BAB II TINJAUAN PUSTAKA. Rumus struktur. Gambar 2.1. Fenilbutazon (Ditjen POM., 2010). : 4-Butil-1,2-difenil-3,5-pirazolidinadion

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. Rumus struktur. Gambar 2.1. Fenilbutazon (Ditjen POM., 2010). : 4-Butil-1,2-difenil-3,5-pirazolidinadion"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan Fenilbutazon Sifat Fisika dan Kimia Rumus struktur Gambar 2.1. Fenilbutazon (Ditjen POM., 2010). Rumus molekul : C 19 H 20 N 2 O 2 Berat Molekul : 308,38 Nama IUPAC Pemerian Kelarutan : 4-Butil-1,2-difenil-3,5-pirazolidinadion : Serbuk hablur, putih atau agak putih; tidak berbau. : Sangat sukar larut dalam air; mudah larut dalam aseton dan dalam eter; larut dalam etanol. Larut dala larutan alkali. Titik lebur : (Ditjen POM, 2010; The Department of Health, 2002) Farmakologi Derivat pyrazolidin ini (1949) mirip rumuus intinya dengan fenazon. Khasiat antiradangnya lebih kuat daripada daya kerja analgetisnya. Oleh karena obat ini khusus digunakan untuk jenis artritis tertentu (Tjay dan Rahardja, 2007). 6

2 Kadangkala fenilbutazon dimasukkan secara ilegal (tanpa dicantumkan pada etiket) pada produk dari pabrik-pabrik kecil asing atau seringkali dalam tonika (dengan Ginseng) untuk keadaan lesu dan letih, nyeri otot dan perasaan lemah. Adalkalanya obat ini dikombinasi dengan kortikosteroida yang dalam obatt-obat demikian sangat berbahaya berhubung efek merusaknya terhadap selsel darah dan efek memperlemahnya sistem imun (Tjay dan Rahardja, 2007). Efek sampingnya serius antara lain terhadap darah dan lambung, sehingga di banyak negara Barat sudah ditarik dari peredaran sejak akhir tahun 1980-an. Kadangkala fenilbutazon masih digunakan untuk nyeri otot dalam bentuk krem 5% (Tjay dan Rahardja, 2007). Fenilbutazon digunakan untuk mengobati rematoid artritis dan sejenisnya sejak tahun 1949, kemudian secara berurutan didapat turunan fenibutazon, yaitu oksifenbutazon, sulfinpirazon, dan ketofenilbutazon. Fenilbutazon juga mempunyai efek antipiretik dan analgesik. Efek antiinflamasinya sama dengan salisilat (Kee dan Hayes, 1996). Bila diberikan per oral, absorpsinya akan cepat dan sempurna. Konsentrasi tertinggi dicapai dalam waktu 2 jam. Dengan dosis terapi 98% fenilbutazon dalam plasma terikat pada protein plasma, sedangkan bila konsentrasi lebih tinggi pengikatan dengan plasma protein mungkin hannya 90%. Masa paruh fenilbutazon lama, yaitu jam (Kee dan Hayes, 1996). 7

3 2.1.2 Propifenazon Rumus Struktur Gambar 2.2. Propifenazon (Moffat, et al., 2011) Rumus Molekul : C 14 H 18 N 2 O Berat Molekul : 230,3 Nama IUPAC Titik lebur Pemerian : 1,5-dimetil-2-fenil-4-propan-2-nil-pirazol-3-on : C : Berupa kristal putih atau serbuk kristal. Tidak berbau dan terasa agak pahit Kelarutan : Mudah larut dalam etanol dan dalam kloroform. Larut dalam eter dan sedikit larut dalam air (Moffat, et al., 2011) Propifenazon adalah zat analgetik yang telah dikenal cukup lama. Propifenazon adalah contoh analgetika ringan yang digunakan sesuai permintaan. Propifenazon biasanya dikombinasikan dengan NSAID lainnya pada tablet, yang dapat diperoleh tanpa resep di berbagai negara. Propifenazon disebutkan sebagai pencetus reaksi alergi/pseudoalergi di dalam berbagai textbook dan dalam studi epidemiologi, dan dalam berbagai laporan propifenazon dapat menginduksi berbagai tipe reaksi alergi (Himly, et al., 2003). 8

4 2.2 Spektrofotometri Ultraviolet-Visibel Pengertian Spektrofotometri Ultraviolet-Visibel Spekrofotometri UV-visibel merupakan metode spektrofotometri yang didasarkan pada adanya serapan sinar pada daerah ultraviolet (UV) dan sinar tampak (Visibel) dari suatu senyawa. Senyawa dapat dianalisis dengan metode ini jika memiliki kemampuan menyerap pada daerah UV atau daerah tampak. Senyawa yang dapat menyerap intensitas pada daerah UV disebut dengan kromofor, sedangkan untuk melakukan analisis senyawa dalam daerah sinar tampak, senyawa harus memiliki warna (Fatimah, 2003) Proses Penyerapan Radiasi pada Spektrofotometer Ultraviolet-Visibel Radiasi ultravioet dan sinar tampak diabsorpsi oleh molekul organik aromatik, molekul yang mengandung elektron π terkonyugasi dan/ atom yang mengandung elektron-n, menyebabkan transisi elektron di orbit terluarnya dari tingkat enersi elektron dasar ke tingkat enersi elektron tereksitasi lebih tinggi (Satiadarma, dkk., 2004). Jika suatu molekul sederhana dikenakan radiasi elektromagnetik maka molekul tersebut akan menyerap radiasi elektromagnetik yang energinya sesuai. Interaksi antara molekul dengan radiasi elektromagnetik ini akan meningkatkan energi potensial elektron pada tingkat keadaan tereksitasi (Rohman, 2007). Sinar ultraviolet dan sinar tampak (visibel) memberikan energi yang cukup untuk terjadinya transisi elektron (Rohman, 2007). Elektron yang energinya tertinggi dalam molekul, berada dalam tingkat energi elektron dasar, terdapat dalam orbital δ, π, atau n, masing-masing mempunyai keadaan tereksitasi sesuai dengan energi elektron terendah. Transisi elektron yang terkait dengan absorbsi radiasi ultraviolet dan sinar tampak adalah δ*, δ n δ*, n π*, dan π π* 9

5 (Satiadarma, dkk., 2004). Penyerapan radiasi ultraviolet dan sinar tampak dibatasi oleh sejumlah gugus fungsional (yang disebut dengan kromofor) yang mengandung elektron valensi dengan tingkat energi eksitasi yang relatif rendah. Elektron yang terlibat pada penyerapan radiasi ultraviolet dan visibel ini ada tiga, yaitu elektron sigma, elektron phi, dan elektron bukan ikatan (non bonding electron) (Rohman, 2007). Menurut Rohman (2007), transisi-transisi elektronik yang terjadi di antara tingkat-tingkat energi di dalam suatu molekul ada empat yaitu transisi δ*, δ transisi n δ*, transisi n π*, dan transisi π π*. Berikut akan diuraikan keempat jenis transisi : 1. Transisi δ δ* Energi yang diperlukan untuk transisi ini besarnya sesuai dengan energi sinar yang frekuensinya terletak di antara ultraviolet vakum (kurang dari 180 nm). Jenis transisi ini terjadi pada daerah ultraviolet vakum sehingga kurang begitu bermanfaat untuk analisis dengan cara spektrofotometri ultraviolet-visibel. 2. Transisi n δ* Jenis transisi ini terjadi pada senyawa organik jenuh yang mengandung atom-atom yang memiliki elektron bukan ikatan (elektron n). Energi yang diperlukan untuk transisi jenis ini lebih kecil dibandingkan transisi δ* δ sehingga sinar yang diserap pun mempunyai panjang gelombang lebih panjang, yakni sekitar nm. Kebanyakan transisi ini terjadi pada panjang gelombang kurang dari 200 nm. 3. Transisi n π* dan transisi π π* Untuk memungkinkan terjadinya transisi ini, maka molekul organik harus mempunyai gugus fungsional yang tidak jenuh sehingga ikatan rangkap dalam 10

