2 BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "2 BAB II TINJAUAN PUSTAKA"

Transkripsi

1 2 BAB II TINJAUAN PUSTAKA 2.1 Saluran Transmisi Saluran transmisi merupakan bagian dari sistem tenaga listrik yang berperan menyalurkan daya listrik dari pusat-pusat pembangkit listrik ke gardu induk. Penyaluran daya tersebut dilakukan dengan menggunakan konduktor sebagai penghantar arus. Konduktor direntang di udara dan ditopang oleh menara baja yang tinggi untuk keamanan terhadap objek yang ada di sekitar saluran transmisi. Berdasarkan panjang salurannya, saluran transmisi dapat dibedakan menjadi tiga bagian, yaitu saluran transmisi pendek (kurang dari 80 km), saluran transmisi menengah (antara 80 km sampai 240 km), dan saluran transmisi panjang (lebih dari 240 km) [2]. Saluran transmisi juga dapat dibedakan berdasarkan jenis tegangannya, yaitu saluran transmisi yang bertegangan 115 kv sampai 230 kv dinamakan saluran transmisi tegangan tinggi (High Voltage Transmission Line), yang bertegangan 230 kv sampai 765 kv dinamakan saluran transmisi tegangan ekstra tinggi (Extra High Voltage Transmission Line), yang bertegangan di atas 765 kv dinamakan saluran transmisi tegangan ultra tinggi (Ultra High Voltage Transmission Line) [3]. 2.2 Parameter Saluran Transmisi Suatu saluran transmisi daya listrik mempunyai empat parameter yang memengaruhi kemampuannya untuk menyalurkan daya listrik dari pusat pembangkit ke pusat beban. Keempat parameter tersebut adalah resistansi (R), induktansi (L), kapasitansi (C), dan konduktansi (G) [4]. 6

2 Kapasitansi timbul diantara kawat penghantar yang berupa muatan pada kawat penghantar persatuan beda potensial diantara kedua kawat penghantar tersebut. Resistansi dan induktansi secara merata terdistribusi sepanjang saluran transmisi dalam bentuk impedansi seri. Konduktansi dan kapasitansi timbul antara kawat penghantar pada saluran transmisi satu fasa atau dari kawat penghantar ke netral pada saluran transmisi tiga fasa membentuk admitansi paralel. Konduktansi antar kawat penghantar atau antara kawat penghantar dengan tanah menyebabkan adanya arus bocor pada isolator melalui tiang transmisi dan melalui isolasi pada kabel. Karena kebocoran pada isolator saluran sangat kecil, konduktansi antar penghantar dapat diabaikan Resistansi Nilai resistansi saluran transmisi dipengaruhi oleh resitivitas konduktor dan temperatur konduktor. Resistansi (R) dari sebuah penghantar sebanding dengan panjang konduktor (l) dan berbanding terbalik dengan luas penampangnya (A), sesuai dengan Persamaan (2.1) [4]: (2.1) Dimana: : Resistansi (Ω) : Resistivitas penghantar (Ω.m) : Panjang penghantar (m) A : Luas penampang (m 2 ) Induktansi Induktansi dari satu kumparan atau konduktor adalah sama dengan jumlah fluksi lingkup yang melingkupi kumparan atau konduktor dibagi dengan arus 7

3 yang mengalir pada kumparan atau konduktor tersebut, sesuai dengan Persamaan (2.2): (2.2) Dimana: : Induktansi (Henry) : Fluks gandeng (Wbt) : Arus (A) Induktansi Saluran Tiga Fasa Penghantar-penghantar pada saluran tiga fasa dapat membentuk beberapa jenis susunan, diantaranya susunan vertikal, horizontal, maupun delta. Contoh susunan delta ditunjukkan pada Gambar 2.1 berikut: Gambar 2.1 Penghantar-Penghantar Saluran Tiga Fasa Single Circuit Jarak pemisah antara penghantar (1,2, dan 3) pada Gambar 2.1 di atas, dimisalkan dalam D 12, D 23, dan D 31. Induktansi perfasa untuk saluran tiga fasa ditunjukkan oleh Persamaan (2.3) [4]: 0,2 ln / (2.3) 8

4 Dimana:, merupakan jarak rata-rata geometris dari ketiga jarak penghantar atau disebut juga GMD (Geometric Mean Distance), dan merupakan jari-jari rata-rata geometris penghantar atau disebut juga GMR (Geometric Mean Radius). Baik maupun harus dinyatakan dalam satuan yang sama, biasanya dalam satuan kaki (ft) Penghantar Berkas untuk Perhitungan Induktansi Penghantar berkas merupakan penghantar yang terdiri dari dua konduktor atau lebih yang digunakan sebagai penghantar satu fasa. Penghantar berkas mulai efektif digunakan pada saluran transmisi dengan tegangan di atas 345 kv. Penggunaan penghantar berkas bertujuan untuk mengurangi resiko terjadinya korona sehingga dapat meningkatkan kapasitas daya hantar saluran transmisi. Keuntungan lain dari penggunaan penghantar berkas adalah dapat mengurangi reaktansi induktif saluran sehingga jatuh tegangan dapat diturunkan. Pada saluran transmisi tegangan ekstra tinggi (EHV) biasanya digunakan penghantar berkas dengan menggunakan 2, 3, atau 4 penghantar per fasa. Sedangkan pada saluran transmisi tegangan ultra tinggi (UHV) digunakan 8, 12, bahkan 16 penghantar perfasa. Penghantar berkas disusun berdekatan dengan jarak pemisah sepanjang d. Susunan-susunan penghantar berkas untuk saluran transmisi EHV ditunjukkan pada Gambar 2.2 [5]. Gambar 2.2 Susunan - Susunan Berkas 9

