Pabelan Kartasura, Surakarta.

dokumen-dokumen yang mirip
MODEL TRIP DISTRIBUTION PENUMPANG DOMESTIK DAN INTERNASIONAL DI BANDARA INTERNASIONAL JUANDA

ESTIMASI MATRIK INFORMASI LALU LINTAS MODEL GRAVITY ASAL TUJUAN ANGKUTAN PRIBADI-UMUM

STUDI DEMAND PADA RENCANA PEMBANGUNAN JALAN SORONG-KEBAR-MANOKWARI DENGAN MODEL GRAVITY

ANALISIS PREDIKSI SEBARAN PERJALANAN PENUMPANG KAPAL LAUT MELALUI PELABUHAN LAUT PENGUMPAN DI KEPULAUAN HALMAHERA DENGAN MENGGUNAKAN MODEL GRAVITY

ANALISIS KEBUTUHAN ANGKUTAN KOTA MANADO (STUDI KASUS: TRAYEK PUSAT KOTA MALALAYANG DAN TRAYEK PUSAT KOTA KAROMBASAN)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

BAB II TINJAUAN PUSTAKA

BAB 3 METODOLOGI PENELITIAN

Kuliah Pertemuan Ke-6 MODEL SINTETIS DISTRIBUSI PERJALANAN. Sub Topik : Model Gravitasi (Kalibrasi Model) Model Sintetik Lainnya

ANALISA MODEL SEBARAN PERJALANAN INTERNAL MASYARAKAT KOTA BATU DENGAN MENGGUNAKAN METODE GRAVITASI

APLIKASI SEDERHANA: INTERAKSI TATA GUNA LAHAN DAN TRANSPORTASI

BAB I PENDAHULUAN. I.1. Latar Belakang. Perjalanan merupakan suatu kegiatan rutin yang selalu dilakukan setiap

ek SIPIL MESIN ARSITEKTUR ELEKTRO

ANALISA DAMPAK PEMBANGUNAN HOTEL IBIS MANADO TERHADAP LALU LINTAS DI JALAN PIERE TENDEAN MANADO

ANALISA BANGKITAN PERJALANAN PADA KECAMATAN DELI TUA

Model Empat Langkah? Four Step Model Travel Demand Model

ESTIMASI MATRIK ASAL TUJUAN DARI DATA LALU LINTAS DENGAN METODE ESTIMASI INFERENSI BAYESIAN MENGGUNAKAN PIRANTI LUNAK EMME/3

STUDI PERMODELAN BANGKITAN PERJALANAN DI PERKOTAAN

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

Presentasi TESIS - PS 2399

PEMODELAN BANGKITAN PERJALANAN PELAJAR DI KOTA YOGYAKARTA

ANALISIS GARIS KEINGINAN PERGERAKAN MASYARAKAT PENGGUNA TRANSPORTASI DI KABUPATEN BOLAANG MONGONDOW TIMUR PROVINSI SULAWESI UTARA

OUTLINES PERKULIAHAN

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. (Tamin, 1997). Bangkitan Pergerakan (Trip Generation) adalah jumlah perjalanan

Jurnal Sabua Vol.3, No.3: 9-19, November 2011 ISSN HASIL PENELITIAN TARIKAN PENGUNJUNG KAWASAN MATAHARI JALAN SAMRATULANGI MANADO

PEMODELAN TARIKAN PERJALANAN MAHASISWA DENGAN SEPEDA MOTOR

MODEL BANGKITAN PERGERAKAN ZONA KECAMATAN PALU BARAT KOTA PALU

BAB II STUDI PUSTAKA. masing-masing harus dilakukan secara terpisah dan berurutan. Sub-sub model. Bangkitan dan tarikan pergerakan

ANALISIS DISTRIBUSI PERJALANAN MENGGUNAKAN MODEL GRAVITASI DUA BATASAN DENGAN OPTIMASI FUNGSI HAMBATAN STUDI KASUS : KOTA SEMARANG DAN KOTA SURAKARTA

STUDI PEMODELAN TRANSPORTASI DI RUAS JALAN NGINDEN AKIBAT JALAN MERR II-C ( SEGMEN KEDUNG BARUK SEMOLOWARU ) SURABAYA TUGAS AKHIR

Bangkitan Perjalanan Pada Perumahan Baturaja Permai Kabupaten Ogan Komering Ulu Sumatera Selatan

DEVELOPMENT OF MAXIMUM ENTROPY ESTIMATOR FOR CALIBRATING TRIP DISTRIBUTION MODELS

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA. sampai saat ini - yang paling populer adalah Model Perencanaan Transportasi Empat. 1. Bangkitan dan tarikan perjalanan

Penentuan Koefisien Hambatan β Asal Tujuan Transportasi di Provinsi Jawa Tengah dan D.I Yogyakarta

