BAB 1 PENDAHULUAN. 1.1 Latar Belakang
|
|
|
- Sudomo Susanto
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan makhluk hidup ini banyak permasalahan yang muncul seperti diantaranya banyak penyakit menular yang mengancam kehidupan. Sangat diperlukan sistem untuk mengontrol dan mengetahui penyebaran penyakit menular tersebut salah satunya adalah model matematika yang dapat membantu dan mempermudah penyelesaaian masalah tersebut. Menyelesaikan masalah juga tidak mudah untuk menurunkan model matematisnya terutama untuk masalah yang cukup kompleks. Meskipun model matematisnya sudah diperoleh namun masalah waktu dan biaya biasanya juga menjadi kendala apabila menggunakan model matematis tersebut. Model matematika adalah model yang menggambarkan suatu permasalahan dalam persamaaan matematika. Persamaan model matematika merupakan pendekatan terhadap suatu fenomena fisik. Pada model matematika tiruan tersebut disajikan dengan mendeskripsikan fenomena alam dengan satu set persamaan. Kecocokan model terhadap fenomena tersebut bergantung dari ketetapan formulasi persamaan matematis dalam mendeskripsikan fenomena alam yang ditirukan. Model epidemi merupakan sistem persamaan diferensial dirumuskan sebagai masalah nilai awal atau Initial V alue P roblems (IVPs). Sehingga model diintegrasikan terhadap waktu, yang dimulai dengan awal yang ditetapkan untuk kelas-kelas populasi yang berbeda. Epidemi merupakan suatu keadaan dimana berjangkitnya suatu penyakit menular dalam populasi pada suatu tempat yang melebihi perkiraan yang normal dalam periode yang singkat. Bila penyakit tersebut selalu terdapat dalam suatu tempat begitupun juga dengan faktor penyebabnya maka dikatakan endemik kemudian bila penyakit tersebut mempunyai ruang lingkup penyebaran yang sangat luas maka disebut pandemik. Model epidemik pertama kali menjelaskan masalah penyebaran penyakit adalah model SIR klasik yang dikemukakan oleh (Kermack dan McKendrick, 1927). 1
2 2 Model ini terdiri atas tiga kompartemen yaitu S (susceptible), I (infective), R (recovered). Sejak (Kermack dan McKendrick, 1927) mengusulkan SIR klasik, pemodelan matematika telah menjadi alat penting dalam menganalisis penyebaran dan pengendalian infeksi penyakit. Upaya telah dilakukan untuk mengembangkan realistis model matematika untuk transmisi infeksi penyakit. Secara grafik dapat ditunjukan model teori epidemik (Kermack dan McKendrick, 1927), (Anderson dan May, 1991), (Zhou dan Lin, 2013), sebagai latar belakang dari penelitian ini. Model teori epidemi untuk penyakit diilustrasikan pada gambar 1.1 seperti berikut Gambar 1.1 Model epidemi SIR Pada gambar 1.1 menjelaskan laju perpindahan antara ketiga kelas. adalah laju penularan penyakit dan v adalah laju pemulihan (Kermack dan McKendrick, 1927). Diasumsikan bahwa setiap pembagian kelas terdiri dari individu yang memiliki kondisi kesehatan yang sama dan tidak ada kelahiran dan kematian didalam populasi. Sistem persamaan diferensialnya adalah : di ds = βsi, (1.1) = βsi vi, (1.2) dr = vi. (1.3) Misalkan kekebalan tubuh sudah hilang, mengakibatkan individu yang telah pulih menjadi rentan terserang infeksi kembali maka model epideminya dapat digambarkan 1.2 seperti berikut β
3 3 Gambar 1.2 Model epidemi SIRS Pada gambar 1.2 model epidemi SIRS mempunyai perbedaan dengan model sebelumnya yaitu ketika individu yang telah pulih dapat kembali ke kelas susceptible. Diasumsikan bahwa untuk masalah ini laju dengan populasi dalam kelas (recovered), dengan konstanta kesamaan γ (Anderson dan May, 1991). Sistem persamaan diferensialnya menjadi : ds = βsi + γr, (1.4) di = βsi vi, (1.5) dr = vi γr. (1.6) Menurut (Zhou dan Lin, 2013), pada dampak media coverage adalah di mana τ > 0 adalah time delay yang mewakili periode laten pada media coverage. Sistem persamaan diferensialnya adalah : ds(t) di(t) = b ds(t) = { β 1 β 2I(t τ) } S(t)I(t) + γr(t), (1.7) m + 1(t τ) { β 1 β 2I(t τ) } S(t)I(t) (d + µ + δ)i(t), (1.8) m + 1(t τ) dr(t) = µi(t) (d + γ)r(t). (1.9) Time delay adalah pemodelan masalah nyata dalam arti persamaan diferensial tunda atau persamaan diferensial dengan argumen yang diperlambat. Pada umumnya time delay (τ) dimasukkan ke dalam suatu insidensi yang ada dalam model sebagai sebuah parameter, dimana parameter tersebut yang kerapkali menyebabkan perubahan pada sifat kestabilan dari titik kesetimbangan, sehingga analisis yang dilakukan adalah mengindentifikasi apakah time delay tersebut menyebabkan perubahan pada sifat kestabilan dari titik kesetimbangan atau tidak.
