ANALISIS MARKOV A B C

dokumen-dokumen yang mirip
ANALISIS MARKOV Proses Markov Matriks kemungkinan perpindahan keadaan / transisi

BAB V ANALISA DATA. 5.1 Analisa Market Share Awal. Dari perhitungan pemilihan merek produk dapat diketahui bahwa tingkat

Markov Chain. Game Theory. Dasar Simulasi

Peramalan Pangsa Pasar dengan Teknik Rantai Markov (Markov Chains) Oleh: Zainul Muchlas, SE., MM.

BAB I PENDAHULUAN. 1.1 Latar Belakang. Pemasaran merupakan suatu sistem total dari kegiatan bisnis yang

BAB 2 LANDASAN TEORI

BAB I PENDAHULUAN. dipenuhi oleh manusia, sehingga diperlukan tambahan fasilitas untuk dapat

BAB 2 LANDASAN TEORI

Hanna Lestari, ST, M.Eng. Lecture 11 : Rantai Markov

MODEL RANTAI MARKOV PANGSA PASAR OPERATOR SELULAR DI UNIVERSITAS BINA NUSANTARA, JAKARTA BARAT

Diterima : 19 Agustus 2014 Disetujui : 2 September 2014

BAB II TINJAUAN PUSTAKA. estimasi data yang akan datang. Peramalan atau Forecasting merupakan bagian

BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN. Analisis Markov merupakan sebuah teknik yang berhubungan dengan

PERAMALAN PANGSA PASAR KARTU GSM DENGAN PENDEKATAN RANTAI MARKOV

Bab 2 LANDASAN TEORI

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. Industri peternakan di Indonesia saat ini sedang mengalami kelesuan. Berbagai

S - 9 PERGESERAN PANGSA PASAR KARTU SELULER PRA BAYAR GSM MENGGUNAKAN ANALISIS RANTAI MARKOV (Studi Kasus: Mahasiswa FMIPA UNSRAT Manado)

BAB 2 LANDASAN TEORI

IMPLEMENTASI PENERAPAN MARKOV CHAIN PADA DATABASE MARKETING STUDI KASUS PELANGGAN E-COMMERCE

RANTAI MARKOV ( MARKOV CHAIN )

Rantai Markov dan Aplikasinya Sebagai Bagian dari Ilmu Probabilitas

Tentukan alokasi pemasaran yang optimum supaya diperoleh keuntungan maksimum.

ANALISIS PERPIDAHAN PENGGUNAAN MEREK SIMCARD DENGAN PENDEKATAN RANTAI MARKOV

BAB 1 PENDAHULUAN Latar Belakang

BAB 4. ANALISIS dan HASIL PENELITIAN

PENDEKATAN PERSAMAAN CHAPMAN-KOLMOGOROV UNTUK MENGUKUR RISIKO KREDIT. Chairunisah

Matematika dan Statistika

BAB I PENDAHULUAN. Dalam era globalisasi ini persaingan menjadi sangat tajam, baik di pasar domestik

BAB I PENDAHULUAN. menyebabkan banyak perusahaan produsen minyak goreng di Indonesia lebih

PERENCANAAN JUMLAH TENAGA PERAWAT DI RSUD PAMEKASAN MENGGUNAKAN RANTAI MARKOV

BAB 1 PENDAHULUAN. banyaknya perusahaan yang terlibat dalam pemenuhan dan keinginan konsumen

METODE PENELITIAN Lokasi dan Waktu Penelitian Metode Pengumpulan Data Defenisi Operasional Penelitian

Bab I Pendahuluan - 1. Bab I. Pendahuluan. Era globalisasi dewasa ini merupakan suatu isu yang banyak

ANALISIS MARKOV CHAIN UNTUK FORECASTING PANGSA PASAR HANDPHONE DAN PEMROGRAMNNYA

BAB I PENDAHULUAN. pada tanggal 4 September 2003 yang beralamat di JL. Raya R.C Veteran no

BAB I PENDAHULUAN. mempengaruhi kebutuhan mereka di pasar. Perusahaan akan mendapat tempat di

KONTRAK PEMBELAJARAN

BAB 2 TINJAUAN PUSTAKA

Berikut ini pengertian dari bauran pemasaran (Marketing Mix) menuru para

BAB III. Penelitian merupakan serangkaian aktivitas yang dilakukan secara sitematis, logis

BAB I PENDAHULUAN. mungkin. Para pelaku bisnis di industri terus berupaya agar apa yang mereka

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KONSUMEN DALAM PENGAMBILAN KEPUTUSAN PEMBELIAN PRODUK MIE INSTAN MEREK SEDAP

BAB II TINJAUAN PUSTAKA. X(t) disebut ruang keadaan (state space). Satu nilai t dari T disebut indeks atau

BAB I PENDAHULUAN. sumber yang dapat dipercaya, petunjuk atau reputasi yang telah dibuat.

