Bab IV Kegempaan dan Cakupan Sinar Gelombang di Kompleks Gunung Guntur

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab IV Kegempaan dan Cakupan Sinar Gelombang di Kompleks Gunung Guntur"

Transkripsi

1 Bab IV Kegempaan dan Cakupan Sinar Gelombang di Kompleks Gunung Guntur IV.1 Seismisitas Gunung Guntur Seismisitas atau kegempaan Gunung Guntur diamati secara menerus dari Pos Pengamatan Gunungapi Guntur di Kecamatan Tarogong, Garut menggunakan lima stasiun permanen yang dipasang mengelilingi Kompleks Gunung Guntur. Data gempa ditransmisikan secara telemetri kemudian didigitasi di pos pengamatan menggunakan data logger yang dilengkapi timing system yang telah dikalibrasi menggunakan waktu GPS. Untuk keperluan penelitian kegempaan Gunung Guntur secara lebih mendalam maka jaringan gempa permanen yang sudah ada kadang-kadang ditambah secara temporer di sekeliling gunung menggunakan seismograf digital portabel, sehingga kepadatan stasiun di daerah penelitian dapat ditingkatkan. Total stasiun yang pernah terpasang dari tahun 1995 sampai tahun 2007 adalah 23 stasiun gempa (Gambar 4.1). Gambar 4.1. Sebanyak 23 stasiun gempa digunakan dalam penelitian ini. Bulatan kuning merupakan stasiun permanen dan warna biru muda adalah stasiun temporer. 78

2 Gambar 4.2. Gempa vulkanik Gunung Guntur direkam secara digital oleh beberapa stasiun. Gambar 4.3. Frekuensi kejadian gempa vulkanik Gunung Guntur terjadi rata-rata 1 kali dalam sehari. Jumlah kumulatif kejadian dari tahun sekitar 4800 kali. Gempa vulkanik Gunung Guntur mempunyai magnituda kurang dari 2 skala Rihcter (Gambar 3.21), beda waktu tiba gelombang S dan P antara 0,5 2,5 detik, dan 79

3 lama gempa kurang dari 20 detik (Gambar 4.2). Fase gelombang P dapat dibaca secara cukup jelas menggunakan seismometer komponen vertikal dan fase gelombang S dapat dibaca menggunakan seismometer komponen horizontal. Frekuensi kejadian gempa vulkanik Gunung Guntur berdasarkan data tahun rata-rata satu kali dalam sehari. Jumlah kumulatif gempa vulkanik dalam selang waktu di atas adalah 4800 kali (Gambar 4.3). IV.2 Distribusi Hiposenter Gempa Vulkanik Gunung Guntur Pusat gempa vulkanik Gunung Guntur secara umum terdistribusi sepanjang Kaldera Kamojang dan Kawah Drajat dalam arah timur laut dan barat daya. Kawah Drajat terletak 10 km di barat daya Kamojang. Pusat gempa vulkanik juga terdistribusi sepanjang Gunung Guntur dan Kaldera Gandapura dalam arah barat laut tenggara. Ratarata kedalaman gempa vulkanik Kamojang-Drajat lebih dalam daripada gempa vulkanik Guntur-Gandapura (Suantika et al., 1997 dan Suantika et al., 1998). Kedalaman gempa vulkanik Kamojang-Drajat 14 4 km di bawah elevasi referensi (10 0 km di bawah permukaan kaut). Elevasi referensi adalah elevasi z=0 km terletak 4 km di atas permukaan laut. Kedalaman gempa vulkanik Guntur-Gandapura sekitar 8 3 km dibawah elevasi referensi (4 km di bawah permukaan kaut sampai 1 km di atas permukaan laut) (Gambar 4.4). Gempa vulkanik Kamojang-Drajat secara relatif mempunyai magnituda lebih besar daripada gempa vulkanik Guntur-Gandapura (Iguchi et al., 1996) Distribusi pusat gempa vulkanik dalam arah timur laut barat daya sesuai dengan keberadaan sesar melalui Kaldera Kamojang dan Kawah Drajat. Begitu pula distribusi pusat gempa dalam arah barat laut tenggara berhubungan dengan sesar yang melalui Gunung Guntur dan Kaldera Gandapura. Pusat gempa di sekitar Gunung Dadali, dan Gunung Katomas kemungkinan berhubungan dengan sesar di sekitarnya. 80

4 Gambar 4.4. Pusat gempa vulkanik di bawah Kompleks Gunung Guntur terdistribusi sepanjang sesar (garis merah) Drajat-Kamojang dan Guntur-Gandapura (kiri atas), pusat gempa lebih dalam di bawah Kamojang daripada di bawah Gandapura-Guntur (kiri bawah). Kedalaman pusat gempa dalam irisan vertikal selatan utara (kanan atas). Hiposenter gempa dalam tampilan 3 D (kanan bawah). IV.3 Mekanisme Sumber Gempa Vulkanik Gunung Guntur Mekanisme sumber gempa vulkanik kompleks Gunung Guntur yang terdistribusi sepanjang sesar Kamojang-Drajat mempunyai solusi dominan sesar geser (Gambar 4.5) dan mekanisme sumber sepanjang sesar Guntur-Gandapura (Gambar 4.6) adalah tidak unik, melainkan beberapa gempa mempunyai solusi sesar normal, sesar naik, dan beberapa mempunyai sesar campuran atau geser-normal (Suantika et al., 1997). 81

5 Gambar 4.5. Mekanisme sumber gempa vulkanik bulan Januari 1996 di sepanjang sesar Kamojang-Drajat secara dominan mempunyai solusi sesar geser (Suantika, 2002). 82

6 Gambar 4.6. Mekanisme sumber gempa vulkanik bulan September-Desember 1997 di sepanjang sesar Guntur-Gandapura tidak mempunyai solusi yang unik (Suantika, 2002). 83

7 Gempa vulkanik sepanjang Kamojang-Drajat lebih dipengaruhi oleh medan tekanan kegiatan tektonik yang mana tarikan (extension) dalam arah utara selatan dan tekanan (compression) dalam arah barat timur. Sedangkan gempa vulkanik sepanjang Guntur-Gandapura lebih dipengaruhi oleh kegiatan vulkanik dan arah bidang sesar ke berbagai arah merupakan hasil erupsi besar di masa lalu. IV.4 Parameterisasi Model Area Penelitian Dalam studi tomografi ini diperlukan parameterisasi daerah penelitian. Parameterisasi adalah pembagian daerah penelitian menjadi elemen volume. Berdasarkan distribusi pusat gempa dan distribusi stasiun yang tidak teratur maka daerah penelitian kompleks Gunung Guntur meliputi volume 20x20x20 km 3 dibagi ke dalam 1000 elemen volume, ukuran elemen volume adalah 2x2x2 km 3. Sistem koordinat yang dipakai adalah Koordinat Cartesian. Titik referensi (0,0,0) kordinat ini terletak pada koordinat geografi o BT dan o LS. Elevasi referensi yaitu z=0 km terletak 4 km di atas permukaan laut. Efek kelengkungan bumi diabaikan karena luas permukaan horizontal 20x20 km 2 dianggap sebagai bidang datar. IV.5 Cakupan Sinar Gelombang Sinar gempa merupakan lintasan gelombang gempa dari pusat gempa ke stasiun penerima. Lintasan gelombang ini dibuat menggunakan metoda pseudo bending ray tracing di dalam model kecepatan yang telah dibuat dalam Gambar 3.13 di depan baik untuk kecepatan gelombang P maupun kecepatan gelombang S. Jumlah sinar yang berasal dari gelombang P (Gambar 4.7) sama jumlahnya dengan yang berasal dari gelombang S (Gambar 4.8). Cakupan sinar sangat mempengaruhi resolusi tomogram di daerah penelitian. Cakupan sinar dalam studi tomografi sangat baik di bawah Kamojang, Gandapura, dan Guntur, yaitu dari kedalaman 2 12 km dari elevasi referensi. Resolusi tomogram di daerah ini akan lebih jelas daripada di tempat lainnya yang kurang diliputi sinar. 84