MODEL KEBUTUHAN PARKIR DI KAWASAN PERBELANJAAN KOTA MANADO (Studi Kasus : Pasar Segar, Lippo Mall, Indogrosir, Multimart, Starway Mart)

MODEL PERMINTAAN PERJALANAN PENUMPANG ANTAR KOTA/KABUPATEN DENGAN MODA TRANSPORTASI DARAT: STUDI KASUS PROPINSI SUMATRA SELATAN

BAB II TINJAUAN PUSTAKA

ESTIMASI BANGKITAN PERJALANAN PENDUDUK PERUMAHAN DI KELURAHAN DADOK TUNGGUL HITAM KOTA PADANG

BAB II TINJAUAN PUSTAKA

MODEL PEMILIHAN MODA ANTARA KERETA API DAN BUS RUTE MAKASSAR PAREPARE DENGAN MENGGUNAKAN METODE STATED PREFERENCE

KAJIAN PEMODELAN TARIKAN PERGERAKAN KE GEDUNG PERKANTORAN ( Studi Kasus Kota Surakarta )

ESTIMASI MODEL KOMBINASI SEBARAN PERGERAKAN DAN PEMILIHAN MODA BERDASARKAN INFORMASI ARUS LALU LINTAS TESIS MAGISTER

KALIBRASI MODEL SEBARAN PERGERAKAN (GRAVITY MODEL) MENGGUNAKAN ADD-IN MICROSOFT EXCEL (SOLVER) Rudy Setiawan 1

PERENCANAAN TRANSPORTASI

BAB II TINJAUAN PUSTAKA. Pengertian perencanaan merupakan kegiatan untuk menetapkan tujuan yang akan dicapai

PERMODELAN BANGKITAN TARIKAN PADA TATA GUNA LAHAN SEKOLAH MENENGAH ATAS SWASTA DI PALEMBANG

ESTIMASI PEMODELAN DISTRIBUSI PERJALANAN DENGAN MODEL GRAVITY ( STUDI KASUS DI KOTA BANDUNG ) TESIS. oleh : Hendra Gunawan

ANALISA PERMODELAN BANGKITAN PERGERAKAN LALU LINTAS PADA TATA GUNA LAHAN SMU NEGERI DI MAKASSAR ABSTRAK

ESTIMASI KEBUTUHAN ANGKUTAN UMUM KOTA BANDA ACEH

ANALISIS MODEL KEBUTUHAN PERGERAKAN PENUMPANG DAN BARANG BANDARA RAHADI OESMAN KETAPANG

SIMULASI DAMPAK MULTIKOLINEARITAS PADA KONDISI PENYIMPANGAN ASUMSI NORMALITAS

Arahan Transport Demand Management dalam Pergerakan Transportasi Regional Kabupaten Gresik

BAB II TINJAUAN PUSTAKA. Konsep dan Ruang Lingkup Perencanaan Transportasi

MODEL TARIKAN PERGERAKAN PADA RUMAH SAKIT (STUDI KASUS DI DAERAH ISTIMEWA YOGYAKARTA) (260T)

ANALISIS BANGKITAN DAN TARIKAN PERJALANAN (Studi Kasus Pada Tata Guna Lahan Rumah Sakit Umum di Klaten) ARTIKEL PUBLIKASI ILMIAH

BAB II KAJIAN PUSTAKA

BAB V PERENCANAAN TRANSPORT. Gambar 5.1. Proses Perencanaan Transport

APPLICATION OF TRIP DISTRIBUTION MODELS TO ROAD BASED REGIONAL FREIGHT MOVEMENT IN WEST JAVA

ESTIMASI MATRIKS ORIGIN-DESTINATION PERKOTAAN MENGGUNAKAN MODEL GRAVITY: STUDI KASUS KOTA BOGOR IMAM EKOWICAKSONO

Analisis Model Regresi Linear Berganda dengan Metode Response Surface

STUDI PEMBEBANAN SISTEM JARINGAN JALAN TRANSPORTASI BARANG JALAN RAYA BERDASARKAN DISTRIBUSI PERGERAKAN BARANG KOMODITAS INTERNAL REGIONAL

Simulasi Pemodelan Transportasi pada Jaringan Jalan Menggunakan Aplikasi Saturn

PERMODELAN BANGKITAN PERGERAKAN UNTUK BEBERAPA TIPE PERUMAHAN DI PEKANBARU

KAJIAN PERPINDAHAN MODA (MODE SHIFTING) DARI PENGGUNA KENDARAAN PRIBADI KE KENDARAAN UMUM (STUDI KASUS: KOTA BANDUNG)

STUDI PENDAHULUAN PEMODELAN ARUS LALU LINTAS DI RUAS JALAN RUNGKUT ASRI KOTA MADYA SURABAYA dengan METODE UNDERWOOD

Syafi i Dosen Teknik Sipil Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Surakarta Telp. (0271)