Programming TV. Segmentasi Demografis + Psikografis. Syaifuddin, S.Sos, M.Si. Modul ke: Fakultas Ilmu Komunikasi

BAB II LANDASAN TEORI

TOOLS SIMULASI INVENTORI PADA SUPERMARKET

Istilah games atau permainan berhubungan erat dengan kondisi pertentangan bisnis yang meliputi suatu periode tertentu.

STUDI KASUS : SIMULASI MODEL PERMINTAAN SUPERMARKET DENGAN TEKNIK MONTECARLO

PERUBAHAN DIGITAL dan LINGKUNGAN BISNIS. Pertemuan 2

ANALISIS PENYEBAB TERJADINYA SELISIH ANGGARAN PENJUALAN PADA KOPERASI KARYAWAN CV. ANANDA PUTRI PALEMBANG. Oktariansyah *) ABSTRAK

TUGAS EVALUASI KELOMPOK III

BAB 4 HASIL DAN PEMBAHASAN. sarung tangan kain dan sarung tangan karet.

BAB IV HASIL PENELITIAN. Tabel 4 Hasil Pekerjaan Siswa

BAB I PENDAHULUAN. dan setiap perusahaan mempunyai tujuan yang sama yaitu memperoleh profit dan

Pemain B B 1 B 2 B 3 9 5

BAB I PENDAHULUAN. Pertumbuhan dunia bisnis begitu pesat mengakibatkan timbulnya tingkat

STRATEGI PEMASARAN DALAM PERSAINGAN BISNIS

Bab 2 LANDASAN TEORI

PEMODELAN HUBUNGAN PELANGGAN DAN PERUSAHAAN MENGGUNAKAN RANTAI MARKOV ADITYA PRAYUDANTO

IV. HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. dengan harapannya. Sehingga berakibat pelanggan akan lebih cermat dan pintar

BAB I PENDAHULUAN. Dalam kehidupan sehari-hari, sering dijumpai peristiwa-peristiwa yang terjadi

TEORI PERMAINAN. Tidak setiap keadaan persingan dapat disebut sebagai permainan (game). Kriteria atau ciri-ciri dari suatu permainan adalah :

METODE PENELITIAN A. Metode Dasar Penelitian B. Metode Pengumpulan Data 1. Metode Penentuan Lokasi Penelitian 2. Metode Pengambilan Sampel

BAB I PENDAHULUAN. Tentang Perkoperasian menjadi payung hukum sementara bagi BMT. ada 41 BMT dan 10 BTM, dan tahun 2013 ada 42 BMT dan 10 BTM.

4 METODE PENELITIAN Lokasi dan Waktu Penelitian Jenis dan Sumber Data Teknik Pengumpulan Data

BAB II LANDASAN TEORI. Bab ini berisikan landasan teori yang berhubungan dengan masalah penelitian dan

BAB I PENDAHULUAN. penciptaan atau pembuatan barang, jasa, atau kombinasinya, melalui transformasi

BAB 2. LANDASAN TEORI dan RERANGKA PEMIKIRAN

BAB I PENDAHULUAN. penjual dan pembeli harus saling bertemu atau bertatap muka pada suatu tempat

BAB II GAMBARAN UMUM PERUSAHAAN. didistribusikan ke toko toko bangunan atau galangan. CV VARIA berdiri tahun

MENINGKATKAN HASIL BELAJAR SISWA MELALUI PENERAPAN TEORI BELAJAR VAN HIELE PADA MATERI VOLUME KUBUS DAN BALOK

BAB I PENDAHULUAN. tepat untuk melayani pasar konsumen. Pemasaran bukan sekedar fungsi bisnis

Teori permainan mula-mula dikembangkan oleh ilmuan Prancis bernama Emile Borel, secara umum digunakan untuk menyelesaikan masalah yang

DAFTAR ISI Daftar Isi...i Daftar Tabel...iv Daftar Gambar...vi Bab I : Pendahuluan... 1 Bab II : Kajian Pustaka dan Kerangka Pemikiran...

BAB I PENDAHULUAN. Era globalisasi menuntut setiap orang untuk dapat berpikiran maju. Ilmu

BAB I PENDAHULUAN. Dalam era Globalisasi, tingkat ketergantungan antar bangsa tidak dapat dihindari.