6 gugus tersebut memberikan orbital phi yang diperlukan. Jenis transisi ini merupakan transisi yang paling cocok untuk analisis sebab dengan panjang gelombang nm, dan panjang gelombang ini secara teknis dapat diaplikasikan pada spektrofotometer ultraviolet-visibel. Perbedaan antara transisi n π* dan transisi π π* dapat dilihat pada Tabel 2.1. Tabel 2.1. Perbedaan antara transisi n π* dan transisi π π* Transisi n π* Absorptivitas molar (ε) antara Lcm -1 mol -1 Biasanya pelarut yang polar menyebabkan pergeseran biru atau hypsocromic shift (pergeseran pita serapan ke arah panjang gelombang yang lebih pendek) Transisi π π* Absorptivitas molar (ε) antara Lcm -1 mol -1 Biasanya pelarut yang polar menyebabkan pergeseran merah atau bathocromic shift (pergeseran pita serapan ke arah panjang gelombang yang lebih panjang) Kegunaan Spektrofotometri Ultraviolet-Visibel Data spektrum ultraviolet-visibel secara tersendiri tidak dapat digunakan untuk identifikasi kualitatif obat karena rentang daerah radiasi yang relatif sempit hanya dapat menghasilkan sedikit sekali puncak absorbsi maksimum dan minimum. Akan tetapi jika digabung dengan cara lain seperti spektrofotometri inframerah, resonansi magnet inti, dan spektrometri massa, maka dapat digunakan untuk maksud identifikasi kualitatif suatu senyawa tersebut. Penggunaannya terbatas pada konfirmasi identitas dengan menggunakan parameter panjang gelombang maksimum, nilai absorptivitas, nilai absorptivitas molar, dan nilai koefisien ekstingsi yang khas untuk senyawa yang dilarutkan dalam suatu pelarut 11

7 tertentu (Satiadarma, dkk., 2004; Rohman, 2007). Hukum Lambert-Beer menjadi dasar aspek kuantitatif spektrofotometri ultraviolet-visibel. Menurut Hukum Lambert-Beer, serapan berbanding lurus terhadap konsentrasi dan ketebalan sel, yang dapat ditulis dengan persamaan : A = a.b.c (g/liter) atau A = ε. b. c (mol/liter) atau A = A 1 1.b.c (g/100 ml) Dimana: A = serapan a = absorptivitas b = ketebalan sel c = konsentrasi ε = absorptivitas molar A 1 1 = absorptivitas spesifik Komponen Spektrofotometer Ultraviolet-Visibel Instrumen yang digunakan untuk mempelajari serapan atau emisi elektromagnetik sebagai fungsi dari panjang gelombang disebut spektrometer atau spektrofotometer (Sastrohamidjojo, 1985). Terdapat beberapa tipe spektrofotometer UV-Vis, dengan komponen yang sama yang terdapat pada laboratorium yang merupakan spektrofotometer double beam, yang terdiri dari sumber cahaya, dua sel dimana cahaya akan melaluinya, dan detektor untuk mengukur jumlah cahaya yang melewati sel. Spektrofotometer saat ini biasanya telah dikontrol oleh komputer dan memberikan fleksibilitas yang lebih besar bagi penggunanya, misalnya dalam menunjukkan spektrum dari suatu campuran atau dalam menampilkan grafik kalibrasi untuk menentukan konsentrasi senyawa yang tidak diketahui (Anderson, et al., 2004). Menurut Satiadarma, dkk., (2004) dan Rohman (2007), komponen spektrofotometer Ultraviolet-Visibel adalah sebagai berikut: 12

8 1. Sumber-sumber lampu: lampu deuterium digunakan untuk daerah ultraviolet pada panjang gelombang dari nm, sementara lampu halogen kuarsa atau lampu tungsten digunakan untuk daerah visibel pada panjang gelombang antara nm. 2. Monokromotor: digunakan untuk memperoleh sumber sinar yang monokromatis. 3. Optik-optik: dapat didesain untuk memecah sumber sinar melewati 2 kompartemen. 4. Detektor: digunakan sebagai alat yang menerima sinyal dalam bentuk radiasi elektromagnetik, mengubah, dan meneruskannya dalam bentuk sinyal listrik ke rangkaian sistem penguat elektronika. Respon tiap jenis detektor terhadap bagian dari spektrum radiasi tidak sama, sehingga setiap spektrofotometer menggunakan detektor yang paling cocok untuk daerah pengukurannya. 2.3 Spektrofotometri Derivatif Pengertian Spektrofotometri Derivatif Metode spektrofotometri derivatif atau metode kurva turunan adalah salah satu metode spektrofotometri yang dapat digunaan untuk analisis campuran beberapa zat secara langsung tanpa harus melakukan pemisahan terlebih dahulu waaupun dengan panjang gelombang yang berdekatan (Nurhidayati, 2007). Aplikasi spektrofotometri derivatif menyediakan teknik yang baik untuk menganalisis campuran multikomponen secara kuantitatif. Metode spektrofotometri derivatif telah digunakan secara luas untuk memperbesar sinyal dan menjelaskan puncak-puncak yang saling tumpang tindih disebabkan oleh kemampuannya dalam mendiferensiasi puncak-puncak yang berdekatan, dan 13

9 mengidentifikasi puncak-puncak lemah yang dihalangi oleh puncak yang lebih tajam (Ojeda dan Rojas, 2012). Spektrofotometri derivatif adalah teknik yang didasarkan pada derivatisasi spektrum dasar yakni spektrum orde nol. Hasil derivatisasi fungsi dijelaskan lari dari absorbansi kurva disebut spektrum derivatif dan dapat dinyatakan sebagai : n D xλ = d n A / dλ n = f(λ) atau n D xv = d n A / dv n = f(v) Dimana: n : orde derivatif, n D xλ atau n D xv menunjukkan nilai dari orde derivatif ken suatu analit (x) pada panjang gelombang analisis (λ) atau pada bilangan panjang gelombang (v), A : absorbansi (Karpinska, 2012). Spektrum serapan normal sampai derivat ke-n dapat dilihat pada Gambar 2.3. Gambar 2.3. Spektrum serapan normal sampai derivat ke-n (Karpinska, 2012) Dalam spektrum derivatif, kemampuan untuk mendeteksi dan mengukur gambaran spektrum minor telah jauh ditingkatkan. Peningkatan karakteristik detail spektrum yaitu dapat membedakan spektrum yang sangat mirip dan 14

10 mengikuti perubahan halus pada spektrum. Lebih daripada itu, teknik ini dapat digunakan dalam analisis kuantitatif untuk mengukur konsentrasi analit dimana puncaknya dihalangi oleh puncak yang lebih besar dan saling tumpang tindih (Willard, et al., 1988) Teknik Pengukuran Nilai Derivatif Spektrum derivatif beberapa orde merupakan hasil diferensiasi spektrum orde nol (dasar) dari campuran beberapa komponen. Diferensiasi spektrum dilakukan dengan berbagai metode, biasanya dengan metode analog atau metode numerik. Hasilnya, terlepas dari modus diferensiasi, dapat disajikan secara grafis di atas kertas atau terdaftar dalam memori komputer. Penentuan nilai-nilai derivatif dilakukan dengan cara salah satu dari tiga metode berikut. Pengukuran Grafis yang terdapat dalam rekaman pada kertas (menggunakan plot XY) yaitu spektrum derivatif dan zero line. Panjang gelombang dimana nilai derivatif akan diukur kemudian ditandai, dan pada titik ini sebuah garis ditarik tegak lurus terhadap zero line. Panjang A-B adalah nilai derivatif yang dinyatakan dalam satuan panjang (misalnya mm). Kelemahan teknik ini adalah ketidaktelitian pengukuran, terutama bila dilakukan pada sisi curam dari kurva (garis tegak lurus melintasi spektrum derivatif di bawah sudut akut). Kerugian ini dapat dihilangkan dengan menentukan nilai derivatif secara numerik (Kus, et al., 1996). Pengukuran numerik dari nilai-nilai derivatif dilakukan dengan membaca nilai derivatif pada panjang gelombang tertentu (bilangan gelombang) dari set poin (nilai panjang gelombang-derivatif). Suatu set diperoleh sebagai hasil dari diferensiasi spektrum menggunakan algoritma numerik yang tepat untuk memperoleh derivatif. Ketika melihat di spektrum derivatif, misalnya pada 15