MODEL PERGERAKAN PENDUDUK DI KAWASAN KEPULAUAN DENGAN VARIABEL BEBAS PARAMETER SOSIOEKONOMI (STUDI KASUS KABUPATEN KEPULAUAN SANGIHE)

PENERAPAN MODEL REGRESI LINIER BAYESIAN UNTUK MENGESTIMASI PARAMETER DAN INTERVAL KREDIBEL

BAB 2 LANDASAN TEORI

ANALISIS BANGKITAN DAN TARIKAN PERGERAKAN PENDUDUK BERDASARKAN DATA MATRIKS ASAL TUJUAN KOTA MANADO ABSTRAK

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. pergerakan yang berasal dari suatu zona atau tata guna lahan dan jumlah pergerakan yang

BAB III LANDASAN TEORI

PERKIRAAN DISTRIBUSI PERGERAKAN PENUMPANG DI PROVINSI JAWA BARAT BERDASARKAN ASAL TUJUAN TRANSPORTASI NASIONAL

BEBERAPA PERTIMBANGAN DI DALAM PENENTUAN LOKASI

BANGKITAN PERJALANAN PADA PERUMAHAN BOUGENVLLE DI PALEMBANG

Model Bangkitan Perjalanan Kerja dan Faktor Aksesibilitas pada Zona Perumahan di Yogyakarta

Perencanaan Pembangunan Wilayah Model Gravitasi. By: Tetty Harahap, M.Eng

KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA. Victoria Dwi Murti 1, Sudarno 2, Suparti 3

STUDI ANALISA MODEL TARIKAN PERGERAKAN PADA RUMAH SAKIT DI KOTA MALANG

Satrio Agung Wibowo, Harimurti, Achfas Zacoeb

ANALISIS BANGKITAN DAN TARIKAN PERJALANAN (Studi Kasus Pada Tata Guna Lahan Rumah Sakit Umum di Klaten) TESIS

STUDI POTENSI JUMLAH PENUMPANG BUS PEMADU MODA RUTE MALANG BANDAR UDARA JUANDA PP ABSTRAK

PEMODELAN TARIKAN DAN DISTRIBUSI PERJALANAN MURID, GURU DAN KARYAWAN PADA GEDUNG SEKOLAH MENENGAH ATAS (SMA) KOMPLEKS DI KOTA SURABAYA

ANALISIS MODEL TARIKAN PERGERAKAN PADA UNIVERSITAS (STUDI KASUS DI WILAYAH SURAKARTA)

APLIKASI SIMULASI UNTUK PERAMALAN PERMINTAAN DAN PENGELOLAAN PERSEDIAAN YANG BERSIFAT PROBABILISTIK

Syafi i Pengajar Jurusan Teknik Sipil Universitas Sebelas Maret Jl. Ir. Sutami No. 36 A Surakarta Telp. (0271)

EVALUASI EFEKTIFITAS SISTEM OPERASIONAL BARU BUS KAMPUS UNIVERSITAS ANDALAS 1. KONDISI OPERASIONAL DAN PERMASALAHAN BUS KAMPUS UNAND

ABSTRAK. Kata kunci : Distribusi perjalanan, trip assignment, software Visum versi 15

KOMPETISI PEMILIHAN MODA ANGKUTAN PENUMPANG BERDASARKAN MODEL LOGIT-BINOMIAL-SELISIH DAN LOGIT-BINOMIAL-NISBAH

Kota dianggap sebagai tempat tersedianya berbagai kebutuhan dan lapangan kerja

RANCANGAN PEMBELAJARAN SEMESTER (RPS)

Besar Bobot Kejadian. Kapasitas jalan (smp/jam) Kendaraan (smp/jam)

MODEL BANGKITAN PERGERAKAN DI KAWASAN PERUMAHAN BENGKURING SAMARINDA

PENDISTRIBUSIAN BBA DENGAN METODE PROGRAMA LINIER (PERSOALAN TRANSPORTASI) Oleh : Ratna Imanira Sofiani, S.Si Dosen Universitas Komputer Indonesia

STUDI KEBUTUHAN TAKSI DI KOTA MALANG DENGAN TEKNIK STATED PREFERENCE

ANALISIS TARIKAN PERGERAKAN KAMPUS FAKULTAS TEKNIK GOWA

REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA

BANGKITAN PERGERAKAN DI KECAMATAN LUBUK PAKAM DENGAN METODE KLASIFIKASI SILANG

Transkripsi:

