Statistika Farmasi

dokumen-dokumen yang mirip
Statistika Farmasi

Statistik Bisnis 2. Week 4 Fundamental of Hypothesis Testing Methodology

Inferensia Statistik parametrik VALID?? darimana sampel diambil

Statistik Bisnis. Week 13 Chi-Square Test

Statistik Bisnis 2. Week 6 Two-Sample Test Population Proportions and Variances

Apa itu suatu Hypothesis?

UJI HIPOTESIS DUA SAMPEL. Chapter 11

Hypothesis Testing SUNU WIBIRAMA

Statistik Bisnis. Week 12 Analysis of Variance

Analisis Chi-Square (x 2 )

Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015

To test the significant effect of two independent variables to one dependent variable, and to test the significant interaction of the two independent

Teknik Pengolahan Data

Informasi Data Pokok Kota Surabaya Tahun 2012 BAB I GEOGRAFIS CHAPTER I GEOGRAPHICAL CONDITIONS

matematis siswa SMPN 1 Karangrejo Tulungagung Tahun Pelajaran 2016/2017 yang menggunakan model discovery learning lebih baik daripada menggunakan mode

UJI HIPOTESIS SATU SAMPEL. Chapter 10

Statistik Bisnis 1. Week 9 Discrete Probability

STUDI EKSPERIMENTAL PENGARUH VARIASI SUDUT MIRING DAN SUDUT PUTAR TERHADAP KETELITIAN SUDUT PADA FLEXIBLE FIXTURE

Kasus. Survey terhadap remaja usia tahun apakah pernah melakukan kerja paruh waktu (part-time)??

By SRI SISWANTI NIM

Distribusi probabilitas dan normal. Statisitik Farmasi 2015

Statistik Bisnis. Week 10 Fundamentals of Hypothesis Testing: One-Sample Test

STK511 Analisis Statistika. Pertemuan 6 Statistika Inferensia (2)

5. The removed-treatment design with pretest & posttest Design: O 1 X O 2 O 3 X O 4 Problem: O 2 - O 3 not thesame with O 3 - O 4 construct validity o

Lampiran Statistik Tekanan Darah Sistol. Group Mean Std Dev SEM Col Col

Pertemuan 11 s.d. 13 STATISTIKA INDUSTRI 2. Nonparametric. Skala Pengukuran...(review) 27/05/2016. Statistik Non Parametrik

ANALISIS TEBAL LAPIS TAMBAHAN (OVERLAY) PADA PERKERASAN KAKU (RIGID PA VEMENT) DENGAN PROGRAM ELCON DAN METODE ASPHALT INSTITUTE TESIS

PENGARUH PENERAPAN PEMBELAJARAN DENGAN METODE PARTISIPATIF TERHADAP HASIL BELAJAR MAHASISWA DALAM MATERI GESERAN

MANAJEMEN PROYEK LANJUT

Uji Perbandingan Rata-Rata

POLA RESPIRASI BUAH TOMAT (Lycopersicum esculentum) YANG DI-COATING DENGAN GEL LIDAH BUAYA (Aloe vera barbadensis Miller) SELAMA PENYIMPANAN SKRIPSI

Uji Perbandingan Rata-Rata

Statistik Bisnis. Week 9 Confidence Interval Estimation

PENGARUH SEMANGAT KERJA PEMILIK DAN PEKERJA TERHADAP KEWIRAUSAHAAN MORO ARTOS DI SALATIGA SKRIPSI

BAGAIMANA CARA MENGATASI KASUS TERSEBUT? JAWAB: MELAKUKAN UJI HIPOTESIS

FOR IMMEDIATE RELEASE

PENGARUH MODEL COOPERATIVE INTEGRATED READING AND COMPOSITION TERHADAP HASIL BELAJAR SISWA PADA MATERI EKOSISTEM DI SMA NURUL AMALIYAH TANJUNG MORAWA

PENGUJIAN HIPOTESIS. Langkah-langkah pengujian hipótesis statistik adalah sebagai berikut :

ABSTRACT. Keywords: Stock split, Signaling theory, Trading range theory, Liquidity. vii