8 Gambar 4.7. Liputan sinar gempa gelombang P (garis merah) di bawah Kompleks Gunung Guntur. Cakupan sinar sangat baik di bawah Kaldera Kamojang, Kaldera Gandapura, dan Gunung Guntur pada kedalaman 2 12 km di bawah elevasi referensi. Sinar gelombang dari sumber ke stasiun dibuat dengan teknik ray tracing berdasarkan waktu tempuh minimum (Fermat s principle). 85

9 Gambar 4.8. Liputan sinar gempa gelombang S (garis biru) di bawah Kompleks Gunung Guntur. Cakupan sinar sangat baik di bawah Kaldera Kamojang, Kaldera Gandapura, dan Gunung Guntur pada kedalaman 2 12 km di bawah elevasi referensi. Sinar gelombang dari sumber ke stasiun dibuat dengan teknik ray tracing berdasarkan waktu tempuh minimum (Fermat s principle). IV.6 Kepadatan Sinar (Ray Density) Kepadatan sinar didefinisikan sebagai jumlah panjang lintasan (dalam satuan km) gelombang yang lewat di setiap elemen blok volume di daerah penelitian. Kepadatan sinar sangat menentukan ketelitian hasil inversi tomografi. Oleh karena nilai numerik 86

10 kepadatan sinar dari terkecil sampai yang terbesar mempunyai perbedaan yang sangat besar sehingga sangat susah ditampilkan dalam gradasi warna yang terbatas maka harga kepadatan sinar ditampilkan dalam bentuk logaritma. Kepadatan sinar gelombang P ditampilkan dalam bentuk irisan horisontal dan vertikal melalui Kamojang, Gandapura dan Guntur (Gambar 4.9). Kepadatan sinar di bawah daerah ini sangat tinggi sehingga resolusi tomogram diharapkan cukup jelas. Irisan horisontal masing-masing diambil pada kedalaman 4 km, 6 km, 8 km, dan 10 km dari elevasi referensi. Sedangkan irisan vertikal barat timur diambil pada jarak 7 km, 9 km, 11 km, dan 13 km dari sumbu x, masingmasing garis lintasan pada bidang horisontal diberi nama Y1-Y1, Y2-Y2, Y3-Y3, dan Y4-Y4. Begitu pula irisan vertikal selatan utara diambil pada jarak 7 km, 9 km, 11 km, dan 13 km dari sumbu y, masing-masing garis lintasan pada bidang horisontal diberi nama X1-X1, X2-X2, X3-X3, dan X4-X4 (Gambar 4.10). Gambar 4.9. Gambaran 3 D irisan horisontal tomografi di bawah Kompleks Guntur dan irisan vertikal tomografi melalui Kaldera Kamojang, Kaldera Gandapura, dan Gunung Guntur. 87

11 Gambar Lintasan irisan vertikal barat timur pada jarak 7 km (Y1-Y1 ), 9 km (Y2-Y2 ), 11 km (Y3-Y3 ), dan 13 km (Y4-Y4 ) dari sumbu x. Dan lintasan irisan vertikal selatan utara jarak 7 km (X1-X1 ), 9 km (X2-X2 ), 11 km (X3-X3 ), dan 13 km (X4- X4 ) dari sumbu y. Garis biru adalah jalan raya. Selanjutnya irisan tomogram di bab-bab berikutnya baik horisontal maupun vertikal akan mengikuti cara-cara di atas. Irisan kepadatan sinar gelombang P baik horisontal, vertikal barat timur, maupun vertikal selatan utara masing-masing dapat dilihat dalam Gambar 4.11, Gambar 4.12, dan Gambar Begitu pula kepadatan sinar gelombang S baik horisontal, vertikal barat timur, maupun vertikal selatan utara masingmasing dapat dilihat dalam Gambar 4.14, Gambar 4.15, dan Gambar

12 Gambar Kepadatan sinar gelombang P. Dari atas dan dari kiri ke kanan masing-masing adalah irisan horisontal pada kedalaman 4 km, 6 km, 8 km, dan 10 km. Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar. 89

13 Gambar Kepadatan sinar gelombang P. Dari atas dan dari kiri ke kanan masing-masing adalah irisan vertikal arah barat timur pada jarak 7 km, 9 km, 11 km, dan 13 km dari sumbu x. Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar. 90

14 Gambar Kepadatan sinar gelombang P. Dari atas dan dari kiri ke kanan masing-masing adalah irisan vertikal arah selatan utara pada jarak 7 km, 9 km, 11 km, dan 13 km dari sumbu y. Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar. 91

15 Gambar Kepadatan sinar gelombang S. Dari atas dan dari kiri ke kanan masing-masing adalah irisan horisontal pada kedalaman 4 km, 6 km, 8 km, dan 10 km. Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar. 92

16 Gambar Kepadatan sinar gelombang S. Dari atas dan dari kiri ke kanan masing-masing adalah irisan vertikal arah barat timur masing-masing pada jarak 7 km, 9 km, 11 km, dan 13 km dari sumbu x. Warna abuabu menunjukkan elemen volume tidak dilalui oleh sinar. 93

17 Gambar Kepadatan sinar gelombang S. Dari atas dan dari kiri ke kanan masingmasing adalah irisan vertikal arah selatan utara pada jarak 7 km, 9 km, 11 km, dan 13 km dari sumbu y. Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar. IV.7 Check Board Test Check board test bertujuan menguji kemantapan program pengolahan data tomografi. Pengujian menggunakan sinar gelombang dari sumber gempa ke stasiun penerima melalui medium yang mempunyai model kecepatan sintetik dengan anomali negatif 5% dan anomali positif +5%. Elemen volume anomali berukuran 4x4x4 km 3 94

18 dipasang secara selang seling antara positif dan negatif baik arah horisontal maupun vertikal. Hasil inversi tomografi menunjukkan anomali kembali cukup teresolusi dan agak teredam sesuai dengan ray density di masing-masing lapisan. Berkaitan dengan keadaan di atas maka untuk menjaga obyektifitas inversi tomografi data lapangan maka faktor redaman dibuat sedikit lebih besar daripada faktor redaman inversi tomografi anomali sintetik. Gambaran tomogram check board test untuk gelombang P diambil pada irisan horisontal pada kedalaman 4 km dan 6 km (Gambar 4.17) serta pada kedalaman 8 km dan 10 km (Gambar 4.18) dari elevasi referensi. Irisan vertikal arah barat timur diambil pada lapisan berjarak 7 km dan 9 km (Gambar 4.19) serta berjarak 11 km dan 13 km (Gambar 4.20) dari sumbu x atau masing-masing melalui garis Y1-Y1, Y2-Y2, Y3-Y3, dan Y4- Y4. Irisan vertikal arah selatan utara diambil pada lapisan berjarak 7 km dan 9 km (Gambar 4.21) serta berjarak 11 km dan 13 km (Gambar 4.22) dari sumbu y atau masingmasing melalui garis X1-X1, X2-X2, X3-X3, dan X4-X4. Begitu pula gambaran tomogram check board test untuk gelombang S diambil pada irisan horisontal pada kedalaman 4 km dan 6 km (Gambar 4.23) serta pada kedalaman 8 km dan 10 km (Gambar 4.24) dari elevasi referensi. Irisan vertikal arah barat timur diambil pada lapisan berjarak 7 km dan 9 km (Gambar 4.25) serta berjarak 11 km dan 13 km (Gambar 4.26) dari sumbu x atau masing-masing melalui garis Y1-Y1, Y2-Y2, Y3-Y3, dan Y4-Y4. Irisan vertikal arah selatan utara diambil pada lapisan berjarak 7 km dan 9 km (Gambar 4.27) serta berjarak 11 km dan 13 km (Gambar 4.28) dari sumbu y atau masing-masing melalui garis X1-X1, X2-X2, X3-X3, dan X4-X4. 95

