BAB V ANALISA SENSITIVITAS MODEL SIMULASI

dokumen-dokumen yang mirip
BAB IV VALIDASI MODEL SIMULASI DENGAN MENGGUNAKAN DATA LAPANGAN

BAB III ANALISA TRANSIEN TEKANAN UJI SUMUR INJEKSI

EVALUASI METODE METODE ANALISA TRANSIEN TEKANAN PADA SUMUR INJEKSI. Thesis DODI SETIAWAN NIM :

BAB II LANDASAN TEORI UJI SUMUR DRAWDOWN DAN BUILD UP

Analisis Performance Sumur X Menggunakan Metode Standing Dari Data Pressure Build Up Testing

Ikatan Ahli Teknik Perminyakan Indonesia Simposium Nasional IATMI 2009 Bandung, 2-5 Desember Makalah Profesional IATMI

Metodologi Penelitian. Mulai. Pembuatan model fluida reservoir. Pembuatan model reservoir

KAJIAN METODE BUCKLEY LEVERETT UNTUK PREDIKSI PENINGKATAN PEROLEHAN MINYAK DI SUMUR MT-02 LAPANGAN X

DISAIN WAKTU BUKA SUMUR UJI BACK PRESSURE PADA SUMUR MINYAK SEMBUR ALAMI UNTUK MEMBERIKAN HASIL PERMEABILITAS YANG LEBIH AKURAT

Analisa Injection Falloff Pada Sumur X dan Y di Lapangan CBM Sumatera Selatan dengan Menggunakan Software Ecrin

PERAMALAN KURVA IPR UNTUK SUMUR MINYAK PADA RESERVOIR EDGE WATER DRIVE

BAB V KARAKTERISASI DAN APLIKASI

KURVA IPR SUMUR MULTI-LATERAL PADA RESERVOIR BERTENAGA DORONG GAS TERLARUT TUGAS AKHIR. Oleh: FRANKY DANIEL SAMOSIR NIM

STUDI TENTANG PENGARUH KONDUKTIVITAS EFEKTIF REKAHAN TAK BERDIMENSI TERHADAP RADIUS INVESTIGASI PADA SUMUR REKAH VERTIKAL

TUGAS AKHIR. Oleh: LUSY MARYANTI PASARIBU NIM :

Tinjauan Pustaka. Enhanced oil recovery adalah perolehan minyak dengan cara menginjeksikan bahanbahan yang berasal dari luar reservoir (Lake, 1989).

PERSAMAAN USULAN UNTUK PERAMALAN KINERJA LAJU ALIR MINYAK BERDASARKAN HUBUNGAN WATER OIL RATIO DAN DECLINE EXPONENT

Gambar 11. Perbandingan hasil produksi antara data lapangan dengan metode modifikasi Boberg- Lantz pada sumur ADA#22

Total skin factor, s d : damage skin. s c+θ : skin karena partial completion dan slanted well. s p : skin karena perforation

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN KEASLIAN KARYA ILMIAH... iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR...

Oleh : Fikri Rahmansyah* Dr. Ir. Taufan Marhaendrajana**

Kata kunci: recovery factor, surfactant flooding, seven-spot, saturasi minyak residu, water flooding recovery factor.

PRESSURE BUILDUP TEST ANALYSIS WITH HORNER AND STANDING METHODS TO GET PRODUCTIVITY CONDITION OF SGC-X WELL PT. PERTAMINA EP ASSET 1 FIELD JAMBI

Ikatan Ahli Teknik Perminyakan Indonesia

Bab V Metode Peramalan Produksi Usulan Dan Studi Kasus

ANALISA PRESSURE BUILD-UP TEST DENGAN MENGGUNAKAN METODE HORNER MANUAL UNTUK PENENTUAN KERUSAKAN FORMASI PADA SUMUR X LAPANGAN Y SKRIPSI

BAB VI KESIMPULAN. memperbesar jari-jari pengurasan sumur sehingga seakan-akan lubang

PENGEMBANGAN KORELASI USULAN UNTUK PENENTUAN LAMA WAKTU LAJU ALIR PLATEAU PADA SUMUR GAS KONDENSAT DENGAN FAKTOR SKIN TUGAS AKHIR.

PERAMALAN PRODUKTIVITAS SUMUR SATU FASA PADA RESERVOIR DENGAN BOTTOM-WATER

BAB VI KESIMPULAN DAN SARAN. disimpulkan beberapa hal sebagai berikut, yaitu: dibandingkan lapisan lainnya, sebesar MSTB.

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... KATA PENGANTAR... RINGKASAN... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR TABEL... DAFTAR LAMPIRAN...

