BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI Pada bab ini, peneliti akan memberikan penjelasan tentang teori metode backpropagation jaringan syaraf tiruan dan metode deret berkala ARIMA(Boxjenkins) sehingga dapat mempermudah dalam hal analisis data pada bab berikutnya. 2.1 JARINGAN SYARAF TIRUAN Sejarah Jaringan Syaraf Tiruan Siang (2005:4) menjelaskan bahwa sejarah jaringan syaraf tiruan pertama kali secara sederhana diperkenalkan oleh McCulloch dan Pitts pada tahun McCulloch dan Pitts menyimpulkan bahwa kombinasi beberapa neuron sederhana menjadi sebuah sistem neural akan meningkatkan kemampuan komputasinya. Bobot dalam jaringan yang diusulkan oleh McCulloch dan Pitts diatur untuk melakukan fungsi logika sederhana. Fungsi aktivasi yang dipakai adalah fungsi threshold. Selanjutnya pada tahun 1958, Rosenblatt memperkenalkan dan mulai mengembangkan model jaringan baru yang terdiri dari beberapa lapisan yang disebut Perceptron. Metode pelatihan diperkenalkan untuk mengoptimalkan hasil iterasinya. Widrow dan Hoff (1960) mengembangkan perceptron dengan memperkenalkan aturan pelatihan jaringan, yang dikenal sebagai aturan delta (atau sering disebut kuadrat rata-rata terkecil). Aturan ini akan mengubah bobot perceptron apabila keluaran yang dihasilkan tidak sesuai dengan target yang diinginkan.

2 16 Apa yang dilakukan peneliti terdahulu hanya menggunakan jaringan dengan layer tunggal (single layer). Rumelhart (1986) mengembangkan perceptron menjadi Backpropagation, yang memungkinkan jaringan diproses melalui beberapa layer. Selain itu, beberapa model jaringan syaraf tiruan lain juga dikembangkan oleh Kohonen (1972), Hopfield (1982), dan lain-lain. Pengembangan yang ramai dibicarakan sejak tahun 1990an adalah aplikasi model-model jaringan syaraf tiruan untuk menyelesaikan berbagai masalah di dunia nyata Definisi Jaringan Syaraf Tiruan Jaringan saraf tiruan (JST) atau disebut juga dengan neural network (NN)), adalah jaringan dari sekelompok unit pemroses kecil yang dimodelkan berdasarkan jaringan saraf manusia. Jaringan syaraf tiruan merupakan sistem adaptif yang dapat merubah strukturnya untuk memecahkan masalah berdasarkan informasi eksternal maupun internal yang mengalir melalui jaringan tersebut. Secara sederhana, JST adalah sebuah alat pemodelan data statistik non-linier. JST dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data. Menurut (Hecht-Nielsend:1988) mendefinisikan bahwa jaringan syaraf tiruan adalah suatu struktur pemroses informasi yang terdistribusi dan bekerja secara paralel, yang terdiri atas elemen pemroses (yang memiliki memori lokal dan beroperasi dengan informasi lokal) yang diinterkoneksi bersama dengan alur sinyal searah yang disebut koneksi. Setiap elemen pemroses memiliki koneksi keluaran tunggal yang bercabang ke sejumlah koneksi kolateral yang diinginkan (setiap koneksi membawa sinyal yang sama dari keluaran elemen pemroses tersebut). Keluaran dari elemen pemroses tersebut dapat merupakan sebarang jenis persamaan matematis yang diinginkan. Seluruh proses yang berlangsung pada setiap elemen pemroses harus benar-benar dilakukan secara lokal, yaitu keluaran hanya bergantung pada nilai masukan pada saat itu yang diperoleh melalui koneksi dan nilai yang tersimpan dalam memori lokal.

3 17 Sebuah jaringan saraf adalah sebuah prosesor yang terdistribusi paralel dan mempuyai kecenderungan untuk menyimpan pengetahuan yang didapatkannya dari pengalaman dan membuatnya tetap tersedia untuk digunakan. Hal ini menyerupai kerja otak dalam dua hal yaitu: 1. Pengetahuan diperoleh oleh jaringan melalui suatu proses belajar. 2. Kekuatan hubungan antar sel saraf yang dikenal dengan bobot sinapsis digunakan untuk menyimpn pengetahuan (Haykin:1994). Jaringan syaraf tiruan menjadi salah satu pilihan ketika rumusan persoalanpersoalan yang dihadapi tidak bias diselesaikan secara analitik,dan dengan mengasumsikan suatu black box yang kita tidak tahu isinya maka jaringan syaraf tiruan menemukan pola hubungan antara input dan output melalui tahap pelatihan (Santosa 2007:79). Menurut Siang (2005:2), jaringan syaraf tiruan (JST) adalah sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan syaraf biologi. JST dibentuk sebagai generalisasi model matematika dari jaringan syaraf biologi, dengan asumsi bahwa : a. Pemrosesan informasi terjadi pada banyak elemen sederhana (neuron). b. Sinyal dikirirnkan diantara neuron-neuron melalui penghubungpenghubung. c. Penghubung antar neuron memiliki bobot yang akan memperkuat atau memperlemah sinyal. d. Untuk menentukan output, setiap neuron menggunakan fungsi aktivasi (biasanya bukan fungsi linier) yang dikenakan pada jumlahan input yang diterima. Besarnya output ini selanjutnya dibandingkan dengan suatu batas ambang. JST ditentukan oleh 3 hal : a. Pola hubungan antar neuron (disebut arsitektur jaringan) b. Metode untuk menentukan bobot penghubung (disebut metode training/ learning/ algoritma) c. Fungsi aktivasi (fungsi transfer)

4 18 Neuron dalam jaringan syaraf tiruan sering diganti dengan istilah simpul. Setiap simpul tersebut berfungsi untuk menerima atau mengirim sinyal dari atau ke simpul-simpul lainnya. Pengiriman sinyal disampaikan melalui penghubung. Kekuatan hubungan yang terjadi antara setiap simpul yang saling terhubung dikenal dengan nama bobot. Arsitektur jaringan dan algoritma pelatihan sangat menentukan model-model jaringan syaraf tiruan. Arsitektur tersebut gunanya untuk menjelaskan arah perjalanan sinyal atau data di dalam jaringan. Sedangkan algoritma belajar menjelaskan bagaimana bobot koneksi harus diubah agar pasangan masukan-keluaran yang diinginkan dapat tercapai. Dalam setiap perubahan harga bobot koneksi dapat dilakukan dengan berbagai cara, tergantung pada jenis algoritma pelatihan yang digunakan. Dengan mengatur besarnya nilai bobot ini diharapkan bahwa kinerja jaringan dalam mempelajari berbagai macam pola yang dinyatakan oleh setiap pasangan masukan-keluaran akan meningkat. Sebagai contoh, perhatikan neuron Y pada gambar berikut : X 1 w 1 X 2 w 2 Y X 3 W 3 Gambar 2.1 Sebuah Sel Syaraf Tiruan Y menerima input dari neuron x 1, x 2, dan x 3 dengan bobot hubungan masing-masing adalah w 1, w 2 dan w 3. Ketiga impuls neuron yang ada dijumlahkan net = x 1 w 1 + x 2 w 2 + x 3 w 3. Besarnya impuls yang diterima oleh Y mengikuti fungsi aktivasi y = f(net). Apabila nilai fungsi akivasi cukup kuat, maka sinyal akan diteruskan. Nilai fungsi aktivasi (keluaran model jaringan) juga dapat dipakai sebagai dasar untuk merubah bobot.

