Macam-macam Tegangan dan Lambangnya

dokumen-dokumen yang mirip
Torsi sekeliling A dari kedua sayap adalah sama dengan torsi yang ditimbulkan oleh beban Q y yang melalui shear centre, maka:

BAB II TINJAUAN PUSTAKA

LANDASAN TEORI. Katungau Kalimantan Barat, seorang perencana merasa yakin bahwa dengan

d b = Diameter nominal batang tulangan, kawat atau strand prategang D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Ek

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

III. TEGANGAN DALAM BALOK

PERENCANAAN BATANG MENAHAN TEGANGAN TEKAN

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

BAB II DASAR TEORI. 2.1 Pengertian rangka

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7

DAFTAR ISI BAB I PENDAHULUAN... 1 BAB II TINJAUAN PUSTAKA... 5

Perancangan Batang Desak Tampang Ganda Yang Ideal Pada Struktur Kayu

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II TINJAUAN PUSTAKA

BAB III LANDASAN TEORI. Kayu memiliki berat jenis yang berbeda-beda berkisar antara

VII. KOLOM Definisi Kolom Rumus Euler untuk Kolom. P n. [Kolom]

PLATE GIRDER A. Pengertian Pelat Girder

TEGANGAN DAN REGANGAN GESER. Tegangan Normal : Intensitas gaya yang bekerja dalam arah yang tegak lurus permukaan bahan

Struktur Baja 2. Kolom

DAFTAR NOTASI. xxvii. A cp

X. TEGANGAN GESER Pengertian Tegangan Geser Prinsip Tegangan Geser. [Tegangan Geser]

Pertemuan V,VI III. Gaya Geser dan Momen Lentur

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

SAMBUNGAN DALAM STRUKTUR BAJA

PLATE GIRDER A. Pengertian Pelat Girder

Tegangan Dalam Balok

Dimana : g = berat jenis kayu kering udara

BAB III METODE PERANCANGAN JEMBATAN RANGKA BAJA KERETA API. melakukan penelitian berdasarkan pemikiran:

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

Session 1 Konsep Tegangan. Mekanika Teknik III

Mekanika Bahan TEGANGAN DAN REGANGAN

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

PUNTIRAN. A. pengertian

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

D = Beban mati atau momen dan gaya dalam yang berhubungan dengan beban mati e = Eksentrisitas dari pembebanan tekan pada kolom atau telapak pondasi

BAB II STUDI PUSTAKA

Jenis las Jenis las yang ditentukan dalam peraturan ini adalah las tumpul, sudut, pengisi, atau tersusun.

xxv = Kekuatan momen nominal untuk lentur terhadap sumbu y untuk aksial tekan yang nol = Momen puntir arah y

DAFTAR NOTASI. = Luas efektif bidang geser dalam hubungan balok-kolom (mm²) = Luas penampang tiang pancang (mm²)

BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG PERPUSTAKAAN PUSAT YSKI SEMARANG

PROGRAM STUDI DIPLOMA 3 TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN ITSM BAHAN AJAR MEKANIKA REKAYASA 2

STRUKTUR BAJA I. Perhitungan Sambungan Paku Keling

HHT 232 SIFAT KEKUATAN KAYU. MK: Sifat Mekanis Kayu (HHT 331)

4. PERILAKU TEKUK BAMBU TALI Pendahuluan

penelitian ini perlu diketahui tegangan dan kelas kuat kayu teriebih dahulu sebelum

SIFAT MEKANIK KAYU. Angka rapat dan kekuatan tiap kayu tidak sama Kayu mempunyai 3 sumbu arah sumbu :

Henny Uliani NRP : Pembimbing Utama : Daud R. Wiyono, Ir., M.Sc Pembimbing Pendamping : Noek Sulandari, Ir., M.Sc

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG KANTOR PERPAJAKAN PUSAT KOTA SEMARANG