PERAMALAN PRODUKTIVITAS SUMUR SATU FASA PADA RESERVOIR DENGAN BOTTOM-WATER

ANALISA UJI TUTUP (PRESSURE BUILDUP TEST) DENGAN MENGGUNAKAN SOLUSI PERSAMAAN DIFUSI ALIRAN SATU FASE

Bab I Pendahuluan I.1 Latar Belakang

STUDI SIMULASI INJEKSI LEAN GAS KE DALAM RESERVOIR X UNTUK MENINGKATKAN PEROLEHAN MINYAK TESIS

ANALISA PENENTUAN KARAKTERISTIK RESERVOIR, KERUSAKAN FORMASI, DAN DELIVERABILITAS GAS PADA SUMUR AST-1

STUDI KARAKTERISTIK SUMUR DAN RESERVOIR YANG MEMPENGARUHI ALOKASI PRODUKSI

METODE PENENTUAN LOKASI SUMUR PENGEMBANGAN UNTUK OPTIMASI PENGEMBANGAN LAPANGAN X DENGAN MENGGUNAKAN

PENGEMBANGAN METODE USULAN PERAMALAN WATER CUT SUMURAN MENGGUNAKAN DATA PERMEABILITAS RELATIF DAN METODE X-PLOT

OPTIMASI LAJU PRODUKSI PADA SUMUR GAS X-01 DAN SUMUR GAS X-02 PADAA LAPANGAN Y BERDASARKAN DATAA UJI DELIVERABILITY SKRIPSI

HALAMAN PERNYATAAN KEASLIAN KARYA ILMIAH

Estimasi Faktor Perolehan Minyak dengan Menggunakan Teknik Surfactant Flooding pada Pola Injeksi Five Spot

Gambar Kedudukan Air Sepanjang Jalur Arus (a) sebelum dan (b) sesudah Tembus Air Pada Sumur Produksi 3)

BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian

ANALISA SISTEM NODAL DALAM METODE ARTICIAL LIFT

Seminar Nasional Cendekiawan 2015 ISSN: ANALISA PRESSURE BUILD UP TEST PADA SUMUR X LAPANGAN Y DENGAN METODE HORNER MANUAL DAN ECRIN 4.

PERKEMBANGAN FAKTOR SKIN YANG TERGANTUNG PADA LAJU ALIR DAN WAKTU UNTUK SUMUR MINYAK PADA RESERVOIR BERTENAGA DORONG GAS TERLARUT

PEMODELAN ENHANCED OIL RECOVERY LAPANGAN S DENGAN INJEKSI KOMBINASI SURFACTANT DAN POLYMER. Tugas Akhir. Oleh: ELDIAS ANJAR PERDANA PUTRA NIM

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERSEMBAHAN... HALAMAN PERNYATAAN KEASLIAN... KATA PENGANTAR... RINGKASAN...

PERSAMAAN KORELASI USULAN UNTUK MERAMALKAN KINERJA LAJU ALIR MINYAK SUMUR HORIZONTAL PADA RESERVOIR TIPE REKAH ALAMI BERTENAGA DORONG GAS TERLARUT

DAFTAR ISI. HALAMAN JUDUL... i. HALAMAN PENGESAHAN... ii. PERNYATAAN KEASLIAN KARYA ILMIAH... iii. HALAMAN PERSEMBAHAN... iv. KATA PENGANTAR...

BAB IV SIMULASI RESERVOIR REKAH ALAM DENGAN APLIKASI MULTILATERAL WELL

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

PEMODELAN SUMUR HORIZONTAL BERSEGMEN PADA RESERVOIR DENGAN BOTTOMWATER MENGGUNAKAN SIMULATOR NUMERIK

HALAMAN PENGESAHAN...

DAFTAR ISI... HALAMAN JUDUL... HALAMAN PENGESAHAN... KATA PENGANTAR... HALAMAN PERNYATAAN KEASLIAN KARYA ILMIAH... HALAMAN PERSEMBAHAN... RINGKASAN...

Bab IV Analisis dan Diskusi

BAB IV ANALISIS KORELASI INFORMASI GEOLOGI DENGAN VARIOGRAM

STUDI PENINGKATAN PEROLEHAN MINYAK DI ZONA A LAPANGAN X DENGAN METODE INJEKSI AIR

BAB IV PEMODELAN PETROFISIKA RESERVOIR

Seminar Nasional Cendekiawan 2015 ISSN: ANALISA PRESSURE BUILD UP DAN INTERFERENCE TEST PADA SUMUR ALPHA DAN BETA LAPANGAN X

ANALISIS DATA UJI PRESSURE BUILD-UP

Seminar Nasional Cendekiawan 2015 ISSN:

PERAMALAN IPR UNTUK TEKANAN RESERVOIR DI ATAS TEKANAN BUBBLE POINT PADA RESERVOIR BERTENAGA DORONG GAS TERLARUT. Oleh: Dody Irawan Z

Seminar Nasional Cendekiawan 2015 ISSN:

Seminar Nasional Cendekiawan 2015 ISSN:

Berikut ini adalah log porositas yang dihasilkan menunjukkan pola yang sama dengan data nilai porositas pada inti bor (Gambar 3.18).

PERNYATAAN KEASLIAN KARYA ILMIAH

STRATEGI MENGATASI KEHETEROGENITASAN DENGAN INJEKSI SURFAKTAN PADA POLA FIVE SPOT UNTUK MENINGKATKAN FAKTOR PEROLEHAN MINYAK TUGAS AKHIR

Optimasi Injeksi Gas untuk Peningkatan Produksi pada Lapangan Gas Lift dengan Sistem yang Terintegrasi

Renaldy Nurdwinanto, , Semester /2011 Page 1

STUDI PENDESAKAN UAP UNTUK MINYAK BERAT DENGAN PROSES STEAM ASSISTED GRAVITY DRAINAGE

METODE STRAIGHT-LINE MATERIAL BALANCE PADA RESERVOIR GAS REKAH ALAM

Perencanaan Waterflood Perencanaan waterflood didasarkan pada pertimbangan teknik dan keekonomisannya. Analisa ekonomis tergantung pada

PENENTUAN DISTRIBUSI AREAL SATURASI MINYAK TERSISA SETELAH INJEKSI AIR PADA RESERVOIR X DENGAN MENGGUNAKAN KONSEP MATERIAL BALANCE

KEASLIAN KARYA ILMIAH...