5 Arsitektur Jaringan Arsitektur jaringan syaraf tiruan digolongkan menjadi 3 model: 1. Jaringan Layar Tunggal Dalam jaringan ini, sekumpulan input neuron dihubungkan langsung dengan sekumpulan outputnya, seperti gambar berikut ini : X 1 W 1 1 Y 1 W 1m W 1 2 X 2 X n W n1 W 2 1 W2 2 W 2 m W n2 W nm Y 2 Y Gambar 2.2 Jaringan layar tunggal Pada gambar 2 diperlihatkan bahwa arsitektur jaringan layar tunggal dengan n buah masukan (x 1, x 2,..., x n ) dan m buah keluaran (Y 1, Y 2,..., Y m ). Dalam jaringan ini semua unit input dihubungkan dengan semua unit output. Tidak ada unit input yang dihubungkan dengan unit input lainnya dan unit outputpun demikian. 2. Jaringan Layar Jamak Jaringan ini merupakan perluasan dari layar tunggal. Dalam jaringan ini, selain unit input dan output, ada unit-unit lain yang sering disebut layar tersembunyi. Layar tersembunyi ini tersebut bisa saja lebih dari satu, sebagai contoh perhatikan gambar 3 dibawah ini :

6 20 X 1 W 1m W 1 1 W 1 2 Z 1 W 1 1 W 2 X 2 1 W 2 W 2 2 Z 2 W 1 1 Y m W n1 W n2 W 1 1 X n W nm Z Gambar 2.3 Jaringan layar jamak Pada gambar 3 diperlihatkan jaringan dengan n buah unit masukan (x 1, x 2,..., x n ), sebuah layar tersembunyi yang terdiri dari m buah unit (z 1, z 2,..., z m ) dan 1 buah unit keluaran. Jaringan layar jamak dapat menyelesaikan masalah yang lebih kompleks dibandingkan dengan layar tunggal, meskipun kadangkala proses pelatihan lebih kompleks dan lama. 3. Jaringan Reccurent Model jaringan recurrent mirip dengan jaringan layar tunggal ataupun ganda. Hanya saja, ada neuron output yang memberikan sinyal pada unit input (sering disebut feedback loop). Dengan kata lain sinyal mengalir dua arah, yaitu maju dan mundur Fungsi Aktivasi Siang (2005) menyebutkan bahwa fungsi aktivasi digunakan untuk menentukan keluaran suatu neuron. Dalam jaringan syaraf tiruan, argumen fungsi aktivasi adalah net masukan (kombinasi linier masukan dan bobotnya). Jika net maka fungsi aktivasinya adalah f (net) = f ( ).

7 21 Beberapa fungsi aktivasi yang sering dipakai adalah sebagai berikut: a. Fungsi treshold (batas ambang) f(x) = Dalam beberapa kasus, fungsi threshold yang dibuat tidak berharga 0 atau 1, tapi berharga -1 atau 1 (sering dibuat threshold bipolar). Jadi f(x) = b. Fungsi sigmoid f(x) = fungsi sigmoid sering dipakai karena karena nilai fungsinya yang terletak antara 0 dan 1 dan dapat digunakan dengan mudah. f (x) = f(x) (1 - f(x)) c. Fungsi identitas f(x) = x fungsi ini sering dipakai apabila apabila kita menginginkan keluaran jaringan berupa sembarang bilangan riil (bukan hanya pada range [0,1] atau [-1, 1]) Algoritma Belajar dan Pelatihan

8 22 Dalam jaringan syaraf tiruan terdapat konsep belajar atau pelatihan. Sehingga jaringan-jaringan yang dibentuk akan belajar melakukan generalisasi karakteristik tingkah laku objek. Menurut Sekarwati (2005), Algoritma pelatihan artinya membentuk pemetaan (fungsi) yang menggambarkan hubungan antara vektor masukan dan vektor keluaran. Biasanya diberikan contoh yang cukup penting dalam membangun pemetaan tersebut. Walaupun untuk pasangan masukan keluaran yang belum pernah digambarkan sebelumnya. Dalam menyelesaikan suatu permasalahan, jaringan syaraf tiruan memerlukan algoritma belajar atau pelatihan yaitu bagaimana sebuah konfigurasi jaringan dapat dilatih untuk mempelajari data historis yang ada. Dengan pelatihan ini, pengetahuan yang terdapat pada data dapat diserap dan direpresentasikan oleh nilai-nilai bobot koneksinya. Berdasarkan cara modifikasi bobotnya, ada dua macam pelatihan yang dikenal (Siang 2005:30), yaitu sebagai berikut: 1. Pelatihan Dengan Supervisi (Supervised Training) Dalam pelatihan dengan supervisi, terdapat sejumlah pasangan data (masukantarget keluaran) yang dipakai untuk melatih jaringan hingga diperoleh bobot yang diinginkan. Pada setiap pelatihan, suatu masukan diberikan ke jaringan. Jaringan akan memproses dan mengeluarkan keluaran. Selisih antara keluaran jaringan dengan target (keluaran yang diinginkan) merupakan kesalahan yang terjadi. Jaringan akan memodifikasi bobot sesuai dengan kesalahan tersebut. 2. Pelatihan Tanpa Supervisi (Unsupervised Training) Dalam pelatihannya, perubahan bobot jaringan dilakukan berdasarkan parameter tertentu dan jaringan dimodifikasi menurut ukuran parameter tersebut. Model yang menggunakan pelatihan ini adalah model jaringan kompetitif.

9 Backpropagation Backpropagation adalah salah satu metode dari jaringan syaraf tiruan yang dapat diaplikasikan dengan baik dalam bidang peramalan (forecasting). Backpropagation melatih jaringan untuk mendapatkan keseimbangan antara kemampuan jaringan mengenali pola yang digunakan selama training serta kemampuan jaringan untuk memberikan respon yang benar terhadap pola masukan yang serupa namun tidak sama dengan pola yang dipakai selama pelatihan (Siang, 2005:119). Menurut Kusumadewi (2004:116) dalam pelatihan dengan backpropagation sama halnya seperti pelatihan pada jaringan syaraf yang lain. Pada jaringan feedfoward (umpan maju), pelatihan dilakukan dalam rangka perhitungan bobot sehingga pada akhir pelatihan akan diperoleh bobot-bobot yang baik. Selama proses pelatihan, bobot-bobot diatur secara iteratif untuk meminimumkan error (kesalahan) yang terjadi. Kesalahan dihitung berdasarkan rata-rata kuadrat kesalahan (MSE). Rata-rata kuadrat kesalahan juga dijadikan dasar perhitungan unjuk kerja fungsi aktivasi. Sebagian besar pelatihan untuk jaringan feedfoward (umpan maju) menggunakan gradien dari fungsi aktivasi untuk menentukan bagaimana mengatur bobot-bobot dalam rangka meminimumkan kinerja. Gradien ini ditentukan dengan menggunakan suatu teknik yang disebut backpropagation. Dan pada dasarnya, algoritma pelatihan standar backpropagation akan menggerakkan bobot dengan arah gradien negatif. Prinsip dasar dari algoritma backpropagation adalah memperbaiki bobot-bobot jaringan dengan arah yang membuat fungsi aktivasi menjadi turun dengan cepat. lain : Ada 3 fase Pelatihan backpropagation menurut Siang (2005: ) antara 1. Fase 1, yaitu propagasi maju. Dalam propagasi maju, setiap sinyal masukan dipropagasi (dihitung maju) ke layar tersembunyi hingga layar keluaran dengan menggunakan fungsi aktivasi yang ditentukan.