SIMULASI MONTE CARLO RISK MANAGEMENT DEPARTMENT OF INDUSTRIAL ENGINEERING

PENERAPAN MODEL COOPERATIVE SCRIPT DALAM PEMBELAJARAN TIK PADA SISWA KELAS VIII SMPN 27 PADANG

The Central Limit Theorem

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI

PENGARUH PENGGUNAAN MEDIA VISUAL TERHADAP HASIL BELAJAR KOGNITIF BIOLOGI PESERTA DIDIK KELAS XI SMK ISLAM DDI PONIANG MAJENE

Oleh: Esti Widiasari S

ABSTRAK. Universitas Kristen Maranatha

EFFECT OF INCORPORATING INTERSECTION DELAYS ON ROUTE ASSIGNMENTS IN AN URBAN ROAD NETWORK

MODEL PENGAJARAN MENULIS ARGUMENTASI BAHASA JERMAN MELALUI TEKNIK DISKUSI

FAKULTAS KESEHATAN MASYARAKAT UNIVERSITAS SUMATERA UTARA MEDAN 2011 ABSTRAK

METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL DENGAN ESTIMASI EFEK ALGORITMA YATES

ANALISIS PENGARUH MOTIVASI KERJA, LINGKUNGAN KERJA, DAN KOMPENSASI TERHADAP KINERJA KARYAWAN (STUDI KASUS PADA SPBU

Analisa Regresi Dua Variabel: Konsep Dasar ReviewApril Statistik: 2016 Uji 1 Hipotesa / 52


Melihat hasil penelitian seperti di atas maka ada beberapa saran yang diberikan untuk peningkatan komitmen organsiasi di PT Telkom Tbk Kantor Divre V

ANALISA HAZARD GEMPA DENGAN GEOMETRI SUMBER GEMPA TIGA DIMENSI UNTUK PULAU IRIAN TESIS MAGISTER. Oleh : Arvila Delitriana

PENERAPAN STRATEGI BELAJAR AKTIF TIPE LEARNING TOURNAMENT PADA PEMBELAJARAN MATEMATIKA SISWA KELAS VIII SMPN 15 PADANG

B. ACCEPTANCE SAMPLING. Analysis

STATISTIKA INDUSTRI 2 TIN 4004

Pertemuan 10 STATISTIKA INDUSTRI 2. Multiple Linear Regression. Multiple Linear Regression. Multiple Linear Regression 19/04/2016

1/5. while and do Loops The remaining types of loops are while and do. As with for loops, while and do loops Praktikum Alpro Modul 3.

ABSTRAK. Kata-kata kunci: return saham, abnormal return, stock split, volume perdagangan saham, trading volume activity

ABSTRAK EFEKTIVITAS PENGGUNAAN HELM SIKAT GIGI DALAM MENGENDALIKAN POPULASI BAKTERI AEROB PADA KEPALA SIKAT GIGI SELAMA PENYIMPANAN

Model Regresi untuk Data Deret Waktu. Kuliah 8 Metode Peramalan Deret Waktu

UJI RATA-RATA SATU SAMPEL MENGGUNAKAN R UNTUK MENGETAHUI PENGARUH MODEL BELAJAR TERHADAP HASIL BELAJAR MATA KULIAH ANALISIS VEKTOR

ADJECTIVES & COMPARING

EVALUASI KARAKTERISTIK PARKIR RS. PKU MUHAMMADIYAH YOGYAKARTA

Praktikum Pengujian Hipotesis

ANALISIS KINERJA KEUANGAN PERBANKAN YANG TERDAFTAR DI BURSA EFEK INDONESIA SEBELUM DAN SESUDAH PELAKSANAAN ARSITEKTUR PERBANKAN INDONESIA (API)

Rencana Penerimaan Sampel (Acceptance Sampling)

PERBANDINGAN KEPEMILIKAN MOBIL DAN SEPEDA MOTOR DALAM RUMAH TANGGA DI TIGA KOTA ABSTRAK

DISTRIBUTION OF HIGHWAY AXLE LOADS IN WEST JAVA AND METHODS OF MEASURING VEHICLE LOADING

KORELASI NILAI INTERNATIONAL ROUGHNESS INDEX (IRI) HASIL PENGUKURAN ALAT MERLIN DAN BUMP INTEGRATOR

ABSTRAK. Kata Kunci: Dimensi Layanan Merek, Harapan dan Persepsi Konsumen, Kepuasan Konsumen