ANALISA STRATEGI PEMASARAN DALAM MENINGKATKAN VOLUME PENJUALAN PADA DEPOT AIR ISI ULANG BIRU

TUGAS E- BISNIS. Di susun oleh: Nama : Nur Rokhayati NIM : Kelas : S1 TI 6A STMIK AMIKOM YOGYAKARTA

BAB II TINJAUAN PUSTAKA. Menurut Hansen & Mowen (2005:274) Analisis biaya-volume-laba (costvolume-profit

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat,

BAB I PENDAHULUAN. perubahan yang ada, baik politik, sosial budaya, ekonomi dan teknologi. Sebagian

BAB I PENDAHULUAN. faktor utama yang menentukan pemilihan produk bagi pelanggan.

BAB I PENDAHULUAN I.1 Latar Belakang

Transkripsi:

ANALISIS MARKOV I. ANALISIS PERPINDAHAN MERK Dasar-dasar analisis Markov diaplikasikan pada permasalahan perpindahan merk dalam studi kasus yang diambil dari Soemartojo (1989). Terdapat 3 buah pabrik susu di suatu masyarakat yang melengkapi seluruh kebutuhan susu, ABBOT MILK, BRANC COMPANY, dan CARTER MILK. Selanjutnya, ketiga merk tersebut disebut A, B dan C. Setiap perusahaan susu mengetahui bahwa para pelanggan berpindah-pindah dari satu merk ke merk lainnya dalam waktu tertentu yang disebabkan karena ketidakpuasan pelayanan maupun alasan lainnya. Ketiga pabrik mengadakan pendataan banyaknya pelanggan dan banyak pelanggan baru yang diperoleh dari pabrik lain sehingga diperoleh bahan yang diperlukan untuk penerapan alat managemen. Tabel 2.1 menggambarkan gerakan pelanggan dari satu pabrik ke pabrik lainnya selama pengamatan dalam periode 1 bulan. Tabel 2.1. Gerakan perubahan pelanggan pabrik A, B, dan C Jumlah pelanggan Pabrik Juni I Juli I A 200 220 B 500 490 C 300 290 Langkah selanjutnya adalah menyederhanakan model matematika yang diperlukan. Diasumsikan bahwa tidak ada pelanggan baru yang masuk dan tidak ada pelanggan lama yang yang pergi meninggalkan pasaran selama periode ini. Hasil selengkapnya dapat dilihat pada Tabel 2.2. 1

Tabel 2.2. Perubahan sebenarnya dari pelanggan A, B dan C Pabrik Juni I Perubahan selama Juni Juli I Pelanggan Perolehan Kehilangan Pelanggan A 200 60 40 220 B 500 40 50 490 C 300 35 45 290 Dari Tabel 2.2 dapat dilihat bahwa 20 pelanggan dimenangkan oleh merk A dengan perpindahan yang agak kompleks dari pelanggan yang melibatkan ketiga pabrik tersebut. Gerakan ini dalam pemasaran dikenal sebagai brandswitching atau perpindahan merk. Setiap pabrik memerlukan informasi mendetail tentang brand-switching jika ingin melakukan pekerjaan marketing sebaik mungkin. Jika pabrik B, misalkan merencanakan suatu kampanye promosi dengan kesan bahwa ia merupakan satu-satunya pabrik yang kehilangan pelanggan dan bahwa pelanggan berpindah ke merk A, maka B bertindak atas perumpamaan yang salah. Pada kenyataannya, pabrik B tidak hanya kehilangan 10 pelanggan setiap bulannya, tetapi setiap bulannya ia bertambah 40 pelanggan baru dari dua pabrik lainnya tetapi kehilangan 50 pelanggan lama yang pindah kedua merk lainnya. Demikian juga, jika pabrik A menganggap bahwa ia memperoleh tambahan 20 pelanggan setiap bulannya, dan hanya memusatkan pada usaha untuk memperoleh tambahan pelanggan dari B dan C. Pabrik A telah melalaikan kerugiannya kehilangan 40 pelanggan setiap bulannya. Mungkin suatu usaha untuk mengurangi berpindahnya 40 pelannggan setiap bulannya akan sama efektifnya dihitung dalam nilai dolar sebagai usahanya untuk memperoleh tambahan pelanggan berasal dari B dan C. Analisis sederhana yang melibatkan netto pertambahan dan netto kehilangan pelanggan tidak sesuai untuk manajemen yang baik. Analisis yang lebih mendetail tentang rata-rata penambahan dan pengurangan pelanggan 2