19 Gambar Check board test menggunakan gelombang P pada irisan horisontal di kedalaman 4 km (baris atas) dan 6 km (baris bawah) dari elevasi referensi. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 96

20 Gambar Check board test menggunakan gelombang P pada irisan horisontal di kedalaman 8 km (baris atas) dan 10 km (baris bawah) dari elevasi referensi. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 97

21 Gambar Check board test menggunakan gelombang P pada irisan vertikal barat timur berjarak 7 km (baris atas) dan 9 km (baris bawah) dari sumbu x atau masing-masing melalui garis Y1-Y1 dan Y2-Y2. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 98

22 Gambar Check board test menggunakan gelombang P pada irisan vertikal barat timur berjarak 11 km (baris atas) dan 13 km (baris bawah) dari sumbu x atau masing-masing melalui garis Y3-Y3 dan Y4-Y4. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 99

23 Gambar Check board test menggunakan gelombang P pada irisan vertikal selatan utara berjarak 7 km (baris atas) dan 9 km (baris bawah) dari sumbu y atau masing-masing melalui garis X1-X1 dan X2-X2. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 100

24 Gambar Check board test menggunakan gelombang P pada irisan vertikal selatan utara berjarak 11 km (baris atas) dan 13 km (baris bawah) dari sumbu y atau masing-masing melalui garis X3-X3 dan X4-X4. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 101

25 Gambar Check board test menggunakan gelombang S pada irisan horisontal di kedalaman 4 km (baris atas) dan 6 km (baris bawah) dari elevasi referensi. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 102

26 Gambar Check board test menggunakan gelombang S pada irisan horisontal di kedalaman 8 km (baris atas) dan 10 km (baris bawah) dari elevasi referensi. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 103

27 Gambar Check board test menggunakan gelombang S pada irisan vertikal barat timur berjarak 7 km (baris atas) dan 9 km (baris bawah) dari sumbu x atau masing-masing melalui garis Y1-Y1 dan Y2-Y2. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 104

28 Gambar Check board test menggunakan gelombang S pada irisan vertikal barat timur berjarak 11 km (baris atas) dan 13 km (baris bawah) dari sumbu x atau masing-masing melalui garis Y3-Y3 dan Y4-Y4. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 105

29 Gambar Check board test menggunakan gelombang S pada irisan vertikal selatan utara berjarak 7 km (baris atas) dan 9 km (baris bawah) dari sumbu y atau masing-masing melalui garis X1-X1 dan X2-X2. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 106

30 Gambar Check board test menggunakan gelombang S pada irisan vertikal selatan utara berjarak 11 km (baris atas) dan 13 km (baris bawah) dari sumbu y atau masing-masing melalui garis X3-X3 dan X4-X4. Anomali kecepatan sintetik 4x4x4 km 3 (kolom kiri) dan hasil inversi tomografi model kecepatan sintetik (kolom kanan). Warna abu-abu menunjukkan elemen volume tidak dilalui oleh sinar gelombang. 107

Bab I Pendahuluan I.1 Latar Belakang I.1.1 Lokasi Kompleks Gunung Guntur

Bab I Pendahuluan I.1 Latar Belakang I.1.1 Lokasi Kompleks Gunung Guntur Bab I Pendahuluan I.1 Latar Belakang I.1.1 Lokasi Kompleks Gunung Guntur Daerah penelitian meliputi Kompleks Gunung Guntur terdiri dari Kaldera Pangkalan atau Kamojang, Kaldera Gandapura, dan puncak-puncak

Lebih terperinci

PENCITRAAN TOMOGRAFI ATENUASI SEISMIK 3-D UNTUK DELINEASI STRUKTUR INTERNAL DAN KARAKTERISASI SIFAT FISIS BATUAN DI BAWAH GUNUNGAPI GUNTUR DISERTASI

PENCITRAAN TOMOGRAFI ATENUASI SEISMIK 3-D UNTUK DELINEASI STRUKTUR INTERNAL DAN KARAKTERISASI SIFAT FISIS BATUAN DI BAWAH GUNUNGAPI GUNTUR DISERTASI PENCITRAAN TOMOGRAFI ATENUASI SEISMIK 3-D UNTUK DELINEASI STRUKTUR INTERNAL DAN KARAKTERISASI SIFAT FISIS BATUAN DI BAWAH GUNUNGAPI GUNTUR DISERTASI Karya tulis sebagai salah satu syarat untuk memperoleh

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN 52 V. HASIL DAN PEMBAHASAN 5.1. Distribusi Hiposenter Gempa dan Mekanisme Vulkanik Pada persebaran hiposenter Gunung Sinabung (gambar 31), persebaran hiposenter untuk gempa vulkanik sangat terlihat adanya

Lebih terperinci

Bab VI Interpretasi Tomogram Bawah Permukaan Kompleks Gunung Guntur

Bab VI Interpretasi Tomogram Bawah Permukaan Kompleks Gunung Guntur Bab VI Interpretasi Tomogram Bawah Permukaan Kompleks Gunung Guntur VI.1 Hasil Studi Tomografi di Daerah Tektonik dan Vulkanik Beberapa keberhasilan studi tomografi baik di daerah tektonik maupun daerah

Lebih terperinci

Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima

Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Pemograman Ray Tracing Metode Pseudo-Bending Medium 3-D Untuk Menghitung Waktu Tempuh Antara Sumber Dan Penerima Ahmad Syahputra dan Andri Dian Nugraha Teknik Geofisika, Fakultas Teknik Pertambangan dan

Lebih terperinci

BAB I PENDAHULUAN. menyertai kehidupan manusia. Dalam kaitannya dengan vulkanisme, Kashara

BAB I PENDAHULUAN. menyertai kehidupan manusia. Dalam kaitannya dengan vulkanisme, Kashara BAB I PENDAHULUAN 1.1 Latar Belakang Aktivitas vulkanisme dapat mengakibatkan bentuk bencana alam yang menyertai kehidupan manusia. Dalam kaitannya dengan vulkanisme, Kashara (Hariyanto, 1999:14) mengemukakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Metode dan Desain Penelitian Dalam penelitian ini, untuk mengetahu tingkat aktivitas kegempaan gununng Guntur dilakuakn dengan menggunakan metode seismik. Metode ini memanfaatkan

Lebih terperinci

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini

BAB III METODE PENELITIAN. Metode geofisika yang digunakan adalah metode seimik. Metode ini BAB III METODE PENELITIAN 3.1 METODE SEISMIK Metode geofisika yang digunakan adalah metode seimik. Metode ini memanfaatkan perambatan gelombang yang melewati bumi. Gelombang yang dirambatkannya berasal

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA DAFTAR ISI HALAMAN JUDUL.... i HALAMAN PENGESAHAN.... ii PERNYATAAN KEASLIAN KARYA ILMIAH.... iii KATA PENGANTAR.... iv ABSTRAK.... v ABSTRACT.... vi DAFTAR ISI.... vii DAFTAR GAMBAR.... ix DAFTAR TABEL....