LAMPIRAN A HASIL UJI MUTU FISIK GRANUL. Formula Tablet Bukoadhesif

Abstrak. Universitas Kristen Maranatha

MANAJEMEN OPERASIONAL

Pembahasan Soal. Tjipto Juwono, Ph.D. May 14, TJ (SU) Pembahasan Soal May / 43

PENGARUH PENGGUNAAN MEDIA PEMBELAJARAN MODUL PEMESINAN TERHADAP PRESTASI BELAJAR SISWA JURUSAN TEKNIK PEMESINAN DI SMK LEONARDO KLATEN.

KECEPATAN PEJALAN KAKI PADA SIMPANG BERSINYAL DI RUAS JALAN SUDIRMAN, BANDUNG ABSTRAK

ABSTRAK Kata kunci :

HUBUNGAN PERSENTASE FORMALIN TERHADAP WAKTU DEKOMPOSISI HEPAR MUS MUSCULUS (MENCIT) Oleh: FEBRIANTONO EDDY PUTRANTO NIM:

PERHENTIAN DALAM PERJALANAN MAHASISWA DARI DAN MENUJU KAMPUS UNIVERSITAS KRISTEN MARANATHA

Pendahuluan. Metode Peramalan:

ANALISIS BIAYA OBAT UNTUK PENYAKIT KEBIDANAN RAWAT INAP RUMAH SAKIT (SEBELUM DAN SELAMA KRISIS)

KRIPTOGRAFI VISUAL (4,4) UNTUK BERBAGI 3 CITRA RAHASIA LEWAT 4 CITRA TERSANDI. Jevri Eka Susilo

Kata Kunci : Small Sided Games, small sided games three-a-sided, small sided games four-asided,sepak Bola,Daya Tahan Cardovascular,Kelincahan.

Statistik Bisnis 1. Week 10 Continuous Probability Normal Distribution

PENGARUH PENGGUNAAN TEKNOLOGI INFORMASI TERHADAP KINERJA PEGAWAI DI BADAN PUSAT STATISTIK PROVINSI DAERAH ISTIMEWA YOGYAKARTA

I. PENDAHULUAN II. TINJAUAN PUSTAKA

Review QUIZ ( 10 menit )

KADAR PROTEIN, SIFAT FISIK DAN DAYA TERIMA KULIT BAKPIA YANG DISUBSTITUSI TEPUNG JAGUNG NASKAH PUBLIKASI

Keywords: Information Systems Salaries and Wages, Salaries and Wages Accuracy

ABSTRACT. Keywords: Job order costing method. vi Universitas Kristen Maranatha

ABSTRAK. Kata kunci : biaya standar, pengendalian, efektivitas, efisiensi, biaya bahan baku, analisis selisih

PENGARUH PEMBERIAN KLOROFIL TERHADAP KENAIKAN KADAR HEMOGLOBIN PADA TIKUS MODEL ANEMIA

Transkripsi:

Bab 4: Uji Hipotesis Statistika FMIPA Universitas Islam Indonesia

Uji Hipotesis Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya dan perlu dibuktikan. Dengan kata lain, hipotesis adalah dugaan yang sifatnya masih sementara. Suatu prosedur pengujian yang dilakukan dengan tujuan memutuskan apakah menerima atau menolak hipotesis mengenai parameter populasi.