terhadap semua saingan merupakan analisis yang diperlukan untuk manajemen. Dengan data semacam itu, manajemen dapat berusaha untuk 1. menduga dari pasaran yang akan diperoleh penjual di waktu mendatang 2. menduga rata-rata tambahan atau penurunan bagian pasaran dari penjual di waktu mendatang, 3. menduga apakah suatu keseimbangan pasaran (tingkatan perimbangan pasaran yang konstan) mungkin dapat dicapai di waktu mendatang, 4. menganalisis usaha promosi dari penjual dalam kaitannya secara tepat dengan pengaruhnya terhadap penambahan dan pengurangan bagian pasaran (market share). Analisis Markov menyajikan alat untuk analisis pasaran sehingga dapat ditarik sebuah kesimpulan yang lebih cermat tentang kedudukan pasaran di masa sekarang dan mendatang. Untuk menggunakan analisis Markov ditentukan terlebih dahulu probabilitas peralihan (transisi) untuk semua pabrik. Probabilitas transisi adalah probabilitas bahwa penjual tertentu (dalam kasus ini pabrik A, B dan C) akan mempertahankan, menambah atau kehilangan pelanggannya. Dari Tabel 2.3, pabrik B kehilangan 50 pelanggan selama bulan Juni dengan kata lain pabrik B memiliki probabilitas 0.9 untuk mempertahankan pelanggan. Pabrik A memiliki probabilitas 0.8 untuk mempertahankan pelanggan dan pabrik C memiliki probabilitas 0.85 untuk mempertahankan pelanggan. Perhitungan transisi probabilitas untuk mempertahankan pelanggan disajikan dalam Tabel 2.3. Tabel 2.3 Transisi probabilitas untuk mempertahankan pelanggan. Pelanggan Jumlah yang Jumlah yang Probabilitas Pabrik (Juni) pergi bertahan bertahan A 200 40 160 0.8 B 500 50 450 0.9 C 300 45 255 0.85 Dalam hal ini terdapat ukuran dari pelanggan lama yang bertahan di suatu pabrik atau merk setiap bulannya. Tetapi, belum dapat disimpulkan apa pun, 3

tentang rata-rata perolehan tambahan langganan baru ketiga pabrik setiap bulannya. Perhitungan akan kelengkapan data dari transisi probabilitas akan memerlukan data aliran pelanggan di antara ketiga pabrik tersebut. Data semacam ini memerlukan paengambilan data yang baik dan akan memiliki bentuk seperti pada Tabel 2.4. Tabel 2.4. Aliran pelanggan pabrik A, B dan C. Pabrik Pelanggan Bertambah dari Kehilangan ke Pelanggan (Juni) (Juli) A B C A B C A 200 0 35 25 0 20 20 220 B 500 20 0 20 35 0 15 490 C 300 20 15 0 25 20 0 290 Dari tabel 2.4 dapat diamati bahwa netto bertambah atau berkurangnya pelanggan untuk ketiga pabrik tersebut dan hubungan antara bertambah dan berkurangnya pelanggan untuk setiap pabrik. Misal, pabrik A memperoleh tambahan pelanggan dari B lebih banyak dari yang diperoleh pabrik C. Langkah selanjutnya dalam analisis Markov adalah mengubah Tabel 2.4 dalam bentuk ringkas dan sederhana, dengan semua penambahan dan pengurangan diubah dalam probabilitas transisi. Probabilitas transisi disajikan dalam bentuk matriks. Dugaan terhadap bagian pasaran di periode mendatang Dalam matriks probabilitas telah dicakup untuk setiap pabrik probabilitas mempertahankan dan probabilitas kehilangan pelanggan berpisah kedua pabrik pesaingnya. Baris dalam matriks menunjukkan mempertahankan pelanggan dan kehilangan pelanggan, kolom menunjukkan mempertahankan pelanggan dan penambahan pelanggan. Matriks probabilitas transisi diperoleh dari aliran pelanggan dari setiap pabrik pada tabel tabel 2.4 yang disederhanakan menjadi Pabrik A B C 4