TUGAS MAHASISWA TENTANG

TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH SMP SMU MARINA SEMARANG

6. EVALUASI KEKUATAN KOMPONEN

PERENCANAAN STRUKTUR PROYEK PEMBANGUNAN BANK DANAMON JL PEMUDA-JEPARA

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR

STUDI PEMBUATAN BEKISTING DITINJAU DARI SEGI KEKUATAN, KEKAKUAN DAN KESTABILAN PADA SUATU PROYEK KONSTRUKSI

Gambar 5.1. Proses perancangan

BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser

BAB 1 PENDAHULUAN...1

Resume Mekanika Struktur I

BAB II TINJAUAN PUSTAKA. gedung dalam menahan beban-beban yang bekerja pada struktur tersebut. Dalam. harus diperhitungkan adalah sebagai berikut :

1 HALAMAN JUDUL TUGAS AKHIR PERENCANAAN STRUKTUR GEDUNG SEKOLAH MENENGAH PERTAMA TRI TUNGGAL SEMARANG

DAFTAR NOTASI. A cp. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu

PERENCANAAN STRUKTUR GEDUNG BANK OCBC NISP JALAN PEMUDA SEMARANG

sejauh mungkin dari sumbu netral. Ini berarti bahwa momen inersianya

300 mm 900 mm. ΣF = 0 : Rv 20 kn + 10 kn 40 kn = 0 Rv = 50 kn. δ = P L / A E. Maka δ akan berbeda untuk P, L, A, atau E yang berbeda.

DAFTAR NOTASI. = Luas yang dibatasi oleh keliling luar penampang beton, mm² = Luas efektif bidang geser dalam hubungan balokkolom

PERHITUNGAN BALOK DENGAN PENGAKU BADAN

Pengenalan Kolom. Struktur Beton II

PERENCANAAN STRUKTUR GEDUNG RUSUNAWA UNIMUS

ANALISIS SAMBUNGAN PORTAL BAJA ANTARA BALOK DAN KOLOM DENGAN MENGGUNAKAN SAMBUNGAN BAUT MUTU TINGGI (HTB) (Studi Literatur) TUGAS AKHIR

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

BAB 1 PERHITUNGAN PANJANG BATANG

Perancangandanpembuatan Crane KapalIkanUntukDaerah BrondongKab. lamongan

MODUL STRUKTUR BAJA II 4 BATANG TEKAN METODE ASD

BAB II LANDASAN TEORI

DAFTAR NOTASI. Luas penampang tiang pancang (mm²). Luas tulangan tarik non prategang (mm²). Luas tulangan tekan non prategang (mm²).

BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput


2. Kolom bulat dengan tulangan memanjang dan tulangan lateral berupa sengkang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

PROPOSAL TUGAS AKHIR DAFTAR ISI

L p. L r. L x L y L n. M c. M p. M g. M pr. M n M nc. M nx M ny M lx M ly M tx. xxi

PERENCANAAN LANTAI KENDARAAN, SANDARAN DAN TROTOAR

Susunan Pegas Daun. σ G = Defleksi

BAB II TINJAUAN KEPUSTAKAAN

IV. PENDEKATAN RANCANGAN

V. PENDIMENSIAN BATANG

BAB I PENDAHULUAN. secara nyata baik dalam tegangan maupun dalam kompresi sebelum terjadi

Bab 6 DESAIN PENULANGAN

batang tunggal yang dipisahkan pada ujung-ujungnya dan yang pada pertengahan

PERENCANAAN STRUKTUR UNIT GEDUNG A UNIVERSITAS IKIP VETERAN SEMARANG

III. BATANG TARIK. A. Elemen Batang Tarik Batang tarik adalah elemen batang pada struktur yang menerima gaya aksial tarik murni.