5 Jika dimisalkan bahwa adalah GMR penghantar berkas dan adalah GMR masing-masing penghantar yang membentuk berkas, maka sesuai pada Gambar 2.2 di atas didapatkan [6]: Untuk berkas dua-penghantar: ( )... (2.4) Untuk berkas tiga-penghantar: ( )... (2.5) Untuk berkas empat-penghantar: ( 2 / ) 1,09... (2.6) Untuk menghitung induktansi dengan Persamaan (2.3) pada penghantar yang mempunyai berkas, nilai pada Persamaan (2.4), (2.5) dan (2.6) di atas akan menggantikan nilai pada penghantar tunggal Kapasitansi Kapasitansi saluran transmisi terjadi akibat beda potensial antara penghantar (konduktor). Kapasitansi menyebabkan penghantar tersebut bermuatan seperti yang terjadi pada plat kapaistor bila terjadi beda potensial diantaranya. Untuk saluran daya yang panjangnya kurang dari 80 km (50 mil), pengaruh kapasitansinya kecil dan biasanya dapat diabaikan. Untuk saluransaluran yang lebih panjang dengan tegangan yang lebih tinggi, kapasistansinya menjadi bertambah penting. Kapasitansi antara dua penghantar pada saluran dua kawat didefinisikan sebagai muatan pada penghantar itu per unit beda potensial di antara keduanya. Kapasitansi per satuan panjang saluran ditunjukkan pada Persamaan (2.7): 10

6 (2.7) Dimana: : Kapasitansi (F/m) : Muatan pada saluran (Coulomb/meter) : Beda potensial antara kedua penghantar (Volt) Kapasitansi Saluran Tiga Fasa Berdasarkan susunan penghantar pada Gambar 2.1, maka kapasitansi perfasa untuk saluran tiga fasa dapat dihitung menggunakan Persamaan (2.8) [4]:, μ / (2.8) Dimana :, merupakan jarak rata-rata geometris dari ketiga jarak penghantar atau disebut juga GMD (Geometric Mean Distance), dan merupakan jari-jari penghantar dimana dalam persamaan untuk kapasitansi adalah jari-jari luar yang sebenarnya dari penghantar ( 2), dan bukannya GMR penghantar seperti pada rumus induktansi. Baik maupun harus dinyatakan dalam satuan yang sama, biasanya dalam satuan kaki (ft) Penghantar Berkas untuk Perhitungan Kapasitansi Untuk perhitungan kapasitansi saluran, dimisalkan bahwa adalah GMR penghantar berkas untuk perhitungan kapasitansi (untuk membedakannya dengan yang digunakan dalam perhitungan induktansi), dan adalah GMR 11

7 masing-masing penghantar yang membentuk berkas, jika d merupakan jarak pemisah antar berkas, maka didapatkan [6]: Untuk berkas dua-penghantar: ( )... (2.9) Untuk berkas tiga-penghantar: ( )... (2.10) Untuk berkas empat-penghantar: ( 2 / ) 1,09... (2.11) 2.3 Kuat Medan Listrik di Bawah Saluran Transmisi Tegangan tinggi pada saluran transmisi daya listrik akan menghasilkan medan listrik yang besar. Nilai kuat medan listrik yang ditimbulkan oleh saluran transmisi tidak diperbolehkan melebihi nilai ambang batas yang telah ditentukan oleh BSN yang diacu oleh PT. PLN (Persero) yaitu sebesar 5 kv/m, sehingga saluran transmisi tersebut tidak membahayakan dan memberikan dampak yang merugikan bagi masyarakat dan lingkungan yang berada di sekitar saluran transmisi [7][8]. 12

8 r R r S r T θ T θ S θ R E R E T E S E TOTAL Gambar 2.3 Kuat Medan Listrik di Titik P Agar dapat menghitung kuat medan listrik di titik P seperti pada Gambar 2.3 di atas, terlebih dahulu harus diketahui [9]: 1. Nilai x, yaitu jarak pemisah horizontal antar konduktor penghantar. 2. Nilai y, yaitu ketinggian konduktor penghantar dari titik yang ditinjau. 3. Nilai r, yaitu jari-jari konduktor yang digunakan. 4. Nilai h, yaitu ketinggian konduktor penghantar dari permukaan tanah. 5. Untuk konstruksi menara multi sirkit, perlu juga diketahui jarak pemisah vertikal antar konduktor penghantar. 6. Untuk pemakaian konduktor berkas, perlu diketahui jarak pemisah antar berkas. 13

9 Kemudian dari nilai-nilai x dan y tersebut dapat dihitung nilai jarak masingmasing konduktor penghantar ke titik yang ditinjau. Besarnya kuat medan listrik ini berbeda-beda untuk setiap titik uji di bawah saluran transmisi. Kuat medan listrik pada tiap konduktor disepanjang saluran transmisi (dengan mengabaikan nilai andongan) dapat dihitung menggunakan Persamaan (2.12) [9]: x 2 +y 2 (2.12) Dimana: V h r x y : Kuat medan listrik disekitar konduktor fasa : Tegangan fasa ke netral : Jarak konduktor fasa ke titik yang diamati : Ketinggian konduktor dari permukaan tanah : Jari-jari konduktor : Jarak horizontal konduktor penghantar ke titik uji : Jarak vertikal konduktor penghantar ke titik uji Untuk konduktor saluran transmisi yang memiliki andongan, maka untuk mengetahui besar kuat medan litrik akibat adanya andongan, diambil pendekatan dengan merubah harga h menjadi h, dimana h merupakan tinggi rata-rata konduktor di atas permukaan tanah, seperti yang ditunjukkan pada Gambar (2.4): h m Gambar 2.4 Konduktor Saluran Transmisi yang Memiliki Andongan 14

10 Sehingga tinggi rata-rata konduktor di atas permukaan tanah dapat dihitung dengan Persamaan (2.13) [9]: h h (2.13) Kuat medan listrik di titik P akibat masing-masing konduktor fasa menjadi: (2.14) (2.15) (2.16) Untuk menjumlahkan kuat medan listrik masing-masing konduktor fasa, maka,, dan terlebih dahulu harus diproyeksikan terhadap sumbu x dan y. Adapun nilai proyeksi E terhadap sumbu x adalah: cos (2.17) cos (2.18) cos (2.19) dan nilai proyeksi E terhadap sumbu y adalah: sin (2.20) sin (2.21) sin (2.22) 15