4 4 Pada jurnal (Zhou dan Lin, 2013), mengusulkan model epidemi SIRS dengan menggabungkan media coverage dengan time delay. 1.2 Rumusan Masalah Permasalahan yang dibahas pada tesis ini adalah bagaimana menurunkan model matematisnya untuk epidemi SIRS dengan time delay sehingga menghasilkan model epidemi, dari model epidemi tersebut akan terbentuk suatu sistem persamaan diferensial. Dari persamaan diferensial yang sudah terbentuk tadi dapat dicari titik kesetimbangan bebas penyakit dan titik kesetimbangan epidemi kemudian menganalisis kestabilannya. Menyelesaikan masalah juga tidak mudah untuk menurunkan model matematikanya terutama untuk masalah yang cukup kompleks. 1.3 Tujuan Penelitian Tujuan dari penelitian ini adalah 1. Mengembangkan model epidemi (Zhou dan Lin, 2013), dengan memodifikasi pada dinamika transmisi. 2. Mengindentifikasi apakah time delay tersebut mempengaruhi atau tidak mempengaruhi stabilitas pada kesetimbangan bebas penyakit dan pada kesetimbangan endemi penyakit. 1.4 Manfaat Penelitian Penelitian ini secara umum bermanfaat untuk menambah wawasan pengetahuan pada bidang matematika terapan. Secara khusus penelitian ini bermanfaat dalam pengembangan model matematika pada bidang epidemiologi terkait penyakit.
5 5 1.5 Metodologi Penelitian Pada penelitian ini metode yang penulis gunakan adalah studi pustaka. Untuk memperoleh model persoalan epidemi SIRS dengan time delay, langkah-langkah yang dilakukan adalah sebagai berikut : 1. Pada tahap awal penelitian mempelajari materi yang berhubungan dengan model epidemi SIRS dengan time delay, sistem persamaan diferensial linear dan nonlinear, jenis kestabilan titik kesetimbangan dan titik kesetimbangan. 2. Pemahaman persoalan epidemi SIRS dengan time delay. Pada tahap ini akan dipelajari dan memahami persoalan incorporating media coverage with time delay oleh (Zhou dan Lin, 2013). 3. Mengembangkan model epidemi SIRS (Zhou dan Lin, 2013). Berikut ini tahapan pengembangan model epidemi SIRS dengan memodifikasi pada dinamika transmisi : Mengajukan asumsi awal, menentukan notasi dari variabel-variabel dan menentukan parameter yang digunakan pada model, kemudian merancang diagram kompartemen model dari asumsi-asumsi yang telah diajukan, selanjutnya menurunkan model epidemi SIRS dengan time delay. 4. Dari penurunan model epidemi SIRS tersebut berdasarkan diagram kompartemen langkah selanjutnya adalah mengembangkan model epidemi SIRS dengan time delay. 5. Pada akhir penelitian ini langkah selanjutnya adalah menganalisis kesetimbangan dan kestabilan model epidemi.