11 monitor komputer yang terhubung ke spektrofotometer, salah satunya dapat membaca nilai derivatif pada panjang gelombang yang berubah secara bertahap (Kus, et al., 1996). Gambar 2.4 Pengukuran sinyal derivatif dengan metode Grafik (a) dan metode numerik (b) (Kus, et al., 1996). Teknik zero-crossing terdiri dari pengukuran nilai derivatif pada panjang gelombang (bilangan gelombang), di mana turunan dari komponen campuran menerima nilai nol - melintasi garis nol (Gambar 2.5 a). Kurva A melintasi garis nol pada titik Z, dan kurva B pada titik P- derivatif menerima nilai nol pada titiktitik ini. Dengan cara ini tidak ada efek dari satu komponen pada komponen yang lain. Teknik zero crossing mengizinkan untuk menghilangkan pengaruh komponen yang mengganggu komponen yang ditentukan. Kelemahan dari teknik pengukuran ini adalah presisi pengukuran yang tidak terlalu besar. Titik zero crossing suatu derivat harus ditentukan oleh setidaknya dua konsentrasi (Kus, et al., 1996). Teknik peak-to-peak terdiri dari pengukuran nilai derivatif pada panjang gelombang di mana rasio dari nilai-nilai derivatif H A dari komponen A dengan nilai-nilai derivatif H B dari komponen campur B mencapai nilai terbesar ( Gambar 16

12 2.5 b). Penentuan dilakukan dengan mengukur amplitudo (dari kurava maksimum ke kurva minimum) (Kus, et al., 1996). Teknik baseline-to-peak terdiri dari pengukuran nilai derivatif pada panjang gelombang di mana rasio dari nilai derivat H A dari komponen A dengan nilai derivat H B dari komponen campuran B mencapai nilai paling besar ( Gambar 2.5 c). Pengukuran dilakukan dari titik maksimum ke garis nol atau dari titik minimum ke garis nol. Teknik ini adalah versi dari teknik peak-to-peak, dibandingkan dengan yang kurang sensitif (rasio nilai derivatif lebih kecil di sini) (Kus, et al., 1996). Gambar 2.5 Teknik pengukuran zerro crossing (a), peak-to-peak (b), dan baseline-to-peak (c) Kegunaan Spektrofotometri Derivatif Metode spektrofotometri derivatif dapat digunakan untuk analisis kuantitatif zat dalam campuran yang spektrumnya mungkin tersembunyi dalam suatu bentuk spektrum besar yang saling tumpang tindih dengan mengabaikan proses pemisahan zat yang bertingkat-tingkat. Dalam bidang farmasi, karena terkait terapi, penetapan kadar obat adalah kontrol kualitas pada industri farmasi. 17

13 Metode spektrofotometri derivatif adalah teknik analisis dengan kemampuan memisahkan campuran obat yang memiliki spektra tumpang tindih (Nurhidayati, 2007). 2.4 Validasi metode Validasi metode menurut United States Pharmacopeia (USP) diakukan untuk menjamin bahwa metode analisis akurat, spesifik, reprodusibel, dan tahan pada kisaran analit yang akan dianalisis. Suatu metode analisis harus divalidasi untuk melakukan verifikasi bahwa parameter-parameter kinerjanya cukup mampu untuk mengatasi problem analisis (Rohman, 2007) Akurasi Akurasi adalah kedekatan nilai hasil uji yang diperoleh melalui metode analisis dengan nilai yang sebenarnya. Akurasi dinyatakan dengan persen perolehan kembali (% recovery). Akurasi dapat ditentukan dengan dua metode, yaitu spiked-placebo recovery (metode simulasi) dan standard addition method (metode penambahan baku). Pada metode spiked-placebo recovery, analit murni ditambahkan (spiked) ke dalam campuran bahan pembawa sediaan farmasi, lalu campuran tersebut dianalisis dan jumlah analit yang dianalisis dibandingkan dengan jumlah analit yang telah diketahui konsentrasinya dapat ditambahkan langsung ke dalam sediaan farmasi. Metode ini dinamakan metode penambahan baku (Ermer dan Mcb.Miller, 2005; Harmita, 2004). Menurut Harmita (2004), dalam metode penambahan baku, sejumlah sampel yang dianalisis ditambah analit dengan konsentrasi biasanya 80% sampai 120% dari kadar analit yang diperkirakan, dicampur, dan dianalisis kembali. Selisih kedua hasil dibandingkan dengan kadar yang sebenarnya. Dalam kedua 18

14 metode tersebut, persen perolehan kembali dinyatakan sebagai rasio antara hasil yang diperoleh dengan hasil yang sebenarnya Presisi Presisi adalah derajat kesesuaian diantara masing-masing hasil uji, jika prosedur analisis diterakan berulang kali pada sejumlah cuplikan yang diambi dari satu sampel yang homogen.. Sesuai dengan ICH, presisi dilakukan pada 3 tingkattan yang berbeda yaitu keterulangan (repeatability), presisi antara (intermediate precision), dan ketertiruan (reproducibility). Keteruangan yaitu ketepatan (precision) pada kondisi percobaan yang sama(berulang) baik orangnya, peralatannya, tempatnya, maupun waktunya. Presisi antara yaitu ketepatan (precision) pada kondisi percobaan yang berbeda, baik orangnya, peralatannya, tempatnya maupun waktunya. Ketertiruan merujuk pada hasi-hasil laboratorium yang lain (Satiadarma, dkk., 2004; Rohman, 2007) Spesifisitas Spesifitas adalah suatu ukuran seberapa mampu metode tersebut mengukur analit saja dengan adanya senyawa-senyawa lain yang terkandung di dalam sampel (Watson, 2009). ICH membagi spesifisitas dalam 2 kategori, yakni uji identifikasi dan uji kemurnian atau pengukuran. Untuk tujuan identifikasi, spesifisitas ditunjukkan dengan kemampuan suatu metode analisis untuk membedakana antar senyawa yang memiliki struktur molekul yang hampir sama. Untuk tujuan uji kemurnian dan tujuan pengukuran kadar, spesifisitas ditunjukkan oleh daya pisah 2 senyawa yang berdekatan. Jika dalam suatu uji terdapat suatu pengotor maka metode uji harus tidak terpengaruh dengan adanya pengtor ini (Rohman, 2007). 19

15 2.4.4 Batas Deteksi dan Batas Kuantifikasi Batas deteksi didefinisikan sebagai konsentrasi analit terendah dalam sampel yang masih dapat dideteksi, meskipun tidak dapat dikuantifikasi. Batas deteksi merupakan batas uji yang spesifik menyatakan apakah analit di atas atau dibawah nilai tertentu. Batas Kuantifikasi didefinisikan sebagai konsentrasi analit terendah dalam sampel yang dapat ditentukan dengan presisi dan akurasi yang dapat diterima pada kondisi operasional metode yang digunakan (Rohman, 2007) Linieritas Linieritas adalah kemampuan suatu metode untuk memperoleh nilai hasil uji langsung atau setelah diolah secara metematika proporsional dengan konsentrasi analit dalam sampel dalam batas rentang konsentrasi tertentu (Satiadarma, dkk., 2004). Linieritas dapat ditentukan secara langsung dengan pengukuran analit pada konsentrasi sekurang-kurangnya lima titik konsentrasi yang mencakup seluruh rentang konsentrasi kerja (Ermer dan Mcb.Miller, 2005) Rentang Rentang adalah interval antara batas konsentrasi tertinggi dan terendah analit yang terbukti dapat ditentukan menggunakan prosedur analisis, dengan presisi, akurasi, dan linieritas yang baik. Rentang biasanya dinyatakan dalam satuan yang sama dengan hasil uji (persen, bagian per sejuta) (Satiadarma, dkk., 2004). 20

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Parasetamol Menurut Ditjen BKAK (2014), uraian mengenai parasetamol adalah sebagai berikut: Rumus struktur : Gambar 2.1 Rumus Struktur Parasetamol Nama Kimia

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kortikosteroid dan antihistamin. Deksametason memiliki kemampuan dalam

BAB II TINJAUAN PUSTAKA. kortikosteroid dan antihistamin. Deksametason memiliki kemampuan dalam BAB II TINJAUAN PUSTAKA 2.1 Deksametason dan Deksklorfeniramin Maleat Deksametason dan deksklorfeniramin maleat merupakan kombinasi kortikosteroid dan antihistamin. Deksametason memiliki kemampuan dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1. Parasetamol Parasetamol merupakan metabolit dari fenasetin yang dahulunya paling banyak digunakan sebagai analgetik. Khasiatnya analgetik dan antipiretik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang terdiri dari senyawa turunan β-laktam dan penghambat β-laktamase

BAB II TINJAUAN PUSTAKA. yang terdiri dari senyawa turunan β-laktam dan penghambat β-laktamase BAB II TINJAUAN PUSTAKA 2.1 Amoksisilin dan Kalium Klavulanat Amoksisilin dan kalium klavulanat merupakan kombinasi antibakteri oral yang terdiri dari senyawa turunan β-laktam dan penghambat β-laktamase

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut Ditjen BKAK (2014), uraian mengenai teofilin adalah sebagai. Gambar 2.1 Struktur Teofilin

BAB II TINJAUAN PUSTAKA. Menurut Ditjen BKAK (2014), uraian mengenai teofilin adalah sebagai. Gambar 2.1 Struktur Teofilin BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Teofilin Menurut Ditjen BKAK (2014), uraian mengenai teofilin adalah sebagai berikut: Rumus Struktur : Gambar 2.1 Struktur Teofilin Nama Kimia : 1,3-dimethyl-7H-purine-2,6-dione

Lebih terperinci

BAB II. pengembang, zat pengikat, zat pelicin, zat pembasah.