11 Sehingga didapatlah besarnya kuat medan listrik total sesuai Persamaan (2.25) di titik P dengan menjumlahkan nilai-nilai E di sumbu x dan di sumbu y: + + (2.23) + + (2.24) ( ) + (2.25) 2.4 Saluran Transmisi Tiga Fasa Empat Sirkit Saluran transmisi tiga fasa empat sirkit terdiri dari empat rangkaian tiga fasa yang identik. Susunan penghantar pada saluran transmisi empat sirkit formasi horizontal-vertikal ditunjukkan pada Gambar 2.5 : A A A A B B B B C C C C 1,2,3 sirkit pertama 4,5,6 sirkit kedua 7,8,9 sirkit ketiga 10,11,12 sirkit keempat Gambar 2.5 Susunan Penghantar Saluran Tiga Fasa Quadruple Circuit Jika konfigurasi saluran transmisi pada Gambar 2.5 di atas adalah ABC- ABC-ABC-ABC untuk masing-masing sirkit, maka penghantar nomor 1,4,7,10 16

12 menunjukkan fasa A, penghantar nomor 2,5,8,11 menunjukkan fasa B, dan penghantar nomor 3,6,9,12 menunjukkan fasa C. Dengan mengelompokkan fasa yang sama maka dapat ditentukan GMD antara tiap kelompok fasa dengan Persamaan (2.26), (2.27), dan (2.28) : (2.26) (2.27) (2.28) Dimana: : Jarak antar konduktor m dengan konduktor n, untuk m 1,2,3,..,12 dan n 1,2,3,..,12 Sehingga GMD ekivalen per fasa adalah: (2.29) Sedangkan GMR antara tiap kelompok fasa: (2.30) (2.31) (2.32) 17

13 Dimana: : Jarak antar konduktor m dengan konduktor n, : Jari-jari rata-rata geometris penghantar atau disebut juga GMR ( ) GMR ekivalen per fasa adalah: (2.33) Maka induktansi perphasa adalah: 0,2 ln / (2.34) Untuk perhitungan kapasitansi saluran transmisi empat sirkit, GMR antara tiap kelompok fasa dapat dihitung dengan Persamaan (2.35), (2.36), dan (2.37): (2.35) (2.36) (2.37) Dimana : : Jarak antar konduktor m dengan konduktor n, untuk m 1,2,3,..,12 dan n 1,2,3,..,12 : Jari-jari rata-rata geometris penghantar atau disebut juga GMR (r) 2 18

14 GMR ekivalen per fasa adalah: (2.38) Maka kapasitansi saluran perphasa adalah:, ( ) / (2.39) Untuk menghitung kuat medan listrik pada saluran transmisi empat sirkit di suatu titik diasumsikan kedua menara transmisi yang menopang kawat penghantar memiliki ketinggian yang sama serta permukaan tanah di bawah saluran transmisi memiliki kontur yang rata. Besarnya kuat medan listrik dapat dihitung menggunakan Persamaan (2.12) dengan terlebih dahulu menghitung jarak setiap penghantar ke titik yang akan diukur medan listriknya. Pada Gambar 2.6 diperlihatkan jarak suatu titik terhadap tiap-tiap kawat penghantar pada saluran transmisi empat sirkit, dimana setiap penghantarnya terdiri dari empat berkas. 19

15 Gambar 2.6 Kuat Medan Listrik Akibat Masing-Masing Penghantar 20

16 Sehingga jarak tiap-tiap fasa ke titik uji dapat dihitung menggunakan Persamaan (2.40), (2.41), dan (2.42) berikut: ( ) ( ) + ( ) (2.40) ( ) ( ) + ( ) (2.41) ( ) ( ) + ( ) (2.42) Dimana: m : sirkit ke- (1, 2, 3, 4) n : berkas ke- (1, 2, 3, 4) : jarak horizontal fasa R ke sumbu menara : jarak vertikal fasa R dari titik uji Sudut yang dibentuk oleh masing-masing vektor medan listrik tiap fasa terhadap sumbu x adalah: ( ) tan ( ) ( ) (2.43) ( ) tan ( ) ( ) (2.44) ( ) tan ( ) ( ) (2.45) Besar harga maksimum dari tegangan sebagai fungsi waktu adalah: 2 sin( 120 ) (2.46) 2 sin( ) (2.47) 2 sin( ) (2.48) 21

17 Maka besar kuat medan listrik pada titik uji akibat masing-masing penghantar untuk saluran transmisi dengan jumlah sirkit m dan jumlah berkas n dapat dihitung menggunakan persamaan berikut: ( ) ( ) ( ) (2.49) ( ) ( ) ( ) (2.50) ( ) ( ) ( ) (2.51) Kuat medan listrik yang diperoleh dari perhitungan di atas harus diubah menjadi komponen sumbu x (horizontal) dan sumbu y (vertikal) agar dapat dijumlahkan secara aljabar biasa. Komponen kuat medan listrik di sumbu x adalah: ( ) ( ) cos ( ) (2.52) ( ) ( ) cos ( ) (2.53) ( ) ( ) cos ( ) (2.54) Sedangkan komponen kuat medan listrik di sumbu y adalah: ( ) ( ) sin ( ) (2.55) ( ) ( ) sin ( ) (2.56) ( ) ( ) sin ( ) (2.57) Setelah diperoleh komponen kuat medan listrik di sumbu x dan sumbu y, maka masing-masing nilai tersebut dapat dijumlahkan secara aljabar. Total komponen kuat medan listrik di sumbu x adalah: ( ) + ( ) + ( ) (2.58) 22

18 dan total komponen kuat medan listrik di sumbu y adalah: ( ) + ( ) + ( ) (2.59) Dengan mengetahui komponen kuat medan listrik di sumbu x dan y, maka kuat medan listrik total di titik tersebut dapat dihitung dengan menjumlahkan kedua komponen kuat medan listrik secara vektoris, yaitu: ( ) ( ) + ( ) (2.60) ( ) + ( ) (2.61) 23

BAB II SISTEM SALURAN TRANSMISI ( yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang

BAB II SISTEM SALURAN TRANSMISI ( yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang A II ITEM ALUAN TANMII ( 2.1 Umum ecara umum saluran transmisi disebut dengan suatu sistem tenaga listrik yang membawa arus yang mencapai ratusan kilo amper. Energi listrik yang dibawa oleh konduktor melalui

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini

BAB II TINJAUAN PUSTAKA. dibangkitkan oleh pembangkit harus dinaikkan dengan trafo step up. Hal ini 2.1 Sistem Transmisi Tenaga Listrik BAB II TINJAUAN PUSTAKA Sistem transmisi adalah sistem yang menghubungkan antara sistem pembangkitan dengan sistem distribusi untuk menyalurkan tenaga listrik yang dihasilkan