10 24 2. Fase 2, yaitu propagasi mundur. Kesalahan (selisih antara keluaran jaringan dengan target yang diinginkan) yang terjadi dipropagasi mundur mulai dari garis yang berhubungan langsung dengan unit-unit di layar keluaran. 3. Fase 3, yaitu perubahan bobot. Pada fase ini dilakukan modifikasi bobot untuk menurunkan kesalahan yang terjadi. Ketiga fase tersebut diulang-ulang terus hingga kondisi penghentian dipenuhi. Algoritma pelatihan untuk jaringan dengan satu layar tersembunyi (dengan fungsi aktivasi sigmoid biner) adalah sebagai berikut : a. Langkah 0 : Inisialisasi semua bobot dengan bilangan acak kecil b. Langkah 1 : Jika kondisi penghentian belum terpenuhi, lakukan langkah 2-9 c. Langkah 2 : Untuk setiap pasang data pelatihan lakukan langkah 3-8 Fase I : Propagasi maju d. Langkah 3 : Tiap unit masukan menerima sinyal dan meneruskannya ke unit tersembunyi diatasnya e. Langkah 4 : Hitung semua keluaran di unit tersembunyi z j (j = 1,2,,p) f. Langkah 5 : Hitung semua keluaran jaringan di unit y k (k = 1,2,,m)

11 25 Fase II : Propagasi mundur g. Langkah 6 : Hitung faktor unit keluaran berdasarkan kesalahan disetiap unit keluaran y k (k= 1,2,,m) merupakan unit kesalahan yang akan dipakai dalam perubahan bobot layar dibawahnya (langkah 7) Hitung suku perubahan bobot w kj (yang akan dipakai nanti untuk merubah bobot w kj ) dengan laju percepatan α ; k = 1,2,,m ; j = 0,1,..,p h. Langkah 7 : Hitung faktor unit tersembunyi berdasarkan kesalahan disetiap unit tersembunyi z j (j = 1,2,,p) Faktor unit tersembunyi : Hitung suku perubahan bobot v ji (yang akan dipakai nanti untuk merubah bobot v ji ) ; j = 1,2,,p ; i = 0,1,,n Fase III : Perubahan bobot i. Langkah 8 : Hitung semua perubahan bobot Perubahan bobot garis yang menuju ke unit keluaran : (k = 1,2,,m ; j = 0,1,,p) Perubahan bobot garis yang menuju ke unit tersembunyi : (j = 1,2,,p ; j = 0,1,,n) Setelah pelatihan selesai dilakukan, jaringan dapat dipakai untuk pengenalan pola. Dalam hal ini, hanya propagasi maju (langkah 4 dan 5) saja yang dipakai untuk menentukan keluaran jaringan.

12 26 Dalam beberapa kasus pelatihan yang dilakukan memerlukan iterasi yang banyak sehingga membuat proses pelatihan menjadi lama. Untuk mempercepat iterasi dapat dilakukan dengan Parameter α atau laju pemahaman. Nilai α terletak antara 0 dan 1 (0 α 1). Jika harga α Semakin besar, maka iterasi yang dipakai semakin sedikit. Akan tetapi jika harga α terlalu besar, maka akan merusak pola yang sudah benar sehingga pemahaman menjadi lambat. Proses pelatihan yang baik dipengaruhi pada pemilihan bobot awal, karena bobot awal sangat mempengaruhi apakah jaringan mencapai titik minimum lokal atau global, dan seberapa cepat konvergensinya. Oleh karena itu dalam standar backpropagation, bobot dan bias diisi dengan bilangan acak kecil dan biasanya bobot awal diinisialisasi secara random dengan nilai antara -0,5 sampai 0,5 (atau -1 sampai 1 atau interval yang lainnya) Momentum Dalam backpropagation, standar perubahan bobot didasarkan atas gradien yang terjadi untuk pola yang dimasukkan saat itu. Modifikasi dilakukan dengan merubah bobot yang didasarkan atas arah gradien pola terakhir dan pola sebelumnya (momentum) yang dimasukkan. Jadi perhitungannya tidak hanya pola masukan terakhir saja. Momentum ditambahkan untuk menghindari perubahan bobot yang mencolok akibat adanya data yang sangat berbeda dengan data yang lain. Jika beberapa data terakhir yang diberikan ke jaringan memiliki pola serupa (berarti arah gradien sudah benar), maka perubahan bobot dilakukan secara cepat. Namun jika data terakhir yang dimasukkan memiliki pola yang berbeda dengan pola sebelumnya, maka perubahan bobot dilakukan secara lambat. Dengan penambahan momentum, bobot baru pada waktu ke (t+1) didasarkan atas bobot pada waktu t dan (t-1). Disini harus ditambahkan dua variabel yang mencatat besarnya momentum untuk dua iterasi terakhir. Jika μ adalah konstanta (0 μ 1) yang menyatakan parameter momentum maka bobot baru dihitung berdasarkan persamaan berikut ini:

13 27 dengan, = bobot awal pola kedua (hasil dari iterasi pola pertama). = bobot awal pada iterasi pola pertama. dan dengan, = bobot awal pola kedua (hasil iterasi pola pertama). = bobot awal pada iterasi pertama. (Siang, 2005 :113 ) Aplikasi Backpropagation Dalam Peramalan Peramalan adalah salah satu bidang yang paling bagus dalam mengaplikasikan metode backpropagation. Secara umum, masalah peramalan dapat dinyatakan dengan sejumlah data runtun waktu (time series) x 1, x 2,..., x n. Masalahnya adalah memperkirakan berapa harga x n+1 berdasarkan x 1, x 2,..., x n. Jumlah data dalam satu periode (misalnya satu tahun) pada suatu kasus dipakai sebagai jumlah masukan dalam backpropagation. Sebagai targetnya diambil data bulanan pertama setelah periode berakhir. Langkah-langkah membangun struktur jaringan untuk peramalan sebagai berikut : 1. Transformasi Data Dilakukan transformasi data agar kestabilan taburan data dicapai dan juga untuk menyesuaikan nilai data dengan range fungsi aktivasi yang digunakan dalam jaringan. Jika ingin menggunakan fungsi aktivasi sigmoid (biner), data harus ditransformasikan dulu karena range keluaran fungsi aktivasi sigmoid adalah [0.1]. Data bisa ditransformasikan ke interval [0.1]. Tapi akan lebih baik jikan ditransformasikan keinterval yang

14 28 lebih kecil, misalnya pada interval [0.1,0.9], karena mengingat fungsi sigmoid nilainya tidak pernah mencapai 0 ataupun 1. Untuk mentransformasikan data ke interval [0.1,0.9] dilakukan dengan transformasi linier sebagai berikut : Transformasi Linier pada selang [a,b] dengan, = nilai data setelah transformasi linier. = nilai data aktual. = nilai minimum data aktual keseluruhan. = nilai maksimum data aktual keseluruhan. Dengan transformasi ini, maka data terkecil akan menjadi 0,1 dan data terbesar akan menjadi 0,9. (Siang,2005:121). 2. Pembagian Data Pembagian data dilakukan dengan membagi data penelitian menjadi data pelatihan dan pengujian. Komposisi data pelatihan dan pengujian bisa dilakukan dengan trial and error, namun komposisi data yang sering digunakan adalah sebagai berikut. a. 90% untuk data pelatihan dan 10% untuk data pengujian. b. 80% untuk data pelatihan dan 20% untuk data pengujian. c. 70% untuk data pelatihan dan 30% untuk data pengujian. d. Dan seterusnya Proses pembagian data ini sangat penting, agar jaringan mendapat data pelatihan yang secukupnya. Jika data yang dibagi kurang dalam