TRIP DISTRIBUTION FOR USING POWER FUNCTION DOUBLE CONSTRAINED GRAVITY MODEL ( STUDY LITERATURE) DISTRIBUSI PERJALANAN DENGAN PENDEKATAN FUNGSI POWER MODEL GRAVITASI KENDALA GANDA ( STUDI PUSTAKA ) Zilhardi Idris 1) 1) Staf Pengajar Progdi Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Surakarta. Jl. A. Yani Tromol Pos 1 Pabelan Kartasura, Surakarta. E-mail : Zhi_ums@yahoo.com ABSTRACT Take into account the travel distribution is very important in transportation planning, there are many approaches/methods that can be used for this analysis, one of which is a double constraint gravity model where resistance factor used here one of them is a function of Power. The procedure is to do well on the trip generation limits and the pull of the trip with some time simulation so get total trips generated by the total attraction of the trip. The exponent of the function constraints will determine the size of the resulting reduction in travel distribution. Key words: travel distribution model doubles the gravity constraints, the power function ABSTRAK Memperhitungkan distribusi perjalanan merupakan hal yang sangat penting dalam perencanaan transportasi, ada banyak pendekatan/ metode yang dapat digunakan untuk analisis ini, salah satunya adalah model gravitasi kendala ganda dimana faktor hambatan yang dipakai disini salah satunya adalah fungsi Power. Prosedur yang dilakukan adalah dengan melakukan batasan baik terhadap bangkitan perjalanan maupun pada tarikan perjalanan dengan beberapa kali simulasi sehingga mendapatkan total perjalanan yang dibangkitkan seimbang dengan total tarikan perjalanan. Nilai eksponen dari fungsi kendala akan sangat menentukan besar kecilnya penurunan distribusi perjalanan yang dihasilkan. Kata-kata kunci : distribusi perjalanan, model gravitasi kendala ganda, fungsi power PENDAHULUAN Estimasi bangkitan dan tarikan perjalanan ( production and attraction trip ) antar kawasan adalah hal yang sangat penting dalam bidang perencanaan transportasi. Data yang diperoleh dapat digunakan untuk menentukan berbagai kebijakan transportasi masa yang akan datang. Seperti halnya di bidang teknik lalu lintas khususnya, cara yang paling lazim dipakai untuk mendapatkan data matrik asal tujuan ( MAT ) adalah dengan menggunakan survai wawancara di tepi jalan atau wawancara berdasarkan basis rumah tangga. Pekerjaan ini tentu akan memerlukan tenaga surveyor yang banyak, waktu yang lama, berpotensi mengganggu pengguna jalan, serta membutuhkan tingkat ketelitian yang sangat tinggi dan ini semua memerlukan biaya yang cukup besar pula. Untuk mengantisipasi persoalan ini dicoba dikembangkan suatu metode, salah satunya adalah metode dengan pendekatan gravity model. sebenarnya pendekatan dengan gravity model bukanlah satu-satunya cara, melainkan masih ada pendekatan yang lain seperti metode pertumbuhan (growth factor method). Model gravitasi disini dasar pemikirannya adalah memakai pendekatan konsep hukum Newton, yang menjelaskan bahwa besarnya gaya tarik menarik diantara bua benda sangat ditentu-kan atau dipengaruhi oleh jarak kedua benda tersebut. Dalam perencanaan transportasi jarak dapat pula dikembangkan be-rupa waktu perjalanan (travel tim ) atau biaya perjalanan (tra-vel cost). Variabel ini disebut sebagai faktor rintangan atau ham-batan atau kendala (impedance) dari dinamika antar zone atau kawasan. Perbedaan metode Growth Factor dan Gravity Model Secara konsep dasar dapat dijelaskan bahwa distribusi perjalanan dalam perencanaan transportasi dengan pendekatan growth factor hanya membutuhkan data eksisting serta prediksi pertumbuhan yang terjadi di zone studi, modelnya simpel untuk dioperasikan. Dalam metode ini tidak memperhitungkan sama sekali berbagai hambatan/rintangan/kendala (impedance ) yang terjadi seperti nilai biaya, waktu serta jarak, sehingga tingkat akurasi hasil model memiliki deviasi yang cukup besar. Jadi pola pergerakan perjalanan antar matrik asal-tujuan terlihat sederhana dan tidak dapat mengakomodasi perubahan-perubahan yang sedang dan akan terjadi. Sedangkan metode gravity model justru sebaliknya, model memperhitungkan berbagai hambatan seperti nilai biaya, waktu serta jarak perjalanan. Model yang dibangun cukup rumit berdasarkan tipe yang ada, namun akan menghasilkan perhitungan model yang cukup teliti dan akurat. Model Gravitasi (Gravity Model) Substansi dari metode gravity model adalah berasal dari konsep Hukum Gravitasi Newton (Sir Isaac Newton) yang menyatakan bahwa besar kecilnya gaya tarik menarik antara dua massa benda yang berdekatan, sangat tergantung atau sebanding dengan bobot masing-masing massa benda tersebut. Penggunaan model ini mula-mulanya berawal dari gagasan yang dikembangkan oleh Colin Lee 1973 ( W.G Hansen 1959 ). Hansen menjelaskan berkenan dengan lokasi permukiman penduduk akan sangat dipengaruhi oleh daya tarik masing-masing lokasi, antara lain lapangan kerja, tingkat aksesibilitas, lahan yang tersedia dan layak. Gravity model didasarkan kepada bangkitan dan tarikan perjalanan dari zone asal ke zone tujuan. Tingkat kemudahan ( aksesibilitas ) untuk mencapai zone tujuan sangat ditentukan oleh berbagai faktor atau fungsi dari biaya, waktu dan jarak. Berdasarkan tipe pengendalian atau batasan dari setiap zone kegiatan, maka terdapat empat jenis metode gravity model yaitu: 288 Dinamika TEKNIK SIPIL, Akreditasi BAN DIKTI No : 110/DIKTI/Kep/2009