Uji Hipotesis Hipotesis Nol H 0 Hipotesis yang diartikan sebagai tidak adanya perbedaan antara ukuran populasi dan ukuran sampel. Hipotesis Alternatif H 1 Lawannya hipotesis nol, adanya perbedaan data populasi dengan sampel. Hipotesis alternatif ini biasanya merepresentasikan pertanyaan yang harus dijawab atau teori yang akan diuji

Pada pengujian hipotesis, terdapat empat kemungkinan keadaan yang menentukan apakah keputusan kita benar atau salah. Kemungkinan keadaan tersebut adalah sebagai berikut Tidak menolak H 0 Menolak H 0 H 0 benar H 0 salah Eror tipe II (β) Eror tipe I (α)

Langkah

Formulasi Hipotesis Uji Hipotesis Hipotesis nol H 0 dirumuskan sebagai pernyataan yang akan diuji, hendaknya dibuat pernyataan untuk ditolak. Hipotesis alternatif H 1 dirumuskan sebagai lawan/tandingan hipotesis nol. Jenis uji hipotesis: Uji hipotesis satu arah (one-tailed): H 0 : µ = µ 0 H 1 : µ > µ 0 atau H 1 : µ < µ 0 Uji hipotesis dua arah (two-tailed): H 0 : µ = µ 0 H 1 : µ µ 0

A manufacturer of a certain brand of rice cereal claims that the average saturated fat content does not exceed 1.5 grams per serving. State the null and alternative hypotheses to be used in testing this claim. H 0 : µ = 1.5 H 1 : µ > 1.5

Taraf Nyata (Significance Level) Taraf nyata adalah besarnya toleransi dalam menerima kesalahan hasil hipotesis terhadap nilai parameter populasinya. Taraf nyata (significant level) disimbolkan dengan α Tingkat kepercayaan (confident level) disimbolkan dengan 1 α Pemilihan taraf nyata tergantung pada bidang penelitian masing-masing. Biasanya di bidang sosial menggunakan taraf nyata 5%10%, di bidang eksakta menggunakan 1%2%. Besarnya kesalahan disebut sebagai daerah kritis pengujian (daerah penolakan)

Daerah penolakan uji hipotesis satu arah

Daerah penolakan uji hipotesis dua arah

Kriteria Pengujian dan Statistik Uji Bentuk keputusan menerima/menolak H 0 Ada banyak jenis pengujian, dalam materi ini yang akan dipelajari adalah: a. Uji hipotesis satu rata-rata b. Uji hipotesis dua rata-rata c. Uji hipotesis data berpasangan d. Uji hipotesis satu variansi e. Uji hipotesis dua variansi populasi

Uji Hipotesis Satu Rata-Rata Kriteria Pengujian

Statistik Uji i. Jika variansi (σ 2 ) diketahui, n 30. Statistik ujinya: z 0 = x µ 0 σ n ii. Jika variansi (σ 2 ) tidak diketahui, n < 30. Statistik ujinya: t 0 = x µ 0 s n

Tabel z Uji Hipotesis

Tabel t Uji Hipotesis

A random sample of 100 recorded death in the United States during the past year showed an average life span of 71.8 years. Assuming a population standard deviation of 8.9 years, does this seem to indicate that the mean life span today is greater than 70 years? Use a 0.05 level of significance. Solution: 1 H 0 : µ = 70 years 2 H 1 : µ > 70 years 3 α = 0.05 4 Critical region: z > 1.645, where z = x µ 0 σ/ n 5 Computation: x = 71.8 years, σ = 8.9 years, and hence z = 71.8 70 8.9/ 100 = 2.02 Desicion: Reject H 0 and conclude that the mean life span today is greater than 70 years.

The Edison Electric Institute has published figures on the number of kilowatt hours used annually by various home appliances. It is claimed that a vacuum cleaner uses an average of 46 kilowatt hours per year. If a random sample of 12 homes included in a planned study indicates that vacuum cleaners use an average of 42 kilowatt hours per year with a standard deviation of 11.9 kilowatt hours, does this suggest at the 0.05 level of significance that vacuum cleaners use, on average, less than 46 kilowatt hours annually? Assume the population of kilowatt hours to be normal.

1 H 0 : µ = 46 kilowatt hours 2 H 1 : µ < 46 kilowatt hours 3 α = 0.05 4 Critical region: t < 1.796, where t = x µ 0 of freedom s/ n with 11 degrees 5 Computations: x = 42 kilowatt hours, s = 11.9 kilowatt hours, and n = 12. Hence 42 46 t = 11.9/ = 1.16, P = P(T < 1.16) 0.135 12 Desicion: Do not reject H 0 and conclude that the average number of kilowatt hours used annually by home vacuum cleaners is not significantly less than 46.