BAB II. pengembang, zat pengikat, zat pelicin, zat pembasah. BAB II TINJAUAN PUSTAKA 2.1 Uraian Umum Menurut Ditjen POM (1979) Tablet adalah sediaan padat kompak, dibuat secara kompacetak, dalam tabung pipih atau sirkuler, kedua permukaannnya rata atau cembung,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1Uraian Bahan 2.1.1 Metampiron Menurut Ditjen, BKAK., (2014), uraian tentang metampiron sebagai berikut: Rumus struktur: Gambar 2.1 Struktur Metampiron Nama Kimia : Natrium 2,3-dimetil-1-fenil-5-pirazolon-4

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam buku British pharmacopoeia (The Departemen of Health, 2006) dan

BAB II TINJAUAN PUSTAKA. Dalam buku British pharmacopoeia (The Departemen of Health, 2006) dan BAB II TINJAUAN PUSTAKA 2.1 Domperidone Dalam buku British pharmacopoeia (The Departemen of Health, 2006) dan buku Martindale (Sweetman, 2009) sediaan tablet domperidone merupakan sediaan yang mengandung

Lebih terperinci

BAB II TINJAUAN PUSTAKA H N. :-asam benzeneasetat, 2-[(2,6-diklorofenil)amino]- monosodium. -sodium [o-(dikloroanilino)fenil]asetat

BAB II TINJAUAN PUSTAKA H N. :-asam benzeneasetat, 2-[(2,6-diklorofenil)amino]- monosodium. -sodium [o-(dikloroanilino)fenil]asetat BAB II TINJAUAN PUSTAKA 2.1 Natrium Diklofenak 2.1.1 Uraian bahan O Cl ONa H N Cl Rumus molekul : C 14 H 10 Cl 2 NNaO 2 Berat molekul : 318,13 Sinonim :-asam benzeneasetat, 2-[(2,6-diklorofenil)amino]-

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut Ditjen BKAK., (2014) uraian tentang parasetamol sebagai berikut:

BAB II TINJAUAN PUSTAKA. Menurut Ditjen BKAK., (2014) uraian tentang parasetamol sebagai berikut: BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Parasetamol Menurut Ditjen BKAK., (2014) uraian tentang parasetamol sebagai berikut: Rumus struktur : Gambar 2.1 Struktur Parasetamol Rumus Molekul : C 8

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Minuman energi adalah minuman ringan non-alkohol yang dirancang

BAB II TINJAUAN PUSTAKA. Minuman energi adalah minuman ringan non-alkohol yang dirancang BAB II TINJAUAN PUSTAKA 2.1 Minuman Energi Minuman energi adalah minuman ringan non-alkohol yang dirancang untuk memberikan konsumen energi. Minuman energi lebih populer dari sebelumnya dan tampaknya akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Kloramfenikol Menurut Ditjen POM (1995), Rumus struktur : Gambar 2.1 Struktur Kloramfenikol. Nama Kimia : D-treo-(-)-2,2-Dikloro-N-[β-hidroksi-α-(hidroksimetil)-pnitrofenetil]asetamida

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Rifampisin 2.1.1.1 Sifat Fisikokimia Rumus Struktur : Rumus molekul : C 43 H 58 N 4 O 12 Nama kimia : 5,6,9,17,19,21-Heksahidroksi-23-metoksi-2,4,12,16,18,20,22-

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pirantel Pamoat 2.1.1 Sifat Fisikokimia Rumus Struktur : Rumus Molekul : C 11 H 14 N 2 S. C 23 H 16 O 6 Sinonim : - Pyrantel Embonate - (E)-1,4,5,6-Tetrahidro-1-metil-2-[2-(2-thienyl)vinil]

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Sifat Fisikokimia Struktur Kimia: Rumus Molekul Nama Kimia : C 16 H 16 ClNO 2 S : (α S)- α(2-klorofenil)-6,7-dihidrotieno [3,2-c] piridin-5(4h)-asam asetat,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Pseudoefedrin Hidroklorida NH OH Pseudoefedrin Gambar 1. Rumus struktur pseudoefedrin Pseudoefedrin adalah salah satu alkaloid yang diperoleh dari Epedra

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Uraian Bahan 2.1.1. Sifat Fisika dan Kimia Omeprazole Rumus struktur : Nama Kimia : 5-metoksi-{[(4-metoksi-3,5-dimetil-2- piridinil)metil]sulfinil]}1h-benzimidazol Rumus Molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Kloramfenikol Menurut Ditjen BKAK RI (2014), uraian tentang Kloramfenikol sebagai berikut: Rumus struktur : OH H O 2 N C C CH 2 OH H NHCOCHCl 2 Gambar 2.1

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Diklofenak 2.1.1 Kalium diklofenak Menurut Anonim (2009), uraian tentang kalium diklofenak adalah sebagai berikut: Rumus bangun : Rumus molekul : C 14 H 10 Cl 2 KNO 2 Berat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Uraian Bahan 2.1.1. Sifat Fisika dan Kimia Kaptopril Rumus Bangun Kaptopril : H CH3 C SHCH 2 C=O N H COOH Rumus molekul Sinonim : C 9 H 15 NO 3 S : - Acepril - Capoten - Lopirin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Isoniazid Menurut Ditjen BKAK (2014), uraian tentang isoniazid adalah sebagai berikut : Rumus struktur : N O C NH NH 2 Gambar 2.1 Struktur Isoniazid Rumus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Obat Obat didefinisikan sebagai suatu zat yang dimaksudkan untuk dipakai dalam diagnosis, mengurangi rasa sakit, mengobati atau mencegah penyakit pada manusia atau

Lebih terperinci

SPEKTROFOTOMETRI SERAPAN UV-VIS

SPEKTROFOTOMETRI SERAPAN UV-VIS SPEKTROFOTOMETRI SERAPAN UV-VIS SPEKTROFOTOMETRI SERAPAN UV-VIS PRINSIP DASAR HUKUM BEER INSTRUMENTASI APLIKASI 1 Pengantar Istilah-Istilah: 1. Spektroskopi : Ilmu yang mempelajari interaksi materi dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tahan asam (BTA, Mikobakterium tuberkulosa) yang ditularkan melalui udara.

BAB II TINJAUAN PUSTAKA. tahan asam (BTA, Mikobakterium tuberkulosa) yang ditularkan melalui udara. BAB II TINJAUAN PUSTAKA Tuberkulosis atau TB adalah suatu penyakit yang disebabkan oleh bakteri tahan asam (BTA, Mikobakterium tuberkulosa) yang ditularkan melalui udara. Berdasarkan tempat atau organ

Lebih terperinci

METODE PENELITIAN. Penelitian dilakukan di Laboratorium Penelitian Fakultas Farmasi USU

METODE PENELITIAN. Penelitian dilakukan di Laboratorium Penelitian Fakultas Farmasi USU BAB III METODE PENELITIAN 2.1 Waktu dan Tempat Penelitian Penelitian dilakukan di Laboratorium Penelitian Fakultas Farmasi USU pada bulan Februari 2012 April 2012. 2.2 Alat dan Bahan 2.2.1 Alat-alat Alat-alat

Lebih terperinci

PENENTUAN STRUKTUR MENGGUNAKAN SPEKTROFOTOMETER UV- VIS

PENENTUAN STRUKTUR MENGGUNAKAN SPEKTROFOTOMETER UV- VIS PENENTUAN STRUKTUR MENGGUNAKAN SPEKTROFOTOMETER UV- VIS Anggota Kelompok : Azizah Puspitasari 4301412042 Rouf Khoironi 4301412050 Nur Fatimah 4301412057 Singgih Ade Triawan 4301412079 PENGERTIAN DAN PRINSIP