1. Un- constrained 2. Single constrained (production constrained ) 3. Single constrained ( attraction constrained ) 4. Double constrained ( production dan attraction constrained ) Un-constrained gravity model Dalam model yang dibangun ini tidak menghendaki untuk menghasilkan secara pasti jumlah perjalanan ke atau dari masing-masing zone ramalan, artinya mengabaikan batasan bangkitan maupun tarikan perjalanan yang terjadi. Formulasinya adalah sebagai T ij = O i.. f ( C ij ) (1) dengan : A i = 1 & B d = 1 seimbang sama dengan satu dari masing-masing zone. Single constrained (production constrained) Pada model ini dijelaskan bahwa total trip production berhubungan dengan nilai zone ramalan yang telah ditentukan jumlah banyaknya secara independen ( jumlah perjalanan dari zone asal dikendalikan ). Formulasi yang dibangun adalah sebagai T ij = A i. O i.b d.. f ( C ij ) (2) T ij = O i (3) O i = [ A i. O i. B d.. f ( C ij ) ] (4) dengan : A i = [ { B d.. f ( C ij ) } ] -1, untuk seluruh i B d = 1, untuk seluruh d Menetapkan nilai B d = 1, untuk semua d adalah untuk menghilangkan batasan bangkitan perjalanan (O i ), dengan demikian model production constrained dapat dihasilkan. Single constrained ( attraction constrained ) Model ini menjelaskan bahwa total trip attraction berhubungan dengan nilai zone ramalan yang telah ditentukan jumlah banyaknya secara independen ( jumlah perjalanan ke zone tujuan yang dikendalikan). Formula model yang dibangun adalah sebagai T ij = A i. O i.b d.. f ( C ij ) (5) T ij = (6) = [ A i. O i. B d.. f ( C ij ) ] (7) dengan : B d = [ { A i. O i. f ( C ij ) } ] -1, untuk seluruh d A i = 1, untuk seluruh i Selanjutnya menetapkan nilai A i = 1, untuk semua i adalah untuk menghilangkan batasan tarikan perjalanan ( ), agar model attraction constrained dapat dihasilkan. T ij = (10) Dengan : A i = [ { B d.. f ( C ij ) } ] -1, untuk seluruh i B d = [ { A i. O i. f ( C ij ) } ] -1, untuk seluruh d Keterangan : T ij = jumlah perjalanan dari zone asal i ke zone tujuan j O i = jumlah perjalanan dari zone asal I = jumlah perjalanan ke zone tujuan j A i & B d = faktor penyeimbang untuk masing-masing asal I dan tujuan j f (C ij ) = fungsi umum biaya perjalanan (fungsi hambatan) Hambatan/rintangan ( impedence function ) berupa generaliced cost seperti biaya perjalanan, waktu perjalanan dan jarak perjalanan, dapat di formulasikan antara lain dalam bentuk model berikut : Fungsi eksponensial ( exponential function ) : atau Fungsi power : f ( C ij ) = e βcij (11) f ( C ij ) = exp ( - βc ij ) (12) f ( C ij ) = C ij α Fungsi kombinasi (Tanner function) : atau (13) f ( C ij ) = C ij -α. e βcij (14) f ( C ij ) = C ij -α. exp ( - βc ij ) (15) Nilai eksponen dari fungsi hambatan Secara umum dapat dijelaskan bahwa nilai pangkat (eksponen) dari faktor hambatan perjalanan dapat diformulasikan dalam bentuk : α T ij = ( O i. ) / C ij (16) dapat dirubah kedalam bentuk : Log T ij = Log O i. α. Log C ij (17) Persamaan diatas analog dengan persamaan regresi linier pangkat satu Y = a + b X, sehingga nilai b ( α ) dapat dicari berdasarkan hubungan antara nilai Y dan nilai X. Setiap perubahan nilai α akan berpengaruh terhadap aktivitas perjalanan yang dihasilkan, seperti ditunjukkan pada diagram (Gambar 1) dibawah ini. Double constrained Model ini menjelaskan bahwa total trip prodaction dan trip attraction yang berhubungan dengan zone ramalan, ke-dua-nya ditentukan ( dibatasi ) secara bebas, artinya jumlah perjalanan dari zone asal dan ke zone tujuan, sudah ditetapkan jumlah besarannya. Formula model yang dibangun adalah sebagai T ij = A i. O i.b d.. f ( C ij ) (8) T ij = O i (9) Dinamika TEKNIK SIPIL/Vol.12/No.3/September 2012/Zilhardi Idris/Halaman : 288-292 289