BAB III HASIL DAN PEMBAHASAN. ekuilibrium bebas penyakit beserta analisis kestabilannya. Selanjutnya dilakukan
BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dijelaskan mengenai model matematika penyakit campak dengan pengaruh vaksinasi, diantaranya formulasi model penyakit campak, titik ekuilibrium bebas penyakit
BAB 2 BEBERAPA MODEL EPIDEMI. Laju pertumbuhan populasi akan dapat diketahui apabila kelahiran, kematian
BAB 2 BEBERAPA MODEL EPIDEMI 2.1 Model Pertumbuhan Populasi Laju pertumbuhan populasi akan dapat diketahui apabila kelahiran, kematian dan laju migrasi diketahui. Pada populasi tertutup, pertumbuhan populasi
III PEMODELAN. (Giesecke 1994)
4 2.2 Bilangan Reproduksi Dasar Bilangan reproduksi dasar adalah potensi penularan penyakit pada populasi rentan, merupakan rata-rata jumlah individu yang terinfeksi secara langsung oleh seorang penderita
BAB I PENDAHULUAN. penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk,
BAB I PENDAHULUAN A. Latar Belakang Berbagai jenis penyakit semakin banyak yang muncul salah satu penyebabnya adalah gaya hidup dan lingkungan yang tidak sehat. Murwanti dkk, (2013: 64) menyebutkan bahwa
Oleh Nara Riatul Kasanah Dosen Pembimbing Drs. Sri Suprapti H., M.Si
Oleh Nara Riatul Kasanah 1209100079 Dosen Pembimbing Drs. Sri Suprapti H., M.Si JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 PENDAHULUAN
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dibahas tinjauan pustaka yang akan digunakan untuk tesis ini, yang selanjutnya akan di perlukan pada Bab 3. Tinjauan pustaka yang dibahas adalah mengenai yang mendukung
Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam
Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 1-7 Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni matur Rohmah, Wuryansari Muharini Kusumawinahyu Jurusan Matematika,
Abstrak: Makalah ini bertujuan untuk mengkaji model SIR dari penyebaran
ANALISIS KESTABILAN PENYEBARAN PENYAKIT CAMPAK (MEASLES) DENGAN VAKSINASI MENGGUNAKAN MODEL ENDEMI SIR Marhendra Ali Kurniawan Fitriana Yuli S, M.Si Jurdik Matematika FMIPA UNY Abstrak: Makalah ini bertujuan
MODEL EPIDEMI SIRS DENGAN TIME DELAY
MODEL EPIDEMI SIRS DENGAN TIME DELAY TESIS Oleh FERDINAND SINUHAJI 127021034/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2014 MODEL EPIDEMI SIRS DENGAN TIME DELAY
BAB I PENDAHULUAN. Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang
BAB I PENDAHULUAN A. Latar Belakang Model matematika merupakan sekumpulan persamaan atau pertidaksamaan yang mengungkap perilaku suatu permasalahan yang nyata. Model matematika dibuat berdasarkan asumsi-asumsi.
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Infeksi virus dengue adalah suatu insiden penyakit yang serius dalam kematian di kebanyakan negara yang beriklim tropis dan sub tropis di dunia. Virus dengue
Bab 2 Tinjauan Pustaka
Bab 2 Tinjauan Pustaka 2.1 Penelitian Terdahulu Penelitian yang pernah dilakukan sebelumnya Stabilitas Global Model SEIR Pada Penyakit Mewabah. Penelitian ini membahas tentang pembentukan model Epidemis
III MODEL MATEMATIKA S I R. δ δ δ
9 III MODEL MATEMATIKA 3.1 Model SIRS Model dasar yang digunakan untuk menggambarkan penyebaran pengguna narkoba adalah model SIRS. Model ini dikemukakan oleh Kermac dan McKendric (1927) sebagai model
BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta
BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema
ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN
ANALISIS DINAMIK MODEL EPIDEMI SIRS DENGAN MODIFIKASI TINGKAT KEJADIAN INFEKSI NONMONOTON DAN PENGOBATAN Suryani, Agus Suryanto, Ratno Bagus E.W Pelaksana Akademik Mata Kuliah Universitas, Universitas
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN Pada Bab I Pendahuluan ini dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah
Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember
Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 346 Analisis Model SIR dengan Imigrasi dan Sanitasi pada Penyakit Hepatitis A di Kabupaten Jember (Analysis of SIR Model with
FOURIER April 2013, Vol. 2, No. 1, MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI. RR Laila Ma rifatun 1, Sugiyanto 2
FOURIER April 2013, Vol. 2, No. 1, 13 23 MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI RR Laila Ma rifatun 1, Sugiyanto 2 1, 2 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan
KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang)
KESTABILAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR) PADA PENYEBARAN PENYAKIT CAMPAK (MEASLES) (Studi Kasus di Kota Semarang) Melita Haryati 1, Kartono 2, Sunarsih 3 1,2,3 Jurusan Matematika
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang yang mendasari penelitian yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang telah
BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema
BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,
ANALISIS STABILITAS PADA PENYEBARAN PENYAKIT CAMPAK DAN DEMAM BERDARAH DENGUE DI KABUPATEN JEMBER SKRIPSI. Oleh Andy Setyawan NIM
ANALISIS STABILITAS PADA PENYEBARAN PENYAKIT CAMPAK DAN DEMAM BERDARAH DENGUE DI KABUPATEN JEMBER SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program
Analisa Kualitatif pada Model Penyakit Parasitosis
Analisa Kualitatif pada Model Penyakit Parasitosis Nara Riatul Kasanah dan Sri Suprapti H Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember (ITS) Jl.
MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL
MODEL EPIDEMIK SIR UNTUK PENYAKIT YANG MENULAR SECARA HORIZONTAL DAN VERTIKAL ILMIYATI SARI 1, HENGKI TASMAN 2 1 Pusat Studi Komputasi Matematika, Universitas Gunadarma, [email protected]
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Influenza atau lebih dikenal dengan flu, merupakan salah satu penyakit yang menyerang pernafasan manusia. Penyakit ini disebabkan oleh virus influenza yang
III PEMBAHASAN. μ v. r 3. μ h μ h r 4 r 5
III PEMBAHASAN 3.1 Perumusan Model Model yang akan dibahas dalam karya ilmiah ini adalah model SIDRS (Susceptible Infected Dormant Removed Susceptible) dari penularan penyakit malaria dalam suatu populasi.
BAB I PENDAHULUAN. Feces (kotoran manusia) yang terinfeksi oleh bakteri Vibrio cholerae
BAB I PENDAHULUAN A. Latar Belakang Masalah Feces (kotoran manusia) yang terinfeksi oleh bakteri Vibrio cholerae banyak ditemui di permukaan air. Melalui makanan, seperti sayuran yang telah dipupuk dengan
OLEH : IKHTISHOLIYAH DOSEN PEMBIMBING : Dr. subiono,m.sc
OLEH : IKHTISHOLIYAH 1207 100 702 DOSEN PEMBIMBING : Dr. subiono,m.sc JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2011 Pemodelan matematika
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Sistem Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang di dalamnya terdapat turunan-turunan. Jika terdapat variabel bebas tunggal, turunannya merupakan
KAJIAN PERILAKU MODEL MATEMATIKA PENYEBARAN PENYAKIT SIFILIS
Jurnal Matematika UNAND Vol 3 No Hal 40 45 ISSN : 2303 290 c Jurusan Matematika FMIPA UNAND KAJIAN PERILAKU MODEL MATEMATIKA PENYEBARAN PENYAKIT SIFILIS ARDIANSYAH Program Studi Magister Matematika Fakultas
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab ini terdiri dari 3 bagian. Pada bagian pertama diberikan tinjauan pustaka dari penelitian-penelitian sebelumnya. Pada bagian kedua diberikan teori penunjang untuk mencapai tujuan
Model Penyebaran Penyakit Menular MERS-CoV: Suatu Langkah Antisipasi Untuk Calon Jamaah Umrah/Haji Indonesia. Disusun Oleh: Benny Yong, S.Si., M.Si.
Perjanjian No: III/LPPM/2015-02/40-P Model Penyebaran Penyakit Menular MERS-CoV: Suatu Langkah Antisipasi Untuk Calon Jamaah Umrah/Haji Indonesia Disusun Oleh: Benny Yong, S.Si., M.Si. Livia Owen, S.Si.,
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Hama adalah organisme yang mengganggu atau merusak tanaman sehingga pertumbuhan dan perkembangannya terganggu. Secara umum, organisme tersebut adalah mikroorganisme
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI Mohammmad Soleh 1, Siti Rahma 2 Universitas Islam Negeri Sultan Syarif Kasim Riau Jl HR Soebrantas No 155 KM 15 Simpang Baru Panam Pekanbaru muhammadsoleh@uin-suskaacid
ADLN PERPUSTAKAAN UNIVERSITAS AIRLANGGA BAB IV PEMBAHASAN. optimal dari model untuk mengurangi penyebaran polio pada dengan
BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis model dan kontrol optimal penyebaran polio dengan vaksinasi. Dari model matematika penyebaran polio tersebut akan ditentukan titik setimbang dan kemudian
ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG
Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 235-244 ANALISIS KESTABILAN MODEL DINAMIKA PENYEBARAN PENYAKIT FLU BURUNG Hidayu Sulisti, Evi Noviani, Nilamsari Kusumastuti
ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER)
Jurnal Euclid, Vol.4, No.1, pp.646 ANALISIS STABILITAS SISTEM DINAMIK UNTUK MODEL MATEMATIKA EPIDEMIOLOGI TIPE-SIR (SUSCEPTIBLES, INFECTION, RECOVER) Herri Sulaiman Program Studi Pendidikan Matematika
BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI
BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS
Oleh : HASNAN NASRUN SUBCHAN, MAHMUD YUNUS ABSTRAK Penyakit Tuberkulosis (TB) merupakan salah satu penyakit menular tertua yang menyerang manusia. Badan kesehatan dunia (WHO) menyatakan bahwa sepertiga
MODEL STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DI KOTA DEPOK PENDAHULUAN
MODEL STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DI KOTA DEPOK H. SUMARNO 1, P. SIANTURI 1, A. KUSNANTO 1, SISWADI 1 Abstrak Kajian penyebaran penyakit dengan pendekatan deterministik telah banyak dilakukan.
Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS Dengan Pemberian Vaksinasi Unggas. Jalan Sukarno-Hatta Palu,
Studi Penyebaran Penyakit Flu Burung Melalui Kajian Dinamis Revisi Model Endemik SIRS I. Murwanti 1, R. Ratianingsih 1 dan A.I. Jaya 1 1 Jurusan Matematika FMIPA Universitas Tadulako, Jalan Sukarno-Hatta
Kontrol Optimal pada Model Epidemi SEIQR dengan Tingkat Kejadian Standar
Prosiding SI MaIs (Seminar asional Integrasi Matematika dan ilai Islami Vol.1, o.1, Juli 2017, Hal. 41-51 p-iss: 2580-4596; e-iss: 2580-460X Halaman 41 Kontrol Optimal pada Model Epidemi SEIQR dengan Tingkat
APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS. 10 Makassar, kode Pos 90245
APLIKASI METODE MATRIKS GENERASI DALAM MENENTUKAN NILAI MATEMATIKA PENYEBARAN VIRUS HIV/AIDS MODEL Septiangga Van Nyek Perdana Putra 1), Kasbawati 2), Syamsuddin Toaha 3) 1) Mahasiswa Jurusan Matematika,
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Penyakit menular merupakan masalah kesehatan utama di hampir setiap negara, termasuk Indonesia. Beberapa penyakit dapat menyebar dalam populasi hingga menyebabkan
Bab 3 MODEL DAN ANALISIS MATEMATIKA
Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga
III. MODEL MATEMATIK PENYEBARAN PENYAKIT DBD
III. MODEL MATEMATIK PENYEBARAN PENYAKIT DBD 8 3.1 Model SIR Model SIR pada uraian berikut mengacu pada kajian Derouich et al. (2003). Asumsi yang digunakan adalah: 1. Total populasi nyamuk dan total populasi
BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi
BAB II KAJIAN TEORI. digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan
BAB II KAJIAN TEORI Pada bab ini akan dijelaskan mengenai landasan teori yang akan digunakan pada bab pembahasan. Teori-teori ini digunakan sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI TUGAS AKHIR. Oleh : SITI RAHMA
MODEL SEIR PENYAKIT CAMPAK DENGAN VAKSINASI DAN MIGRASI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : SITI RAHMA 18544452 FAKULTAS SAINS
BAB I PENDAHULUAN Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini banyak sekali penyakit menular yang cukup membahayakan, penyakit menular biasanya disebabkan oleh faktor lingkungan yang cukup baik untuk perkembangbiakan
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN Bab ini memuat tentang latar belakang yang mendasari penelitian. Berdasarkan pada latar belakang tersebut, ditentukan tujuan penelitian yang ingin dicapai. Pada bab ini juga dijelaskan
Arisma Yuni Hardiningsih. Dra. Laksmi Prita Wardhani, M.Si. Jurusan Matematika. Surabaya
ANALISIS KESTABILAN DAN MEAN DISTRIBUSI MODEL EPIDEMIK SIR PADA WAKTU DISKRIT Arisma Yuni Hardiningsih 1206 100 050 Dosen Pembimbing : Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Institut Teknologi
MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT
MODEL EPIDEMI RANTAI MARKOV WAKTU DISKRIT SUSCEPTIBLE INFECTED RECOVERED DENGAN DUA PENYAKIT Wisnu Wardana, Respatiwulan, dan Hasih Pratiwi Program Studi Matematika FMIPA UNS ABSTRAK. Pola penyebaran penyakit
BAB 1 PENDAHULUAN. Wabah penyakit infeksi seperti penyakit SARS, flu burung, flu babi yang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Wabah penyakit infeksi seperti penyakit SARS, flu burung, flu babi yang terjadi berturut-turut pada tahun 2002, 2003 dan 2006 yang mencemaskan dan memakan banyak korban
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR
ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR Oleh: Drs. M. Setijo Winarko, M.Si Drs. I Gusti Ngurah Rai Usadha, M.Si Subchan, Ph.D Drs. Kamiran, M.Si Noveria
Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi
Seminar Matematika dan Pendidikan Matematika UNY 2017 Model Matematika SIV Untuk Penyebaran Virus Tungro Pada Tanaman Padi Sischa Wahyuning Tyas 1, Dwi Lestari 2 Universitas Negeri Yogyakarta 1 Universitas