160 20 20 35 450 15 220 490 290 Pabrik...kehilangan pelanggan ke pabrik... Mempertahankan pelanggan Pabrik...mendapatkan Perhitungan pelanggan untuk matriks dari pabrik probabilitas... transisi Tabel 2.5 Matriks probabilitas transisi keterangan : 160 200 =0.800 20 200 =0.100 20 200 =0.100 35 450 =0.070 500 500 =0.900 15 500 =0.030 25 300 =0.083 20 255 =0.067 300 300 =0.850 a. baris dari matriks probabilitas transisi 1. Baris 1 menunjukkan bahwa pabrik A menahan 0.8 dari pelanggannya (160), kehilangan 0.1 dari pelanggannya (20) yang pindah ke B, dan kehilangan 0.1 dari pelanggannya (20) yang pindah ke C. 2. Baris 2 menunjukkan bahwa pabrik B menahan 0.9 dari pelanggannya (450), kehilangan 0.07 dari pelanggannya (35) yang pindah ke A, dan kehilangan 0.03 dari pelanggannya (15) yang pindah ke C. 3. Baris 3 menunjukkan bahwa pabrik C menahan 0.85 dari pelanggannya (255), kehilangan 0.083 dari pelanggannya (25) yang pindah ke A, dan kehilangan 0.067 dari pelanggannya (20) yang pindah ke B. b. kolom dari matriks probabilitas transisi 1. Kolom 1 menunjukkan bahwa pabrik A menahan 0.8 dari pelanggannya (160), bertambah 0.07 pelanggan (35) yang berasal dari pabrik B, dan bertambah 0.083 pelanggan (25) berasal dari pabrik C. 5

2. Kolom 2 menunjukkan bahwa pabrik B menahan 0.9 dari pelanggannya (450), bertambah 0.1 pelanggan (20) yang berasal dari pabrik A, dan bertambah 0.067 pelanggan (20) berasal dari pabrik C. 3. Kolom 3 menunjukkan bahwa pabrik C menahan 0.85 dari pelanggannya (255), bertambah 0.01 pelanggan (20) yang berasal dari pabrik A, dan bertambah 0.03 pelanggan (15) berasal dari pabrik B. Stabilitas matriks probabilitas transisi Analisis Markov menaruh perhatian terhadap penunjang keputusan konsumen. Hal ini meliputi berapa banyak konsumen yang sedang membeli dan di pabrik mana. Suatu anggapan dasar bahwa para konsumen tidak beralih pola dari pabrik ke pabrik secara acak, melainkan diumpamakan bahwa pilihan terhadap pabrik mana yang ia akan beli dikemudian hari mencerminkan pilihan-pilihan yang telah dilakukan di masa lampau. Proses Markov Order Pertama Didasarkan pada perumpaman bahwa probabilitas dari kejadian berikutnya (dalam kasus ini, pilihan pelanggan akan penjual bulan depan) tergantung pada hasil dari kejadian terakhir (pilihan pelanggan bulan ini) dan tidak bergantuing pada perangai pembeli sebelumnya. Prose Markov Order Kedua Diumpamakan bahwa pilihan pelangan untuk bulan depan mungkin tergantung pada pilihan mereka selama 2 bulan terdekat yang lampau (atau periode pembelian lainnya). Proses Markov Order Ketiga Didasarkan atas perumpaman bahwa kelakuan pelanggan dapat diduga secra baik dengan mengamati dan memperhitungkan kelakuannya selama 3 bulan (atau periode pembelian lainnya yang sesuai). 6

Perhitungan matematika dari proses Markov order pertama tidak sulit. Tetapi dalam proses order kedua dan order ketiga perhitungan menjadi lebih rumit dan sulit. Penyelidikan menunjukkan bahwa penggunaan perumpaman order pertama untuk tujuan pendugaan bukan tak berlaku, khususnya jika data ternyata menunjukkan bahwa pilihan pelanggan mengikuti suatu pola yang cukup stabil, yaitu jika matriks transisi probabilitas tetap stabil. Karena matriks transisi probabilitas telah membuktikan merupakan peramal yang dapat dipercaya dari kelakuan mendatang, kita akan membatasi penanganan kita dengan proses-proses order pertama. Penggunaan aljabar matrik untuk kalkulasi Dimisalkan bahwa matriks probabiliats dapat dianggap stabil dan bahwa bagian pasaran (market share) 1 Juli adalah A=22%, B=49%, C=29%. Para manager dari ketiga pabrik akan memanfaatkan pengetahuan mereka akan pasaran untuk menduga bagian pasaran dalam periode mendatang. Untuk menghitung bagian pasaran yang mungkin dari pasaran seluruhnya untuk setiap pabrik pada tanggal 1 Agustus, disusun bagian pasaran 1 Juli sebagai matriks dan mengalikannya dengan matriks transisi probabilitas sebagi berikut. Bagian pasaran 1 Juli probabilitas transisi = Bagian pasaran 1 Agustus yang mungkin 0.800 0.100 0.100 0.22 0.49 0.29 0.070 0.900 0.030 = 0.234 0.483 0.283 0.083 0.067 0.850 Keterangan : a. Baris ke 1 x kolom ke 1 Bagian pasaran A x kecenderungan A mempertahankan pelanggan 0.22 0.800=0.176 Bagian pasaran B x kecenderungan A menarik pelanggan dari B 0.49 0.070=0.034 7