Lebih terperinci

PERENCANAAN SISTEM TRANSMISI TENAGA LISTRIK

PERENCANAAN SISTEM TRANSMISI TENAGA LISTRIK PERENCANAAN SISTEM TRANSMISI TENAGA LISTRIK Hendra Rudianto (5113131020) Pryo Utomo (5113131035) Sapridahani Harahap (5113131037) Taruna Iswara (5113131038) Teddy Firmansyah (5113131040) Oleh : Kelompok

Lebih terperinci

BAB I PENDAHULUAN. Dalam penyaluran daya listrik akan terjadi rugi-rugi daya penyaluran dan

BAB I PENDAHULUAN. Dalam penyaluran daya listrik akan terjadi rugi-rugi daya penyaluran dan BAB I PENDAHULUAN I.1 Latar Belakang Dalam penyaluran daya listrik akan terjadi rugi-rugi daya penyaluran dan terdapat jatuh tegangan (voltage drop) yang besarnya sebanding dengan panjang saluran. Penggunaan

Lebih terperinci

DASAR TEORI. Kata kunci: Kabel Single core, Kabel Three core, Rugi Daya, Transmisi. I. PENDAHULUAN

DASAR TEORI. Kata kunci: Kabel Single core, Kabel Three core, Rugi Daya, Transmisi. I. PENDAHULUAN ANALISIS PERBANDINGAN UNJUK KERJA KABEL TANAH SINGLE CORE DENGAN KABEL LAUT THREE CORE 150 KV JAWA MADURA Nurlita Chandra Mukti 1, Mahfudz Shidiq, Ir., MT. 2, Soemarwanto, Ir., MT. 3 ¹Mahasiswa Teknik

Lebih terperinci

Bab 4 SALURAN TRANSMISI

Bab 4 SALURAN TRANSMISI Bab 4 SALURAN TRANSMISI TRAFO STEP UP 20/500 kv 500 kv 150 kv 150 kv INDUSTRI 20 kv BISNIS TRAFO GITET 500/150 kv TRAFO GI 150/20 kv PEMBANGKIT TRAFO DISTRIBUSI 220 V PLTA PLTD PLTP PLTG PLTU PLTGU RUMAH

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB LANDASAN TEOR. Gangguan Pada Sistem Tenaga Listrik Gangguan dapat mengakibatkan kerusakan yang cukup besar pada sistem tenaga listrik. Banyak sekali studi, pengembangan alat dan desain sistem perlindungan

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Deskripsi Sistem Tenaga Listrik Sekalipun tidak terdapat suatu sistem tenaga listrik yang tipikal, namun pada umumnya dapat dikembalikan batasan pada suatu sistem yang lengkap

Lebih terperinci

Bab 3 SALURAN TRANSMISI

Bab 3 SALURAN TRANSMISI Bab 3 SALURAN TRANSMISI TRAFO STEP UP 20/500 kv 500 kv 150 kv 150 kv INDUSTRI 20 kv BISNIS TRAFO GITET 500/150 kv TRAFO GI 150/20 kv PEMBANGKIT TRAFO DISTRIBUSI 220 V PLTA PLTD PLTP PLTG PLTU PLTGU RUMAH

Lebih terperinci

Bab 3 SALURAN TRANSMISI

Bab 3 SALURAN TRANSMISI Bab 3 SALURAN TRANSMISI TRAFO STEP UP 20/500 kv 500 kv 150 kv 150 kv INDUSTRI 20 kv BISNIS TRAFO GITET 500/150 kv TRAFO GI 150/20 kv PEMBANGKIT TRAFO DISTRIBUSI 220 V PLTA PLTD PLTP PLTG PLTU PLTGU RUMAH

Lebih terperinci

RELE JARAK SEBAGAI PROTEKSI SALURAN TRANSMISI

RELE JARAK SEBAGAI PROTEKSI SALURAN TRANSMISI ELE JAAK SEBAGAI POTEKSI SALUAN TANSMISI Oleh : CISTOF NAEK HALOMOAN TOBING 0404030245 Sistem Transmisi dan Distribusi DEPATEMEN ELEKTO FAKULTAS TEKNIK UNIVESITAS INDONESIA DEPOK 2008 ELE JAAK SEBAGAI

Lebih terperinci

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis 24 Diagram Satu Garis Dengan mengasumsikan bahwa sistem tiga fasa dalam keadaan seimbang, penyelesaian rangkaian dapat dikerjakan dengan menggunakan rangkaian 1 fasa dengan sebuah jalur netral sebagai

Lebih terperinci

Materi dan Evaluasi. Materi: Evaluasi

Materi dan Evaluasi. Materi: Evaluasi Materi dan Evaluasi Materi: -Pendahuluan & Konsep Dasar -Transformator -Mesin Sinkron -Saluran Transmisi -Penyelesaian Aliran Daya (Metode Gauss Seidel, Newton Raphson) Evaluasi -Absensi -Tugas -Quiz 1

Lebih terperinci

BAB II DASAR TEORI. 2.1 Isolator. Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki

BAB II DASAR TEORI. 2.1 Isolator. Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki BAB II DASAR TEORI 2.1 Isolator Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki tegangan dan juga tidak bertegangan. Sehingga bagian yang tidak bertegangan ini harus dipisahkan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 15 BAB III LANDASAN TEORI Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP dan PLTD kemudian disalurkan melalui saluran transmisi yang sebelumnya terlebih dahulu dinaikkan

Lebih terperinci

KAJIAN KUAT MEDAN LISTRIK PADA KONFIGURASI HORISONTAL SALURAN TRANSMISI 150 KV

KAJIAN KUAT MEDAN LISTRIK PADA KONFIGURASI HORISONTAL SALURAN TRANSMISI 150 KV KAJIAN KUAT MEDAN LISTRIK PADA KONFIGURASI HORISONTAL SALURAN TRANSMISI 15 KV I.P.H. Wahyudi 1, A.A.N.Amrita 2, W.G. Ariastina 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Email