15 29 proses pelatihan maka akan menyebabkan jaringan mungkin tidak dapat mempelajari taburan data dengan baik. Sebaliknya, jika data yang dibagi terlalu banyak untuk proses pelatihan maka akan melambatkan poses pemusatan (konvergensi). Masalah overtraining (data pelatihan yang berlebihan) akan memyebabkan jaringan cenderung untuk menghafal data yang dimasukan daripada mengeneralisasi. 3. Perancang Arsitektur Jaringan Yang Optimum Menentuan jumlah simpul masukan, simpul lapisan tersembunyi, simpul lapisan tersembunyi berikutnya dan simpul keluaran yang akan digunakan dalam jaringan. Penentuan ini dilakukan dengan trial and error. 4. Pemilihan Koefisien Pemahaman dan Momentum Dalam hal ini pemilihan koefisien pemahaman dan momentum mempunyai peranan yang penting untuk struktur jaringan yang akan dibangun. Dalam membangun jaringan yang akan digunakan dalam peramalan, hasil keputusan yang kurang memuaskan dapat diperbaiki dengan penggunaan koefisien pemahaman dan momentum secara trial and error untuk mendapatkan nilai bobot yang paling optimum agar MAPE dan MSE jaringan dapat diperbaiki. 5. Memilih dan Menggunakan Arsitektur Jaringan yang Optimum Tingkat keakuratan ramalannya akan dinilai setelah jaringan dibangun. Jaringan yang optimum dinilai dengan melihat nilai MSE (Mean Square Error) terkecil.

16 30 dengan, n = bilangan ramalan. = nilai aktual pada waktu t. = nilai ramalan pada waktu t. 6. Pemilihan jaringan optimum dan penggunaannya untuk peramalan. Jaringan dengan nilai MSE terkecil dipilih sebagai jaringan yang optimum untuk digunakan dalam peramalan. 2.2 METODE DERET BERKALA Dalam statistika dan pemrosesan sinyal, deret berkala adalah rangkaian data yang berupa nilai pengamatan (observasi) yang diukur selama kurun waktu tertentu, berdasarkan waktu dengan interval yang uniform sama. Beberapa contoh data deret berkala adalah produksi total tahunan produk pertanian indonesia, harga penutupan harisan sebuah saham di pasar modal untuk kurun waktu satu bulan, suhu udara per jam, dan penjualan total bulanan sebuah pasar swalayan dalam waktu satu tahun dan lain sebagainya ( Menurut Santoso (2009:13-14) dalam bukunya menberikan definisi dari data deret berkala (time series) adalah data yang ditampilkan berdasarkan waktu, seperti data bulanan, data harian, data mingguan atau jenis waktu yang lain. Ciri data deret berkala adalah adanya rentang waktu tertentu, bukannya data pada satu waktu tertentu. Tujuan dari metode deret berkala adalah untuk menggolongkan data, memahami sistem serta melakukan peramalan berdasarkan sifatnya untuk masa depan. Persamaan dan kondisi awal dalam peramalan runtun waktu mungkin diketahui kedua-duanya atau mungkin saja hanya salah satunya. Sehingga dibutuhkan suatu aturan yang digunakan untuk menentukan perkembangan dan keakuratan sistem. Penentuan aturan tersebut mungkin mengacu dari pencocokkan data masa lalu.

17 31 Untuk memilih suatu metode yang tepat yang digunakan dalam mengolah data deret berkala adalah dengan mempertimbangkan jenis pola data, sehingga metode yang paling tepat dengan pola tersebut dapat diuji. Pola data dapat dibagi menjadi empat yaitu sebagai berikut : 1. Pola trend, yaitu pola data yang terjadi jika kecenderungan arah data dalam jangka panjang. Trend dapat saja menaik, tetap atau menurun 2. Pola siklis, pola data yang terjadi jika datanya dipengaruhi oleh faktor ekonomi jangka panjang seperti berhubungan dengan siklus bisnis.. Musiman tersebut bisa saja triwulan, kwartalan, bulanan, atau mingguan 3. Pola musiman, terjadi fluktuasi data secara periodik dalam jangka waktu satu tahun 4. Pola irregular atau acak, pola data yang terjadi jika terdapat kejaidian yang tidak terduga dan bersifat random. Kejadiannya dapat berupa gempa bumi, perang, terorisme atau kejadian tidak terduga lainnya (Santoso,2009: ) Analisis Deret Berkala Analisis deret berkala (time series analysis) merupakan metode yang mepelajari deret berkala, baik dari segi teori yang menaunginya maupun untuk membuat peramalan. Peramalan deret waktu adalah penggunaan model untuk memprediksi nilai di waktu mendatang berdasarkan peristiwa yang telah terjadi. Di dunia bisnis, data deret waktu digunakan sebagai bahan acuan pembuatan keputusan sekarang, untuk proyeksi, maupun untuk perencanaan di masa depan (

18 Alat-alat Metodelogi untuk Menganalisis Data Deret Berkala Makridakis (1999) menyatakan bahwa untuk menganalisis data deret berkala digunakan langkah-langkah sebagai berikut: 1. Plot Data Memplot data secara grafis adalah hal yang paling baik untuk menganalisis data deret berkala. Hal ini dilakukan untuk melihat apakah ada gejala trend (penyimpanan nilai tengah) atau pengaruh musiman pada suatu data. 2. Koefisien Autokorelasi Koefisien autokorelasi adalah korelasi antara deret berkala dengan deret berkala itu sendiri dengan selisih waktu (lag) 0,1,2 periode atau lebih. Misalnya diketahui persamaan (2.1) adalah model AR atau (ARIMA(2,0,0)) yang menggambarkan Y t sebagai suatu kombinasi linier dengan dua nilai sebelumnya. (2.1) Koefisien korelasi sederhana antara dengan dapat dicari dengan menggunakan persamaan sebagai berikut. = (2.2) Karena rumus ini secara statistik akan menyulitkan, maka dibuat asumsi untuk menyederhanakannya. Data diasumsikan stasioner (baik nilai tengah maupun variansinya) sehingga kedua nilai tengah dan dapat diasumsikan bernilai sama (dan kita dapat membuat subskrip dengan menggunakan = = ) dan

19 33 dua deviasi standar dapat diukur satu kali saja yaitu dengan menggunakan seluruh data yang diketahui. Dengan menggunakan asumsi-asumsi penyederhanaan ini, maka persamaan (2.2) menjadi sebagai berikut. (2.3) Pada persamaan (2.3) diketahui bahwa pembilang kekurangan satu nilai suku disbanding penyebut, akan tetapi karena adanya asumsi stasioneritas maka persamaannya dapat berlaku umum dan dapat digunakan untuk seluruh time-lag dari satu periode untuk suatu deret berkala. Hal ini sebagai akibat adanya asumsi stasioneritas. Autokorelasi untuk time-lag 1, 2, 3,..., k dapat dicari dan dinotasikan r k sebagai berikut. (2.4) Untuk menentukan apakah secara statistik suatu koefisien autokorelasi nilainya berbeda secara signifikan dari nol atau tidak, maka perlu dihitung galat standar dari r k dengan rumus sebagai berikut. (2.5) dengan, n = banyaknya data. Koefisien autokorelasi dari data random mempunyai distribusi sampling yang mendekati kurva normal dengan nilai tengah nol dan kesalahan standar. Dari nilai kesalahan standar se rk dan sebuah nilai interval kepercayaan dapat diperoleh sebuah rentang nilai. Suatu koefisien autokorelasi disimpulkan tidak berbeda secara signifikan apabila nilainya berada pada rentang nilai tersebut dan sebaliknya.