Bagian pasaran C x kecenderungan A menarik pelanggan dari C 0.29 0.083=0.024 Jadi bagian pasaran A pada 1 Agustus 0.176+0.034+0.024=0.234 b. Baris ke 1 x kolom ke 2 Bagian pasaran A x kecenderungan B menarik pelanggan dari A 0.22 0.100=0.022 Bagian pasaran B x kecenderungan B mempertahankan pelanggan 0.49 0.900=0.441 Bagian pasaran C x kecenderungan B menarik pelanggan dari C 0.29 0.067=0.020 Jadi bagian pasaran B pada 1 Agustus 0.022+0.441+0.020=0.483 c. Baris ke 1 x kolom ke 3 Bagian pasaran A x kecenderungan C menarik pelanggan dari A 0.22 0.100=0.022 Bagian pasaran B x kecenderungan C menarik pelanggan dari B 0.49 0.030=0.015 Bagian pasaran C x kecenderungan C mempertahankan pelanggan 0.29 0.850=0.246 Jadi bagian pasaran C pada 1 Agustus 0.022+0.015+0.246=0.283 Market share atau bagian pasaran yang mungkin pada 1 September dapat juga dihitung dengan : Metode I memangkatkan dua terhadap matriks probabilitas transisi dan mengalikan matriks yang telah dipangkatkan dua dengan bagian pasaran 1 Juli. 8

0.800 0.100 0.100 0.22 0.49 0.29 0.070 0.900 0.030 0.083 0.067 0.850 Berikut dijelaskan logika dari metode 1 ini. Dengan mengkuadratkan matriks probabilitas transaksi dari penahanan, dalam kenyataannya telah dihitung probabilitas dari penahanan. Penambahan dan kehilangan yang dapat dilakukan dengan bagian pasaran yang originil (0.22, 0.49 dan 0.29) untuk menghasilkan bagian pasaran yang akan diperoleh pada 1 September. 0.800 0.100 0.100 0.800 0.100 0.100 0.6553 0.1767 0.1680 0.070 0.900 0.030 0.070 0.900 0.030 = 0.1215 0.8190 0.0595 0.083 0.067 0.850 0.083 0.067 0.850 0.1416 0.1256 0.7328 Keterangan : - Bagian dari pelanggan A yang ditahan pada 1 September 0.6553 - Bagian dari pelanggan B yang ditahan pada 1 September 0.8190 - Bagian dari pelanggan C yang ditahan pada 1 September 0.7328 0.6553 0.1767 0.1680 0.22 0.49 0.29 0.1215 0.8190 0.0595 = 0.245 0.477 0.278 0.1416 0.1256 0.7328 Keterangan: - Market share dari A yang mungkin pada 1 September 0.245 - Market share dari B yang mungkin pada 1 September 0.477 - Market share dari C yang mungkin pada 1 September 0.278 Metode II Mengalikan matriks probabilitas transisi dengan bagian pasaran 1 Agustus maka akan memberikan hasil yang sama seperti pada metode 1. 0.800 0.100 0.100 0.234 0.483 0.283 0.070 0.900 0.030 = 0.245 0.477 0.278 0.083 0.067 0.850 Metode 1 mempunyai kelebihan dibandingkan dengan metode 2. Jika diinginkan menghitung dari periode awal sampai tiga periode, tidak perlu melewati langkah perantara jika digunakan metode 1. 9

Market share yang mungkin pada 1 oktober diperoleh dengan 0.800 0.100 0.100 0.22 0.49 0.29 0.070 0.900 0.030 0.083 0.067 0.850 Market share yang mungkin pada 1 Januari diperoleh dengan 0.800 0.100 0.100 0.22 0.49 0.29 0.070 0.900 0.030 0.083 0.067 0.850 Penggunaan dari dua metode untuk menghitung market share periode-periode yang akan datang Metode 1 : jika ingin mengetahui market share dari suatu periode tertentu di waktu yang akan datang. Metode 2 : jika ingin mengamati perubahan-perubahan yang nampak dalam market share selama semua periode yang terletak di antaranya. II. KEADAAN SEIMBANG Cukup beralasan untuk beranggapan bahwa market share antara pabrikpabrik yang bersaing akan mencapai suatu keadaan seimbang diwaktu mendatang. Dalam keadaan seimbang, perpindahan pelanggan masih dapat berjalan terus, tetapi market share mencapai saat membeku. Jelas bahwa keadaan seimbang dapat dicapai hanya jika tidak ada perusahaan yang mengadakan tindakan khusus yang mengakibatkan berubahnya matriks probabilitas transisi. Berikut diberikan bagaimana market share yang seimbang. Keseimbangan Satu Pabrik Untuk menggambarkan keseimbangan, diumpamakan suatu matriks probabilitas transisi yang baru sebagai berikut: Menahan dan kehilangan 0.85 0.10 0.05 0.15 0.75 0.10 0 0 1.0 Menahan dan bertambah 10