Uji Hipotesis Dua Rata-Rata Kriteria Pengujian

Statistik Uji i. Jika variansi (σ1 2 dan σ2 2 ) diketahui, n 30. Statistik ujinya: z 0 = ( x 1 x 2 ) d 0 σ 2 1 n 1 + σ2 2 n 2 ii. Jika variansi (σ1 2 dan σ2 2 ) tidak diketahui namun dianggap sama, n < 30. Statistik ujinya: t 0 = ( x 1 x 2 ) d 0 1 s p (n dengan s p = 1 1)s1 2+(n2 1)s2 2 n 1+n 2 2. Derajat bebas: ν = n 1 + n 2 2. n 1 + 1 n 2

iii. Jika variansi (σ1 2 dan σ2 2 ) tidak diketahui namun dianggap berbeda, n < 30. Statistik ujinya: Derajat bebas: ν = t 0 = ( x 1 x 2 ) d 0 s 2 1 n 1 + s2 2 n 2 ( s 1 2 ) + s2 2 n 1 n2 ( ) s 2 2 1 n 1 ( ) s 2 2 2 n 2 n 1 1 + n 2 1.

An experiment was performed to compare the abrasive wear of two different laminated materias. Twelve pieces of material 1 were tested by exposing each piece to a machine measuring wear. Ten pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average (coded) wear of 85 units with a sample standard deviation of 4, while the samples of material 2 gave an average of 81 with a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the abrasive wear of material 1 exceeds that of material 2 by more than 2 units? Assume the populations to be approximately normal with equal variances?

Let µ 1 and µ 2 represent the population means of the abrasive wear for material 1 and material 2, respectively. 1 H 0 : µ 1 µ 2 = 2 2 H 1 : µ 1 µ 2 > 2 3 α = 0.05 4 Critical region: t > 1.725, where t = ( x 1 x 2 ) d 0 s p 1/n1 +1/n 2 ν = 20 degrees of freedom 5 Computations: x 1 = 85, s 1 = 4, n 1 = 12 x 2 = 81, s 2 = 5, n 2 = 10 with

Hence, (11)(16) + (9)(25) s p = = 4.478 12 + 10 2 (85 81) 2 t = 4.478 1/12 + 1/10 = 1.04 P = P(T > 1.04) 0.16 Decision: Do not reject H 0. We are unable to conclude that the abrasive wear of material 1 exceeds that of material 2 by more than 2 units.

Uji Hipotesis Data Berpasangan Kriteria Pengujian

Statistik Uji t 0 = d d 0 s d n dengan d 2 ( d) 2 s d = n 1 dan n adalah jumlah pasangan data. Derajat bebas: ν = n 1. n

Table below shows the results of a bioavailability study comparing a new formulation (A) to a marketed form (B) with regard to the area under the blood-level curve. The average difference is 18.5 and the standard deviation of the differences is 13. Test at the 0.05 level of significance that there is difference of the bioavailability between A and B. Animal A B d i 1 136 166 30 2 168 184 16 3 160 193 33 4 94 105 11 5 200 198-2 6 174 197 23

1 H 0 : µ 1 = µ 2 or µ D = µ 1 µ 2 = 0 2 H 1 : µ 1 µ 2 or µ D = µ 1 µ 2 0 3 α = 0.05 4 Critical region: t < 2.571 or t > 2.571, where t = ( x 1 x 2 ) d 0 with ν = 5 degrees of freedom s p 1/n1 +1/n 2 5 Computations: the sample mean and standard deviation for the d i are d = 18.5 dan s d = 13 then t = d d 0 s d / n = 18.5 0 13/ 6 = 3.48 Decision: Reject H 0 which mean that there is difference at the bioavailibility of formulation A and B.

Uji Hipotesis Satu Variansi Kriteria Pengujian

Statistik Uji χ 2 = (n 1)s2 σ 2 0 di mana n adalah ukuran sampel, s 2 adalah variansi sampel, dan σ 2 0 adalah nilai σ2 yang diberikan oleh H 0. Jika H 0 benar, χ 2 adalah nilai dari distribusi chi-squared dengan derajat bebas ν = n 1.