T ji Mulai 2 = 1 Penetapan sistem Zone Data O i dan 3 impedance Gambar 1. Regresi Linear fungsi hambatan Dengan metode least squares akan dapat diperoleh persamaan garis yang paling sesuai menggambarkan hubungan titik-titik pembentuk garis tersebut. Persamaan umum garis regresi linier dengan dua variable adalah Y = a + bx. Garis lengkung yang terlihat dari diagram diatas dapat dilinearkan dengan merubah sa-lah satu atau kedua variable ( X dan Y ) ke dalam bentuk logarit-ma atau logaritma natural ( Ln ). Dapat dilihat pada diagram di atas bahwa Total perjalanan yang didistribusikan akan semakin menurun, seiring dengan semakin membesarnya eksponen dari ham-batan perjalanan tersebut. Metode Operasi Model Metode operasi ini dirumuskan agar setiap langkah kegiatan yang dilakukan dapat berjalan dengan baik dan benar, sesuai dengan tujuan analisis model. Dalam pengembangan prediksi model kebutuhan transportasi secara umum, prosedur yang harus dilakukan adalah dengan mengikuti langkah-langkah sebagai 1. Pertama yang perlu dilakukan adalah penetapan sistem zone yang saling berinteraksi, inter maupun antar zone. 2. Menetapkan estimasi awal nilai parameter α dan atau β sebagai fungsi hambatan ( fungsi hambatan eksponensian, fungsi hambatan power dan fungsi hambatan tanner ). 3. Memperkirakan matrik perjalanan dari dan ke zone dengan memperhitungkan seluruh fungsi rintangan. 4. Setelah fungsi hambatan diperoleh maka dilakukan perhitungan untuk menentukan faktor penyeimbang dengan beberapa kali iterasi secukupnya sampai mendapatkan nilai konvergensi tertentu. Prosedur ini akan berbeda berdasarkan menurut tipe/jenis batasan pada gravity model yang digunakan. 5. Menetapkan nilai-nilai faktor penyeimbang 6. Kemudian perhitungan estimasi matrik asal-tujuan dari sub-zone asal ke sub-zone tujuan dapat dilakukan berdasarkan nilai faktor penyeimbang yang telah ditetapkan. Untuk lebih jelasnya, prosedur tersebut diatas secara diagram dapat dijelaskan seperti flow chart berikut ini. Dalam analisa perhitungan sesuai dengan bagan alir, ope-rasi yang dilakukan adalah dengan menghitung terlebih dahulu. f( C ij ) - α, kemudian dilanjutkan menghitung nilai B d pada masingmasing sub-zone, dengan memisalkan A i = 1. Langkah berikutnya menghitung kembali nilai A i berdasarkan hasil nilai B d yang diperoleh sebelumnya. Hal ini dilakukan beberapa kali iterasi sedemikian rupa, sampai memperoleh nilai A i dan nilai B d yang tidak akan berubah lagi ( sudah stabil/jenuh ). Menentukan fungsi hambatan: Power Eksponensial Tanner Pakai Power function: f (C ij )= Cij -α Tentukan faktor penyeimbang : A i dan B d Hitung : T ij Syarat : T ij = O i dan T ij = STOP Gambar 1. Flow Chart Double constrained Gravity Model Method ANALISIS DAN PEMBAHASAN Objek yang dilakukan dalam menentukan sistem zone ini adalah 3 ( tiga ) zone di suatu kawasan kegiatan perkotaan, yang menunjukkan data-data kegiatan pergerakan. Dinamika di ketiga ka-wasan tersebut ditunjukkan atribut sebagai berikut, data statistik yang diperoleh menunjukkan bahwa lapangan kerja sebagai yang ada di Kawasan A sebanyak 6 ribu, di Kawasan B sebanyak 10 ribu dan di Kawasan C sebanyak 34 ribu jenis pekerjaan. Sedangkan jumlah pencari kerja sebagai O i di setiap Kawasan A ; B dan C adalah sebanyak 12 ribu di Kawasan A, sebanyak 16 ribu di kawasan B dan di Kawasan C a- dalah sebanyak 22 ribu pencari kerja. Nilai travel dinstance dari masing-masing sub-wilayah kegiatan, merupakan fungsi hambatan dalam bentuk f( C ij ), yang besarnya adalah sebagai berikut. Tabel 1. Travel Dinstance sebagai fungsi hambatan f ( C ij ) O i Kawasan A Kawasan B Kawasan C Kawasan A 2 6 7 Kawasan B 6 3 8 Kawasan C 7 8 4 Dengan diperolehnya travel dinstance sebagai fungsi hambatan f ( C ij ) dari dan ke berbagai sub.wilayah tersebut, maka a- 290 Dinamika TEKNIK SIPIL, Akreditasi BAN DIKTI No : 110/DIKTI/Kep/2009