Lebih terperinci

4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur

4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur 4.15. G. LEWOTOBI PEREMPUAN, Nusa Tenggara Timur G. Lewotobi Laki-laki (kiri) dan Perempuan (kanan) KETERANGAN UMUM Nama Lain Tipe Gunungapi : Lobetobi, Lewotobi, Lowetobi : Strato dengan kubah lava Lokasi

Lebih terperinci

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16

DAFTAR ISI. BAB III. DASAR TEORI 3.1. Seismisitas Gelombang Seismik Gelombang Badan... 16 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii PERNYATAAN KEASLIAN KARYA ILMIAH... iii KATA PENGANTAR... iv ABSTRAK... v ABSTRACT... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xv DAFTAR

Lebih terperinci

Bab II Tatanan Geologi Daerah Penelitian

Bab II Tatanan Geologi Daerah Penelitian Bab II Tatanan Geologi Daerah Penelitian II.1 Tatanan Geologi Daerah Jawa Bagian Barat II.1.1 Fisiografi. Berdasarkan Peta Geologi Regional Lembar Jawa Bagian Barat skala 1:500.000 (Gafoer dan Ratman,

Lebih terperinci

Pencitraan Tomografi Atenuasi Seismik 3-D Gunung Guntur Menggunakan Metode Spectral Fitting dengan Summary Ray TUGAS AKHIR

Pencitraan Tomografi Atenuasi Seismik 3-D Gunung Guntur Menggunakan Metode Spectral Fitting dengan Summary Ray TUGAS AKHIR Pencitraan Tomografi Atenuasi Seismik 3-D Gunung Guntur Menggunakan Metode Spectral Fitting dengan Summary Ray TUGAS AKHIR Disusun untuk memenuhi syarat kurikuler Program Sarjana Geofisika Oleh : MUHAMMAD

Lebih terperinci

BAB 1 PENDAHULUAN. lempeng yaitu Lempeng Eurasia, Hindia-australia dan Lempeng Filipina dan. akibat pertumbukan lempeng-lempeng tersebut (Gambar 2).

BAB 1 PENDAHULUAN. lempeng yaitu Lempeng Eurasia, Hindia-australia dan Lempeng Filipina dan. akibat pertumbukan lempeng-lempeng tersebut (Gambar 2). BAB 1 PENDAHULUAN 1.1. Latar Belakang Berdasarkan peta jalur lempeng dunia, wilayah Indonesia terletak pada pertemuan lempeng yaitu Lempeng Eurasia, Hindia-australia dan Lempeng Filipina dan Lempeng Pasifik

Lebih terperinci

PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1

PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI Oleh ZULHAM SUGITO 1 PENENTUAN HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE JANUARI 2018 Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aktifitas tektonik di Provinsi Aceh dipengaruhi

Lebih terperinci

EVALUASI SEISMIK DAN VISUAL KEGIATAN VULKANIK G. EGON, APRIL 2008

EVALUASI SEISMIK DAN VISUAL KEGIATAN VULKANIK G. EGON, APRIL 2008 EVALUASI SEISMIK DAN VISUAL KEGIATAN VULKANIK G. EGON, APRIL 28 KRISTIANTO, AGUS BUDIANTO Bidang Pengamatan dan Penyelidikan Gunungapi, Pusat Vulkanologi dan Mitigasi Bencana Geologi Sari Letusan G. Egon

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode dan Desain Penelitian 3.1.1 Metode Penelitian Metode yang digunakan adalah metode deskriptif analitik dari data deformasi dengan survei GPS dan data seismik. Parameter

Lebih terperinci

ANALISIS AKTIVITAS SEISMIK GUNUNG GUNTUR GARUT JAWA BARAT BERDASARKAN SPEKTRUM FREKUENSI DAN SEBARAN HIPOSENTER BULAN JANUARI MARET 2013

ANALISIS AKTIVITAS SEISMIK GUNUNG GUNTUR GARUT JAWA BARAT BERDASARKAN SPEKTRUM FREKUENSI DAN SEBARAN HIPOSENTER BULAN JANUARI MARET 2013 ANALISIS AKTIVITAS SEISMIK GUNUNG GUNTUR GARUT JAWA BARAT BERDASARKAN SPEKTRUM FREKUENSI DAN SEBARAN HIPOSENTER BULAN JANUARI MARET 2013 Indria R Anggraeni 1, Adi Susilo 1, Hetty Triastuty 2 1) Jurusan

Lebih terperinci

PEMODELAN STRUKTUR KECEPATAN GELOMBANG P DI BAWAH GUNUNG GUNTUR DENGAN METODA SIMULATED ANNEALING TUGAS AKHIR

PEMODELAN STRUKTUR KECEPATAN GELOMBANG P DI BAWAH GUNUNG GUNTUR DENGAN METODA SIMULATED ANNEALING TUGAS AKHIR PEMODELAN STRUKTUR KECEPATAN GELOMBANG P DI BAWAH GUNUNG GUNTUR DENGAN METODA SIMULATED ANNEALING TUGAS AKHIR Disusun untuk memenuhi syarat kurikuler Program Sarjana Geofisika Oleh : JOKO PRIHANTONO 10401016

Lebih terperinci

BAB III DESAIN DAN METODE PENELITIAN. Penelitian yang akan dilakukan secara umum dapat dilihat pada alur penelitian sebagai berikut : Mulai

BAB III DESAIN DAN METODE PENELITIAN. Penelitian yang akan dilakukan secara umum dapat dilihat pada alur penelitian sebagai berikut : Mulai BAB III DESAIN DAN METODE PENELITIAN Penelitian yang akan dilakukan secara umum dapat dilihat pada alur penelitian sebagai berikut : Mulai Data rekaman seismik digital G.Guntur Oktober-November 2015 Penentuan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode Penelitian yang dilakukan dalam penelitian ini adalah deskriptif analitik. Sebagaimana ditunjukkan pada gambar berikut: Studi Literatur dan Konsultasi

Lebih terperinci

4.10. G. IYA, Nusa Tenggara Timur

4.10. G. IYA, Nusa Tenggara Timur 4.10. G. IYA, Nusa Tenggara Timur G. Iya KETERANGAN UMUM Nama : G. Iya Nama Lain : Endeh Api Nama Kawah : Kawah 1 dan Kawah 2 Tipe Gunungapi : Strato Lokasi Geografis : 8 03.5' LS dan 121 38'BT Lokasi

Lebih terperinci

SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA

SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA SIMULASI PERHITUNGAN WAKTU TEMPUH GELOMBANG DENGAN METODA EIKONAL : SUATU CONTOH APLIKASI DALAM ESTIMASI KETELITIAN HIPOSENTER GEMPA Yasa SUPARMAN dkk Pusat Vulkanologi dan Mitigasi Bencana Geologi Badan

Lebih terperinci

V. INTERPRETASI DAN ANALISIS

V. INTERPRETASI DAN ANALISIS V. INTERPRETASI DAN ANALISIS 5.1.Penentuan Jenis Sesar Dengan Metode Gradien Interpretasi struktur geologi bawah permukaan berdasarkan anomali gayaberat akan memberikan hasil yang beragam. Oleh karena

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 5 II. TINJAUAN PUSTAKA 2.1 Lokasi Objek Penelitian Berdasarkan bentuk morfologinya, puncak Gunung Lokon berdampingan dengan puncak Gunung Empung dengan jarak antara keduanya 2,3 km, sehingga merupakan

Lebih terperinci

BAB III METODA PENELITIAN

BAB III METODA PENELITIAN 44 BAB III METODA PENELITIAN 3.1. Metoda Pembacaan Rekaman Gelombang gempa Metode geofisika yang digunakan adalah metode pembacaan rekaman gelombang gempa. Metode ini merupakaan pembacaan dari alat yang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Secara tektonik, Indonesia terletak pada pertemuan lempeng Eurasia, lempeng Indo-Australia, lempeng Pasifik, dan lempeng mikro Filipina. Interaksi antar lempeng mengakibatkan

Lebih terperinci

III. TEORI DASAR. dan mampu dicatat oleh seismograf (Hendrajaya dan Bijaksana, 1990).

III. TEORI DASAR. dan mampu dicatat oleh seismograf (Hendrajaya dan Bijaksana, 1990). 17 III. TEORI DASAR 3.1. Gelombang Seismik Gelombang adalah perambatan suatu energi, yang mampu memindahkan partikel ke tempat lain sesuai dengan arah perambatannya (Tjia, 1993). Gerak gelombang adalah

Lebih terperinci

TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X

TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X TOMOGRAFI SEISMIK 3-D PADA LAPANGAN PANAS BUMI X Akino Iskandar,Lantu, Sabrianto Aswad,Andri Dian Nugrah Program Studi Sarjana Geofisika Universitas Hasanuddin, iskandar.akino@gmail.com SARI BACAAN Perubahan