BAB III BASIC REPRODUCTION NUMBER
BAB III BASIC REPRODUCTIO UMBER Dalam kaitannya dengan kejadian luar biasa, dalam epidemiologi matematika dikenal suatu besaran ambang batas (threshold) yang menjadi indikasi apakah dalam suatu populasi
MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI SKRIPSI. Untuk memenuhi sebagian persyaratan guna Memperoleh derajat Sarjana S-1
MODEL PENYEBARAN PENYAKIT POLIO DENGAN PENGARUH VAKSINASI SKRIPSI Untuk memenuhi sebagian persyaratan guna Memperoleh derajat Sarjana S-1 Program Studi Matematika Diajukan oleh Rr Laila Ma rifatun 08610039
Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov
Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida 1, Faisal 2, Muhammad Ahsar K. 3 1,2,3 Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend.
ANALISIS STABILITAS DAN OPTIMAL KONTROL PADA MODEL EPIDEMI TIPE SIR DENGAN VAKSINASI
ANALISIS STABILITAS DAN OPTIMAL KONTROL PADA MODEL EPIDEMI TIPE SIR DENGAN VAKSINASI Oleh Ikhtisholiyah 127 1 72 Dosen Pembimbing Dr. Subiono, M.Sc ABSTRAK Pemodelan matematika dan teori banyak digunakan
T 4 Simulasi Level Sanitasi Pada Model Sir Dengan Imigrasi Dan Vaksinasi
T 4 Simulasi Level Sanitasi Pada Model Sir Dengan Imigrasi Dan Vaksinasi Anita Kesuma Arum dan Sri Kuntari Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta
Kestabilan dan Bifurkasi Model Epidemik SEIR dengan Laju Kesembuhan Tipe Jenuh
Kestabilan dan Bifurkasi Model Epidemik SEIR dengan Laju Kesembuhan Tipe Jenuh Khoiril Hidayati, Setijo Winarko, I Gst Ngr Rai Usadha Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI Mohammad soleh 1, Leni Darlina 2 1,2 Jurusan Matematika Fakultas Sains Teknologi Universitas Islam
Bab II Teori Pendukung
Bab II Teori Pendukung II.1 Sistem Autonomous Tinjau sistem persamaan differensial berikut, = dy = f(x, y), g(x, y), (2.1) dengan asumsi f dan g adalah fungsi kontinu yang mempunyai turunan yang kontinu
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR
KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSCEPTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI TUGAS AKHIR Disusun sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika
Esai Kesehatan. Disusun Oleh: Prihantini /2015
Esai Kesehatan Analisis Model Pencegahan Penyebaran Penyakit Antraks di Indonesia Melalui Vaksin AVA sebagai Upaya Mewujudkan Pemerataan Kesehatan Menuju Indonesia Emas 2045 Disusun Oleh: Prihantini 15305141044/2015
DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED)
DINAMIKA PERKEMBANGAN HIV/AIDS DI SULAWESI UTARA MENGGUNAKAN MODEL PERSAMAAN DIFERENSIAL NONLINEAR SIR (SUSCEPTIBLE, INFECTIOUS AND RECOVERED) Amir Tjolleng 1), Hanny A. H. Komalig 1), Jantje D. Prang
Prosiding Seminar Hasil-Hasil PPM IPB 2015 Vol. I : ISBN :
Vol. I : 214 228 ISBN : 978-602-8853-27-9 MODEL EPIDEMIK STOKASTIK PENYEBARAN PENYAKIT DEMAM BERDARAH DENGUE DI JAWA BARAT (Stochastic Epidemic Model of Dengue Fever Spread in West Java Province) Paian
PROBABILITAS WAKTU DELAY MODEL EPIDEMI ROUTING
PROBABILITAS WAKTU DELAY MODEL EPIDEMI ROUTING T - 9 Dyah Wardiyani Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta Abstrak Model epidemi routing menjelaskan
Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate
Kestabilan Model SIRS dengan Pertumbuhan Logistik dan Non-monotone Incidence Rate Mohammad soleh 1, Syamsuri 2 1,2 Jurusan Matematika Fakultas Sains dan Teknologi UIN Suska Riau Jln. HR. Soebrantas Km
MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG
MODEL SIR UNTUK PENYEBARAN PENYAKIT FLU BURUNG MANSYUR A. R.1 TOAHA S.2 KHAERUDDIN3 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin Jln. Perintis Kemerdekaan Km.