BAB III METODOLOGI PERANCANGAN. Untuk mempermudah perancangan Tugas Akhir, maka dibuat suatu alur

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

Perhitungan Struktur Bab IV

Pertemuan XIV IX. Kolom

MATERI/MODUL MATA PRAKTIKUM

Transkripsi:

Macam-macam Tegangan dan ambangnya Tegangan Normal engetahuan dan pengertian tentang bahan dan perilakunya jika mendapat gaya atau beban sangat dibutuhkan di bidang teknik bangunan. Jika suatu batang prismatik, dengan luas tampang seragam di sepanjang batang, menerima beban atau gaya searah dengan panjang batang, maka gaya tersebut akan menimbukan tegangan atau tekanan pada tampang batang. Tegangan atau tekanan merupakan besaran gaya per satuan luas tampang. Sehingga besar tegangan yang dialami batang prismatik tersebut masingmasing sebesar T/A dan /A. ada gambar 3.47, A merupakan luas tampang melintang batang yang dikena T atau pada. Gambar 3.47. Tegangan normal tarik pada batang prismatik Sumber: Hasil penggambaran Gambar 3.48. Tegangan normal tekan pada batang prismatik Sumber: Hasil penggambaran

Jika batang tersebut menerima gaya tarikan (Gambar 3.47), maka akan timbul tegangan tarik. Sedang jika batang menerima gaya tekan, (Gambar 3.48) akan menyebabkan tegangan tekan pada tampang melintang batang. Tegangan dinyatakan dengan simbol σ. Secara umum besaran tegangan dapat ditulis dengan formula sebagai berikut. σ = / A (3.5) Dimana: σ = Tegangan = Besarnya gaya A = uas tampang Berdasarkan peristiwa tersebut maka tegangan normal dibagi menjadi : a. Tegangan Tarik (σ ), yaitu tegangan yang timbul akibat gaya tarik. Rumus : t σ t = tegangan tarik (kg/cm atau kg/mm ) = gaya tarik (kg) F = uas penampang (cm ) 1. Contoh soal : Diketahui : = 9600 kg, b = 8 cm, h = 1 cm Ditanyakan : Tegangan tarik yang timbul (σ t )? Jawab :

. Contoh soal cerita: Sebuah karet panjangnya 15 cm ditarik dengan gaya yang besar tetapi tidak sampai putus. Apabila gaya tarik dilepas, maka panjang karet bukan lagi 15 cm tetapi sudah menjadi 15. cm. ertambahan panjang ini terjadi akibat regangan. Besarnya regangan adalah : 0. cm. 3. Contoh soal hitungan : Diketahui : = 100 kg; b = 5 cm; h = 7 cm = 400 cm; E = 10 5 kg/cm Ditanyakan : a. Tegangan tarik yang timbul (σ t )? jawab : b. erpanjangan yang timbul (Δ)? c. Regangan yang timbul (ε)? b. Tegangan tekan atau desak (σ d ), yaitu tegangan yang timbul akibat gaya tekan atau desak. Rumus : σ d = tegangan tekan atau desak (kg/cm atau kg/mm ) = gaya tekan (kg) F = uas penampang (cm )

1. Contoh soal : Diketahui : = 785 kg; d = 10 mm Ditanyakan : Tegangan tekan yang timbul (σd )? Jawab : Tegangan geser (Shear) Jika gaya normal/tangensial merupakan gaya sejajar arah memanjang batang, gaya geser merupakan gaya yang berarah tegak lurus dengan panjang batang. lustrasi geseran ditunjukkan pada Gambar 3.49. Batang vertikal pada gambar tersebut menerima geseran di dua bagian potongan m dan potongan n. Besaran tegangan geser dinyatakan dengan simbol τ dalam satuan. Jika besaran gaya geser (S) dikerjakan pada batang akan menimbulkan tegangan geser (τ). Tegangan geser (τ), yaitu tegangan yang timbul akibat gaya geser atau gaya lintang. Ciri dari gaya geser atau gaya lintang adalah melintang batang atau tegak lurus batang. Rumus : τ = tegangan geser (kg/mm, kg/cm, ton/m ) = gaya geser atau gaya lintang (kg, ton) F = uas penampang (mm, cm, m )

Gambar 3.49. Geser pada sambungan baut Sumber: Hasil penggambaran 1. Contoh soal 1: Diketahui : sambungan kelingan dengan = 3140 kg dan d = 0 mm Ditanyakan : Tegangan geser yang timbul pada keling? Jawab :. Contoh soal : Diketahui : q = 00 kg/m; = 8 m; b = 0 cm; h = 30 cm Ditanyakan : tegangan geser maksimum yang timbul? Jawab : Q = q x = 00 x 8 = 1600 kg arena simetris R = R = ½ Q = ½ (1600) = 800 kg A B Gaya lintang x = 0 Dx = R = 800 g A x = 8 Dx = R qx = 800 1600 = - 800 kg A