Lebih terperinci

M MODEL KECEPATAN BAWAH PERMUKAAN MENGGUNAKAN METODE TOMOGRAFI DATA MICROEARTHQUAKE DI LAPANGAN PANAS BUMI ALPHA

M MODEL KECEPATAN BAWAH PERMUKAAN MENGGUNAKAN METODE TOMOGRAFI DATA MICROEARTHQUAKE DI LAPANGAN PANAS BUMI ALPHA BAB I PENDAHULUAN 1.1 Latar Belakang Energi panas bumi telah lama menjadi sumber kekuatan di daerah vulkanik aktif yang berasal dari aktivitas tektonik di dalam bumi. Indonesia merupakan negara dengan

Lebih terperinci

Gambar A.1. Tomografi 4 D berdasarkan data gempa pada periode waktu , , dan

Gambar A.1. Tomografi 4 D berdasarkan data gempa pada periode waktu , , dan Lampiran A: Tomografi 4 D Dalam lampiran ini akan ditampilkan hasil tomografi 4-D Gunung Guntur menggunakan data gelombang P dari tiga periode waktu, yaitu tahun 1995 2001, 1999 2003, dan 2002 2007 (Gambar

Lebih terperinci

BAB III METODE PENELITIAN. Adapun Alur penelitian yang akan dilakukan adalah sebagai berikut : Rekaman Seismik gunung Sinabung

BAB III METODE PENELITIAN. Adapun Alur penelitian yang akan dilakukan adalah sebagai berikut : Rekaman Seismik gunung Sinabung 26 BAB III METODE PENELITIAN 3.1 Alur Penelitian Adapun Alur penelitian yang akan dilakukan adalah sebagai berikut : Rekaman Seismik gunung Sinabung Identifikasi gempa tipe A dan tipe B Menentukan waktu

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Banyaknya parameter dan banyaknya jenis mekanisme sumber yang belum diketahui secara pasti, dimana parameter tersebut ikut mempengaruhi pola erupsi dan waktu erupsi

Lebih terperinci

Tes Kemampuan Kognitif Materi Pokok Gempa Bumi

Tes Kemampuan Kognitif Materi Pokok Gempa Bumi Tes Kemampuan Kognitif Materi Pokok Gempa Bumi Berilah tanda silang (X) pada huruf a, b, c, d atau e dengan benar di lembar jawaban yang telah disediakan! 1. Pergerakan tiba-tiba dari kerak bumi dan menyebabkan

Lebih terperinci

PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODA GUIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI

PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODA GUIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI PENENTUAN POSISI HIPOSENTER GEMPABUMI DENGAN MENGGUNAKAN METODA GUIDED GRID SEARCH DAN MODEL STRUKTUR KECEPATAN TIGA DIMENSI Hendro Nugroho 1, Sri Widiyantoro 2, dan Gunawan Ibrahim 2 1 Program Magister

Lebih terperinci

SEISMISITAS DAN MODEL ZONA SUBDUKSI DI INDONESIA RESOLUSI TINGGI

SEISMISITAS DAN MODEL ZONA SUBDUKSI DI INDONESIA RESOLUSI TINGGI SEISMISITAS DAN MODEL ZONA SUBDUKSI DI INDONESIA RESOLUSI TINGGI Sri Widiyantoro KK (Kelompok Keahlian) Ilmu dan Teknik Geofisika Fakultas Teknik Pertambangan dan Perminyakan Institut Teknologi Bandung

Lebih terperinci

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI

KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI JALAN DIPONEGORO NOMOR 57 BANDUNG 40122 JALAN JENDERAL GATOT SUBROTO KAV. 49 JAKARTA 12950 TELEPON: 022-7215297/021-5228371 FAKSIMILE:

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang dan Permasalahan Struktur kerak bumi merupakan subjek mendasar dan penting dalam seismologi karena sering digunakan sebagai informasi awal untuk penelitian geologi

Lebih terperinci

G. GUNTUR, JAWA BARAT

G. GUNTUR, JAWA BARAT G. GUNTUR, JAWA BARAT KETERANGAN UMUM Nama Lain Nama Kawah Lokasi a. Administratif b Geografi puncak Kota terdekat Ketinggian Tipe Gunungapi Pos Pengamatan a. Lokasi b. Posisi Geografi : Gunung Gede :

Lebih terperinci

RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2

RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 RELOKASI SUMBER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE MARET 2018 Oleh ZULHAM SUGITO 1, TATOK YATIMANTORO 2 1 Stasiun Geofisika Mata Ie Banda Aceh 2 Bidang Mitigasi Gempabumi dan Tsunami Pendahuluan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Gambar 1.1

BAB I PENDAHULUAN 1.1 Latar Belakang Gambar 1.1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan wilayah dengan kondisi geologi yang menarik, karena gugusan kepulauannya diapit oleh tiga lempeng tektonik besar (Triple Junction) yaitu lempeng

Lebih terperinci

AKUISISI SEISMIK UNTUK MONITORING GUNUNGAPI

AKUISISI SEISMIK UNTUK MONITORING GUNUNGAPI AKUISISI SEISMIK UNTUK MONITORING GUNUNGAPI I. PENDAHULUAN Gempabumi merupakan gerakan tanah secara tiba-tiba dari suatu region dan bersifat transient. Hampir 90%, merupakan gempabumi tektonik (tectonic

Lebih terperinci

AKTIVITAS GUNUNGAPI SEMERU PADA NOVEMBER 2007

AKTIVITAS GUNUNGAPI SEMERU PADA NOVEMBER 2007 AKTIVITAS GUNUNGAPI SEMERU PADA NOVEMBER 27 UMAR ROSADI Pusat Vulkanologi dan Mitigasi Bencana Geologi Sari Pada bulan Oktober akhir hingga November 27 terjadi perubahan aktivitas vulkanik G. Semeru. Jumlah

Lebih terperinci

7.4. G. KIE BESI, Maluku Utara

7.4. G. KIE BESI, Maluku Utara 7.4. G. KIE BESI, Maluku Utara G. Kie Besi dilihat dari arah utara, 2009 KETERANGAN UMUM Nama Lain : Wakiong Nama Kawah : Lokasi a. Geografi b. : 0 o 19' LU dan 127 o 24 BT Administrasi : Pulau Makian,

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

Pemodelan Gravity Kecamatan Dlingo Kabupaten Bantul Provinsi D.I. Yogyakarta. Dian Novita Sari, M.Sc. Abstrak

Pemodelan Gravity Kecamatan Dlingo Kabupaten Bantul Provinsi D.I. Yogyakarta. Dian Novita Sari, M.Sc. Abstrak Pemodelan Gravity Kecamatan Dlingo Kabupaten Bantul Provinsi D.I. Yogyakarta Dian Novita Sari, M.Sc Abstrak Telah dilakukan penelitian dengan menggunakan metode gravity di daerah Dlingo, Kabupaten Bantul,

Lebih terperinci

BAB IV DATA, HASIL, DAN PEMBAHASAN

BAB IV DATA, HASIL, DAN PEMBAHASAN 32 BAB IV DATA, HASIL, DAN PEMBAHASAN 4.1 Data Eksperimen Data penelitian didapatkan dari dua batuan sampel yaitu batu apung dan batu karbonat. Ukuran dimensi data pada batu karbonat untuk rekonstruksi

Lebih terperinci

BAB I PENDAHULUAN. pertemuan diantara tiga lempeng besar, yaitu lempeng pasifik, lempeng Indo-

BAB I PENDAHULUAN. pertemuan diantara tiga lempeng besar, yaitu lempeng pasifik, lempeng Indo- BAB I PENDAHULUAN 1.1 Latar Belakang Penelitian Sulawesi terletak di bagian tengah wilayah kepulauan Indonesia dengan luas wilayah 174.600 km 2 (Sompotan, 2012). Pulau Sulawesi terletak pada zona pertemuan