Kesalahan pembulatan Kesalahan ini dapat terjadi karena adanya pembulatan angka-angka di belakang koma. Adanya pembulatan ini menjadikan hasil

BAB I PENDAHULUAN 1.1 Latar Belakang

Rekonstruksi dan Validasi Data Permeabilitas Relatif Untuk Proses History Matching Dalam Simulasi Reservoir Pengembangan Lapangan X

Bab IV Model dan Optimalisasi Produksi Dengan Injeksi Surfaktan dan Polimer

Bab II Tinjauan Pustaka

BAB II TEORI DASAR II.1. Model Reservoir Rekah Alam

Prabumulih KM 32,Indralaya, 30662, Indonesia Pertamina EP Asset 1 Field Rantau, Aceh Tamiang, Indonesia

STUDI KELAYAKAN PENERAPAN INJEKSI SURFAKTAN DAN POLIMER DI LAPANGAN X MENGGUNAKAN SIMULATOR NUMERIK TESIS EMA FITRIANI NIM :

DAFTAR ISI. HALAMAN JUDUL... i

BAB I PENDAHULUAN. I.1 Latar Belakang dan Pembatasan Masalah

HASIL DAN PEMBAHASAN

DAFTAR ISI. HALAMAN JUDUL... i

Studi Kasus dan Analisa Simulasi

Seminar Nasional Cendekiawan 2015 ISSN: EVALUASI PEREKAHAN HIDROLIK PADA SUMUR GAS BERTEKANAN TINGGI

KELAKUAN PRODUKSI SUMUR MINYAK PADA RESERVOIR REKAH ALAMI

BAB I PENDAHULUAN. kegiatan yang sangat penting di dalam dunia industri perminyakan, setelah

BAB I PENDAHULUAN. Sebuah lapangan gas telah berhasil ditemukan di bagian darat Sub-

KAJIAN LABORATORIUM PENGUJIAN PENGARUH POLIMER DENGAN CROSSLINKER TERHADAP RESISTANCE FACTOR

Penentuan Absolute Open Flow Pada Akhir Periode Laju Alir Plateau Sumur Gas Estimation Absolute Open Flow Of The End Of Plateau Rate Of Gas Well

Bab III Pengolahan dan Analisis Data

Konsep Gas Deliverability

PENGGUNAAN MATERIAL BALANCE KING, SEIDLE, DAN JENSEN-SMITH DALAM MENENTUKAN GAS IN PLACE DAN PREDIKSI LAJU ALIR RESERVOIR COALBED METHANE

PERNYATAAN KEASLIAN KARYA ILMIAH...

IV PENGEMBANGAN FUZZY INFERENSI SISTEM SELEKSI METODE EOR

Transkripsi:

BAB V ANALISA SENSITIVITAS MODEL SIMULASI Simulasi menggunakan model sistem reservoir seperti yang dijelaskan dan divalidasi dengan data lapangan pada Bab IV terdahulu, selanjutnya akan dilakukan analisa sensitivitas terhadap beberapa parameter yang mempengaruhi analisa uji sumur falloff. Kemudian hasil simulasinya akan diolah dengan menggunakan metode metode analitik seperti yang telah dijelaskan di Bab III. Berikut adalah simulasi dengan reservoir yang sepenuhnya terisi oleh minyak dan selama suatu waktu tertentu, t i, diinjeksi dengan air pada laju tertentu, q i, sebagai kasus dasar. Kemudian simulasi dilanjutkan dengan waktu injeksi yang berbeda beda untuk mendapatkan waktu injeksi yang optimal agar type curve yang diperoleh mempunyai bentuk seperti bentuk umum type curve pada composite reservoir. Setelah itu dilakukan sensitivitas terhadap mobility ratio, M, dalam hal ini dengan mengubah ubah viskositas minyak. Sensitivitas model simulasi juga dilakukan untuk kompresibilitas minyak dan permeabilitas formasi. 5.6 Kasus Dasar 5.6.1 Data Masukan Simulasi Pada kasus dasar ini, model reservoir dan karakteristiknya sama dengan simulasi pada saat validasi, yaitu Waktu injeksi (t i ), jam 72 Laju injeksi air (q i ), STB/hari 576 Kedalaman sumur (D), ft 4288 Jari - jari sumur (r w ), ft 0.35 Tebal lapisan (h), ft 43 Porositas (φ) 0.18 Faktor Volume Formasi (BBw), RB/STB 1.0278 Kompresibilitas air (C w ), psi -1 3.24 x 10-6 Kompresibilitas minyak (C o ), psi -1 1.26 x 10-5 68

Kompresibilitas formasi (C f ), psi -1 3.80 x 10-6 Viskositas air (μ w ), cp 0.40 Saturasi air connate (S wc ) 0.18 Permeabilitas formasi (k), md 7.46 Faktor skin (S) - 0.86 Dengan data tambahan Viskositas minyak (μ o ), cp 2.0 Saturasi minyak awal (S oi ) 0.82 kurva permeabilitas relatif seperti pada Gambar 5.1 berikut Gambar 5.1 Kurva permeabilitas relatif model simulasi 69