Tegangan entur/engkung Balok merupakan struktur yang menerima beban tegak lurus terhadap arah panjang. arenanya balok umumnya mengalami lenturan dan geseran pada bagian di dekat dudukan. Gaya geser, sering disebut gaya lintang akan menyebabkan tegangan geser. Gambar 3.5 menunjukkan diagram geser balok yang terjadi di sepanjang batang. Ditunjukkan pula diagram gaya momen yang menyebabkan lenturan pada balok. Momen penyebab lenturan tersebut disebut sebagai momen lentur. Gambar 3.5. (a) Struktur balok yang mengalami lenturan dan geser (b) Diagram tegangan akibat momen lentur Sumber: Hasil penggambaran Gaya geser dan momen lentur tersebut akan menyebabkan tegangan geser dan tegangan lentur. Tegangan lentur maksimum seperti terjadi pada batang tepat di bawah, berjarak a dari dudukan A. Diagram momen lentur maksimum terjadi pada titik dimana geseran memiliki nilai = 0. Sedangkan geseran maksimum terjadi umumnya di daerah dudukan. ada gambar gaya lintang masimum/ Dmaks terjadi di atas dudukan B. Terdapat dua macam momen lentur, momen lentur positif dan momen lentur negatif. Tampang balok yang mengalami lenturan positif akan mengalami tegangan dengan arah sejajar panjang batang (tegangan normal). Di bagian atas sumbu tengah tampang akan mengalami tegangan tekan (Compression Stress). Bagian bawah sumbu tampang mengalami tegangan tarik (tension stress). Sedangkan tampang dengan lenturan negatif berlaku kebalikannya, tegangan tarik di bagian atas dan tegangan tekan di bagian bawah sumbu tampang. Besaran tegangan akibat lenturan pada balok dapat ditulis dengan formula sebagai berikut.

Tegangan lentur / lengkung (σ ), yaitu tegangan yang terjadi akibat momen lentur atau lengkung yang timbul. Momen yang diperhitungkan adalah momen maksimum. Rumus : σ = tegangan lentur atau lengkung (kg/cm ) M = momen lengkung maksimum (kg/cm) 3 W = momen tahanan linier (cm ) = 1/1 b h 3 untuk tampang persegi panjang dengan lebar b dan tingg h = π d 4 /64 untuk tampang lingkaran 1. Contoh Soal : Diketahui : balok jepit = 00 kg, = 00 cm, b = 15 cm, h = 15 cm Ditanyakan : tegangan lentur yang timbul pada balok? Jawab : Momen =. = 00. 00 = 40000 kgcm

Tegangan Tumpu Tegangan tumpu (σ ), yaitu tegangan yang timbul akibat gaya yang menumpu pada dinding lubang. Hal s ini terlihat pada sambungan kelingan atau sambungan dengan mur baut. Apabila pada sambungan bekerja gaya, paku keling atau mur baut dengan lubangnya diadu kekuatannya. Jika paku keling atau mur baut menerima gaya maksimum akan terjadi tegangan geser. Jika lubang paku keling atau lubang mur baut yang menerima gaya maksimum, terjadi tegangan tumpu. Rumus : σ s = tegangan tumpu (kg/cm ) = gaya tumpu F = luas bidang tumpu. uas bidang tumpu ditentukan dengan lubang pelat atas yang tertumpu adalah ½ keliling dan lubang plat bawah yang tertumpu juga ½ keliling, sehingga jika digabungkan kedua-duanya menjadi satu keliling atau πd. Tinggi lubang seluruhnya adalah S (S = tebal plat) menjadi setebal pelat yaitu S. ubang yang tertumpu juga tidak merata dimana dari tepi nol tak terhingga sampai ketengah membesar. Akibat dari tidak meratanya gaya-gaya tersebut dapat dibulatkan menjadi = d. Jadi luas bidang tumpu untuk lubang paku keling atau mur baut menjadi d.s. Rumus : Ada tiga hal kemungkinan yang terjadi jika sambungan menerima gaya :. aku keling atau mur baut putus. Berarti pada saat itu Menimbulkan tegangan geser yaitu τ F geser