Lebih terperinci

6.2. G. AMBANG, SULAWESI UTARA

6.2. G. AMBANG, SULAWESI UTARA 6.2. G. AMBANG, SULAWESI UTARA G. Ambang (Kunrat, S. L. /PVMBG/2007) KETERANGAN UMUM Nama : G. Ambang Nama Lain : - Nama Kawah : Kawah Muayat, Kawah Moyayat Lokasi : a. Geografi : 0 o 44' 30" LU dan 124

Lebih terperinci

III. TEORI DASAR. Gelombang seismik merupakan gelombang yang menjalar di dalam bumi

III. TEORI DASAR. Gelombang seismik merupakan gelombang yang menjalar di dalam bumi III. TEORI DASAR 3.1. Gelombang Seismik Gelombang seismik merupakan gelombang yang menjalar di dalam bumi disebabkan adanya deformasi struktur di bawah bumi akibat adanya tekanan ataupun tarikan karena

Lebih terperinci

BAB I PENDAHULUAN. Berdasarkan penelitian yang telah dilakukan oleh Pusat Vulkanologi dan

BAB I PENDAHULUAN. Berdasarkan penelitian yang telah dilakukan oleh Pusat Vulkanologi dan BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Berdasarkan penelitian yang telah dilakukan oleh Pusat Vulkanologi dan Mitigasi Bencana Geologi khususnya Bidang Mitigasi Gempabumi dan Gerakan Tanah, yang

Lebih terperinci

PENGARUH GEMPA TEKTONIK TERHADAP AKTIVITAS GUNUNGAPI : STUDI KASUS G. TALANG DAN GEMPABUMI PADANG 30 SEPTEMBER 2009

PENGARUH GEMPA TEKTONIK TERHADAP AKTIVITAS GUNUNGAPI : STUDI KASUS G. TALANG DAN GEMPABUMI PADANG 30 SEPTEMBER 2009 PENGARUH GEMPA TEKTONIK TERHADAP AKTIVITAS GUNUNGAPI : STUDI KASUS G. TALANG DAN GEMPABUMI PADANG 30 SEPTEMBER 2009 Ahmad BASUKI., dkk. Pusat Vulkanologi dan Mitigasi Bencana Geologi Sari Terjadinya suatu

Lebih terperinci

ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1

ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1 ANALISIS HIPOSENTER GEMPABUMI DI WILAYAH PROVINSI ACEH PERIODE FEBRUARI 2018 (GEMPABUMI PIDIE 08 FEBRUARI 2018) Oleh ZULHAM SUGITO 1 1 PMG Stasiun Geofisika Mata Ie Banda Aceh Pendahuluan Aceh merupakan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Gambar 1.1 Gambar 1.1 Peta sebaran gunungapi aktif di Indonesia (dokumen USGS).

BAB I PENDAHULUAN 1.1. Latar Belakang Gambar 1.1 Gambar 1.1 Peta sebaran gunungapi aktif di Indonesia (dokumen USGS). xvi BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia memiliki gunungapi terbanyak di dunia yaitu berkisar 129 gunungapi aktif (Gambar 1.1) atau sekitar 15 % dari seluruh gunungapi yang ada di bumi. Meskipun

Lebih terperinci

10/10/2017. Teknologi Display SISTEM KOORDINAT DAN BENTUK DASAR GEOMETRI (OUTPUT PRIMITIF) CRT CRT. Raster Scan Display

10/10/2017. Teknologi Display SISTEM KOORDINAT DAN BENTUK DASAR GEOMETRI (OUTPUT PRIMITIF) CRT CRT. Raster Scan Display 1 2 SISTEM KOORDINAT DAN BENTUK DASAR GEOMETRI (OUTPUT PRIMITIF) Teknologi Display Cathode Ray Tubes (CRT) Liquid Crystal Display (LCD) 3 4 CRT Elektron ditembakkan dari satu atau lebih electron gun Kemudian

Lebih terperinci

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA

INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG. Stasiun Geofisika klas I BMKG Bandung, INDONESIA INTERPRETASI EPISENTER DAN HIPOSENTER SESAR LEMBANG Rasmid 1, Muhamad Imam Ramdhan 2 1 Stasiun Geofisika klas I BMKG Bandung, INDONESIA 2 Fisika Fakultas Sains dan Teknologi UIN SGD Bandung, INDONESIA

Lebih terperinci

Studi Gempa Mikro untuk mendeteksi Rekahan di area Panas bumi Kamojang Kabupaten Garut

Studi Gempa Mikro untuk mendeteksi Rekahan di area Panas bumi Kamojang Kabupaten Garut JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR JUNI,010 Studi Gempa Mikro untuk mendeteksi Rekahan di area Panas bumi Kamojang Kabupaten Garut Anik Hilyah Program Studi Geofisika, Jurusan Fisika, FMIPA-Institut

Lebih terperinci

4.12. G. ROKATENDA, Nusa Tenggara Timur

4.12. G. ROKATENDA, Nusa Tenggara Timur 4.12. G. ROKATENDA, Nusa Tenggara Timur Puncak G. Rokatenda dilihat dari laut arah selatan P. Palue (Agustus 2008) KETERANGAN UMUM Nama : G. Rokatenda Nama Kawah : Ada dua buah kawah dan tiga buah kubah

Lebih terperinci

6.5. GUNUNGAPI MAHAWU, Sulawesi Utara

6.5. GUNUNGAPI MAHAWU, Sulawesi Utara 6.5. GUNUNGAPI MAHAWU, Sulawesi Utara KETERANGAN UMUM Nama Lain Nama Kawah Lokasi Ketinggian Tipe Gunungapi Pos Pengamatan Gunungapi : Mahawoe, Roemengas : Mahawu, Wagio, Mawuas : Kota Tomohon, Sulawesi

Lebih terperinci

BAB 1 PENDAHULUAN. meruntuhkan bangunan-bangunan dan fasilitas umum lainnya.

BAB 1 PENDAHULUAN. meruntuhkan bangunan-bangunan dan fasilitas umum lainnya. BAB 1 PENDAHULUAN 1.1. Latar Belakang Gempa bumi merupakan fenomena alam yang sudah tidak asing lagi bagi kita semua, karena seringkali diberitakan adanya suatu wilayah dilanda gempa bumi, baik yang ringan

Lebih terperinci

4.14. G. LEWOTOBI LAKI-LAKI, Nusa Tenggara Timur

4.14. G. LEWOTOBI LAKI-LAKI, Nusa Tenggara Timur 4.14. G. LEWOTOBI LAKI-LAKI, Nusa Tenggara Timur G. Lewotobi Laki-laki (kiri) dan Perempuan (kanan) KETERANGAN UMUM Nama Lain : Lobetobi, Lewotobi, Lowetobi Lokasi a. Geografi Puncak b. Administratif :

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Untuk mencapai gelar kesarjanaan Strata Satu ( S-1) pada Program Studi Teknik Geologi Fakultas Ilmu dan Teknologi Kebumian Institut Teknologi Bandung, maka setiap mahasiswa

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Mud volcano (gunung lumpur) adalah suatu fenomena geologi yang menyebabkan ekstrusinya material lumpur yang biasanya bercampur dengan air, gas dan minyak keluar melalui

Lebih terperinci

BAB IV PENGOLAHAN DAN ANALISA ANOMALI BOUGUER

BAB IV PENGOLAHAN DAN ANALISA ANOMALI BOUGUER BAB IV PENGOLAHAN DAN ANALISA ANOMALI BOUGUER Tahapan pengolahan data gaya berat pada daerah Luwuk, Sulawesi Tengah dapat ditunjukkan dalam diagram alir (Gambar 4.1). Tahapan pertama yang dilakukan adalah