5.6.2 Respon tekanan pada saat falloff Kurva respon tekanan pada saat falloff terhadap waktu penutupan sumur (Δt) dapat dilihat pada Gambar 5.2 sampai Gambar 5.4 masing masing untuk plot kartesian, plot log log dan plot semilog Gambar 5.2 General plot kasus dasar Gambar 5.3 Type curve kasus dasar 70

5.6.3 Pengolahan data kasus dasar dengan metode MKG 5.6.3.1 Plot semilog (P ws vs log Δt) Plot antara tekanan dasar sumur pada saat ditutup (P ws ) sebagai fungsi log waktu penutupan sumur (Δt) dapat dilihat seperti pada Gambar 5.4 yang memperlihatkan adanya dua buah harga kemiringan yaitu m 1 dan m 2 m 1 t x m 2 Gambar 5.4 Plot semilog data kasus dasar 5.6.3.2 Kemiringan (m) dan intersection time (Δt fx ) Dari Gambar 5.4 di atas, didapatkan nilai kemiringan segmen lurus pertama (m 1 ) dan nilai kemiringan segmen lurus kedua (m 2 ) sebagai berikut m 1 = 1600 psi/cycle log m 2 = 150 psi/cycle log sehingga slope ratio nya, Sedangkan intersection time-nya, Δt fx = 3.2 jam 71

5.6.3.3 Penghitungan mobilitas air pada zona 1 (λ 1 ) Mobilitas air zona 1 (λ 1 ) didapat dengan Persamaan 3.44 5.6.3.4 Penentuan saturasi air (S w ) Saturasi air (S w ) pada daerah dibelakang muka batas zona 1 dan zona 2 ditentukan dengan cara a. Saturasi air diasumsikan, misal S w = 0.8 dan S wc diketahui dari penginputan simulasi, sebesar S wc = 0.18 b. Spesific storage ratio [(φ C t ) 1 /(φ C t ) 2 ] dihitung dengan Persamaan 3.56. S w pada zona 2 adalah S wc, Sehingga Dari Gambar 5.5 nilai dimensionless intersection time, Δt Dfx, untuk slope ratio kurang dari 1 (satu) tanpa memperdulikan nilai storage ratio adalah 0.7 72

Δt Dfx = 0.7 Gambar 5.5 Penggunaan Gambar 3.13 3 untuk mendapatkan nilai dimensionless intersection time c. Kemudian hitung nilai E dengan Persamaan 3.55 d. Nilai saturasi air S w dihitung dengan Persamaan 3.57 e. Selisih antara saturasi air (S w hitung ) yang dihitung dengan saturasi air yang diasumsikan, yaitu 73

f. Karena selisih antara saturasi air yang diasumsikan dan saturasi air hasil perhitungan belum nol, maka perlu dicobakan harga asumsi saturasi yang berbeda. Berikut ini adalah Tabel 5.1, tabel perhitungan untuk beberapa harga asumsi saturasi air yang berbeda untuk saturasi air connate (S wc ) 0.18 Tabel 5.1. Perhitungan saturasi air untuk S wc 0.18 S w asumsi [(φ C t ) 1 /(φ C t ) 2 ] Δt Dfx E dihitung selisih 0.8 0.61 0.70 2.28E-05 0.64 0.16 0.7 0.67 0.70 2.28E-05 0.64 0.06 0.6 0.73 0.70 2.28E-05 0.64-0.04 0.64 0.71 0.70 2.28E-05 0.64 0.00 Dari tabel di atas, disimpulkan bahwa saturasi air (S w ) pada zona 1 adalah 0.64 5.6.3.5 Penentuan specific storage ratio Dengan saturasi air (S w = 0.64), dan S wc = 0.18 nilai spesific storage ratio-nya adalah 0.71 5.6.3.6 Penentuan mobility ratio (M) Dengan hasil hasil perhitungan di atas sebagai input untuk Gambar 3.12, didapat mobility ratio (M) sekitar 0.09, seperti terlihat pada Gambar 5.6 S w M = 009 Gambar 5.6 Penggunaan Gambar 3.12 3 untuk mendapatkan nilai mobility ratio (M) 74

5.6.3.7 Penentuan jarak batas zona 1 dan zona 2 Dengan menggunakan Persamaan 3.53 (intersection time), 5.6.3.8 Penentuan nilai permeabilitas dan faktor skin Harga permeabilitas efektif air pada zona 1 adalah Dan dengan saturasi air (S w ) = 0.64, dari Gambar 5.1 atau korelasi Correy, didapatkan permeabilitas relatif air (k rw ) = 0.06, sehingga permeabilitas formasi yang dipakai sebagai permeabilitas absolute adalah Nilai skin dapat diperoleh dengan data, dan, maka 75

5.6.4 Pengolahan data kasus dasar dengan metode Brown 5.6.4.1 Kemiringan garis lurus (m) dan intersection time (Δt fx ) Seperti yang pada metode MKG, didapatkan nilai kemiringan segmen lurus pertama (m 1 ) dan nilai kemiringan segmen lurus kedua (m 2 ) sebagai berikut m 1 = 1600 psi/cycle log m 2 = 150 psi/cycle log Sedangkan intersection time-nya, Δt fx = 3.2 jam 5.6.4.2 Penghitungan mobilitas pada zona 1 (λ 1 ) dan zona 2 (λ 2 ) Mobilitas didapat dengan Persamaan 3.44 5.6.4.3 Penentuan spesific storage (φ C t ) 1 dan (φ C t ) 2 Pada saturasi air (S w ) = 0.64, 76