Tabel Distribusi Chi-Squared

A manufacturer of car batteries claims that the life of company s batteries is approximately normally distributed with a standard deviation equal to 0.9 year. If a random sample of 10 of these batteries has a standard deviation of 1.3 years, do you think that σ > 0.9 year? Use a 0.05 level of significance.

1 H 0 : σ 2 = 0.81 2 H 1 : σ 2 > 0.81 3 α = 0.05 4 Critical region: H 0 is rejected when χ 2 > 16.919, where χ 2 = (n 1)s2 with ν = 9 degrees of freedom. σ0 2 5 Computations: s 2 = 1.44, n = 10, and χ 2 = (9)(1.69) 0.81 = 18.78 Decision: Reject H 0 which mean that there is evidence that σ > 0.9.

Uji Hipotesis Dua Variansi Kriteria Pengujian Catatan: f 1 α(ν1,ν 2 ) = 1 f α(ν2,ν 1 )

Statistik Uji f = s2 1 s 2 2 di mana s1 2 dan s2 2 variansi dari kedua sampel. Jika dua populasi tersebut menghampiri distribusi normal dan H 0 benar, maka rasio f = s2 1 adalah sebuah nilai dari distribusi F s2 2 dengan derajat bebas ν 1 = n 1 1 dan ν 2 = n 2 1.

In testing for the difference in the abrasive wear of the two materials in example before, we assumed that the two unknown population variances were equal. Were we justified in making this assumption? Use a 0.10 level of significance.

Let σ1 2 and σ2 2 be the population variances for the abrasive wear of material 1 and 2, repectively. 1 H 0 : σ 2 1 = σ2 2 2 H 1 : σ 2 1 σ2 2 3 α = 0.10 4 Critical region: f α/2(ν1,ν 2 ) = f 0.05(11,9) = 3.11 and f 1 0.05(11,9) = 1 f 0.05(9,11) = 0.34. Therefore, H 0 is rejected when f < 0.34 or f > 3.11. 5 Computations: s1 2 = 16, s2 16 2 = 25, and hence f = 25 = 0.64 Decision: Do not reject H 0. Conclude that there is insufficient evidence that variances differ.

Uji Hipotesis 1. According to a dietary study, high sodium intake may be related to ulcers, stomach cancer, and migrain headaches. The human requirement for salt is only 220 milligrams per day, which is surpassed in most single servings of ready-to-eat cereals. If a random sample of 20 similar servings of a certain cereal has a mean sodium content of 244 milligrams and a standard deviation of 24.5 milligrams, does this suggest at the 0.05 level of significance that the average sodium content for a single serving of such cereal is greater than 220 milligrams?

2. According to Chemical Engineering, an important property of fiber is its water absorbency. The average percent absorbency of 25 randomly selected pieces of cotton fiber was found to be 20 with a standard deviation of 1.5. A random sample of 25 pieces of acetate yielded an average percent of 12 with a standard deviation of 1.25. Is there strong evidence that the population mean percent absorbency is significantly higher for cotton fiber than for acetate? Assume that the population variances in percent absorbency for the two fibers are the same. Use a significance level of 0.05.

3. In a study conducted by the Department of Human Nutrition and Foods at Virginia Tech, the following data were recorded on sorbic acid residuals, in parts per million, in ham immediately after dipping in a sorbate solution and after 60 days of storage. Is there sufficient evidence, at the 0.05 level of significance, to say that the length of storage influences sorbic acid residual concentrations?

4. Aflotoxins produced by mold on peanut crops in Virginia must be monitored. A sample of 64 batches of peanuts reveals levels of 24.17 ppm, on average, with a variance of 4.25 ppm. Test the hypothesis that σ 2 = 4.2 ppm against the alternative that σ 2 4.2 ppm.

5. A study is conducted to compare the lengths of time required by men and women to assemble a certain product. Past experience indicates that the distribution of times for both men and women approximately normal but the variance of the times for women is less than that for men. A random sample of times for 11 men and 14 women produced the following data Test the hypothesis that σ1 2 = σ2 2 σ1 2 > σ2 2. against the alternative that