Lebih terperinci

STUDI GELOMBANG SEISMIK GEMPA VULKANIK GUNUNG SINABUNG UNTUK MENENTUKAN KARAKTERISTIK MEKANISME VULKANIK

STUDI GELOMBANG SEISMIK GEMPA VULKANIK GUNUNG SINABUNG UNTUK MENENTUKAN KARAKTERISTIK MEKANISME VULKANIK STUDI GELOMBANG SEISMIK GEMPA VULKANIK GUNUNG SINABUNG UNTUK MENENTUKAN KARAKTERISTIK MEKANISME VULKANIK Rianza Julian, Prof. Dr. Suharno, MS., M.Sc., Ph.D Jurusan Teknik Geofisika Universitas Lampung

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian

BAB I PENDAHULUAN. utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian BAB I PENDAHULUAN A. Latar Belakang Masalah Kepulauan Indonesia terletak pada pertemuan tiga lempeng tektonik utama, yaitu lempeng Indo-Australia di bagian Selatan, lempeng Eurasia di bagian Utara, dan

Lebih terperinci

BAB I PENDAHULUAN. Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. lempeng tektonik, yaitu Lempeng Eurasia, Lempeng Indo Australia, dan

BAB I PENDAHULUAN. Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. lempeng tektonik, yaitu Lempeng Eurasia, Lempeng Indo Australia, dan BAB I PENDAHULUAN I.1. Judul Penelitian Penelitian ini berjudul Analisa Sudut Penunjaman Lempeng Tektonik Berdasarkan Data Gempa di Pulau Jawa Bagian Barat. I.2. Latar Belakang Indonesia merupakan negara

Lebih terperinci

KEGEMPAAN DI INDONESIA PERIODE BULAN APRIL AGUSTUS 2008

KEGEMPAAN DI INDONESIA PERIODE BULAN APRIL AGUSTUS 2008 KEGEMPAAN DI INDONESIA PERIODE BULAN APRIL AGUSTUS 2008 DEVY K. SYAHBANA, GEDE SUANTIKA Bidang Pengamatan Gempabumi dan Gerakan Tanah, Pusat Vulkanologi dan Mitigasi Bencana Geologi Sari Pada periode bulan

Lebih terperinci

Pembentukan Citra. Bab Model Citra

Pembentukan Citra. Bab Model Citra Bab 2 Pembentukan Citra C itra ada dua macam: citra kontinu dan citra diskrit. Citra kontinu dihasilkan dari sistem optik yang menerima sinyal analog, misalnya mata manusia dan kamera analog. Citra diskrit

Lebih terperinci

UNIT X: Bumi dan Dinamikanya

UNIT X: Bumi dan Dinamikanya MATERI KULIAH IPA-1 JURUSAN PENDIDIKAN IPA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM FOTO YANG RELEVAN UNIT X: Bumi dan Dinamikanya I Introduction 5 Latar Belakang Pada K-13 Kelas VII terdapat KD sebagai

Lebih terperinci

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010

Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Analisis Mekanisme Sumber Gempa Vulkanik Gunung Merapi di Yogyakarta September 2010 Emilia Kurniawati 1 dan Supriyanto 2,* 1 Laboratorium Geofisika Program Studi Fisika FMIPA Universitas Mulawarman 2 Program

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS 4.1 Hasil Karya / Implementasi Kegiatan implementasi atau penerapan dilakukan dengan dasar yang telah direncanakan dalam rencana implementasi. Pada penerapan sistem yang diusulkan

Lebih terperinci

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun

Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun Sebaran Jenis Patahan Di Sekitar Gunungapi Merapi Berdasarkan Data Gempabumi Tektonik Tahun 1977 2010 Fitri Puspasari 1, Wahyudi 2 1 Metrologi dan Instrumentasi Departemen Teknik Elektro dan Informatika

Lebih terperinci

Gempa Bumi Bandung 22 Juli 2011

Gempa Bumi Bandung 22 Juli 2011 Jurnal Lingkungan dan Bencana Geologi, Vol. 2 o. 3 Desember 2011: 185-190 Gempa Bumi Bandung 22 Juli 2011 Cecep Sulaeman dan Sri Hidayati Badan Geologi Jln. Diponegoro 57 Bandung 40122 SARI Pada tanggal

Lebih terperinci

BAB I PENDAHULUAN. tiga Lempeng bumi (Bellier et al. 2001), yaitu Lempeng Eurasia (bergerak

BAB I PENDAHULUAN. tiga Lempeng bumi (Bellier et al. 2001), yaitu Lempeng Eurasia (bergerak BAB I PENDAHULUAN 1.1 Latar Belakang Pulau Sulawesi terletak pada wilayah yang merupakan pertemuan tiga Lempeng bumi (Bellier et al. 2001), yaitu Lempeng Eurasia (bergerak ke arah tenggara), Lempeng Indo-Australia

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Rumusan Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Permukaan bumi mempunyai beberapa lapisan pada bagian bawahnya, masing masing lapisan memiliki perbedaan densitas antara lapisan yang satu dengan yang lainnya, sehingga

Lebih terperinci

BAB 3 METODOLOGI. a. Dimulai dengan tinjauan pustaka yang berguna sebagai bahan dari penelitian.

BAB 3 METODOLOGI. a. Dimulai dengan tinjauan pustaka yang berguna sebagai bahan dari penelitian. BAB 3 METODOLOGI 3.1 Pendekatan Penelitian Adapun rencana bagan alir pada proses penelitian ini adalah sebagai berikut: a. Dimulai dengan tinjauan pustaka yang berguna sebagai bahan dari penelitian. b.

Lebih terperinci

4.7 G. INIELIKA, Nusa Tenggara Timur

4.7 G. INIELIKA, Nusa Tenggara Timur 4.7 G. INIELIKA, Nusa Tenggara Timur Komplek G. Inie Lika dengan latar depan Kota Bajawa (sumber PVMBG) KETERANGAN UMUM Nama Lain Tipe Gunungapi Nama Kawah : Inielika, Koek Peak : Strato : Wolo Inielika;

Lebih terperinci

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA

ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BARAT LAUT KEP. SANGIHE SULAWESI UTARA ULASAN GUNCANGAN TANAH AKIBAT GEMPA BUMI BARAT LAUT KEP. SANGIHE SULAWESI UTARA Oleh Artadi Pria Sakti*, Robby Wallansha*, Ariska

Lebih terperinci

Tugas Akhir. Institut Teknologi Bandung. Disusun oleh : Rexha Verdhora Ry

Tugas Akhir. Institut Teknologi Bandung. Disusun oleh : Rexha Verdhora Ry Aplikasi Metode Inversi Simulated Annealing pada Penentuan Hiposenter Gempa Mikro dan Tomografi Waktu Tunda 3-D Struktur Kecepatan Seismik untuk Studi Kasus Lapangan Panas Bumi RR Tugas Akhir Diajukan

Lebih terperinci

DAFTAR ISI COVER HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR GAMBAR DAFTAR TABEL BAB I PENDAHULUAN 1. I.1.