kan dapat diperoleh hasil. f(c ij ) - α, dengan constrained nilai α ditetapkan sebesar 2. Hasil perhitungannya seperti terlihat dalam tabel berikut. Tabel 2. Daya tarik sub-zone terhadap fungsi O i hambatan f ( C ij ) -α. Kawasan A Kawasan B Kawasan C Kawasan A 1500,00 277,78 693,88 Kawasan B 166,67 1111,11 531,25 Kawasan C 122,45 156,25 2125,004 Hasil analisis Untuk mencari faktor penyeimbang A i dan B j, maka pertama kali diawali dengan menetapkan nilai A i = 1 untuk menentukan nilai B d dan selanjutnya dilakukan beberapa kali iterasi sampai mendapatkan nilai A i dan B d yang stabil atau tetap. Dari hasil perhitungan yang dilakukan sebanyak enam kali iterasi, dapat sampaikan rekapitulasi nilai faktor penyeimbang dalam Tabel 3. Melihat hasil rekapitulasi tabel diatas, menunjukkan bahwa nilai B d pada simulasi satu sampai dengan simulasi empat masih terjadi perubahan nilai, untuk itu dilanjutkan sampai simulasi ke lima dan ke enam, pada simulasi ke lima dan ke enam sudah tidak terjadi lagi perubahan, dalam arti sudah mendapatkan nilai yang tetap/stabil. Sedangkan pada nilai A i perubahannya relative cukup kecil sehingga proses simulasi dapat dihentikan. Melihat hasil rekapitulasi pada tabel 3, menunjukkan bahwa nilai B d pada simulasi satu sampai dengan simulasi empat masih terjadi perubahan nilai, untuk itu dilanjutkan sampai simulasi ke lima dan ke enam, pada simulasi ke lima dan ke enam sudah tidak terjadi lagi perubahan, dalam arti sudah mendapatkan nilai yang tetap/stabil. Sedangkan pada nilai A i perubahannya relative cukup kecil sehingga proses simulasi dapat dihentikan. Tabel 3. Rekapitulasi nilai faktor penyeimbang Prosedur A i 1 A i 2 A i 3 B d 1 B d 2 B d 3 simulasi 1 1,1501 1,2828 0,8120 0,000257 0,000407 0,000535 simulasi 2 1,1903 1,3800 0,7591 0,000228 0,000340 0,000582 simulasi 3 1,1994 1,4082 0,7452 0,000221 0,000321 0,000595 simulasi 4 1,2014 1,4159 0,7416 0,000317 0,000599 simualsi 5 1,2018 1,4179 0,7407 0,000315 0,000600 simulasi 6 1,2019 1,4185 0,7404 0,000315 0,000600 Dari hasil faktor penyeimbang yang telah diperoleh, dapat diperhitungkan nilai probabilitas distribusi perjalanan dari O i ke bebagai sub-zone di ketiga wilayah tersebut, dimana hasilnya dapat ditampilkan sebagai Probabilitas dari O i ke sebesar : Prob ij = A i. B d.. f(c ij ) -α. Prob 1-1 = 1,2019 x x 1500,00 = 0,3947 = 39,47 % Prob 1-2 = 1,2019 x 0,000315 x 277,780 = 0,1051 = 10,51 % Prob 1-3 = 1,2019 x 0,000600 x 693,880 = 0,5002 = 50,02 % Prob 2-1 = 1,4185 x x 166,667 = 0,0518 = 5,18 % Prob 2-2 = 1,4185 x 0,000315 x 1111,111= 0,4963 = 49,63 % Prob 2-3 = 1,4185 x 0,000600 x 531,250 = 0,4520 = 45,20 % Prob 3-1 = 0,7404 x x 122,449 = 0,0198 = 1,98 % Prob 3-2 = 0,7404 x 0,000315 x 156,250 = 0,0364 = 3,64 % Prob 3-3 = 0,7404 x 0,000600 x 2125,00 = 0,9437 = 94,37 % Dari probabilitas distribusi perjalanan di atas, dapat diestimasi banyaknya distribusi perjalanan pencari kerja ke setiap subzone wilayah yang menyediakan lapangan kerja sebesar : T ij = O i. A i. B d.. f(c ij ) -α, seperti diperlihatkan pada tabel berikut ini 4 berikut. Dari hasil analisis seperti pada table 4 dapat dijelaskan bahwa pada baris perta-ma jumlah pekerja yang berasal dari Kawasan A sebanyak 12000 orang, terdistribusi sebanyak 4736 orang di dalam kawas-an A sendiri, 1261 orang di kawasan B dan di Kawasan C sebanyak 6003 orang pekerja. Begitu pula pada kolom pertama dapat dijelaskan bahwa jumlah lapangan pekerjaan yang ada di Kawasan A sebanyak 6000 lapangan pekerjaan, dimana para pekerjaanya sebanyak 4736 orang berasal dari dalam kawasan A sendiri, 828 orang pekerja beasal dari kawasan B dan 437 orang pekerja berasal dari Kawasan C. Tabel 4. Total distribusi perjalanan hasil pemodelan. O i Kawasan A Kawasan B Kawasan C Kawasan A 4736 1261 6003 Kawasan B 828 7940 7232 Kawasan C 437 801 20762 Pada baris kedua dimana jumlah pekerja dari kawasan B sebanyak 16000 orang, terdistribusi di kawasan A sebanyak 828 orang, dikawasan B sendiri sebanyak 7940 orang dan di Kawasan C sebanyak 7232 orang pekerja. Sedangkan pada kolom kedua dimana jumlah lapangan pekerjaan di kawasan B sebanyak 10000 lapangan pekerjaan, sekitar 1261 nya diisi oleh pekerja dari kawasan A, 7940 nya diisi oleh pekerja dari kawasan B sendiri, dan 801 lapangan pekerjaan diisi oleh pekerja dari kawasan C. Pada baris ketiga dengan jumlah pekerja dari Kawasan C sebanyak 22000 pekerja, tersebar sebanyak 437 di kawasan A, 801 pekerja di kawasan B dan 20762 di Kawasan C sendiri. Sedangkan pada kolom ketiga dengan jumlah lapangan pekerjaan sebanyak 34000 berada di kawasan C, sekitar 6003 nya diisi Dinamika TEKNIK SIPIL/Vol.12/No.3/September 2012/Zilhardi Idris/Halaman : 288-292 291