Lebih terperinci

STUDI INTENSITAS MEDAN LISTRIK DI SUTT 150 kv KONFIGURASI VERTIKAL UNTUK LINGKUNGAN PEMUKIMAN

STUDI INTENSITAS MEDAN LISTRIK DI SUTT 150 kv KONFIGURASI VERTIKAL UNTUK LINGKUNGAN PEMUKIMAN STUDI INTENSITAS MEDAN LISTRIK DI SUTT 150 kv KONFIGURASI VERTIKAL UNTUK LINGKUNGAN PEMUKIMAN I.N.Y. Prayoga 1, A.A.N. Amrita 2, C.G.I.Partha 3 1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

II. TINJAUAN PUSTAKA. (updraft) membawa udara lembab. Semakin tinggi dari permukaan bumi, semakin

II. TINJAUAN PUSTAKA. (updraft) membawa udara lembab. Semakin tinggi dari permukaan bumi, semakin II. TINJAUAN PUSTAKA A. Petir 1. Proses Pembentukan Petir Petir merupakan suatu peristiwa peluahan muatan listrik di atmosfir. Pada suatu keadaan tertentu dalam lapisan atmosfir bumi terdapat gerakan angin

Lebih terperinci

METODE PENELITIAN. Pengukuran Besaran Elektrik Laboratorium Teknik Elektro Terpadu Jurusan

METODE PENELITIAN. Pengukuran Besaran Elektrik Laboratorium Teknik Elektro Terpadu Jurusan III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dilakukan di Laboratorium Teknik Tegangan Tinggi dan Laboratorium Pengukuran Besaran Elektrik Laboratorium Teknik Elektro Terpadu Jurusan Teknik Elektro

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sumber daya besar tersebut terletak pada daerah yang dilayani oleh sistem distribusi atau dapat juga terletak didekatnya. Sistem distribusi adalah semua

Lebih terperinci

BAB III PELINDUNG SALURAN TRANSMISI. keamanan sistem tenaga dan tak mungkin dihindari, sedangkan alat-alat

BAB III PELINDUNG SALURAN TRANSMISI. keamanan sistem tenaga dan tak mungkin dihindari, sedangkan alat-alat BAB III PELINDUNG SALURAN TRANSMISI Seperti kita ketahui bahwa kilat merupakan suatu aspek gangguan yang berbahaya terhadap saluran transmisi yang dapat menggagalkan keandalan dan keamanan sistem tenaga

Lebih terperinci

Elektrodinamometer dalam Pengukuran Daya

Elektrodinamometer dalam Pengukuran Daya Elektrodinamometer dalam Pengukuran Daya A. Wattmeter Wattmeter digunakan untuk mengukur daya listrik searah (DC) maupun bolak-balik (AC). Ada 3 tipe Wattmeter yaitu Elektrodinamometer, Induksi dan Thermokopel.

Lebih terperinci

BAB III KETIDAKSEIMBANGAN BEBAN

BAB III KETIDAKSEIMBANGAN BEBAN 39 BAB III KETIDAKSEIMBANGAN BEBAN 3.1 Sistem Distribusi Awalnya tenaga listrik dihasilkan di pusat-pusat pembangkit seperti PLTA, PLTU, PLTG, PLTGU, PLTP, dan PLTP dan yang lainnya, dengan tegangan yang

Lebih terperinci

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

5 Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Tenaga Listrik Sistem tenaga listrik merupakan suatu sistem terpadu yang terbentuk oleh hubungan-hubungan peralatan dan komponen - komponen listrik, seperti generator,

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

TEORI LISTRIK TERAPAN

TEORI LISTRIK TERAPAN TEORI LISTRIK TERAPAN 1. RUGI TEGANGAN 1.1. PENDAHULUAN Kerugian tegangan atau susut tegangan dalam saluran tenaga listrik adalah berbanding lurus dengan panjang saluran dan beban, berbanding terbalik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik BAB II TINJAUAN PUSTAKA Secara umum sistem tenaga listrik tersusun atas tiga subsistem pokok, yaitu subsistem pembangkit, subsistem transmisi, dan subsistem distribusi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Umum Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power

Lebih terperinci

BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH

BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH II. 1 TEORI GELOMBANG BERJALAN II.1.1 Pendahuluan Teori gelombang berjalan pada kawat transmisi telah mulai disusun secara intensif sejak tahun 1910, terlebih-lebih

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1. Landasan Teori A. Fenomena Petir Proses awal terjadi petir disebabkan karena adanya awan bermuatan di atas bumi. Pembentukan awan bermuatan disebabkan karena adanya kelembaban

Lebih terperinci

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik 1 Sistem distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber

Lebih terperinci

EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN

EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN M.Toni Prasetyo 1) dan Andika Akhmad 2) 1,2) Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan BAB II TEGANGAN TINGGI 2.1 Umum Pengukuran tegangan tinggi berbeda dengan pengukuran tegangan rendah, sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan tinggi yang akan

Lebih terperinci

BAB I PENDAHULUAN. 1. Latar Belakang

BAB I PENDAHULUAN. 1. Latar Belakang BAB I PENDAHULUAN 1. Latar Belakang Tenaga listrik dibangkitkan pada dalam pusat-pusat pembangkit listrik (power plant) seperti PLTA, PLTU, PLTG, dan PLTD lalu disalurkan melalui saluran transmisi setelah

Lebih terperinci

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti 6 BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN 2.1 Sistem Tenaga Listrik Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti PLTA, PLTU, PLTD, PLTP dan PLTGU kemudian disalurkan

Lebih terperinci

DEPARTEMEN TEKNIK ELEKTRO PROGRAM PENDIDIKAN SARJANA EKSTENSI FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2009

DEPARTEMEN TEKNIK ELEKTRO PROGRAM PENDIDIKAN SARJANA EKSTENSI FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2009 TUGAS AKHIR STUDY PENGARUH PEMASANGAN KAPASITOR SHUNT PADA SALURAN TRANSMISI JARAK MENENGAH DENGAN MENGGUNAKAN METODE NOMINAL PI DAN T OLEH : NAMA : Ronald Fernando Pane NIM : 050422016 Tugas Akhir ini

Lebih terperinci

LEMBAR JUDUL LEMBAR PENGESAHAN

LEMBAR JUDUL LEMBAR PENGESAHAN DAFTAR ISI Hal LEMBAR JUDUL LEMBAR PENGESAHAN ABSTRAK... i ABSTRACT... iii KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR GAMBAR... xi DAFTAR TABEL... xv BAB I PENDAHULUAN 1.1 Latar Belakang... 1 1.2 Tinjauan