20 34 3. Koefisien Autokorelasi Parsial Dalam analisis regresi, jika variabel tidak bebas Y diregresikan kepada variabelvariabel bebas X1 dan X2 maka akan muncul pertanyaan bahwa sejauh mana variabel X mampu menerangkan keadaan Y apabila mula-mula X2 dipisahkan. Ini berarti meregresikan Y kepada X2 dan menghitung galat sisa (residual error) kemudian meregresikan lagi nilai sisa tersebut kepada X1. Di dalam analisis deret berkala juga berlaku konsep yang sama. Autokorelasi parsial digunakan untuk mengukur tingkat keeratan (association) antara Xt dan Xt-k apabila pengaruh dari time-lag 1, 2, 3,..., k-1 dianggap terpisah. Koefisien autokorelasi parsial berorde m didefinisikan sebagai koefisien autoregresif terakhir dari model AR (m). Berikut ini persamaan-persamaan yang masing-masing digunakan untuk menetapkan AR (1), AR (2),..., AR (m-1) dan proses AR (m). (2.6) (2.7) (2.8) (2.9) Dari persamaan-persamaan di atas dapat dicari nilai-nilai taksiran. Perhitungan yang diperlukan akan memakan banyak waktu. Oleh karena itu lebih memuaskan untuk memperoleh taksiran berdasarkan pada koefisien autokorelasi. Penaksiran ini dapat dilakukan dengan mengalikan ruas kiri dan kanan persamaan (2.6) dengan X t-1 menjadi sebagai berikut. (2.10)

21 35 Dengan mengambil nilai harapan pada persamaan (2.10) akan menghasilkan persamaan sebagai berikut. (2.11) Yang dapat ditulis ulang sebagai (2.12) dengan, dan adalah notasi untuk autokorelasi populasi 0 dan 1. Apabila kedua ruas pada persamaan (2.12) dibagi maka menjadi sebagai berikut. (2.13) Jadi, ini berarti bahwa autokorelasi parsial yang pertama adalah sama dengan autokorelasi pertama dan kedua-duanya ditaksir di dalam sampel dengan r 1. Secara umum, untuk mencari autokorelasi parsial pada time-lag ke-k digunakan persamaan sebagai berikut. (2.14) dengan, menunjukan parameter autokorelasi parsial pada time-lag ke-k.

22 Metode ARIMA (Box-Jenkins) Metode ARIMA (Box-Jenkins) adalah metode peramalan yang tidak menggunakan teori atau pengaruh antar variabel seperti pada model regresi. Sehingga metode ini tidak memerlukan penjelasan mengenai mana variabel bebas atau terikat. Metode ini juga tidak perlu melihat pola data seperti pada time series decomposition, artinya data yang akan diprediksi tidak perlu dibagi menjadi komponen trend, musiman, siklis atau irregular (acak). Metode ini secara murni melakukan prediksi hanya berdasarkan data-data historis yang ada (Santoso, 2009:152). ARIMA merupakan suatu metode yang menghasilkan ramalan berdasarkan sintesis dari pola data secara historis (Arsyad,1995). Variabel yang digunakan adalah nilai-nilai terdahulu bersama nilai kesalahannya. ARIMA memiliki tingkat keakuratan peramalan yang cukup tinggi karena setelah mengalami tingkat pengukuran kesalahan peramalan MAE (mean absolute error) nilainya mendekati nol (Francis dan Hare, 1994). Metode Box-Jenkins hanya dapat diterapkan, menjelaskan, atau mewakili series yang stasioner atau telah dijadikan stasioner melalui proses differencing. Karena series stasioner tidak punya unsur trend, maka yang ingin dijelaskan dengan metode ini adalah unsur sisanya, yaitu error. Kelompok model time series linier yang termasuk dalam metode ini antara lain: autoregressive, moving average, autoregressive-moving average, dan autoregressive integrated moving average. Makridakis (1999) menjelaskan bahwa model Autoregressive Intrgrated Moving Average (ARIMA) merupakan metode yang telah dikembangkan oleh George Box dan Gwilym Jenkins yang diterapkan untuk analisis deret berkala, peramalan dan pengendalian. Metode ini paling berbeda dari metode peramalan lain karena tidak mensyaratkan suatu pola data tertentu supaya model dapat bekerja dengan baik. Apabila metode ini digunakan untuk data deret berkala yang bersifat dependen

23 37 (terikat) atau berhubungan satu sama lain secara statistik maka metode ini akan bekerja dengan baik. Metode ARIMA dinotasikan sebagai : ARIMA (p, d, q) dengan, p = orde atau derajat autoregressive (AR) d = orde atau derajat differencing (pembedaan) dan q = orde atau derajat moving average (MA). Dan untuk model ARIMA musiman dinotasikan sebagai : ARIMA (p, d, q) (P, D, Q) s dengan, (P, D, Q) merupakan bagian yang musiman dari model P = orde atau derajat autoregressive (AR) D = orde atau derajat differencing (pembedaan) dan Q = orde atau derajat moving average (MA). s = jumlah periode permusim Klasifikasi Model dalam Metode ARIMA (Box-Jenkins) Model Box-Jenkins (ARIMA) dibagi kedalam 3 kelompok, yaitu model autoregressive (AR), moving average (MA), dan model campuran ARIMA (autoregressive moving average) yang mempunyai karakteristik dari dua model pertama (Hendranata 2003). 1. Autoregressive Model (AR) Bentuk umum model autoregressive dengan ordo p (AR(p)) atau model ARIMA (p,0,0) dinyatakan sebagai berikut: dengan, μ' = suatu konstanta = parameter autoregresif ke-p

24 38 e t = nilai kesalahan pada saat t 2. Moving Average Model (MA) Bentuk umum model moving average ordo q (MA(q)) atau ARIMA (0,0,q) dinyatakan sebagai berikut: dengan, μ' = suatu konstanta θ 1 sampai θ q adalah parameter-parameter moving average e t-k = nilai kesalahan pada saat t k 3. Model campuran a. Proses ARMA Model umum untuk campuran proses AR(1) murni dan MA(1) murni, misal ARIMA (1,0,1) dinyatakan sebagai berikut: atau AR(1) MA(1) dengan, B = backward shift b. Proses ARIMA Apabila nonstasioneritas ditambahkan pada campuran proses ARMA, maka model umum ARIMA (p,d,q) terpenuhi. Persamaan untuk kasus sederhana ARIMA (1,1,1) adalah sebagai berikut: pembedaan AR(1) MA(1) pertama

25 39 c. Model ARIMA dan Faktor Musiman Musiman didefinisikan sebagai suatu pola yang berulang-ulang dalam selang waktu yang tetap. Untuk data yang stasioner, faktor musiman dapat ditentukan dengan mengidentifikasi koefisien autokorelasi pada dua atau tiga time-lag yang berbeda nyata dari nol. Autokorelasi yang secara signifikan berbeda dari nol menyatakan adanya suatu pola dalam data. Untuk mengenali adanya faktor musiman, seseorang harus melihat pada autokorelasi yang tinggi. Secara aljabar adalah sederhana tetapi dapat berkepanjangan. Oleh sebab itu, untuk tujuan ilustrasi diambil model umum ARIMA (1,1,1)(1,1,1) 4 sebagai berikut. (2.15) Seluruh faktor dapat dikalikan dan model umum tersebut dapat ditulis dalam bentuk yang disebut bentuk terurai. Perkalian pada persamaan (14) menghasilkan persamaan sebagai berikut. (2.16) Tahapan Metode ARIMA Dengan metode ini diharapkan dapat menyelesaikan suatu data time series apakah dengan proses AR murni/ ARIMA (p,0,0) atau MA murni/ ARIMA (0,0,q) atau proses ARMA/ ARIMA (p,0,q) atau proses ARIMA (p,d,q). Langkah-langkah penerapan metode ARIMA secara berturut-turut adalah : 1. Identifikasi model, 2. Penaksiran parameter,