s paku keling atau mur baut menerima gaya maksimum d. aku keling atau mur baut kuat tapi lubangnya rusak Menimbulkan tegangan tumpu yaitu s d (membesar). Berarti pada sat itu dinding lubang menerima gaya maksimum s F tumpu d. S. aku keling atau mur baut Menimbulkan tegangan dan lubangnya kuat (sama- geser dan tegangan s sama kuat). Berarti kedua- tumpu d duanya menerima gay maksimum. Rumus geser = Rumus tumpu Untuk baja : τ = 0.8 σ t = = τ.f (geser); = d.s.σ s dan σ = σt, Maka : s 0.8 σ s. ¼ π d = d.s. σ t dibagi σ t 0.8 ¼ π d = S. dibagi d = 3. S Jadi untuk sambungan tunggal : Jika d = 3. S dapat digunakan rumus geser atau tumpu Jika d > 3. S digunakan rumus tumpu Jika d < 3. S digunakan rumus geser Untuk sambungan kembar atau ganda : Jika d = 1.6 S dapat digunakan rumus geser atau tumpu

Jika d > 1.6 S digunakan rumus tumpu Jika d < 1.6 S digunakan rumus geser 1. Contoh soal : Diketahui sambungan tunggal dengan mur baut dengan diameter 0 mm, tebal pelat (S) = 5 mm ditarik dengan gaya () sebesar 5000 kg. Hitung tegangan yang timbul? Diketahui : d = 0 mm; S = 5 mm; = 5000 kg Ditanyakan : tegangan yang timbul? Jawab : 3. X S= 3. x 5 =16 mm d > 3. S, yaitu 0 mm > 16 mm, maka digunakan rumus tumpu. Tegangan Torsi (untir) Terkadang suatu komponen struktur menerima puntiran, kopel puntir atau momen puntiran. untiran tersebut menimbulkan tegangan geseran yang disebut sebagai tegangan geser puntir. lustrasi batang yang mengalami torsi ditunjukkan pada Gambar 3.50. Gambar 3.50. Batang yang mengalami puntiran (torsion) Sumber: Hasil penggambaran

Tegangan puntir (σ ), yaitu tegangan yang timbul akibat momen puntir. Besarnya tegangan yang diakibatkan oleh momen puntir/torsi pada tampang batang lingkaran dan lingkaran berlubang dituliskan dengan formula sebagai berikut. Rumus : τ = T. r / p Dimana : τ = Tegangan geser torsi T = Besaran momen torsi r = Jari-jari batang terputir p = Momen inersia polar tampang tergeser: p = π d 4 /3 untuk lingkaran pejal p = π /3(d 4 -d 1 4 ) untuk lingkaran berlubang Gambar 3.51. Torsi tampang lingkaran solid dan lingkaran berlubang Sumber: Hasil penggambaran Atau bisa juga dengan rumus :

σ = tegangan puntir (kg/cm ), M = momen puntir (kg.cm) 3 W = momen tahanan polar (cm ) 1. Contoh soal : Diketahui : d = 10 cm; = 300 kg; = 30 cm Ditanyakan : tegangan puntir yang timbul (σ )? Jawab : M =. = 300 x 30 = 9000 kgcm 3 3 3 W = 0. d = 0. (10) = 0. (1000) = 00 cm Tegangan Tekuk Tegangan tekuk, yaitu tegangan yang timbul akibat gaya tekan yang menekuk batang. Menurut Euler besarnya gaya tekuk adalah, dengan = gaya tekuk (kg), π = 3.14, E = modulus elastsitas (kg/cm ), = momen nersia (cm 4 ), = panjang tekuk. anjang tekuk ini akan bergantung pada keadaan ujung-ujung batang dimana dalam kontruksi ada 4 macam keadaan ujung-ujung batang.