dari kawasan A, 7232 lapangan pekerjaan diisi dari kawasan B dan sekitar 20762 nya diisi dari dalam Kawasan C sendiri. Analisis tersebut dapat dikembangkan untuk memprediksi perjalanan antar kawasan/daerah yang berkemungkinan melakukan perjalanan commuter ( ulang alik ). Dengan memperhitungkan potensi supply dan bemand antar daerah tersebut, maka perencanaan dalam penyediaan fasilitas-fasilitas transportasi a- kan dapat lebih mudah dan terukur. Pergerakan perjalanan inter dan antar kawasan/daearah akan berkaitan langsung dengan penyediaan infrastruktur transportasi. Perjalanan yang efisien dan efektif akan terlihat dari adanya keseimbangan penyediaan infrastruktur transportasi dengan penggunanya. KESIMPULAN DAN SARAN Kesimpulan Dalam penelitian ini menjelaskan implementasi pemakaian gravity model Double constrained dengan menggunakan power function, indikasinya terlihat bahwa eksponen dari faktor impedence function berpengaruh besar terhadap karakter distribusi perjalanan antar kawasan. Distribusi perjalanan memberikan perlakuan yang berbeda berdasarkan fungsi eksponensial, fungsi power dan fungsi tanner dari setiap faktor rintangan, baik berupa production counstrained, attraction counstrained maupun fully counstrained. Gravity model dengan fully counstrained menghasilkan model yang lebih realistik, mengingat dinamika batasan pada zone bangkitan (production) dan zone tarikan (attraction) merupakan zone yang sama-sama perlu dikendalikan. Saran Penggunaan gravity model double counstrained dengan pendekatan power function, perlu dikembangkan dan dibandingkan dengan pendekatan pemakaian eksponential function dan Tanner function sebagai fungsi kendala untuk mendapatkan hasil model yang lebih reliable. DAFTAR PUSTAKA Blunden, W. R and Black, J. A. (1984). The Land Use / Transport System. 2 nd Edition, Pergamon Press Oxford. Ortuzar, J. D and Willumsen, L. G. (1990). Modelling Transport. Second Edition, John Wiley & Sons Ltd, England. Papacostas, C. S and Prevedouros, P.D. (1993). Transportation Engineering and Planning, Second Edition, Prentice Hall Engle wood Cliffs. Suyuti, R dan Tamin, O. Z. (2007). Penggunaan Model Gravity dalam estimasi MAT menggunakan data Lalu lintas, Jurnal Transportasi, FSTPT Bandung. Tamin, O. Z. (2000). Perencanaan dan Pemodelan Transportasi, Edisi II, Penerbit ITB Bandung. Vuchic, V. R. (2005). Urban Transit Operation, Planning and Economics, Jhon Wiley & Sons Ltd England. 292 Dinamika TEKNIK SIPIL, Akreditasi BAN DIKTI No : 110/DIKTI/Kep/2009