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Spektrum Derivatif Metil Paraben dan Propil Paraben

BAB IV HASIL DAN PEMBAHASAN. 4.1 Spektrum Derivatif Metil Paraben dan Propil Paraben BAB IV HASIL DAN PEMBAHASAN Salah satu produk kosmetik yang banyak menggunakan bahan pengawet sebagai bahan tambahan adalah krim wajah. Metode analisis yang sensitif dan akurat diperlukan untuk mengetahui

Lebih terperinci

BAB I TINJAUAN PUSTAKA

BAB I TINJAUAN PUSTAKA BAB I TINJAUAN PUSTAKA 1.1 Obat Tradisional Obat tradisional adalah bahan atau ramuan yang berupa bahan tumbuhan, bahan hewan, bahan mineral, sediaan galenik atau campuran dari bahan-bahan tersebut, yang

Lebih terperinci

VALIDASI PENETAPAN KADAR ASAM ASETIL SALISILAT (ASETOSAL) DALAM SEDIAAN TABLET BERBAGAI MEREK MENGGUNAKAN METODE KOLORIMETRI SKRIPSI

VALIDASI PENETAPAN KADAR ASAM ASETIL SALISILAT (ASETOSAL) DALAM SEDIAAN TABLET BERBAGAI MEREK MENGGUNAKAN METODE KOLORIMETRI SKRIPSI VALIDASI PENETAPAN KADAR ASAM ASETIL SALISILAT (ASETOSAL) DALAM SEDIAAN TABLET BERBAGAI MEREK MENGGUNAKAN METODE KOLORIMETRI SKRIPSI Oleh: DENNY TIRTA LENGGANA K100060020 FAKULTAS FARMASI UNIVERSITAS MUHAMMADIYAH

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Parasetamol dan Propifenazon merupakan obat yang secara luas digunakan

BAB II TINJAUAN PUSTAKA. Parasetamol dan Propifenazon merupakan obat yang secara luas digunakan BAB II TINJAUAN PUSTAKA 3.1 Parasetamol, Propifenazon dan Kafein Parasetamol dan Propifenazon merupakan obat yang secara luas digunakan dalam penanganan rasa nyeri (analgetika) dan demam (antipiretika).

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA A. Metformin Hidroklorida Tablet Metformin Hidroklorida sistem lepas lambat mengandung NLT 90% dan NMT 110% dari jumlah Metformin Hidroklorida berlabel (The United States Pharmacopeial

Lebih terperinci

TUGAS ANALISIS FARMASI ANALISIS OBAT DENGAN METODE SPEKTROFOTOMETRI UV-VIS

TUGAS ANALISIS FARMASI ANALISIS OBAT DENGAN METODE SPEKTROFOTOMETRI UV-VIS TUGAS ANALISIS FARMASI ANALISIS OBAT DENGAN METODE SPEKTROFOTOMETRI UV-VIS OLEH NAMA : RAHMAD SUTRISNA STAMBUK : F1F1 11 048 KELAS : FARMASI A JURUSAN FARMASI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Salah satu produk kosmetik yang banyak menggunakan bahan pengawet sebagai bahan tambahan adalah hand body lotion. Metode analisis yang sensitif dan akurat diperlukan untuk mengetahui

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Struktur Pseudoefedrin HCl

BAB II TINJAUAN PUSTAKA. Gambar 2.1 Struktur Pseudoefedrin HCl BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Pseudoefedrin Hidroklorida + HCl Gambar 2.1 Struktur Pseudoefedrin HCl Pseudoefedrin hidroklorida mengandung tidak kurang dari 98,0% dan tidak lebih dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 ISONIAZIDE (INH) 2.1.1.1 Sifat Fisikokimia Rumus Struktur : Rumus Molekul : C 6 H 7 N 3 O Berat Molekul : 137,14 Nama Kimia : Asam Isonikotinat Hidrazida

Lebih terperinci

Spektrofotometri uv & vis

Spektrofotometri uv & vis LOGO Spektrofotometri uv & vis Fauzan Zein M., M.Si., Apt. Spektrum cahaya tampak Spektrum cahaya tampak INSTRUMEN Diagram instrumen Spektrofotometer uv-vis 1. Prisma MONOKROMATOR 2. Kisi MONOKROMATOR

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mirip dengan cairan tubuh (darah), sekitar 280 mosm/kg H 2 O. Minuman isotonik

BAB II TINJAUAN PUSTAKA. mirip dengan cairan tubuh (darah), sekitar 280 mosm/kg H 2 O. Minuman isotonik BAB II TINJAUAN PUSTAKA 2.1 Minuman Isotonik Minuman isotonik merupakan minuman yang memiliki osmolaritas yang mirip dengan cairan tubuh (darah), sekitar 280 mosm/kg H 2 O. Minuman isotonik sering juga

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut Moffat, dkk., (2004), uraian tentang tramadol adalah sebagai

BAB II TINJAUAN PUSTAKA. Menurut Moffat, dkk., (2004), uraian tentang tramadol adalah sebagai BAB II TINJAUAN PUSTAKA 2.1 Tramadol HCl berikut: Menurut Moffat, dkk., (2004), uraian tentang tramadol adalah sebagai Gambar 1. Struktur Tramadol HCl Tramadol HCl dengan rumus molekul C 16 H 25 N 2, HCl

Lebih terperinci

Berdasarkan interaksi yang terjadi, dikembangkan teknik-teknik analisis kimia yang memanfaatkan sifat dari interaksi.

Berdasarkan interaksi yang terjadi, dikembangkan teknik-teknik analisis kimia yang memanfaatkan sifat dari interaksi. TEKNIK SPEKTROSKOPI Teknik Spektrokopi adalah suatu teknik fisiko-kimia yang mengamati tentang interaksi atom maupun molekul dengan radiasi elektromagnetik (REM) Hasil interaksi tersebut bisa menimbulkan

Lebih terperinci

ANALISIS SPEKTROSKOPI UV-VIS. PENENTUAN KONSENTRASI PERMANGANAT (KMnO 4 )

ANALISIS SPEKTROSKOPI UV-VIS. PENENTUAN KONSENTRASI PERMANGANAT (KMnO 4 ) ANALISIS SPEKTROSKOPI UV-VIS PENENTUAN KONSENTRASI PERMANGANAT (KMnO 4 ) Kusnanto Mukti W, M 0209031 Jurusan Fisika, FMIPA Universitas Sebelas Maret Surakarta kusnantomukti@yahoo.com ABSTRAK Telah dilakukan

Lebih terperinci

TUGAS II REGULER C AKADEMI ANALIS KESEHATAN NASIONAL SURAKARTA TAHUN AKADEMIK 2011/2012

TUGAS II REGULER C AKADEMI ANALIS KESEHATAN NASIONAL SURAKARTA TAHUN AKADEMIK 2011/2012 TUGAS II REGULER C AKADEMI ANALIS KESEHATAN NASIONAL SURAKARTA TAHUN AKADEMIK 2011/2012 Mata Kuliah Topik Smt / Kelas Beban Kredit Dosen Pengampu Batas Pengumpulan : Kimia Analitik II : Spektrofotometri

Lebih terperinci

Spektrofotometer UV /VIS

Spektrofotometer UV /VIS Spektrofotometer UV /VIS Spektrofotometer adalah alat untuk mengukur transmitan atau absorban suatu sampel sebagai fungsi panjang gelombang. Spektrofotometer merupakan gabungan dari alat optic dan elektronika

Lebih terperinci

PERCOBAAN 1 PENENTUAN PANJANG GELOMBANG MAKSIMUM SENYAWA BAHAN PEWARNA

PERCOBAAN 1 PENENTUAN PANJANG GELOMBANG MAKSIMUM SENYAWA BAHAN PEWARNA PERCOBAAN 1 PENENTUAN PANJANG GELOMBANG MAKSIMUM SENYAWA BAHAN PEWARNA A. TUJUAN 1. Mempersiapkan larutan blanko dan sampel untuk digunakan pengukuran panjang gelombang maksimum larutan sampel. 2. Menggunakan

Lebih terperinci

ANALISIS INSTRUMEN SPEKTROSKOPI UV-VIS

ANALISIS INSTRUMEN SPEKTROSKOPI UV-VIS ANALISIS INSTRUMEN SPEKTROSKOPI UV-VIS Oleh: SUSILA KRISTIANINGRUM & Siti Marwati siti_marwati@uny.ac.id Transmitansi T = P P 0 dan TRANSMITANSI DAN ABSORBANSI %T = T 100 P = kekuatan (intensitas) sinar