Oleh : Dinita Rahmalia NRP Dosen Pembimbing : Drs. M. Setijo Winarko, M.Si.
PERMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG (MATHEMATICAL MODEL AND STABILITY ANALYSIS THE SPREAD OF AVIAN INFLUENZA) Oleh : Dinita Rahmalia NRP 1206100011 Dosen Pembimbing
PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG
PEMODELAN MATEMATIKA DAN ANALISIS STABILITAS DARI PENYEBARAN PENYAKIT FLU BURUNG Dinita Rahmalia Universitas Islam Darul Ulum Lamongan, Abstrak. Di Indonesia terdapat banyak peternak unggas sebagai matapencaharian
BAB III PEMBAHASAN. tenggorokan, batuk, dan kesulitan bernafas. Pada kasus Avian Influenza, gejala
BAB III PEMBAHASAN A. Permasalahan Nyata Flu Burung (Avian Influenza) Avian Influenza atau yang lebih dikenal dengan flu burung adalah suatu penyakit menular yang disebabkan oleh virus influenza tipe A.
PENYEBARAN PENYAKIT CAMPAK DI INDONESIA DENGAN MODEL SUSCEPTIBLE VACCINATED INFECTED RECOVERED (SVIR)
PEYEBARA PEYAKIT CAMPAK DI IDOESIA DEGA MODEL SUSCEPTIBLE VACCIATED IFECTED RECOVERED (SVIR) Septiawan Adi Saputro, Purnami Widyaningsih, Dewi Retno Sari Saputro Program Studi Matematika FMIPA US Abstrak.
BAB 1 PENDAHULUAN. Malaria adalah penyakit infeksi yang disebabkan oleh protozoa parasit
BAB 1 PENDAHULUAN 1.1 Latar Belakang Malaria adalah penyakit infeksi yang disebabkan oleh protozoa parasit yang merupakan golongan plasmodium yang hidup dan berkembang biak dalam sel darah merah manusia.
BAB III PEMBAHASAN. Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada
BAB III PEMBAHASAN Pada bab ini akan dibentuk model matematika dari penyebaran penyakit virus Ebola. Setelah model terbentuk, akan dilanjutkan dengan analisa bifurkasi pada parameter laju transmisi. A.
Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate
Analisis Kestabilan Model MSEIR Penyebaran Penyakit Difteri Dengan Saturated Incidence Rate I Suryani 1 Mela_YuenitaE 2 12 Jurusan Matematika Fakultas Sains dan Teknologi UIN Sultan Syarif Kasim Riau Jl
Dengan maraknya wabah DBD ini perlu adanya suatu penelitian dan pemikiran yang
BAB I Pendahuluan Dari sisi pandang WHO, Demam Berdarah Dengue (selanjutnya disingkat DBD) telah menjadi salah satu penyakit yang tergolong epidemik dan endemik serta belum ditemukan obatnya. Sejak tahun
PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 2 (2015), hal 101 110 PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN MODEL PADA PENYEBARAN HIV-AIDS Dwi Haryanto, Nilamsari Kusumastuti,
BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik
BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud
BAB I PENDAHULUAN. Middle East Respiratory Syndrome-Corona Virus atau biasa disingkat MERS-
A. Latar Belakang Penelitian BAB I PENDAHULUAN Middle East Respiratory Syndrome-Corona Virus atau biasa disingkat MERS- CoV adalah penyakit sindrom pernapasan yang disebabkan oleh Virus-Corona yang menyerang
Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA
Jurnal Euclid, vol.3, No.2, p.501 MODEL MATEMATIKA TERHADAP PENYEBARAN VIRUS AVIAN INFLUENZA TIPE-H5N1 PADA POPULASI MANUSIA Dian Permana Putri 1, Herri Sulaiman 2 FKIP, Pendidikan Matematika, Universitas
BAB IV PEMBAHASAN. 4.1 Analisis Kestabilan Model Matematika AIDS dengan Transmisi. atau Ibu menyusui yang positif terinfeksi HIV ke anaknya.