DAFTAR ISI COVER HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR GAMBAR DAFTAR TABEL BAB I PENDAHULUAN 1. I.1. DAFTAR ISI COVER i HALAMAN PENGESAHAN ii HALAMAN PERNYATAAN iii KATA PENGANTAR iv DAFTAR ISI vi DAFTAR GAMBAR x DAFTAR TABEL xvi SARI xvii BAB I PENDAHULUAN 1 I.1. Latar Belakang 1 I.2. Rumusan Masalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Magnitudo Gempabumi Magnitudo gempabumi adalah skala logaritmik kekuatan gempabumi atau ledakan berdasarkan pengukuran instrumental (Bormann, 2002). Pertama kali, konsep magnitudo

Lebih terperinci

BAB I PENDAHULUAN. lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki

BAB I PENDAHULUAN. lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki BAB I PENDAHULUAN 1.1. Latar Belakang Posisi Kepulauan Indonesia yang terletak pada pertemuan antara tiga lempeng besar (Eurasia, Hindia-Australia, dan Pasifik) menjadikannya memiliki tatanan tektonik

Lebih terperinci

Computer Graphic. Output Primitif dan Algoritma Garis. Erwin Yudi Hidayat. Computer Graphics C Version 2 Ed by Donald Hearn

Computer Graphic. Output Primitif dan Algoritma Garis. Erwin Yudi Hidayat. Computer Graphics C Version 2 Ed by Donald Hearn Computer Graphic Output Primitif dan Algoritma Garis Erwin Yudi Hidayat erwin@dsn.dinus.ac.id Computer Graphics C Version 2 Ed by Donald Hearn Addison Wesley is an imprint of erwin@dsn.dinus.ac.id CG -

Lebih terperinci

BAB I PENDAHULUAN. Tuban adalah sebuah kabupaten di Jawa Timur, Indonesia. Penduduknya

BAB I PENDAHULUAN. Tuban adalah sebuah kabupaten di Jawa Timur, Indonesia. Penduduknya BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Tuban adalah sebuah kabupaten di Jawa Timur, Indonesia. Penduduknya berjumlah sekitar satu juta jiwa. Tercatat dua buah sungai yang mempunyai aliran panjang

Lebih terperinci

BAB III GLOBAL POSITIONING SYSTEM (GPS)

BAB III GLOBAL POSITIONING SYSTEM (GPS) BAB III GLOBAL POSITIONING SYSTEM (GPS) III. 1 GLOBAL POSITIONING SYSTEM (GPS) Global Positioning System atau GPS adalah sistem radio navigasi dan penentuan posisi menggunakan satelit [Abidin, 2007]. Nama

Lebih terperinci

ERUPSI G. SOPUTAN 2007

ERUPSI G. SOPUTAN 2007 ERUPSI G. SOPUTAN 2007 AGUS SOLIHIN 1 dan AHMAD BASUKI 2 1 ) Penyelidik Bumi Muda di Bidang Pengamatan dan Penyelidikan Gunungapi 2 ) Penganalisis Seismik di Bidang Pengamatan dan Penyelidikan Gunungapi

Lebih terperinci

PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA

PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA PENGERTIAN GEMPA DAM MACAM-MACAM GEMPA GEMPA BUMI 1. PENGERTIAN GEMPA Gempa adalah pergeseran tiba-tiba dari lapisan tanah di bawah permukaan bumi. Ketika pergeseran ini terjadi, timbul getaran yang disebut

Lebih terperinci

Bersama ini dengan hormat disampaikan tentang perkembangan kegiatan G. Kelud di Kabupaten Kediri, Blitar dan Malang, Provinsi Jawa Timur.

Bersama ini dengan hormat disampaikan tentang perkembangan kegiatan G. Kelud di Kabupaten Kediri, Blitar dan Malang, Provinsi Jawa Timur. KEMENTERIAN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA BADAN GEOLOGI JALAN DIPONEGORO NO. 57 BANDUNG 40122 JALAN JEND. GATOT SUBROTO KAV. 49 JAKARTA 12950 Telepon: 022-7212834, 5228424, 021-5228371

Lebih terperinci

POLUSI UDARA DI KAWASAN CEKUNGAN BANDUNG

POLUSI UDARA DI KAWASAN CEKUNGAN BANDUNG POLUSI UDARA DI KAWASAN CEKUNGAN BANDUNG Sumaryati Peneliti Bidang Komposisi Atmosfer, LAPAN e-mail: sumary.bdg@gmail.com,maryati@bdg.lapan.go.id RINGKASAN Pengelolaan polusi udara pada prinsipnya adalah

Lebih terperinci

Analisis Mekanisme Gempabumi Sorong 25 September 2015 (WIT) (Preliminary Scientific Report)

Analisis Mekanisme Gempabumi Sorong 25 September 2015 (WIT) (Preliminary Scientific Report) Analisis Mekanisme Gempabumi Sorong 25 September 2015 (WIT) (Preliminary Scientific Report) Oleh: Dr. Muzli Email : muzli@bmkg.go.id (updated 07 Oktober 2015) Gempabumi Sorong terjadi pada tanggal 25 September

Lebih terperinci

Peta Topografi. Legenda peta antara lain berisi tentang : a. Judul Peta

Peta Topografi. Legenda peta antara lain berisi tentang : a. Judul Peta Pendahuluan Sebagai orang yang mengaku dekat dengan alam, pengetahuan peta dan kompas serta cara penggunaannya mutlak dan harus dimiliki. Perjalanan ke tempat-tempat yang jauh dan tidak dikenal akan lebih

Lebih terperinci

BAB III TEORI DASAR. Gelombang seismik merupakan gelombang yang menjalar di dalam bumi

BAB III TEORI DASAR. Gelombang seismik merupakan gelombang yang menjalar di dalam bumi BAB III TEORI DASAR 3. 1. Gelombang Seismik Gelombang seismik merupakan gelombang yang menjalar di dalam bumi disebabkan adanya deformasi struktur, tekanan ataupun tarikan karena sifat keelastisan kerak

Lebih terperinci

BAB III PELAKSANAAN PENELITIAN

BAB III PELAKSANAAN PENELITIAN BAB III PELAKSANAAN PENELITIAN Pada bab ini akan dijelaskan mengenai alat dan bahan yang digunakan dalam penelitian ini serta tahapan-tahapan yang dilakukan dalam mengklasifikasi tata guna lahan dari hasil

Lebih terperinci

Bab II Tinjauan Pustaka II.1 Geologi Daerah Yogyakarta dan Sekitarnya II.1.1. Batuan

Bab II Tinjauan Pustaka II.1 Geologi Daerah Yogyakarta dan Sekitarnya II.1.1. Batuan 7 Bab II Tinjauan Pustaka Dalam kajian pustaka ini akan dibahas geologi regional daerah penelitian, struktur sesar aktif, pengaruh sesar terhadap wilayah sekitarnya, pengertian gempa, periode predominan,

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan...

DAFTAR ISI. BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Batasan Masalah Tujuan Sistematika Penulisan... DAFTAR ISI HALAMAN JUDUL... LEMBAR KEASLIAN SKRIPSI... ii LEMBAR PERSETUJUAN... iii LEMBAR PENGESAHAN... iv LEMBAR PERSEMBAHAN... v ABSTRAK... vi ABSTRACT... vii KATA PENGANTAR... viii DAFTAR ISI... x

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG EVALUASI TAPAK INSTALASI NUKLIR UNTUK ASPEK KEGEMPAAN

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG EVALUASI TAPAK INSTALASI NUKLIR UNTUK ASPEK KEGEMPAAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG EVALUASI TAPAK INSTALASI NUKLIR UNTUK ASPEK KEGEMPAAN DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR, Menimbang

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 47 BAB V HASIL DAN PEMBAHASAN 5.1. Kajian Pendahuluan Berdasarkan pada peta geohidrologi diketahui siklus air pada daerah penelitian berada pada discharge area ditunjukkan oleh warna kuning pada peta,

Lebih terperinci

ANALISIS DATA INVERSI 2-DIMENSI DAN 3-DIMENSI UNTUK KARAKTERISASI NILAI RESISTIVITAS BAWAH PERMUKAAN DI SEKITAR SUMBER AIR PANAS KAMPALA

ANALISIS DATA INVERSI 2-DIMENSI DAN 3-DIMENSI UNTUK KARAKTERISASI NILAI RESISTIVITAS BAWAH PERMUKAAN DI SEKITAR SUMBER AIR PANAS KAMPALA ANALISIS DATA INVERSI 2-DIMENSI DAN 3-DIMENSI UNTUK KARAKTERISASI NILAI RESISTIVITAS BAWAH PERMUKAAN DI SEKITAR SUMBER AIR PANAS KAMPALA Muh. Taufik Dwi Putra ˡ, Syamsuddin ˡ, Sabrianto Aswad ˡ. Program

Lebih terperinci