1. edua ujung pada sendi =, C = 1 Rumus Euler menjadi E. E.. edua ujung pada Rumus Euler menjadi jepit. = ½, C = ½ E. 1 4 E. E. ( ) 1 4 E. 3. Satu ujung pada sendi Rumus Euler menjadi dan satu pada jepit. = ½ C = ½ E. 1 E. 1 E. ( ) E. 4. Satu ujung pada jepit Rumus Euler menjadi dan satu bebas. =, C =. E. E. () E. 4 Bidang batang yang tertekuk akan mengalami kelangsingan dimana besarnya kelangsingan adalah: λ = kelangsingan (dibaca lambda) = panjang tekuk (cm) i = jari-jari inersia (cm) dimana : i = jari-jari inersia (cm) 4 = momen inersia linier (cm ) F = luas penampang (cm )

1. Contoh soal : Tiang kayu tingginya 5 m, kedua ujungnya dianggap jepit akan menerima gaya tekan sentris. Jika E = 105 kg/cm tentukanlah gaya tekan sentris maksimum pada tiang. Tentukan pula kelangsingan yang timbul pada tiang jika penampang kayu 1 x 1 cm! Jawab : π = 3.14 = 10 (dibulatkan) Rumus Euleur hanya dapat digunakan apabila kelangsingan yang timbul sama atau lebih besar dari kelangsingan bahan. elangsingan bahan dihitung dengan rumus. Misalnya: 1. Untuk baja E =.10 6 kg/cm, σ = 000 kg/cm. Maka kelangsingan bahan :. Untuk kayu E = 10 5 kg/cm, σ = 100 kg/cm. Maka kelangsingan bahan : Jadi rumus Euler dapat dipakai jika : apabila maka rumus Euler tidak dapat digunakan. Dengan adanya pembatasan pemakaian rumus Euler ini setiap soal harus diperiksa terhadap berlakunya rumus Euler. angkahnya sebagai berikut

Mencari Mencari kelangsingan bahan σ dan E diketahui Mencari kelangsingan yang timbul Terakhir dibandingkan kelangsingan yang timbul dengan kelangsingan bahan jika : rumus Euler dapat dipakai tapi apabila maka rumus Euler tidak dapat digunakan. Tegangan ombinasi/deal Tegangan kombinasi (σ ), dalam beberapa keadaan, sebuah batang tidak hanya dibebani oleh gaya-gaya i atau momen saja, tetapi kombinasi dari keduanya. Misalnya tegangan lentur dan tegangan geser. 1. Contoh soal : Diketahui : q = 00 kg/m; = 8 m; b = 0 cm; h = 30 cm Ditanyakan : tegangan kombinasi (σ i ) yang timbul? Jawab : Q = q x = 00 x 8 = 1600 kg arena simetris R A = R B = ½ Q = ½ (1600) = 800 kg Gaya lintang x = 0 Dx = R A = 800 g

x = 8 Dx = R A qx = 800 1600 = - 800 kg Momen =160000 kgcm Tegangan kombinasi : Tegangan Geser pada Balok Balok yang menerima lentur dapat mengalami geseran ke arah memanjang. lustrasi perilaku balok yang mengalami geseran pada arah memanjang beserta diagram tegangan geser yang terjadi ditunjukkan seperti pada Gambar 3.53. Gambar 3.53. Balok yang mengalami geseran arah memanjang Sumber: Hasil penggambaran Tegangan geser paling besar terjadi pada garis netral tampang. Besaran tegangan geser maksimum ke arah memanjang balok dengan tampang persegi panjang ditunjukkan gambar 3.53, dapat dihitung dengan formula sebagai berikut.

τmaks = 3 V / A (3.10) Dimana: V = Gaya geser / gaya lintang A = uas tampang melintang batang = b.h untuk tampang persegi panjang Sedangkan formula tegangan geser maksimum yang terjadi untuk tampang lingkaran adalah sebagai berikut. τmaks = 4 V/ 3πr = 4 V / 3A (3.11) Dimana: V = Gaya geser / gaya lintang A = uas tampang melintang batang = πr untuk tampang lingkaran