dengan menghitung besar temperatur, pemuluran konduktor dan andongan yang terjadi akibat perubahan kecepatan angin. Perhitungan dan simulasi dilakukan dengan menggunakan alat bantu perangkat lunak (software) Matlab, serta diagram alir program seperti pada gambar. Sebagai model simulasi digunakan saluran transmisi udara tegangan ekstra tinggi 500kV jalur Paiton Kediri Span no 10 yang memilik dua dead end [6]. Data Kecepatan Angin dari BMG Juanda Surabaya - tinggi alat ukur kecepatan angin (anemometer) diatas permukaan laut adalah,8 meter. - kecepatan angin rata-rata per tahun adalah 3,95 m/s TABEL III DATA SPESIFIKASI KONDUKTOR No. Spesifikasi Nilai 1 Panjang sirkit x 144,4 km Panjang rute 145 km 3 Jenis Gannet 4 Diameter konduktor 5,75 mm 5 Luas penampang 39,80 mm 6 Ratio Al/Steel 6/7 8 Diameter aluminium 4,067 mm 9 Diameter baja 3,16 mm 10 Tegangan kawat 380 kg 11 Jumlah per-fasa 4 1 Jumlah spacer per-fase 8 13 Jarak gawang rata-rata 50 m 14 Berat konduktor per-kilometer 1300 kg 15 Tahanan maksimal/km/0 o C 0,08551 16 Modulus Elastisitas 8,360x10 3 kg/mm 17 Koefisien muai panjang 18,9 x 10-6 / 0 C 18 Batas temperatur operasi maks. 90 0 C 19 Jarak span no 10 380,m Mulai Masukkan : 1. Data Saluran Transmisi 500 kv. Data Konduktor 3. Data Kecepatan Angin Menghitung : 1. Tekanan Angin. Temperatur Konduktor 3. Panjang Konduktor 4. Tegangan Tarik dan Andongan 5. Kemampuan Hantar Arus Tampilkan Hasil Perhitungan dalam Bentuk Tabel dan Grafik Bandingkan Data Hasil Simulasi dengan Data Lapangan Cetak: Tabel Hasil Simulasi Grafik Hasil Simulasi Membuat Analisa dan Kesimpulan Selesai Gbr. Diagram Alir Program.

IV.HASIL DAN DISKUSI Dari hasil simulasi program perhitungan pada gambar 3 terlihat, semakin besar kecepatan angin maka akan menyebabkan temperatur konduktor semakin kecil. Hal ini menunjukkan bahwa kecepatan angin dapat memberikan efek sebagai pendingin konduktor. Pendinginan berkisar antara 1-3 derajat celcius setiap kenaikan kecepatan angin 0,5 m/s, hal ini terjadi pada nilai kecepatan angin dari 4 m/s sampai 1 m/s. Sedangkan dari gambar 4,5 dan 6 didapatkan bahwa panjang konduktor, tegangan tarik, andongan (sag) relatif konstan terhadap perubahan kecepatan angin yang terjadi. Pemuluran (creep) kawat konduktor, perubahan nilai andongan dan tegangan tarik akibat kenaikan temperatur dan pembebanan mekanik maupun elektrik pada saluran transmisi udara tidak terjadi. Perubahan besarnya andongan yang terjadi berkisar antara 0,001 cm 0,5 cm pada kecepatan angin dari 4,5 m/s - 15 m/s. Dari grafik hasil simulasi pada gambar 7 terlihat bahwa semakin besar kecepatan angin yang terjadi, maka akan meningkatkan besar kemampuan hantar arus pada konduktor tersebut. Temperature (derajat celcius) 95 90 85 80 75 70 65 60 55 50 45 Tension (kg) 070 060 050 040 030 00 010 000 1990 Gbr. 5 Grafik Hubungan Antara Perubahan Kecepatan Angin Terhadap Tegangan Tarik Konduktor. Andongan (meter) 3.3 3.8 3.6 3.4 3. 3. 3.18 3.16 3.14 Gbr. 6 Grafik Hubungan Antara Perubahan Kecepatan Angin Terhadap Andongan Konduktor. Panjang Kawat (meter) Gbr. 3 Grafik Hubungan Antara Perubahan Kecepatan Angin Terhadap Temperatur Konduktor. 00.14 00.141 00.14 00.139 00.138 00.137 00.136 00.135 Kapasitas Hantar Arus (A) 800 780 760 740 70 700 680 660 640 00.134 00.133 00.13 Gbr. 4 Grafik Hubungan Antara Perubahan Kecepatan Angin Terhadap Panjang Kawat Konduktor. 60 Gbr. 7 Grafik Hubungan Antara Perubahan Kecepatan Angin Terhadap Kemampuan Hantar Arus. 3

V. KESIMPULAN Kecepatan angin dapat digunakan sebagai pendingin temperatur konduktor, pendinginan berkisar antara 1-3 derajat celcius setiap kenaikan 0,5 m/s. Kenaikan kapasitas hantar arus konduktor berkisar antara,6 sampai 6,6 ampere terjadi pada saat kecepatan angin 4,5 m/s sampai 0 m/s. Besar perubahan kecepatan angin tidak berpengaruh secara signifikan terhadap nilai tegangan tarik, andongan, dan panjang kawat konduktor REFERENSI [1] Electric Power Research Institue. Transmission Line Reference Book 345 KV and.above. Second edition. 198 [] Dauglass, D.A., Motlis,Y. dan Seppa,T.O. IEEE S Approach For Increasing Transmission Line Ratings in North America. 003. [3] Hutauruk, T.S. Transmisi Daya Listrik, Erlangga. Jakarta. 1999. [4] IEEE Std. 738. Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors, IEEE Power Engineering Society. 1993. [5] Jakubiak,E.A., dan Matusz,J.S.. High Temperature Tests of conductorhardware, IEEE Transactions on Power Delivery. Vol.4. No.1. January 1989 [6] PT. PLN. Lot 1 : Paiton - Kediri. 500kV Transmission Lines Paiton Krian Projects. Vol.3. 1997. [7] Stevenson, Jr., William, D. Analisis Sistem Tenaga Listrik, Erlangga. Jakarta.1990 [8] SPLN 41 7. Hantaran Aluminium Berpenguatan Baja.1981 [9] Thayer, E.S. Computing Tension in Transmission Line. Electrical World Magazine. pp. 7-73.194. 4