5.6.4.4 Penentuan jarak batas zona 1 dan zona 2 Sesuai dengan Persamaan 3.62, jarak batas zona 1 dan zona 2 adalah 5.6.4.5 Penentuan nilai permeabilitas dan faktor skin Harga permeabilitas efektif air pada zona 1 adalah Dan dengan saturasi air (S w ) = 0.64, dari Gambar 5.1 atau korelasi Correy, didapatkan permeabilitas relatif air (k rw ) = 0.06, sehingga permeabilitas formasi yang dipakai sebagai permeabilitas absolut adalah Nilai skin dapat diperoleh dengan data, dan, maka 77

5.6.5 Pengolahan data kasus dasar dengan metode HRM Pada pengolahan data dengan metode HRM ini diperlukan harga mobility ratio (M) yaitu sebesar 0.09 sesuai dengan hasil dari metode MKG. 5.6.5.1 Penentuan tekanan ekuivalen (P e ) Tekanan ekuivalen ini didapat dengan cara coba coba (trial and error) dengan memplotkan antara (P ws P e ) dengan waktu tutup sumur (Δt) dalam satuan detik, sampai didapat suatu garis lurus, seperti pada Gambar 5.7 b 1 50 Gambar 5.7 Plot log (P ws P e ) sebagai fungsi Δt Dari gambar di atas, didapat nilai P e = 1807 psi dan nilai b 1 = 50 psi 5.6.5.2 Penentuan nilai V o /V w Nilai V o /V w adalah perbandingan volume minyak dengan volume air sesaat setelah sumur ditutup, yaitu sebesar 78

Apabila diasumsikan S g =0.01 dan S gr = 0 5.6.5.3 Penentuan nilai R o Nilai R o adalah diperoleh dengan Persamaan 3.37 sebesar 5.6.5.4 Penentuan nilai γ Nilai γ adalah perbandingan antara kompresibilitas minyak dengan kompresibilitas air diperoleh dengan Persamaan 3.36 sebesar 5.6.5.5 Penentuan nilai F Nilai F didapat dengan menggunakan Gambar 3.6 dengan hasil hasil M, γ dan R o sebagai input pada Gambar 5.8, didapat nilai F = 12 Gambar 5.8 Penggunaan Gambar 3.6 2 untuk mencari nilai F 79

5.6.5.6 Penentuan jarak batas Zona 1 dan Zona 2 (r f1 ) balance Jarak muka batas air minyak dapat diperoleh dengan persamaan material 5.6.5.7 Penentuan nilai permeabilitas dan skin Harga permeabilitas efektif air dapat diperoleh dengan persamaan Dari Gambar 5.1 atau korelasi Correy, permeabilitas relatif air (k rw ) = 0.06 pada Sw = 0.64, sehingga permeabilitas formasi yang dipakai sebagai permeabilitas absolut adalah Sedangkan harga skin 5.6.6 Analisa kasus dasar Kasus dasar pada simulasi ini seperti yang sudah dijelaskan di atas, yaitu model reservoir seperti pada Gambar 4.5 dengan parameter parameternya yang diusahakan tetap sama dengan parameter parameter reservoir yang digunakan untuk validasi dan berisi minyak, kemudian diinjeksikan dengan air, setelah dilakukan pengolahan data menggunakan metode MKG, Brown dan HRM seperti yang telah dipaparkan di atas mempunyai hasil seperti pada Tabel 5.2 80

Tabel 5.2 Hasil pengolahan data kasus dasar Input MKG Brown HRM k, md 7.46 9.22 9.22 43.5 S -0.86-3.63-4.12-0.42 r f, ft - 30.0 32.58 29.86 Dari Tabel 5.2 di atas, terlihat bahwa hasil pengolahan data metode MKG dan Brown cukup sesuai dengan input simulasi, terutama untuk permeabilitas. Kedua metode ini menggunakan konsep kemiringan garis lurus pada plot semilog dalam mencari permeabilitas. Hal ini menunjukkan bahwa konsep kemiringan garis lurus pada plot semilog dapat dipakai untuk mencari permeabilitas, meskipun dengan catatan pengambilan kemiringan dan penentuan titik potong antara kedua garis lurus cukup sulit dan dapat memberikan perbedaan hasil yang cukup besar. Sedangkan metode HRM, selain seharusnya dipakai untuk reservoir yang juga mengandung gas, seperti pada model sistemnya, faktor penentuan tekanan ekuivalen yang cocok cukup sulit, penentuan nilai F yang digunakan dalam menentukan permeabilitas juga terbatas pada plot antara F sebagai mobility ratio (M) pada perbandingan kompresibilitas tertentu saja yaitu 1, 2 dan 4. Faktor skin yang didapatkan oleh metode MKG dan Brown cukup sama meskipun dari pendekatan yang berbeda. Metode MKG berdasar dari karakterisitk fluida pada zona 1 saja, sedangkan metode Brown berdasar pada kedua zona dengan titik berat pada zona 2. Akan tetapi kedua metode memberikan hasil yang cukup jauh apabila dibandingkan dengan input. Hal ini karena tidak adanya fungsi faktor skin yang langsung dimasukkan besar nilainya dalam simulator, akan tetapi faktor skin dalam simulasi dengan menggunakan perbedaan permeabilitas di sekitar lubang bor dibandingkan dengan permeabilitas di formasi secara keseluruhan, sesuai dengan definisi faktor skin menurut Hawkin 9. (5.1) Sedangkan jarak batas zona 1 dan zona 2 yang diberikan oleh metode MKG yaitu persamaan intersection time dan metode HRM yaitu persamaan 81