BAB IV PEMBAHASAN Pada bab ini dilakukan analisis model penyebaran penyakit AIDS dengan adanya transmisi vertikal pada AIDS. Dari model matematika tersebut ditentukan titik setimbang dan kemudian dianalisis
ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 163-172 ANALISIS KESTABILAN DAN PROSES MARKOV MODEL PENYEBARAN PENYAKIT EBOLA Auliah Arfani, Nilamsari Kusumastuti, Shantika
BAB I PENDAHULUAN. terjadinya penyakit Acquired Immune Deficiency Syndrome (AIDS). Kasus HIV-
BAB I PENDAHULUAN 1.1. Latar Belakang Infeksi Human Immunodeficiency Virus (HIV) merupakan salah satu masalah kesehatan utama dan salah satu penyakit menular yang dapat mempengaruhi kematian penduduk di
BAB 3 ANALISIS DAN PERANCANGAN. 3.1 Analisis Kegunaan dari Program Aplikasi yang Dirancang
BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Kegunaan dari Program Aplikasi yang Dirancang Telah disinggung pada bagian pendahuluan bahwa para epidemiolog menggunakan model matematika untuk merunut kemajuan
Analisis Kestabilan Model Veisv Penyebaran Virus Komputer Dengan Pertumbuhan Logistik
Analisis Kestabilan Model Veisv Penyebaran Virus Komputer Dengan Pertumbuhan Logistik Mohammad soleh 1, Seri Rodia Pakpahan 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan
Penyelesaian Numerik dan Analisa Kestabilan pada Model Epidemik SEIR dengan Memperhatikan Adanya Penularan pada Periode Laten
Penyelesaian Numerik dan Analisa Kestabilan pada Model Epidemik SEIR dengan Memperhatikan Adanya Penularan pada Periode Laten Labibah Rochmatika,Drs. M. Setijo Winarko, M.Si dan Drs. Lukman Hanafi, M.Sc
ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA
ANALISIS KESTABILAN MODEL DINAMIK PENYEBARAN VIRUS INFLUENZA SKRIPSI Oleh Elok Faiqotul Himmah J2A413 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 28
MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN IMIGRASI DAN SANITASI
MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN IMIGRASI DAN SANITASI oleh EVY DWI ASTUTI M0108087 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika
BAB I PENDAHULUAN. Penyakit virus Ebola merupakan salah satu penyakit menular dan mematikan
BAB I PENDAHULUAN A. Latar Belakang Penyakit virus Ebola merupakan salah satu penyakit menular dan mematikan yang pertama kali muncul pada tahun. Rata-rata tingkat kematian penyakit virus Ebola mencapai,
ABSTRAK. Kata Kunci: SEIS, masa inkubasi, titik kesetimbangan, pertussis, simulasi. iii
ABSTRAK Wahyu Setyawan. 2015. MODEL SUSCEPTIBLE EXPOSED INFECTED SUSCEPTIBLE (SEIS). Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Sebelas Maret. Model matematika yang menggambarkan pola penyebaran
TUGAS AKHIR KAJIAN SKEMA BEDA HINGGA TAK-STANDAR DARI TIPE PREDICTOR-CORRECTOR UNTUK MODEL EPIDEMIK SIR
TUGAS AKHIR KAJIAN SKEMA BEDA HINGGA TAK-STANDAR DARI TIPE PREDICTOR-CORRECTOR UNTUK MODEL EPIDEMIK SIR STUDY OF A NONSTANDARD SCHEME OF PREDICTORCORRECTOR TYPE FOR EPIDEMIC MODELS SIR Oleh:Anisa Febriana
KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR. Oleh: RAFIQATUL HASANAH NRP.
TUGAS AKHIR KAJIAN MODEL MARKOV WAKTU DISKRIT UNTUK PENYEBARAN PENYAKIT MENULAR PADA MODEL EPIDEMIK SIR Oleh: RAFIQATUL HASANAH NRP. 1208 100 021 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si. Drs.
MODEL SIR (SUSCEPTIBLE, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS
e-jurnal Matematika Vol 1 No 1 Agustus 2012, 52-58 MODEL SIR (SUSCEPTIBLE, INFECTIOUS, RECOVERED) UNTUK PENYEBARAN PENYAKIT TUBERKULOSIS K QUEENA FREDLINA 1, TJOKORDA BAGUS OKA 2, I MADE EKA DWIPAYANA