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang mengubah suatu nilai arus maupun tegangan (energi listrik AC) pada satu rangkaian listrik atau lebih ke rangkaian listrik

Lebih terperinci

EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN

EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN EFEKTIFITAS PEMAKAIAN REAKTOR SHUNT GITET UNGARAN DALAM MENGKOMPENSIR DAYA REAKTIF SUTET 500 KV UNGARAN BANDUNG SELATAN Media Elektrika, Vol. 6 No. 2, Desember 2012 ISSN 1979-7451 EFEKTIFITAS PEMAKAIAN

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

BAB II SALURAN TRANSMISI

BAB II SALURAN TRANSMISI BAB II SALURAN TRANSMISI 2.1 Umum Penyampaian informasi dari suatu sumber informasi kepada penerima informasi dapat terlaksana bila ada suatu sistem atau media penyampaian di antara keduanya. Jika jarak

Lebih terperinci

Dasar Rangkaian Listrik

Dasar Rangkaian Listrik Dasar Rangkaian Listrik Faktor Pertimbangan Distribusi Sistem Tenaga Listrik Keamanan Energi listrik yang digunakan oleh para pemakai dengan tingkat resiko / bahaya yang minimal Penyediaan Tenaga Listrik

Lebih terperinci

ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI

ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI TUGAS AKHIR ANALISIS RUGI RUGI ENERGI LISTRIK PADA JARINGAN DISTRIBUSI Oleh Senando Rangga Pitoy NIM : 12 023 030 Dosen Pembimbing Deitje Pongoh, ST. M.pd NIP. 19641216 199103 2 001 KEMENTERIAN RISET TEKNOLOGI

Lebih terperinci

BAB II DASAR TEORI. Universitas Sumatera Utara

BAB II DASAR TEORI. Universitas Sumatera Utara BAB II DASAR TEORI 2.1.Studi Aliran Daya Studi aliran daya di dalam sistem tenaga listrik merupakan studi yang penting.studi aliran daya merupakan studi yang mengungkapkan kinerja dan aliran daya (nyata

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

BAB II DASAR TEORI. hari. Jumlah hari guruh yang terjadi pada suatu daerah dalam satu tahun disebut

BAB II DASAR TEORI. hari. Jumlah hari guruh yang terjadi pada suatu daerah dalam satu tahun disebut BAB II DASAR TEORI II.1 Hari Guruh Tahunan Isokreaunic Level (I kl ) Hari guruh adalah hari dimana guruh terdengar minimal satu kali dalam satu hari. Jumlah hari guruh yang terjadi pada suatu daerah dalam

Lebih terperinci

BAB II TEORI DASAR GANGGUAN PETIR

BAB II TEORI DASAR GANGGUAN PETIR BAB II TEORI DASAR GANGGUAN PETIR II.1 Umum Gangguan petir pada saluran transmisi adalah gangguan akibat sambaran petir pada saluran transmisi yang dapat menyebabkan terganggunya saluran transmisi dalam

Lebih terperinci

PERENCANAAN PEMASANGAN GARDU SISIP P117

PERENCANAAN PEMASANGAN GARDU SISIP P117 Jurnal Desiminasi Teknologi, Volume 1, Nomor 1, Januari 2013, Hal 17-26 PERENCANAAN PEMASANGAN GARDU SISIP P117 Di PT PLN (PERSERO) AREA BANGKA Lisma [1], Yusro Hakimah [2] Jurusan Teknik Elektro, Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Penelitian Terdahulu Tentang Pentanahan Netral

BAB II TINJAUAN PUSTAKA. 2.1 Penelitian Terdahulu Tentang Pentanahan Netral 5 BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Tentang Pentanahan Netral Dalam kaitan dengan pentanahan netral sistem tenaga, beberapa penelitian terdahulu telah diidentifikasi, misalnya dalam pemilihan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Tempat Penelitian Penelitian tugas akhir ini dilakukan di Gardu Induk 150 KV Teluk Betung Tragi Tarahan, Bandar Lampung, Provinsi Lampung. B. Data Penelitian Untuk mendukung terlaksananya

Lebih terperinci

PERBAIKAN REGULASI TEGANGAN

PERBAIKAN REGULASI TEGANGAN JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PERBAIKAN REGULASI TEGANGAN Distribusi Tenaga Listrik Ahmad Afif Fahmi 2209 100 130 2011 REGULASI TEGANGAN Dalam Penyediaan

Lebih terperinci

MODEL SISTEM.

MODEL SISTEM. MODEL SISTEM MESIN SEREMPAK KONTRUKSI MESIN SEREMPAK Kedua bagian utama sebuah mesin serempak adalah susunan ferromagnetik. Bagian yang diam, yang pada dasarnya adalah sebuah silinder kosong dinamakan

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB I PENDAHULUAN 1.1 Latar Belakang Saluran transmisi merupakan suatu sarana untuk menyalurkan daya besar dari pusat pembangkit, biasa disebut juga sentral-sentral listrik (electric power stations) ke

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Arus Netral pada Sistem Tiga Fasa Empat Kawat Jaringan distribusi tegangan rendah adalah jaringan tiga fasa empat kawat, dengan ketentuan, terdiri dari kawat tiga fasa (R, S,

Lebih terperinci

BAB I PENDAHULUAN. Westinghouse yang terdahulu, menguji transformator-transformator di

BAB I PENDAHULUAN. Westinghouse yang terdahulu, menguji transformator-transformator di BAB I PENDAHULUAN I.1. Latar Belakang Masalah Perkembangan sistem arus bolak balik (a.c. system) dimulai di Amerika Serikat pada tahun 1885, ketika George Westinghouse membeli patent patent Amerika yang

Lebih terperinci

KISI-KISI SOAL UKG 2015 TEKNIK JARINGAN LISTRIK PROFESIONAL PPPPTK BBL MEDAN

KISI-KISI SOAL UKG 2015 TEKNIK JARINGAN LISTRIK PROFESIONAL PPPPTK BBL MEDAN KISI-KISI SOAL UKG 2015 TEKNIK JARINGAN LISTRIK PROFESIONAL PPPPTK BBL MEDAN STANDAR KOMPETENSI GURU No Kompetensi Utama KOMPETENSI INTI GURU KOMPETENSI GURU MATA PELAJARAN/KELAS/KEAHLIAN/BK Indikator