material balance memberikan hasil yang cukup sama. Pada metode Brown, hasilnya cukup berbeda. Hal ini karena pada metode ini memasukkan unsur perbandingan specific storage yang mempengaruhi jarak batas zona 1 dan zona 2. 5.7 Sensitivitas terhadap waktu injeksi (t i ) Untuk mendapatkan waktu injeksi yang optimal agar type curve yang diperoleh mempunyai bentuk seperti bentuk umum type curve pada composite reservoir dan ukuran zona fluida yang diinjeksikan supaya memberikan analisa secara grafis yang dapat memberikan perhitungan yang cukup akurat untuk parameter pada zona tersebut, pada studi ini dilakukan sensitivitas terhadap waktu injeksi. Model simulasi dibuat dengan karakter fluida dan batuannya sama dengan pada kasus dasar. Perubahan yang dilakukan hanya pada lamanya waktu injeksi saja yaitu menjadi 10 hari, 20 hari dan 30 hari. Berikut adalah plot semilog tekanan dengan waktu dan log log antara selisih tekanan dan juga turunan tekanan terhadap waktu, serta hasil pengolahan data dari metode metode analitik dengan prosedur yang sama dengan pada saat kasus dasar. 5.7.1 Respon tekanan pada saat falloff Respon tekanan pada saat falloff dengan variasi waktu injeksi seperti pada Gambar 5.9 sampai 5.16 masing masing untuk plot log log dan plot semilog pada waktu injeksi 10 hari, waktu injeksi 20 hari dan waktu injeksi 30 hari. 82

Gambar 5.9 Type curve dengan waktu injeksi 10 hari Gambar 5.10 Plot semilog dengan waktu injeksi 10 hari 83

Gambar 5.11 Type curve dengan waktu injeksi 20 hari Gambar 5.12 Plot semilog dengan waktu injeksi 20 hari 84

Gambar 5.13 Type curve dengan waktu injeksi 30 hari Gambar 5.14 Plot semilog dengan waktu injeksi 30 hari 85

Gambar 5.15 Type curve dengan variasi waktu injeksi Gambar 5.16 Plot semilog dengan variasi waktu injeksi 86

5.7.2 Hasil Pengolahan Data Dengan prosedur seperti yang dilakukan pada pengolahan data kasus dasar, berikut ini adalah hasil pengolahan data metode metode analitik seperti pada Tabel 5.3 Tabel 5.3. Hasil pengolahan data dengan variasi waktu injeksi kasus dasar ti 10 hari ti 20 hari ti 30 hari k, md S rf Sw M MKG 9.22-3.63 30.00 Brown 9.22-4.12 32.58 0.64 0.10 HRM 34.01-1.75 29.86 MKG 8.34-3.79 48.96 Brown 8.34-4.23 50.34 0.75 0.27 HRM 10.41-4.15 48.97 MKG 9.08-3.87 83.46 Brown 9.08-4.48 86.73 0.77 0.40 HRM 10.58-4.07 83.37 MKG 8.94-3.70 79.67 Brown 8.94-4.04 93.41 0.82 0.57 HRM 8.53-3.93 80.05 5.7.3 Analisa variasi waktu uji Secara grafis, pada plot log log turunan tekanan terhadap waktu, dengan bertambahnya waktu injeksi, semakin terlihat jelas adanya 2 aliran radial (ditunjukkan oleh kurva turunan yang mendatar) yang menunjukkan aliran pada zona pertama, dan setelah transisi aliran terjadi pada zona kedua. Dari hasil pengolahan data pada variasi waktu uji, dengan semakin lama sumur diinjeksi, maka jarak batas zona 1 dan zona 2 semakin jauh dari sumur. Hal ini sesuai dengan profil saturasi air yang didapat dari simulasi seperti pada Gambar 5.17 87

Gambar 5.17 Profil saturasi air (S w ) dalam keadaan falloff terhadap jarak dengan variasi waktu injeksi Titik titik jarak pada Gambar 5.17 di atas adalah jarak grid grid dari lubang sumur pada simulasi. Dan jarak batas yang didapat pada Tabel 5.3 berada diantara dua jarak grid dengan nilai saturasi air yang mulai menghilang. Sedangkan nilai permeabilitas dan skin tidak terkait langsung dengan waktu injeksi. Hal ini ditunjukkan dengan tidak konsistennya penurunan maupun kenaikan nilai permeabilitas seiring dengan kenaikkan waktu injeksi. Fenomena ini bisa disebabkan oleh cara pemilihan kedua garis lurus pada plot semilog pada metode MKG dan Brown. Sedangkan pada metode HRM seperti yang terjadi pada kasus dasar, pemilihan tekanan ekuivalen dan penentuan nilai F dapat menjadi sebab. Meskipun kenaikan maupun penurunan tekanan tidak sebanding dengan lamanya waktu injeksi, kurva turunan tekanan semakin bisa menjelaskan aliran pada composite reservoir pada waktu injeksi 30 hari. Dengan demikian sensitivitas simulasi selanjutnya dilakukan pada waktu injeksi 30 hari dan kasus dasar yang dipakai adalah pada saat waktu injeksi 30 hari. 88