26 40 3. Pemeriksaan diagnostik, 4. Peramalan. Menentukan tingkat stasionaritas data Identifikasi model ARIMA Estimasi parameter dari model yang dipilih Uji diagnostik (apakah model sudah tepat?) Tidak Ya Gunakan model untuk peramalan Gambar 2.4 Flowchart tahapan dalam model ARIMA (Box-Jenkins): Model Umum dan Uji Stasioner Suatu data runtun waktu dikatakan stasioner jika nilai rata-ratanya tidak berubah. Langkah pertama yang dilakukan untuk menunjukkan kestasioneran yakni dengan menghitung nilai-nilai autokorelasi dari deret data asli. Apabila nilai tersebut turun dengan cepat ke atau mendekati nol sesudah nilai kedua atau ketiga, maka ini menandakan bahwa data stasioner di dalam bentuk aslinya. Sebaliknya, apabila nilai autokorelasinya tidak turun ke nol dan tetap positif menandakan data tidak stasioner. Apabila data yang menjadi input dari model ARIMA tidak stasioner, perlu dilakukan modifikasi untuk menghasilkan data yang stasioner. Salah satu cara yang umum dipakai adalah metode pembedaan (differencing), yaitu mengurang nilai data pada suatu periode dengan nilai data periode sebelumnya. Metode Box-Jenkins hanya dapat diterapkan, menjelaskan, atau mewakili data yang stasioner atau telah dijadikan stasioner melalui proses differencing (Mulyono, 2000). Karena data stasioner tidak

27 41 mempunyai unsur trend, maka yang ingin dijelaskan dengan metode ini adalah unsur sisanya, yaitu error. Apabila tetap tidak stasioner dilakukan pembedaan pertama lagi. Untuk kebanyakan tujuan praktis, suatu maksimum dari dua pembedaan akan mengubah data menjadi deret stasioner Identifikasi Model Langkah selanjutnya setelah data runtut waktu stasioner adalah menetapkan model ARIMA (p,d,q) yang cocok (tentatif), yakni menetapkan menetapkan berapa p, d, dan q. Jika pada pengujian stasioneritas dilakukan tanpa proses pembedaan (differencing) d maka diberi nilai 0, dan jika melalui pembedaan pertama maka bernilai 1 dan seterusnya. Menurut (Mulyono, 2000) dalam memilih berapa p dan q dapat dibantu dengan mengamati pola fungsi autocorrelation dan partial autocorrelation (correlogram) dari series yang dipelajari, dengan acuan sebagai berikut : Tabel 2.1 Pola Autokolerasi dan Autokorelasi Parsial Autocorrelation Partial autocorrelation ARIMA tentatif Menuju nol setelah lag q Menurun secara bertahap/bergelombang Menurun secara bertahap/ bergelombang sampai lag q masih berbeda dari nol) Menurun secara bertahap/ Bergelombang Menuju nol setelah lag q Menurun secara bertahap/ bergelombang (sampai lag p masih berbeda dari nol) ARIMA (0,d,q) ARIMA (p,d,0) ARIMA (p,d,q) Pada umumnya, peneliti harus mengindentifikasi autokorelasi yang secara eksponensial menjadi nol. Jika autokorelasi secara eksponensial melemah menjadi nol berarti terjadi proses AR. Jika autokorelasi parsial melemah secara eksponensial berarti terjadi proses MA. Jika keduanya melemah berarti terjadi proses ARIMA (Arsyad, 1995).

28 Penduga Parameter Model Setelah berhasil menetapkan identifikasi model sementara, selanjutnya parameterparameter AR dan MA, musiman dan tidak musiman harus ditetapkan dengan cara yang terbaik. Terdapat dua cara yang mendasar untuk mendapatkan parameterparameter terbaik dalam mencocokkan deret berkala yang sedang dimodelkan (Makridakis,1995), yaitu sebagai berikut : 1. Dengan cara mencoba-coba menguji beberapa nilai yang berbeda dan memilih satu nilai tersebut (sekumpulan nilai, apabila terdapat lebih dari satu parameter yang akan ditaksir) yang meminimumkan jumlah kuadrat nilai sisa (sum of squared residuals). 2. Perbaikan secara iteratif memilih taksiran awal dan kemudian membiarkan program komputer memperhalus penaksiaran tersebut secara iteratif. Penetapan parameter-parameter AR dan MA, musiman dan tidak musiman dengan cara yang terbaik seperti berikut ini : a. Proses tidak musiman AR (1) dan AR (2) Untuk proses autoregresif pada orde p, persamaan Yule-Walker didefinisikan sebagai berikut. (2.17) dengan, = autokorelasi teoritis berturut-turut untuk time-lag 1, 2, 3,, p, = p buah koefisien AR dari proses AR (p)

29 43 Karena nilai teoritis tidak dikethui maka digantikan dengan nilai empirisnya dan kemudian digunakan untuk memecahkan nilai-nilai. Untuk proses AR (1), persamaan (2.17) menjadi sebagai berikut. (2.18) Jika yang tidak diketahui diganti dengan r 1 yang diketahui (autokorelasi empiris) diperoleh nilai taksiran parameter untuk proses AR (1) sebagai berikut. r 1 (2.19) Untuk proses AR (2), persamaan (2.17) menjadi sebagai berikut.,. (2.20) Jika dan diganti dengan r 1 dan r 2 diperoleh nilai taksiran parameter dan untuk proses AR (2) sebagai berikut.,. (2.21) b. Proses tidak musiman MA (1) Autokorelasi teoritis untuk proses MA (q) dapat digunakan dalam bentuk koefisien-koefisien MA sebagai berikut. (2.22)

30 44 Karena nilai teoritis tidak diketahui maka nilai taksiran pendahuluan dari dapat diperoleh dengan mensubstitusukan autokorelasi empiris, r k pada persamaan (2.22) dan kemudian diselesaikan. Untuk proses MA (1), persamaan (2.22) menjadi sebagai berikut. (2.23) Dengan memsubstitusikan r 1 untuk pada persamaan (2.23) diperoleh persamaan kuadratik sebagai berikut. (2.24) Dari persamaan (2.24) diperoleh dua penyelesaian yang harus terletak di antara -1 dan 1. c. Model ARIMA Campuran Ragam dan autokovarians daripada proses ARIMA(1,1), yaitu sebagai berikut. (2.25) Persamaan (2.25) kedua sisinya dikalikan dan akan menghasilkan persamaan sebgai berikut.. (2.26) Bila nilai harapan dimasukan pada persamaan (2.26) menghasilkan persamaan sebagai berikut.. (2.27)

31 45 Jika k = 0 maka karena, (2.28). Sama halnya, apabila k = 1 maka. (2.29) Penyelesaian dari persamaan (2.28) dan (2.29) untuk dan menghasilkan persamaan sebagai berikut., (2.30). (2.31) Hasil pembagian persamaan (2.30) dan (2.31) menghasilkan persamaan sebagai berikut. Untuk k = 1,. (2.32) Untuk k = 2 diperoleh fungsi autokorelasi sebagai berikut.. (2.33) Uji Diagnostik Uji diagnostik yaitu memeriksa atau menguji apakah model telah dispesifikasi secara benar atau apakah telah dipilih p, d, dan q yang benar.