Lebih terperinci

PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS

PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS PERTEMUAN VIII SISTEM PER UNIT DAN DIAGRAM SEGARIS 8.1 UMUM Saluran transmisi tenaga dioperasikan pada tingkat tegangan di mana kilovolt (kv) merupakan unit yang sangat memudahkan untuk menyatakan tegangan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 ISOLATOR PIRING 2.1.1 Umum Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki tegangan dan juga tidak bertegangan. Sehingga bagian yang tidak bertegangan

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20

PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Laporan Penelitian PENGUJIAN TAPPING TRANSFORMATOR DISTRIBUSI 20 Oleh : Ir. Leonardus Siregar, MT Dosen Tetap Fakultas Teknik LEMBAGA PENELITIAN UNIVERSITAS HKABP NOMMENSEN MEDAN 2013 Kata Pengantar Puji

Lebih terperinci

LAMPIRAN B. Jarak Bebas Minimum Horisontal dari Sumbu Vertikal Menara/Tiang. Jarak Horisont al Akibat Ayunan Kondukt or H (m)

LAMPIRAN B. Jarak Bebas Minimum Horisontal dari Sumbu Vertikal Menara/Tiang. Jarak Horisont al Akibat Ayunan Kondukt or H (m) Keterangan: 1. X1 = Panjang upper cross arm = 13,4 m 2. X2 = Panjang middle cross arm = 13,8 m 3. X3 = Panjang lower cross arm = 14,3 m 4. H = Ketinggian lower cross arm dari permukaan tanah = 46,5 m 5.

Lebih terperinci

BAB III. Transformator

BAB III. Transformator BAB III Transformator Transformator merupakan suatu alat listrik yang mengubah tegangan arus bolak-balik dari satu tingkat ke tingkat yang lain melalui suatu gandengan magnet dan berdasarkan prinsipprinsip

Lebih terperinci

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN MODUL ISIKA TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN TEGANGAN DAN ARUS BOLAK-BALIK (AC) 1. SUMBER TEGANGAN DAN ARUS BOLAK-BALIK Sumber tegangan bolak-balik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Saluran Transmisi Sistem transmisi adalah suatu sistem penyaluran energi listrik dari satu tempat ke tempat lain, seperti dari stasiun pembangkit ke substation ( gardu

Lebih terperinci

DAMPAK GEJALA MEDAN TINGGI PADA TRANSFORMATOR AKIBAT EFEK KORONA

DAMPAK GEJALA MEDAN TINGGI PADA TRANSFORMATOR AKIBAT EFEK KORONA DAMPAK GEJALA MEDAN TINGGI PADA TRANSFORMATOR AKIBAT EFEK KORONA Di Susun Oleh : Kelompok 2 1. AdityaEka 14.03.0.020 2. AnggaPrayoga. S 14.03.0.048 3. HasbiSagala 14.03.0.011 4. MuhammadIqbal 14.03.0.040

Lebih terperinci

Muh Nasir Malik, Analisis Loses Jaringan Distribusi Primer Penyulang Adhyaksa Makassar

Muh Nasir Malik, Analisis Loses Jaringan Distribusi Primer Penyulang Adhyaksa Makassar MEDIA ELEKTRIK, Volume 4 Nomor 1, Juni 2009 ANALISIS LOSES JARINGAN DISTRIBUSI PRIMER PADA PENYULANG ADHYAKSA MAKASSAR Muh. Nasir Malik Jurusan Pendidikan Teknik Elektro FT UNM Abstrak Penelitian ini bertujuan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

BAB I PENDAHULUAN. Transmisi, dan Distribusi. Tenaga listrik disalurkan ke masyarakat melalui jaringan

BAB I PENDAHULUAN. Transmisi, dan Distribusi. Tenaga listrik disalurkan ke masyarakat melalui jaringan BAB I PENDAHULUAN 1.1 Latar Belakang Tenaga Listrik disalurkan ke konsumen melalui Sistem Tenaga Listrik. Sistem Tenaga Listrik terdiri dari beberapa subsistem, yaitu Pembangkitan, Transmisi, dan Distribusi.

Lebih terperinci

Kajian Tentang Efektivitas Penggunaan Alat Penghemat Listrik

Kajian Tentang Efektivitas Penggunaan Alat Penghemat Listrik Kajian Tentang Efektivitas Penggunaan Alat Penghemat Listrik Rita Prasetyowati Jurusan Pendidikan Fisika-FMIPA UNY ABSTRAK Masyarakat luas mengenal alat penghemat listrik sebagai alat yang dapat menghemat

Lebih terperinci

ANALISIS PERBANDINGAN SISTEM SALURAN KABEL UDARA TEGANGAN MENENGAH (SKUTM) DAN SALURAN KABEL TANAH TEGANGAN MENENGAH (SKTM)

ANALISIS PERBANDINGAN SISTEM SALURAN KABEL UDARA TEGANGAN MENENGAH (SKUTM) DAN SALURAN KABEL TANAH TEGANGAN MENENGAH (SKTM) ANALISIS PERBANDINGAN SISTEM SALURAN KABEL UDARA TEGANGAN MENENGAH (SKUTM) DAN SALURAN KABEL TANAH TEGANGAN MENENGAH (SKTM) Agus Salim 1), Ahmad Rizal Sultan 2), Ahsan Akmal 3) Abstrak:Sistem Distribusi

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

TM - 2 LISTRIK. Pengertian Listrik

TM - 2 LISTRIK. Pengertian Listrik TM - 2 LISTRIK Pengertian Listrik Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut: - Listrik adalah kondisi dari partikel sub-atomik

Lebih terperinci

OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO

OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO OPTIMALISASI KUALITAS TEGANGAN TRANSFORMATOR DISTRIBUSI UNTUK PELANGGAN PLN BERDASAR PADA WINDING RATIO Muhammad Ade Nugroho, 1410017211121 Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB 2 KLASIFIKASI JARINGAN DISTRIBUSI

BAB 2 KLASIFIKASI JARINGAN DISTRIBUSI KLASIFIKASI JARINGAN DISTRIBUSI 11 BAB 2 KLASIFIKASI JARINGAN DISTRIBUSI A. Pendahuluan Sistem jaringan distribusi tenaga listrik dapat diklasifikasikan dari berbagai segi, antara lain adalah : 1. Berdasarkan