5.8 Sensitivitas terhadap mobility ratio (M) Dalam melakukan sensitivitas terhadap mobilitity ratio (M), terlebih dahulu dilihat parameter parameter yang mempengaruhi mobilitity ratio (M). Sesuai dengan Persamaan 3.28 terlihat bahwa mobilitity ratio (M) dipengaruhi oleh beberapa parameter, yaitu permeabilitas air, permeabilitas minyak, viskositas air dan viskositas minyak. Sehingga perlu dilakukan simulasi yang menggunakan nilai parameter parameter ini yang berbeda beda. Dengan menganggap viskositas air tetap dan saturasi air input tetap (S w =S wc =0.18) sehingga permeabilitas relatif air dan minyak tetap, maka parameter yang diubah adalah viskositas minyak. Dalam simulasi ini, viskositas minyak divariasikan yaitu 0.4 cp dan 4.0 cp, sedangkan paramater yang lain tetap seperti pada saat kasus dasar. 5.8.1 Respon tekanan pada saat falloff Respon tekanan pada ssat falloff dengan variasi viskositas minyak seperti pada Gambar 5.18 sampai 5.23 masing masing untuk plot log log dan plot semilog 89

Gambar 5.18 Type curve dengan viskositas minyak 0.4 cp Gambar 5.19 Plot semilog dengan viskositas minyak 0.4 cp 90

Gambar 5.20 Type curve dengan viskositas minyak 4 cp Gambar 5.21 Plot semilog dengan viskositas minyak 4 cp 91

Gambar 5.22 Type curve dengan variasi vikositas minyak Gambar 5.23 Plot semilog dengan variasi viskositas minyak 92

5.8.2 Hasil Pengolahan Data Dengan prosedur seperti yang dilakukan pada pengolahan data kasus dasar, berikut ini adalah hasil pengolahan data metode metode analitik seperti pada Tabel 5.4 Tabel 5.4. Hasil pengolahan data dengan variasi viskositas minyak kasus dasar VisO 0.4 VisO 4.0 k, md S rf Sw M MKG 9.22-3.63 30.00 Brown 9.22-4.12 32.58 0.64 0.10 HRM 34.01-1.75 29.86 MKG 15.14-3.76 80.02 Brown 15.14-4.16 83.54 0.82 0.25 HRM 12.81-4.81 80.05 MKG 8.86-3.75 82.79 Brown 8.86-3.97 157.96 0.78 0.78 HRM 6.27-4.97 82.68 5.8.3 Analisa variasi viskositas minyak Viskositas minyak di dalam reservoir yang semakin besar, menyebabkan diperlukannya tekanan injeksi yang lebih besar untuk dapat menjaga laju injeksi yang konstan, yaitu 576 STB/hari. Hal ini mempengaruhi tekanan dasar sumur pada saat sumur mulai ditutup (falloff) menjadi sangat tinggi, dan akibatnya diperlukan waktu lebih lama untuk tekanan mencapai kestabilan penurunan tekanannya, seperti yang ditunjukkan pada Gambar 5.15. Pada kurva turunan tekanan, untuk viskositas minyak sebesar 0.4 cp pada waktu awal tidak terlihat grafik mendatar. Hal ini dikarenakan pada viskositas minyak yang kecil, tekanan dasar sumur pada saat diinjeksikan tidak terlalu besar sehingga tekanan dasar sumur pada saat sumur mulai ditutup (falloff) yang cukup rendah, dan akibatnya tidak diperlukan waktu yang lama untuk tekanan mencapai kestabilan penurunan tekanannya Mobility ratio (M) semakin besar seiring dengan kenaikan viskositas minyak. Hal ini sesuai dengan hubungan 93

Nilai mobilitas minyak menurun dengan kenaikan viskositasnya, oleh karena itu maka mobility ratio (M) semakin besar. Jarak batas antara dua zona yang didapat dari metode Brown, pada saat viskositas minyak (μ o ) 4 cp, memberikan harga yang jauh lebih besar dibandingkan kedua metode yang lain. Hal ini dikarenakan perbedaan kemiringan garis lurus pertama dan kedua yang tidak begitu jauh, sehingga berdasar hubungan berikut apabila selisih kedua kemiringan kecil, maka suku terakhir akan dipangkat dengan bilangan yang besar. Hal ini mengakibatkan harga R yang besar. Profil saturasi air yang didapat dari simulasi seperti pada Gambar 5.24 Gambar 5.24 Profil saturasi air (S w ) dalam keadaan falloff terhadap jarak dengan variasi viskositas minyak 94

5.9 Sensitivitas terhadap kompresibilitas minyak (c o ) Sensitivitas terhadap kompresibilitas fluida dilakukan dengan menganggap kompresibilitas minyak di reservoir sama dengan kompresibilitas air yang diinjeksikan. Sedangkan paramater yang lain tetap seperti pada saat kasus dasar. 5.9.1 Respon tekanan pada saat falloff Respon tekanan pada ssat falloff dengan variasi kompresibilitas minyak seperti pada Gambar 5.25 sampai 5.28 masing masing untuk plot kartesian, plot log log dan plot semilog Gambar 5.25 Type curve dengan Co = Cw Gambar 5.26 Plot semilog dengan Co = Cw 95