Matriks ini menunjukkan bahwa C tidak pernah kehilangan pelanggan yang lari ke A dan B. padahal baik A maupun B kehilangan pelanggan yang lari ke C. Ini berarti bahwa pabrik C suatu saat akan dapat semua pelanggan. Dalam terminology Markov ini disebut keadaan SINK atau BASIN, berarti tenggelam atau baskom dalam satu keadaan C disebut penyerap. Keseimbangan Dua Pabrik Keseimbangan dua pabrik dapat juga terjadi, dan untuk menunjukkan keadaan ini kita tampilkan sebuah matriks probabilitas transisi yang baru sebagai berikut: 0.90 0.05 0.05 0 0.50 0.50 0 0.50 0.50 Dari data ini dapat ditarik beberapa kesimpulan. Pelanggan dari B maupun C tidak ada yang berpindah ke A. dapat dilihat bahwa pada suatu ketika pabrik B dan C akan menangkap semua pelanggan A. Ini benar, karena A kehilangan 5% pelanggan lari ke B dan 5% pelanggan lari ke C, tetapi tidak memperoleh kembali pelanggan dari B maupun C. karena B dan C kedua-duanya memiliki probabilitas menahan pelanggan sebesar 50%, mereka pasti akan membagi dua pasarannya. Ini merupakan SINK atau BASIN dalam dua keadaan, ialah B dan C membagi dua seluruh pelanggan yang ada di pasaran. Keseimbangan Tiga Pabrik Dapat dimiliki suatu keseimbangan dimana tidak terjadi SINK atau BASIN. Dalam kasus ini tidak ada satu pabrikpun yang memperoleh semua pelanggan dan tidak ada dua pabrik yang menangkap seluruh pelanggan pelanggan di pasaran. Tetapi suatu keadaan akhir atau keadaan seimbang akan tercapai dimana market share tidak akan berubah selama matriks probabilitas transisi tetap sama. 11

Masalah tiga pabrik yang awal menggambarkan suatu keadaan seimbang jenis ketiga. Untuk menemukan market share dari keadaan seimbang atau keadaan akhir dari masalah orisinil dapat dilakukan sebagai berikut: 0.800 0.100 0.100 0.070 0.900 0.030 = 0.083 0.067 0.850 Sekarang bagian A dari pasaran dalam periode seimbang (ditandai dengan eq) sama dengan 0.800 kali bagian A dalam periode 1, yaitu periode sebelum periode seimbang. + 0.070 1 + 0.083 1 Hubungan ini dapat ditulis sebagai persamaan: =0.800 +0.070 +0.083 Jelas kita dapat menulis dua persamaan lagi yang menggambarkan bagian-bagian dari B dan C dalam periode seimbang: =0.100 +0.900 +0.067 =0.100 +0.030 +0.850 Dalam periode-periode awal, penambahan dan kehilangan dari pabrik ke pabrik lainnya lazimnya berjumlah agak besar. Tetapi jika mendekati keadaan seimbang, penambahan dan kehilangan dari pabrik ke pabrik menjadi berkurang sampai saat-saat sebelum keadaan seimbang dicapai, perubahan tersebut adalah sangat kecil. Dalam kasus proses Markov, perubahan dalam market share antara periode seimbang dan sebelumnya sedemikian kecil sehingga untuk tujuan-tujuan matematis, keduanya dianggap sama, yaitu =. Ini mengakibatkan bahwa kita dapat menulis kembali persamaan kita sebagai berikut: =0.800 +0.070 +0.083 (1) =0.100 +0.900 +0.067 (2) =0.100 +0.030 +0.850 (3) Karena jumlah dari ketiga market share adalah 1.0 didapat persamaan lain: 1= + + (4) Keempat persamaan tersebut di atas ditulis kembali sebagai berikut: 12