Lebih terperinci

JURNAL PRAKTIKUM ANALITIK III SPEKTROSKOPI UV-VIS

JURNAL PRAKTIKUM ANALITIK III SPEKTROSKOPI UV-VIS JURNAL PRAKTIKUM ANALITIK III SPEKTROSKOPI UV-VIS Disusun Oleh : RENI ALFIYANI (14030194086 ) PENDIDIKAN KIMIA A 2014 JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI SURABAYA

Lebih terperinci

I. KONSEP DASAR SPEKTROSKOPI

I. KONSEP DASAR SPEKTROSKOPI I. KONSEP DASAR SPEKTROSKOPI Pendahuluan Spektroskopi adalah studi mengenai antaraksi cahaya dengan atom dan molekul. Radiasi cahaya atau elektromagnet dapat dianggap menyerupai gelombang. Beberapa sifat

Lebih terperinci

BAB I PENDAHULUAN. Hidrokortison asetat adalah kortikosteroid yang banyak digunakan sebagai

BAB I PENDAHULUAN. Hidrokortison asetat adalah kortikosteroid yang banyak digunakan sebagai BAB I PENDAHULUAN 1.1 Latar Belakang Hidrokortison asetat adalah kortikosteroid yang banyak digunakan sebagai antiinflamasi local akibat dermatitis. Hidrokortison dapat mencegah dan menekan timbulnya gejala

Lebih terperinci

PENDAHULUAN. Gambar 1 Ilustrasi hukum Lambert Beer (Sabrina 2012) Absorbsi sinar oleh larutan mengikuti hukum lambert Beer, yaitu:

PENDAHULUAN. Gambar 1 Ilustrasi hukum Lambert Beer (Sabrina 2012) Absorbsi sinar oleh larutan mengikuti hukum lambert Beer, yaitu: PENDAHULUAN Spektrofotometer adalah alat untuk mengukur transmitan atau absorbans suatu sampel yang dinyatakan sebagai fungsi panjang gelombang. Absorbsi radiasi oleh suatu sampel diukur pada berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kaptopril 2.1.1 Sifat Fisikokima Rumus struktur : Rumus molekul Sinonim : C 9 H 15 NO 3 S : - Acepril - Capoten - Lopirin -1[(2S)-3-merkapto-2-metilpropionil]-L-prolina Berat

Lebih terperinci

KIMIA ANALISIS ORGANIK (2 SKS)

KIMIA ANALISIS ORGANIK (2 SKS) KIMIA ANALISIS ORGANIK (2 SKS) 1.PENDAHULUAN 2.KONSEP DASAR SPEKTROSKOPI 3.SPEKTROSKOPI UV-VIS 4.SPEKTROSKOPI IR 5.SPEKTROSKOPI 1 H-NMR 6.SPEKTROSKOPI 13 C-NMR 7.SPEKTROSKOPI MS 8.ELUSIDASI STRUKTUR Teknik

Lebih terperinci

Hukum Dasar dalam Spektrofotometri UV-Vis Instrumen Spektrofotometri Uv Vis

Hukum Dasar dalam Spektrofotometri UV-Vis Instrumen Spektrofotometri Uv Vis Spektrofotometri UV-Vis adalah salah satu teknik analisis spektroskopik yang memakai sumber REM (radiasi elektromagnetik) UV (190-380 nm) dan sinar tampak (380-780 nm) dengan memakai instrumen spektrofotometer.

Lebih terperinci

Laporan Praktikum Analisis Sediaan Farmasi Penentuan kadar Asam salisilat dalam sediaan Bedak salicyl

Laporan Praktikum Analisis Sediaan Farmasi Penentuan kadar Asam salisilat dalam sediaan Bedak salicyl Laporan Praktikum Analisis Sediaan Farmasi Penentuan kadar Asam salisilat dalam sediaan Bedak salicyl Gol / kelompok : S/ A Nama / nrp : Grace Suryaputra ( 2443011013) Yuvita R Deva ( 2443011086) Felisia

Lebih terperinci

BAB II TINJAUAN PUSTAKA. bahan pengisi. Berdasarkan metode pembuatan dapat digolongkan sebagai tablet

BAB II TINJAUAN PUSTAKA. bahan pengisi. Berdasarkan metode pembuatan dapat digolongkan sebagai tablet BAB II TINJAUAN PUSTAKA 2.1 Tablet 2.1.1 PengertianTablet Tablet adalah sediaan padat mengandung bahan obat dengan atau tanpa bahan pengisi. Berdasarkan metode pembuatan dapat digolongkan sebagai tablet

Lebih terperinci

ANALISIS DUA KOMPONEN TANPA PEMISAHAN

ANALISIS DUA KOMPONEN TANPA PEMISAHAN LAPORAN PRAKTIKUM KIMIA ANALITIK ANALISIS DUA KOMPONEN TANPA PEMISAHAN Tanggal Praktikum : Jumat, Oktober 010 Tanggal Pengumpulan Laporan : Jumat, 9 Oktober 010 Disusun oleh Nama : Annisa Hijriani Nim

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. yaitu dapat menginaktivasi enzim tirosinase melalui penghambatan reaksi oksidasi

BAB I PENDAHULUAN. A. Latar Belakang. yaitu dapat menginaktivasi enzim tirosinase melalui penghambatan reaksi oksidasi 1 BAB I PENDAHULUAN A. Latar Belakang Hidrokuinon merupakan zat aktif yang paling banyak digunakan dalam sediaan pemutih wajah. Hal ini dikarenakan efektivitas kerja dari hidrokuinon yaitu dapat menginaktivasi

Lebih terperinci

LAPORAN PRAKTIKUM REKAYASA PROSES PEMBUATAN KURVA STANDAR DARI LARUTAN - KAROTEN HAIRUNNISA E1F109041

LAPORAN PRAKTIKUM REKAYASA PROSES PEMBUATAN KURVA STANDAR DARI LARUTAN - KAROTEN HAIRUNNISA E1F109041 LAPORAN PRAKTIKUM REKAYASA PROSES PEMBUATAN KURVA STANDAR DARI LARUTAN - KAROTEN HAIRUNNISA E1F109041 PROGRAM STUDI TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS LAMBUNG MANGKURAT BANJARBARU

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kapsul Definisi Kapsul adalah sediaan padat yang terdiri dari obat dalam cangkang keras atau lunak yang dapat larut. Cangkang umumnya terbuat dari gelatin; tetapi dapat juga

Lebih terperinci

BAB I PENDAHULUAN. tanpa bahan tambahanmakanan yang diizinkan (Badan Standarisasi Nasional,

BAB I PENDAHULUAN. tanpa bahan tambahanmakanan yang diizinkan (Badan Standarisasi Nasional, BAB I PENDAHULUAN 1.1 Latar Belakang Minuman energi adalah minuman yang mengandung satu atau lebih bahan yang mudah dan cepat diserapoleh tubuh untuk menghasilkan energi dengan atau tanpa bahan tambahanmakanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA A. Furosemid Furosemid atau asam 4-kloro N-Furfuril-5-sulfamoil antranilat adalah turunan sulfonamida berdaya diuretik kuat dan bertitik kerja di lengkungan henle (lingkaran pembuluh

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA ANORGANIK II PERCOBAAN IV PENENTUAN KOMPOSISI ION KOMPLEKS

LAPORAN PRAKTIKUM KIMIA ANORGANIK II PERCOBAAN IV PENENTUAN KOMPOSISI ION KOMPLEKS LAPORAN PRAKTIKUM KIMIA ANORGANIK II PERCOBAAN IV PENENTUAN KOMPOSISI ION KOMPLEKS DISUSUN OLEH : NAMA : FEBRINA SULISTYORINI NIM : 09/281447/PA/12402 KELOMPOK : 3 (TIGA) JURUSAN : KIMIA FAKULTAS/PRODI

Lebih terperinci

BAB I PENDAHULUAN. yang mengandung satu atau lebih bahan yang mudah dan cepat diserap oleh tubuh

BAB I PENDAHULUAN. yang mengandung satu atau lebih bahan yang mudah dan cepat diserap oleh tubuh BAB I PENDAHULUAN 1.1 LatarBelakang Menurut SNI 01-6684-2002 minuman berenergi merupakan minuman yang mengandung satu atau lebih bahan yang mudah dan cepat diserap oleh tubuh untuk menghasilkan energi