Gambar 5.27 Type curve dengan variasi kompresibilitas Gambar 5.28 Plot semilog dengan variasi kompresibilitas 96

5.9.2 Hasil Pengolahan Data Dengan prosedur seperti yang dilakukan pada pengolahan data kasus dasar, berikut ini adalah hasil pengolahan data metode metode analitik seperti pada Tabel 5.5 Tabel 5.5. Hasil pengolahan data dengan variasi kompresibilitas minyak kasus dasar Co = Cw k, md S rf Sw M MKG 8.94-3.70 79.67 Brown 8.94-4.04 93.41 0.82 0.57 HRM 8.53-3.93 80.05 MKG 13.43-3.96 85.57 Brown 13.43-4.37 72.95 0.74 0.50 HRM 17.15-3.11 85.58 5.9.3 Analisa variasi kompresibilitas minyak Apabila kompresibilitas minyak dan air dianggap sama, maka sesuai dengan hasil yang diperoleh pada Tabel 5.5, permeabilitas formasi cenderung membesar dibandingkan apabila kompresibilitas minyak yang lebih besar daripada kompresibilitas air. Pada kompresibilitas yang sama ini, maka perubahan tekanan pada zona air akan sebanding dengan pada zona minyak. Hal ini mengakibatkan penurunan tekanannya lebih lambat apabila kompresibilitasnya sama. Dengan kemiringan penurunan tekanan yang lebih kecil, maka permeabilitas yang didapat akan lebih besar. Jarak batas zona 1 dan 2 juga seharusnya lebih besar pada kasus kompresibilitas yang sama. Hal ini karena proses pendorongan minyak oleh air lebih mirip dengan piston. Metode MKG dan HRM memberikan hasil yang sesuai, dimana jarak batas zona 1 dan 2 pada kasus ini lebih besar daripada kasus dasar. Akan tetapi metode Brown berlaku sebaliknya, hal ini karena persamaan yang dipakai dalam menentukan jarak batas ini berdasarkan kompresibilitas total baik di zona 1 maupun di zona 2. Sedangkan profil saturasi air yang didapat dari simulasi seperti pada Gambar 5.29 97

Gambar 5.29 Profil saturasi air (S w ) dalam keadaan falloff terhadap jarak dengan variasi kompresibilitas minyak 5.10 Sensitivitas terhadap permeabilitas formasi (k f ) Permeabilitas formasi divariasikan 50 md dan 100 md untuk memeriksa sensitivitas terhadap permeabilitas formasi dalam memberikan keakuratan dalam analisa uji sumur injeksi. Sedangkan paramater yang lain tetap seperti pada saat kasus dasar. 5.10.1 Respon tekanan pada saat falloff Respon tekanan pada saat falloff dengan variasi permeabilitas formasi seperti pada Gambar 5.30 sampai 5.35 masing masing untuk plot log log dan plot semilog 98

Gambar 5.30 Type curve dengan k f = 50 md Gambar 5.31 Plot semilog dengan k f = 50 md 99

Gambar 5.32 Type curve dengan k f = 100 md Gambar 5.33 Plot semilog dengan k f = 100 md 100

Gambar 5.34 Type curve dengan variasi permeabilitas formasi Gambar 5.35 Plot semilog dengan variasi permeabilitas formasi 101

5.10.2 Hasil Pengolahan Data Dengan prosedur seperti yang dilakukan pada pengolahan data kasus dasar, berikut ini adalah hasil pengolahan data metode metode analitik seperti pada Tabel 5.6 Tabel 5.6. Hasil pengolahan data dengan variasi permeabilitas formasi kasus dasar Kf 50 Kf 100 k, md S rf Sw M MKG 8.94-3.70 79.67 Brown 8.94-4.04 93.41 0.82 0.57 HRM 8.53-3.93 80.05 MKG 57.36-5.15 83.51 Brown 57.36-5.21 87.24 0.77 0.42 HRM 30.64-6.13 83.37 MKG 111.01-5.49 86.80 Brown 111.01-5.46 88.62 0.73 0.31 HRM 44.38-6.36 86.35 5.10.3 Analisa variasi permeabilitas formasi Dengan permeabilitas formasi yang lebih besar, aliran radial baik pada zona 1 maupun zona 2 terjadi lebih cepat dibandingkan dengan kasus dasar. Seperti terlihat pada Gambar 5.34, aliran pada zona 2 yang biasanya terjadi antara waktu 10 sampai 100 jam, terjadi pada waktu antara 1 10 jam. Akan tetapi aliran radial pada zona 1 jadi tertutup oleh adanya wellbore storage dan skin pada lubang sumur. Hal ini mengakibatkan ketidakakuratan dalam penentuan kemiringan garis lurus pada plot semilog, sehingga permeabilitas yang didapat juga diragukan keakuratannya. Dengan permeabilitas yang besar, maka air yang diinjeksikan akan lebih jauh dari lubang bor. Hal ini sesuai dengan hasil profil saturasi air yang didapat dari simulasi seperti pada Gambar 5.36 102

Gambar 5.36 Profil saturasi air (S w ) dalam keadaan falloff terhadap jarak dengan variasi permeabilitas formasi 103