32 46 Ada beberapa cara yang sebaiknya digunakan untuk memeriksa model. 1. Menurut Mulyono (2000) jika model dispesifikasi dengan benar, kesalahannya harus random atau merupakan suatu proses antar error tidak berhubungan, sehingga fungsi autokolerasi dari kesalahan tidak berbeda dengan nol secara statistik. Jika tidak demikian, spesifikasi model yang lain perlu diduga dan diperiksa. Jika pemeriksaan ini menyimpulkan bahwa kesalahannya random, spesifikasi model yang lain bisa juga diduga dan diperiksa untuk dibandingkan dengan spesifikasi benar yang pertama. 2. Dengan menggunakan modified Box-Pierce (Ljung-Box) Q statistic untuk menguji apakah fungsi autokorelasi kesalahan semuanya tidak berbeda dari nol. Rumusan statistik itu adalah (Mulyono, 2000): dengan, r k = koefisien autokorelasi kesalahan dengan lag k n = banyaknya observasi series stasioner (2.25) Statistik Q mendekati distribusi chi-square dengan derajat bebas k-p-q. jika statistik Q lebih kecil dari nilai kritis chi-square seperti yang tertera pada tabel, maka semua koefisien autokorelasi dianggap tidak berbeda dari nol atau model telah dispesifikasi dengan benar. Dalam praktik, biasanya digunakan k yang besar, misalnya Dengan menggunakan t statistik untuk menguji apakah koefisien model secara individu berbeda dari nol. Seperti halnya dalam regresi, ciri model yang baik adalah jika semua koefisien modelnya secara statistik berbeda dari nol. Jika tidak demikian, variabel yang dilekati koefisien itu seharusnya dilepas dan spesifikasi model yang lain diduga dan diuji. Jika terdapat banyak spesifikasi model yang lolos dalam uji diagnostik, yang terbaik dari model itu adalah model dengan koefisien lebih sedikit (prinsip parsimony).

33 47 4. Mempelajari nilai sisa (residual) untuk melihat apakah masih terdapat beberapa pola yang belum diperhitungkan. Nilai sisa (galat) yang tertinggal sesudah dilakukan pencocokan model ARIMA diharapkan hanya merupakan gangguan acak. Oleh karena itu, apabila autokorelasi dan parsial dari nilai sisa diperoleh, diharapkan akan ditemukan (i) tidak ada autokorelasi yang nyata dan (ii) tidak ada parsial yang nyata. 2.3 Peramalan dengan Model ARIMA Apabila model memadai maka model tersebut dapat digunakan untuk melakukan peramalan. Sebaliknya, apabila model belum memadai maka harus ditetapkan model yang lain.

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Stasioneritas Stasioneritas berarti bahwa tidak terdapat perubahan yang drastis pada data. Fluktuasi data berada di sekitar suatu nilai rata-rata yang konstan, tidak tergantung

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG

BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

BAB 2 KONSEP DASAR PENGENAL OBJEK

BAB 2 KONSEP DASAR PENGENAL OBJEK BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Forecasting Forecasting (peramalan) adalah seni dan ilmu untuk memperkirakan kejadian di masa yang akan datang. Hal ini dapat dilakukan dengan melibatkan data historis dan memproyeksikannya

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Semua negara mempunyai mata uang sebagai alat tukar. Pertukaran uang dengan barang yang terjadi disetiap negara tidak akan menimbulkan masalah mengingat nilai uang

Lebih terperinci

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum Jaringan Syaraf Tiruan Disusun oleh: Liana Kusuma Ningrum Susilo Nugroho Drajad Maknawi M0105047 M0105068 M01040 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Peramalan Peramalan adalah suatu kegiatan dalam memperkirakan atau kegiatan yang meliputi pembuatan perencanaan di masa yang akan datang dengan menggunakan data masa lalu

Lebih terperinci

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan

BAB 2 LANDASAN TEORI. Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Ramalan pada dasarnya merupakan perkiraan mengenai terjadinya suatu yang akan datang. Peramalan adalah proses untuk memperkirakan kebutuhan di masa datang

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar belakang Hujan merupakan salah satu unsur iklim yang berpengaruh pada suatu daerah aliran sungai (DAS). Pengaruh langsung yang dapat diketahui yaitu potensi sumber daya air. Besar

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Iklim Iklim ialah suatu keadaan rata-rata dari cuaca di suatu daerah dalam periode tertentu. Curah hujan ialah suatu jumlah hujan yang jatuh di suatu daerah pada kurun waktu

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH

BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH BAB III METODE EGARCH, JARINGAN SYARAF TIRUAN DAN NEURO-EGARCH 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu data saham Astra Internasional Tbk tanggal 2 Januari

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 15 III. METODE PENELITIAN 3.1. Kerangka Pemikiran Penelitian Perkembangan ekonomi dan bisnis dewasa ini semakin cepat dan pesat. Bisnis dan usaha yang semakin berkembang ini ditandai dengan semakin banyaknya

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah suatu situasi atau kondisi yang diperkirakan akan terjadi pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA

APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA Aplikasi Jaringan Syaraf Tiruan Multilayer Perceptron (Joni Riadi dan Nurmahaludin) APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA Joni Riadi (1) dan Nurmahaludin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA DAFTAR ISI PERNYATAAN... i ABSTRAK... ii KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... ix DAFTAR GAMBAR... x DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN... 1 1.1 Latar Belakang...

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI

Lebih terperinci

ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA

ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA Nurmahaludin (1) (1) Staf Pengajar Jurusan Teknik Elektro Politeknik Negeri Banjarmasin Ringkasan Kebutuhan

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

BAB VIIB BACKPROPAGATION dan CONTOH

BAB VIIB BACKPROPAGATION dan CONTOH BAB VIIB BACKPROPAGATION dan CONTOH 7B. Standar Backpropagation (BP) Backpropagation (BP) merupakan JST multi-layer. Penemuannya mengatasi kelemahan JST dengan layer tunggal yang mengakibatkan perkembangan

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan (Artificial Neural Network) Intelligent Systems Pembahasan Jaringan McCulloch-Pitts Jaringan Hebb Perceptron Jaringan McCulloch-Pitts Model JST Pertama Diperkenalkan oleh McCulloch

Lebih terperinci

PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK

PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Jurnal POROS TEKNIK, Volume 6, No. 2, Desember 2014 : 55-10 PERBANDINGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DAN REGRESI PADA PERAMALAN WAKTU BEBAN PUNCAK Nurmahaludin (1) (1) Staff Pengajar Jurusan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Data Yang Digunakan Dalam melakukan penelitian ini, penulis membutuhkan data input dalam proses jaringan saraf tiruan backpropagation. Data tersebut akan digunakan sebagai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan (Forceasting) 2.1.1 Pengertian Peramalan Untuk memajukan suatu usaha harus memiliki pandangan ke depan yakni pada masa yang akan datang. Hal seperti ini yang harus dikaji

Lebih terperinci

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

BAB 2. Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah sesuatu kegiatan situasi atau kondisi yang diperkirakan akan

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN : Modifikasi Estimasi Curah Hujan Satelit TRMM Dengan Metode Jaringan Syaraf Tiruan Propagasi Balik Studi Kasus Stasiun Klimatologi Siantan Fanni Aditya 1)2)*, Joko Sampurno 2), Andi Ihwan 2) 1)BMKG Stasiun

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM INTRODUCTION Jaringan Saraf Tiruan atau JST adalah merupakan salah satu representasi tiruan dari otak manusia yang selalu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation

Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation Erlangga, Sukmawati Nur Endah dan Eko Adi Sarwoko Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation Erlangga, Sukmawati Nur Endah dan Eko Adi Sarwoko

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN tersembunyi berkisar dari sampai dengan 4 neuron. 5. Pemilihan laju pembelajaran dan momentum Pemilihan laju pembelajaran dan momentum mempunyai peranan yang penting untuk struktur jaringan yang akan dibangun.