0= 0.200 +0.070 +0.083 (1) 0=0.100 0.100 +0.067 (2) 0=0.100 +0.030 0.150 (3) 1= + + (4) Diperoleh empat persamaan dengan hanya 3 anu (yang belum diketahui), maka dapat meniadakan satu dari tiga persamaan pertama, dihilangkan persamaan (3), dan tiga persamaan yang tersisa adalah: 0= 0.200 +0.070 +0.083 (1) 0=0.100 0.100 +0.067 (2) 1= + + (4) Langkah 1 Dikalikan (2) dengan 0.7, kemudian ditambahkan pada (1) 0.7 2 0=0.700 0.700 +0.47 (2) 0= 0.200 +0.070 +0.083 + (1) 0.130 =0.130 = Langkah 2 Dikalikan (2) dengan 2, kemudian ditambahkan pada (1) 2 2 0=0.200 0.200 +0.134 (2) 0= 0.200 +0.070 +0.083 (1) + 0= 0.130 +0.217 0.130 =0.217 =1.67 Langkah 3 Ulangi persamaan (4) 1= + + (4) Karena =, maka 1= + + Sedangkan =1.67, maka 1= +1.67 + 1=3.67 =0.273= bagian C dalam market share yang seimbang. 13

Karena =, maka: =0.273= bagian A dalam market share yang seimbang. Dan karena 1= + +, maka 1=0.273+ +0.273 = +0.546 =1 0.546=0.454= bagian B dalam market share yang seimbang. Berikut ini bukti bahwa suatu periode seimbang telah dicapai. Dikalikan market share yang seimbang 0.273 0.454 0.273 dengan matriks probabilitas transisi: 0.800 0.100 0.100 0.273 0.454 0.273 0.070 0.900 0.030 = 0.273 0.454 0.273 0.083 0.067 0.850 Setelah dihitung terlihat pula bahwa market share tidak mengalami perubahan, berarti keadaan memang seimbang, dengan perumpamaan bahwa matriks probabilitas transisi tetap dan tidak berubah. Hubungan antara Market Share dan Keseimbangan Suatu kenyataan yang menarik tentang analisa Markov ialah bahwa keseimbangan terakhir akan sama (jika probabilitas transisi tetap) tanpa memperdulikan market share awal yang dimiliki oleh para produsen atau supplier. Dapat dikatakan bahwa ini akan berakhir dengan perbandingan pelanggan yang sama, apapun yang menjadi perbandingan awalnya. Misalnya, jika ada tiga supplier memiliki bagian pasaran sekarang sebagai berikut: =30% =60% =10% Dan matriks probabilitas transisi adalah: 0.90 0.10 0 0.05 0.80 0.15 0.20 0.20 0.60 Maka, dengan menggunakan teknik untuk menentukan keseimbangan market share yang telah dibicarakan sebelumnya, dapat ditentukan bahwa keseimbangan market share adalah: 14

= 0.476 0.381 0.143 Jika market share awalnya adalah =20% =45% =35% Maka keseimbangan market share untuk ketiga perusahaan akan sama, yaitu: = 0.476 0.381 0.143 selama matriks probabilitas transisi tidak berubah. Dapat dipahami bahwa hal ini benar dengan mengingat bahwa market share tidak digunakan dalam menjelaskan proses keseimbangan, hanya matriks probabilitas transisi yang terlibat dalam penentuan keseimbangan. Jelas bahwa semakin dekat market share awal dengan market share keseimbangan, semakin cepat keadaan seimbang didekati. Jika market share awal untuk tiga perusahaan adalah: =35% =40% =25% Dan keseimbangan akhir adalah: =30% =35% =35% Dapat dilihat bahwa proses untuk mencapai keseimbangan akan lebih cepat daripada jika market share awal adalah: =10% =75% =15% Karena pada kasus pertama diperlukan sedikit perubahan saja untuk sampai pada keseimbangan. Pada kasus kedua misalnya, perusahaan A memerlukan lebih banyak pelanggan unutk meningkatkan bagian pasarannya dari 10% menjadi 30%. 15

Jika konsep ini masih sulit diterima, yaitu anggapan bahwa market share awal tidak mempengaruhi keadaan seimbang, dipertimbangkan contoh berikut: 1.0 0 0 0.3 0.6 0.1 0.1 0.2 0.7 Dapat langsung dilihat bahwa tanpa memandang market share awal, pabrik A akan memperoleh semua pelanggan, dan A tidak akan kehilangan yang ia peroleh dari B dan C. Jadi, walaupun dimulai dari 5%, A akan memperoleh 100% dari pelanggan. Semakin tinggi bagian A, semakin cepat keseimbangan dicapai. 16