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN Latar Belakang Dengan semakin kompleksisitas berbagai keperluan saat ini, analisis kimia dengan mempergunakan metoda fisik dalam hal identifikasi dari berbagai selektifitas fungsi polimer

Lebih terperinci

MAKALAH Spektrofotometer

MAKALAH Spektrofotometer MAKALAH Spektrofotometer Nama Kelompok : Adhitiya Oprasena 201430100 Zulfikar Adli Manzila 201430100 Henky Gustian 201430100 Riyan Andre.P 201430100 Muhammad Khairul Huda 20143010029 Kelas : A Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA A. Stabilitas BAB II TINJAUAN PUSTAKA Stabilitas sediaan farmasi merupakan salah satu persyaratan mutu yang harus dipenuhi oleh suatu sediaan farmasi untuk menjamin penggunaan obat oleh pasien. Stabilitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Ibuprofen 2.1.1 Sifat Fisikokimia Menurut Ditjen POM (1995), sifat fisikokimia dari Ibuprofen adalah sebagai berikut : Rumus Struktur : Gambar 1. Struktur Ibuprofen Nama Kimia

Lebih terperinci

BAB I PENDAHULUAN. juga untuk swamedikasi (pengobatan mandiri). Sedangkan ibuprofen berkhasiat

BAB I PENDAHULUAN. juga untuk swamedikasi (pengobatan mandiri). Sedangkan ibuprofen berkhasiat BAB I PENDAHULUAN 1.1 Latar Belakang Obat adalah zat aktif berasal dari nabati, hewani, kimiawi alam maupun sintetis dalam dosis atau kadar tertentu dapat dipergunakan untuk preventif (pencegahan), diagnosa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. makanan dan biasanya bukan merupakan ingredient khas makanan, mempunyai

BAB II TINJAUAN PUSTAKA. makanan dan biasanya bukan merupakan ingredient khas makanan, mempunyai BAB II TINJAUAN PUSTAKA 2.1 Bahan Tambahan Pangan Menurut Peraturan Menteri Kesehatan RI No.722/Menkes/Per/IX/1988, Bahan Tambahan Pangan adalah bahan yang biasanya tidak digunakan sebagai makanan dan

Lebih terperinci

Spektrofotometer UV-Vis

Spektrofotometer UV-Vis Spektrofotometer UV-Vis Spektrofotometri UV-Vis adalah anggota teknik analisis spektroskopik yang memakai sumber REM (radiasi elektromagnetik) ultraviolet dekat (190-380 nm) dan sinar tampak (380-780 nm)

Lebih terperinci

Laporan Kimia Analitik KI-3121

Laporan Kimia Analitik KI-3121 Laporan Kimia Analitik KI-3121 PERCOBAAN 5 SPEKTROFOTOMETRI SERAPAN ATOM Nama : Kartika Trianita NIM : 10510007 Kelompok : 1 Tanggal Percobaan : 19 Oktober 2012 Tanggal Laporan : 2 November 2012 Asisten

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Menurut SNI , minuman sari buah (fruit juice) adalah

BAB II TINJAUAN PUSTAKA. Menurut SNI , minuman sari buah (fruit juice) adalah BAB II TINJAUAN PUSTAKA 2.1 Minuman Sari Buah Menurut SNI 01-3719-1995, minuman sari buah (fruit juice) adalah minuman ringan yang dibuat dari sari buah dan air minum dengan atau tanpa penambahan gula

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 12 BAB II TINJAUAN PUSTAKA 2.1 Sirup 2.1.1 Defenisi Sirup Sirup adalah larutan pekat dari gula yang ditambah obat dan merupakan larutan jernih berasa manis. Dapat ditambah gliserol, sorbitol atau polialkohol

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TIJAUA PUSTAKA A. Terapi Fotodinamik (Photodynamic Therapy, PDT) Proses terapi PDT dapat diilustrasikan secara lengkap pada tahapan berikut. Mula-mula pasien diinjeksi dengan senyawa fotosensitizer

Lebih terperinci

INTERAKSI RADIASI DENGAN BAHAN

INTERAKSI RADIASI DENGAN BAHAN SPEKTROSKOPI DEFINISI Merupakan teknik analisis dengan menggunakan spektrum elektrtomagnetik Spektrum elektromagnetik meliputi kisaran panjang gelombang yang sangat besar Misal: sinar tampak: 380-780 nm

Lebih terperinci

UJI KUANTITATIF DNA. Oleh : Nur Fatimah, S.TP PBT Ahli Pertama

UJI KUANTITATIF DNA. Oleh : Nur Fatimah, S.TP PBT Ahli Pertama UJI KUANTITATIF DNA Oleh : Nur Fatimah, S.TP PBT Ahli Pertama A. PENDAHULUAN Asam deoksiribonukleat atau lebih dikenal dengan DNA (deoxyribonucleid acid) adalah sejenis asam nukleat yang tergolong biomolekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Landasan Teori 1. Puskesmas Puskesmas merupakan unit pelaksana teknis dinas kesehatan kabupaten/kota yang bertanggung jawab menyelenggarakan pembangunan kesehatan di suatu wilayah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan 2.1.1 Taksonomi Buah Apel Nama umum : Apel Bahasa Inggris : Apple Nama Latin : Malus domestica Kingdom : Plantae Divisio : Magnoliophyta Kelas : Magnoliopsida

Lebih terperinci

VALIDASI METODE SPEKTROFOTOMETRI DERIVATIF ULTRAVIOLET UNTUK PENENTUAN RESERPIN DALAM TABLET OBAT NIKEN WULANDARI

VALIDASI METODE SPEKTROFOTOMETRI DERIVATIF ULTRAVIOLET UNTUK PENENTUAN RESERPIN DALAM TABLET OBAT NIKEN WULANDARI VALIDASI METDE SPEKTRFTMETRI DERIVATIF ULTRAVILET UNTUK PENENTUAN RESERPIN DALAM TABLET BAT NIKEN WULANDARI DEPATEMEN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BGR BGR 2007

Lebih terperinci

BAB I PENDAHULUAN. dengan atau tanpa bahan tambahan makanan yang diizinkan (BSN,

BAB I PENDAHULUAN. dengan atau tanpa bahan tambahan makanan yang diizinkan (BSN, BAB I PENDAHULUAN 1.1 Latar Belakang Minuman berenergi adalah minuman yang mengandung satu atau lebih bahan yang mudah dan cepat diserap oleh tubuh untuk menghasilkan energi dengan atau tanpa bahan tambahan

Lebih terperinci

DAFTAR ISI.. ABSTRAK.. KATA PENGANTAR UCAPAN TERIMA KASIH. DAFTAR TABEL.. DAFTAR GAMBAR. DAFTAR LAMPIRAN..

DAFTAR ISI.. ABSTRAK.. KATA PENGANTAR UCAPAN TERIMA KASIH. DAFTAR TABEL.. DAFTAR GAMBAR. DAFTAR LAMPIRAN.. DAFTAR ISI ABSTRAK.. KATA PENGANTAR UCAPAN TERIMA KASIH. DAFTAR ISI.. DAFTAR TABEL.. DAFTAR GAMBAR. DAFTAR LAMPIRAN.. i ii iii iv vi vii viii BAB I : PENDAHULUAN 1.1 Latar Belakang.. 1 1.2 Rumusan Masalah.

Lebih terperinci

PENENTUAN RUMUS ION KOMPLEKS BESI DENGAN ASAM SALISILAT

PENENTUAN RUMUS ION KOMPLEKS BESI DENGAN ASAM SALISILAT PENENTUAN RUMUS ION KOMPLEKS BESI DENGAN ASAM SALISILAT Desi Eka Martuti, Suci Amalsari, Siti Nurul Handini., Nurul Aini Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jenderal

Lebih terperinci

Spektroskopi IR Dalam Penentuan Struktur Molekul Organik Posted by ferry

Spektroskopi IR Dalam Penentuan Struktur Molekul Organik Posted by ferry Spektroskopi IR Dalam Penentuan Struktur Molekul Organik 08.30 Posted by ferry Spektrofotometri inframerah lebih banyak digunakan untuk identifikasi suatu senyawa melalui gugus fungsinya. Untuk keperluan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kurang dari 98,0% dan tidak lebih dari 101,0% C 8 H 9 NO 2 dihitung terhadap zat

BAB II TINJAUAN PUSTAKA. kurang dari 98,0% dan tidak lebih dari 101,0% C 8 H 9 NO 2 dihitung terhadap zat BAB II TINJAUAN PUSTAKA 2.1 Parasetamol Nama kimia parasetamol adalah 4 -Hidroksiasetanilida, dengan rumus molekul C 8 H 9 NO 2 serta berat molekulnya 151,16. Parasetamol mengandung tidak kurang dari 98,0%

Lebih terperinci

BAB IV HASIL PENGAMATAN

BAB IV HASIL PENGAMATAN BAB IV HASIL PENGAMATAN 4.1 Absorbansi Panjang Gelombang Maksimal No λ (nm) Absorbansi 1 500 0.634 2 510 0.555 3 520 0.482 4 530 0.457 5 540 0.419 6 550 0.338 7 560 0.293 8 570 0.282 9 580 0.181 10 590

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Pemeriksaan karakteristik dilakukan untuk mengetahui kebenaran identitas zat yang digunakan. Dari hasil pengujian, diperoleh karakteristik zat seperti yang tercantum

Lebih terperinci

Penentuan struktur senyawa organik

Penentuan struktur senyawa organik Penentuan struktur senyawa organik Tujuan Umum: memahami metoda penentuan struktur senyawa organik moderen, yaitu dengan metoda spektroskopi Tujuan Umum: mampu membaca dan menginterpretasikan data spektrum

Lebih terperinci

PROGRAM STUDI SARJANA FARMASI FAKULTAS FARMASI UNIVERSITAS SUMATERA UTARA MEDAN 2016

PROGRAM STUDI SARJANA FARMASI FAKULTAS FARMASI UNIVERSITAS SUMATERA UTARA MEDAN 2016 PENETAPAN KADAR FENILBUTAZON DAN PROPIFENAZON DALAM TABLET SECARA SPEKTROFOTOMETRI DERIVATIF SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Fa rmasi pada Fakultas Farmasi Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Asetaminofen. Kandungan : tidak kurang dari 98,0 % dan tidak lebih dari 101,0 %

BAB II TINJAUAN PUSTAKA. Asetaminofen. Kandungan : tidak kurang dari 98,0 % dan tidak lebih dari 101,0 % BAB II TINJAUAN PUSTAKA 2.1. Uraian Umum 2.1.1. Sifat Fisika dan Kimia Parasetamol Sinonim : Paracetamolum Asetaminofen. Nama kimia : 4-hidroksiasetanilida. Rumus molekul : C 8 H 9 NO 2 Rumus bangun :

Lebih terperinci

ALAT ANALISA. Pendahuluan. Alat Analisa di Bidang Kimia

ALAT ANALISA. Pendahuluan. Alat Analisa di Bidang Kimia Pendahuluan ALAT ANALISA Instrumentasi adalah alat-alat dan piranti (device) yang dipakai untuk pengukuran dan pengendalian dalam suatu sistem yang lebih besar dan lebih kompleks Secara umum instrumentasi

Lebih terperinci

BAB IV ANALISIS DENGAN SPEKTROFOTOMETER

BAB IV ANALISIS DENGAN SPEKTROFOTOMETER BAB IV ANALISIS DENGAN SPEKTROFOTOMETER A. TUJUAN PRAKTIKUM 1. Mahasiswa dapat membuat kurva kalibrasi 2. Mahasiswa mampu menganalisis sampel dengan menggunakan alat spektrofotometer 3. Mengetahui pengaruh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bromazepam 2.1.1 Sifat Fisikokimia Rumus Struktur : Gambar 2.1.1 Rumus Struktur Bromazepam Rumus Molekul Nama Kimia : C 14 H 10 BrN 3 O : 7-bromo-5-(pyridin-2-yl)-1,3-dihydro-2H-1,4

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Nyeri merupakan perasaan sensoris dan emosional yang tidak nyaman. Pada umumnya nyeri berkaitan dengan kerusakan jaringan yang disebabkan oleh rangsangan mekanis, kimiawi

Lebih terperinci

VALIDASI DAN PENGEMBANGAN PENETAPAN KADAR TABLET BESI (II) SULFAT DENGAN SPEKTROFOTOMETRI VISIBEL DAN SERIMETRI SEBAGAI PEMBANDING SKRIPSI

VALIDASI DAN PENGEMBANGAN PENETAPAN KADAR TABLET BESI (II) SULFAT DENGAN SPEKTROFOTOMETRI VISIBEL DAN SERIMETRI SEBAGAI PEMBANDING SKRIPSI VALIDASI DAN PENGEMBANGAN PENETAPAN KADAR TABLET BESI (II) SULFAT DENGAN SPEKTROFOTOMETRI VISIBEL DAN SERIMETRI SEBAGAI PEMBANDING SKRIPSI Oleh : WAHYU PURWANITA K100050239 Oleh SETIYOWATI K100050236 FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menyembuhkan atau mencegah penyakit pada manusia atau hewan. Meskipun

BAB II TINJAUAN PUSTAKA. menyembuhkan atau mencegah penyakit pada manusia atau hewan. Meskipun BAB II TINJAUAN PUSTAKA 2.1 Obat 2.1.1 Definisi Obat Obat adalah suatu zat yang digunakan untuk diagnosa pengobatan, menyembuhkan atau mencegah penyakit pada manusia atau hewan. Meskipun obat dapat menyembuhkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. A. Ekstraksi Zat Warna Rhodamin B dalam Sampel

BAB IV HASIL DAN PEMBAHASAN. A. Ekstraksi Zat Warna Rhodamin B dalam Sampel BAB IV HASIL DAN PEMBAHASAN A. Ekstraksi Zat Warna Rhodamin B dalam Sampel Zat warna sebagai bahan tambahan dalam kosmetika dekoratif berada dalam jumlah yang tidak terlalu besar. Paye dkk (2006) menyebutkan,

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1.Tinjauan Pustaka 2.1.1. Kosmetika Kosmetika adalah bahan atau sediaan yang dimaksudkan untuk digunakan pada bagian luar tubuh manusia (epidermis, rambut, kuku, bibir, dan organ

Lebih terperinci

BAB II TINJAUAN PUSTAKA. basah dan mi kering. Mi kering merupakan mi yang berbentuk kering dengan

BAB II TINJAUAN PUSTAKA. basah dan mi kering. Mi kering merupakan mi yang berbentuk kering dengan BAB II TINJAUAN PUSTAKA 2.1 Mi Basah Mi merupakan makanan yang digemari oleh masyarakat, karena rasanya yang enak dan praktis. Mi yang beredar di pasaran dikenal beberapa jenis yaitu mi basah dan mi kering.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Raman merupakan teknik pembiasan sinar yang memiliki berbagai

BAB II TINJAUAN PUSTAKA. Raman merupakan teknik pembiasan sinar yang memiliki berbagai BAB II TINJAUAN PUSTAKA 2.1 Teori Dasar Spektroskopi Raman Raman merupakan teknik pembiasan sinar yang memiliki berbagai keunggulan dalam penggunaannya. Dalam spektrum Raman tidak ada dua molekul yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Uraian Bahan 2.1.1 Parasetamol 2.1.1.1 Sifat Fisika dan Kimia Rumus struktur Gambar 2.1 Parasetamol (Sweetman, 2009). Menurut Dijen BKAK., (2014) dan Moffat, dkk., (2011), uraian

Lebih terperinci

LAPORAN PRAKTIKUM INSTRUMENT INDUSTRI PERALATAN ANALISIS (SPEKTROFOTOMETER)

LAPORAN PRAKTIKUM INSTRUMENT INDUSTRI PERALATAN ANALISIS (SPEKTROFOTOMETER) LAPORAN PRAKTIKUM INSTRUMENT INDUSTRI PERALATAN ANALISIS (SPEKTROFOTOMETER) I. PENDAHULUAN a. Latar Belakang Spektrofotometer sangat berhubungan dengan pengukuran jauhnya pengabsorbansian energi cahaya

Lebih terperinci

ANALISIS BAHAN KIMIA OBAT ASAM MEFENAMAT DALAM JAMU PEGAL LINU DAN JAMU REMATIK YANG BEREDAR DI KOTA MANADO

ANALISIS BAHAN KIMIA OBAT ASAM MEFENAMAT DALAM JAMU PEGAL LINU DAN JAMU REMATIK YANG BEREDAR DI KOTA MANADO ANALISIS BAHAN KIMIA OBAT ASAM MEFENAMAT DALAM JAMU PEGAL LINU DAN JAMU REMATIK YANG BEREDAR DI KOTA MANADO Rifani Hutami Supardi 1), Sri Sudewi 1), Defny S. Wewengkang 1) 1) Program Studi Farmasi FMIPA

Lebih terperinci