Lebih terperinci

BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT

BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT BAB III PERHITUNGAN ARUS GANGGUAN HUBUNG SINGKAT 3.1. JENIS GANGGUAN HUBUNG SINGKAT Gangguan hubung singkat yang mungkin terjadi di dalam Jaringan (Sistem Kelistrikan) ada 3, yaitu: a. Gangguan Hubung

Lebih terperinci

KOMPONEN-KOMPONEN SIMETRIS. A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya

KOMPONEN-KOMPONEN SIMETRIS. A. Sintesis Fasor Tak Simetris dari Komponen-Komponen Simetrisnya Modul Mata Kuliah Proteksi Sistem Tenaga, F. TEKNIK ELEKTRO UNISMA KOMPONEN-KOMPONEN SIMETRIS Pada tahun 1918 salah satu cara yang paling ampuh untuk menangani rangkaian fasamajemuk (poly-phase = berfasa

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

STUDI PENGARUH KORONA TERHADAP SURJA TEGANGAN LEBIH PADA SALURAN TRANSMISI 275 kv

STUDI PENGARUH KORONA TERHADAP SURJA TEGANGAN LEBIH PADA SALURAN TRANSMISI 275 kv STUDI PENGARUH KORONA TERHADAP SURJA TEGANGAN LEBIH PADA SALURAN TRANSMISI 275 kv Memory Hidyart (1), Syahrawardi (2) Konsentrasi Teknik Tenaga Listrik, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

ET 355 Transmisi Daya dan Gardu Induk: S-1, 2 SKS, semester 5

ET 355 Transmisi Daya dan Gardu Induk: S-1, 2 SKS, semester 5 1.Deskripsi Mata Kuliah ET 355 Transmisi Daya dan Gardu Induk: S-1, 2 SKS, semester 5 Mata kuliah ini merupakan mata kuliah pilihan pada program S-1 Program Studi Pendidikan Teknik Tenaga Elektrik, Jurusan

Lebih terperinci

SIMULATOR SISTEM TENAGA LISTRIK JARINGAN TUNGGAL DAN GANDA SINGLE FEEDER

SIMULATOR SISTEM TENAGA LISTRIK JARINGAN TUNGGAL DAN GANDA SINGLE FEEDER SIMULATOR SISTEM TENAGA LISTRIK JARINGAN TUNGGAL DAN GANDA SINGLE FEEDER Skripsi diajukan sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Pendidikan Program Studi Pendidikan Teknik Elektro

Lebih terperinci

VOLT. Jurnal Ilmiah Pendidikan Teknik Elektro. Journal homepage: jurnal.untirta.ac.id/index.php/volt Vol. 1, No. 1, Oktober 2016, 29-36

VOLT. Jurnal Ilmiah Pendidikan Teknik Elektro. Journal homepage: jurnal.untirta.ac.id/index.php/volt Vol. 1, No. 1, Oktober 2016, 29-36 P-ISSN: 2528-5688 E-ISSN: 2528-5696 VOLT Jurnal Ilmiah Pendidikan Teknik Elektro Journal homepage: jurnal.untirta.ac.id/index.php/volt Vol. 1, No. 1, Oktober 2016, 29-36 ANALISIS KERUGIAN DAYA PADA SALURAN

Lebih terperinci

BAB II PEMBUMIAN PERALATAN LISTRIK DENGAN ELEKTRODA BATANG. Tindakan-tindakan pengamanan perlu dilakukan pada instalasi rumah tangga

BAB II PEMBUMIAN PERALATAN LISTRIK DENGAN ELEKTRODA BATANG. Tindakan-tindakan pengamanan perlu dilakukan pada instalasi rumah tangga BAB II PEMBUMIAN PERALATAN LISTRIK DENGAN ELEKTRODA BATANG II.1. Umum (3) Tindakan-tindakan pengamanan perlu dilakukan pada instalasi rumah tangga untuk menjamin keamanan manusia yang menggunakan peralatan

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2014 PERCOBAAN I BRIEFING PRAKTIKUM Briefing praktikum dilaksanakan hari Selasa

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

STUDI PERENCANAAN SALURAN TRANSMISI 150 kv BAMBE INCOMER

STUDI PERENCANAAN SALURAN TRANSMISI 150 kv BAMBE INCOMER SALURAN TRANSMISI 150 kv BAMBE INCOMER Widen Lukmantono NRP 2209105033 Dosen Pembimbing Ir.Syariffuddin Mahmudsyah, M.Eng Ir.Teguh Yuwono JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II SALURAN TRANSMISI. tunda ketika sinyal bergerak didalam saluran interkoneksi. Jika digunakan sinyal

BAB II SALURAN TRANSMISI. tunda ketika sinyal bergerak didalam saluran interkoneksi. Jika digunakan sinyal BAB II SALURAN TRANSMISI 2.1 Umum Sinyal merambat dengan kecepatan terbatas. Hal ini menimbulkan waktu tunda ketika sinyal bergerak didalam saluran interkoneksi. Jika digunakan sinyal sinusoidal, maka

Lebih terperinci

DASAR TEKNIK TEGANGAN TINGGI. HASBULLAH, MT Teknik Elektro FPTK UPI 2009

DASAR TEKNIK TEGANGAN TINGGI. HASBULLAH, MT Teknik Elektro FPTK UPI 2009 DASAR TEKNIK TEGANGAN TINGGI HASBULLAH, MT Teknik Elektro FPTK UPI 2009 Tegangan listrik Tegangan atau beda potensial antara dua titik, adalah usaha yang dibutuhkan untuk membawa muatan satu coulomb dari

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI

LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI 1 LAPORAN PRAKTIKUM LISTRIK MAGNET Praktikum Ke 1 KUMPARAN INDUKSI A. TUJUAN 1. Mempelajari watak kumparan jika dialiri arus listrik searah (DC).. Mempelajari watak kumparan jika dialiri arus listrik bolak-balik

Lebih terperinci

Analisis Rangkaian Listrik

Analisis Rangkaian Listrik Sudaryatno Sudirham nalisis Rangkaian Listrik Jilid Sudaryatno Sudirham, nalisis Rangkaian Listrik () Rangkaian Pemroses Energi (rus Searah) Dalam bab ini kita akan melihat beberapa contoh aplikasi analisis

Lebih terperinci