Lebih terperinci

2.1. Dasar Teori Bandwidth Regression

2.1. Dasar Teori Bandwidth Regression 2.1. Dasar Teori 2.1.1. Bandwidth Bandwidth adalah ukuran kapasitas dari sistem transmisi (Comer, 2004) Bandwidth adalah konsep pengukuran yang sangat penting dalam jaringan, tetapi konsep ini memiliki

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK EVALUASI KETEPATAN PREDIKSI WAKTU KERUSAKAN SUATU KOMPONEN

PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK EVALUASI KETEPATAN PREDIKSI WAKTU KERUSAKAN SUATU KOMPONEN Feng PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK... 211 PERBANDINGAN ANTARA MODEL NEURAL NETWORK DAN MODEL DUANE UNTUK EVALUASI KETEPATAN PREDIKSI WAKTU KERUSAKAN SUATU KOMPONEN Tan

Lebih terperinci

BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA

BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA Anggi Purnama Undergraduate Program, Computer Science, 2007 Gunadarma Universiy http://www.gunadarma.ac.id

Lebih terperinci

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG

Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) A-34 Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG Mey Lista Tauryawati

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN INPUT MODEL ARIMA UNTUK PERAMALAN HARGA SAHAM

IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN INPUT MODEL ARIMA UNTUK PERAMALAN HARGA SAHAM IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN INPUT MODEL ARIMA UNTUK PERAMALAN HARGA SAHAM Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Progam Studi Matematika

Lebih terperinci

BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS

BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS BAB II LANDASAN TEORI DAN PENGEMBANGAN HIPOTESIS II.1 Landasan Teori II.1.1 Indeks Harga Saham Gabungan (IHSG) IHSG di BEI meliputi pergerakan-pergerakan harga untuk saham biasa dan saham preferen. IHSG

Lebih terperinci

Prosiding Statistika ISSN:

Prosiding Statistika ISSN: Prosiding Statistika ISSN: 2460-6456 Pemodelan Autoregressive Integrated Moving Average (ARIMA) dan Feedforwar Neural Network (FFNN) dengan Algoritma Backpropagation untuk Meramalkan Harga Open Emas Dunia

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1. Analisis Analisis adalah kemampuan pemecahan masalah subjek kedalam elemen-elemen konstituen, mencari hubungan-hubungan internal dan diantara elemen-elemen, serta mengatur

Lebih terperinci

1.1. Jaringan Syaraf Tiruan

1.1. Jaringan Syaraf Tiruan BAB I PENDAHULUAN 1.1. Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan (JST) adalah sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan syaraf biologi yang digambarkan sebagai berikut

Lebih terperinci

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang

BAB 3 PERANCANGAN SISTEM. Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang BAB 3 PERANCANGAN SISTEM Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang diimplementasikan sebagai model estimasi harga saham. Analisis yang dilakukan adalah menguraikan penjelasan

Lebih terperinci

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :

VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN : PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan Pendahuluan Otak Manusia Sejarah Komponen Jaringan Syaraf Arisitektur Jaringan Fungsi Aktivasi Proses Pembelajaran Pembelajaran Terawasi Jaringan Kohonen Referensi Sri Kusumadewi

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

Jaringan syaraf dengan lapisan tunggal

Jaringan syaraf dengan lapisan tunggal Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang mencoba untuk mensimulasikan proses pembelajaran pada otak manusia. Syaraf manusia Jaringan syaraf dengan lapisan

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di: ISSN: 2339-24 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 20, Halaman 74-74 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian PERAMALAN BEBAN PEMAKAIAN LISTRIK JAWA TENGAH DAN DAERAH ISTIMEWA YOGYAKARTA

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Jaringan Syaraf Tiruan Artificial Neural Network atau Jaringan Syaraf Tiruan (JST) adalah salah satu cabang dari Artificial Intelligence. JST merupakan suatu sistem pemrosesan

Lebih terperinci

SKRIPSI. Disusun Oleh: Aditya Wisnu Broto J2E

SKRIPSI. Disusun Oleh: Aditya Wisnu Broto J2E vii PERBANDINGAN APLIKASI JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN METODE OPTIMAL BRAIN DAMAGE DAN ARCH - GARCH UNTUK MEMPREDIKSI INDEKS HARGA SAHAM GABUNGAN (IHSG) SKRIPSI Disusun Oleh: Aditya Wisnu

Lebih terperinci

BAB VIII JARINGAN SYARAF TIRUAN

BAB VIII JARINGAN SYARAF TIRUAN BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Barcode Salah satu obyek pengenalan pola yang bisa dipelajari dan akhirnya dapat dikenali yaitu PIN barcode. PIN barcode yang merupakan kode batang yang berfungsi sebagai personal

Lebih terperinci

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA

PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA PERAMALAN STOK BARANG UNTUK MEMBANTU PENGAMBILAN KEPUTUSAN PEMBELIAN BARANG PADA TOKO BANGUNAN XYZ DENGAN METODE ARIMA Tanti Octavia 1), Yulia 2), Lydia 3) 1) Program Studi Teknik Industri, Universitas

Lebih terperinci

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX Oleh: Intan Widya Kusuma Program Studi Matematika, FMIPA Universitas Negeri yogyakarta

Lebih terperinci

Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan

Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan Andi Ihwan 1), Yudha Arman 1) dan Iis Solehati 1) 1) Prodi Fisika FMIPA UNTAN Abstrak Fluktuasi suhu udara berdasarkan

Lebih terperinci

MODEL FUZZY RADIAL BASIS FUNCTION NEURAL NETWORK UNTUK PERAMALAN KEBUTUHAN LISTRIK DI PROVINSI DAERAH ISTIMEWA YOGYAKARTA

MODEL FUZZY RADIAL BASIS FUNCTION NEURAL NETWORK UNTUK PERAMALAN KEBUTUHAN LISTRIK DI PROVINSI DAERAH ISTIMEWA YOGYAKARTA MODEL FUZZY RADIAL BASIS FUNCTION NEURAL NETWORK UNTUK PERAMALAN KEBUTUHAN LISTRIK DI PROVINSI DAERAH ISTIMEWA YOGYAKARTA TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM Ayu Trimulya 1, Syaifurrahman 2, Fatma Agus Setyaningsih 3 1,3 Jurusan Sistem Komputer, Fakultas MIPA Universitas

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia cu.softech@gmail.com Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

Penentuan Error Dalam Peramalan Jumlah Korban Demam Berdarah Dengue Menggunakan Metode Neural Network (Kasus : Rumah Sakit Charitas Palembang)

Penentuan Error Dalam Peramalan Jumlah Korban Demam Berdarah Dengue Menggunakan Metode Neural Network (Kasus : Rumah Sakit Charitas Palembang) Penentuan Error Dalam Peramalan Jumlah Korban Demam Berdarah Dengue Menggunakan Metode Neural Network (Kasus : Rumah Sakit Charitas Palembang) Maria Bellaniar Ismiati 1, Latius Hermawan 2 Program Studi

Lebih terperinci

Peramalan Permintaan Paving Blok dengan Metode ARIMA

Peramalan Permintaan Paving Blok dengan Metode ARIMA Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Permintaan Paving Blok dengan Metode ARIMA Adin Nofiyanto 1,Radityo Adi Nugroho 2, Dwi Kartini 3 1,2,3 Program

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: havid_syafwan@yahoo.com ABSTRAK:

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci