I. Hukum Kedua Termodinamika

Ukuran: px
Mulai penontonan dengan halaman:

Download "I. Hukum Kedua Termodinamika"

Transkripsi

1 I. Hukum Kedua Termodinamika Hukum termodinamika kedua menyatakan bahwa kondisi-kondisi alam selalu mengarah kepada ketidak aturan atau hilangnya informasi.hukum ini juga dikenalsebagai Hukum Entropi.Entropi adalah selang ketidakteraturan dalam suatu sistem.entropi sistem meningkat ketika suatu keadaan yang teratur,tersususn dan terencana menjadi lebih tidak teratur,tersebar dan tidak terencana.semakin tidak teratur,semakin tinggi pula entropinya.hukum entropi menyatakan bahwa seluruh alam semesta bergerak menuju keadaan yang semakin tidak teratur,tidak terencana,dan tidak terorganisir. Hukum ini disempurnakan pada tahun 1877 oleh Ludwig Boitzmann.Dalam versinya,entropi nampak sebagai fungsi peluang darisatu keadaan,semakin tinggi peluang suatu keadaan,semakin tinggi pula entropinya.dalam versi ini,semua sistem cenderung menuju satu keadaan setimbang.dengan demikia,ketika suatu benda panas ditempatkan berdampingan dengan sebuah benda dingin,energi akan mengalir dari yang panas ke yang dingin,sampai mereka mencapai keadaan setimbang,yaitu memiliki suhu yang sama. Gambar di bawah ini memperlihatkan dua sistem yang berbeda, masing-masing dilingkungi oleh dinding adiabatik. Pada gambar (a) sebuah benda yang suhunya T1bersinggungan dengan benda lain (reservoir) yang suhunya T2 lebih tinggi daripada T1 maka sesuai dengan hukum alam, sejumlah panas akan mengalir dari reservoir masuk ke dalam benda pertama, sampai akhirnya dicapai keadaan seimbang, suhu benda pertama menjadi sama dengan suhu reservoir. Seperti diketahui reservoir adalah benda yang karena ukurannya besar atau karena mendapat masukkan energi panas dari sistem lain, maka walaupun sejumlah panas mengalir ke luar atau masuk ke dalamnya, suhunya tidak berubah. Gambar (a) sejumlah panas mengalir reservoar ( T2) ke benda dengan suhu T1 (T2 > T1 ) (b) gas pada bagian kiri mengalami ekspansi bebas saat diafragme /penyekat dihilangkan

2 Proses di atas terjadi secara spontan dan irreversibel. Keadaan awal, kedua benda mempunyai suhu yang berbeda, setelah bdisentuhkan dan mencapaui keseimbangan, maka keadaan akhirnya benda mempunyai suhu yang sama dengan suhu reservoar. Jika sistem ingin dikembalikan lagi ke keadan semula, dimana benda kembali mempunyai suhu T1 yang lebih rendah, tidaklah mungkin terjadi. Andaikata proses ini dapat berlangsung maka hal ini sama sekali tidak bertentangan dengan hukum pertama, yang tidak lain adalah hukum kekekalan tenaga. Tetapi ternyata sesuai dengan pengalaman proses itu tidak pernah terjadi, walaupun jumlah tenaganya tetap saja, karena sistem itu dilingkungi dengan dinding adiabatik. Mengapa tidak dapat tertjadi? Pada gambar (b) dilukiskan suatu bejana yang terbagi oleh dua diafragma. Bagian kiri berisi sejumlah gas dan bagian kanan hampa. Jika diafragma dirobek, maka sejumlah molekul gas dari bagian kiri akan bergerak memasuki bagian kanan sampai akhirnya dicapai keadaan seimbang dengan kedua bagian mempunyai tekanan yang sama. Proses inipun tak dapat berlangsung ke arah sebaliknya. Dari keadaan seimbang dengan molekul-molekul gas menempati kedua bagian dengan tekanan yang sama kemudian sejumlah molekul bergerak ke kiri sampai akhirnya bagian kanan menjadi hampa. Andaikata hal ini dapat terjadi maka inipun tidak bertentangan dengan hukum pertama. Peristiwa ini dikenal dengan peristiwa ekspansi bebas, dimana dalam hal ini walaupunvolume sistem bertambah, sistem dikatakan tidak melakukan usaha. Dari kedua peristiwa itu timbul pertanyaan mengapa suatu peristiwa yang sebenarnya tidak bertentangan dengan sesuatu hukum tetapi tidak juga dapat terjadi. Di alam ternyata ada peristiwa-peristiwa yang terjadi secara spontan ke satu arah saja.. Menghadapi kenyataan seperti ini maka haruslah diambil kesimpulan bahwa pastilah ada satu hukum alam lain di luar hukum pertama termodinamika dan yang tak dapat dijabarkan dari hukum pertama itu lagipula dapat menentukan ke arah mana proses alami itu akan terjadi. Hukum ini selanjutnya akan disebut kedua termodinamika. Penyusunan hukum kedua ini tidak lepas dari usaha untuk mencari sifat atau besaran sistem yang merupakan fungsi keadaan. Ternyata orang yang menemukannya adalah Clausius dan besaran itu disebut entropi. Hukum kedua ini dapat dirumuskan sbb.: Proses suatu sistem terisolasi yang disertai dengan penurunan entropi tidak mungkin terjadi. Dalam setiap proses yang terjadi pada sistem terisolasi, maka entropi system tersebut selalu naik atau tetap tidak berubah. Lebih lanjut, jika suatu sistem terisolasi dalam keadaan demikian rupa sehingga entropinya maksimum, maka sistem itu dalam keadaan seimbang. Hal ini disebabkan karena

3 setiap proses yang akan terjadi berkaitan dengan penurunan entropi, sehingga tidak mungkin terjadi. Dengan perkataan lain, syarat untuk keseimbangan ialah bahwa entropinya harus maksimum. Pernyataan di atas hanya berlaku untuk sistem yang terisolasi. Jadi mungkin saja bahwa suatu sistem yang tak terisolasi akan menjalani proses yang berkaitan dengan penurunan entropi. Namun selalu dapat diketemukan bahwa entropi sistem lain yang berinteraksi dengan sistem itu naik paling sedikit dengan jumlah yang sama dengan penurunan entropinya. Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya. Hukum keseimbangan / kenaikan entropi: Panas tidak bisa mengalir dari material yang dingin ke yang lebih panas secara spontan. Entropi adalah tingkat keacakan energi. Jika satu ujung material panas, dan ujung satunya dingin, dikatakan tidak acak, karena ada konsentrasi energi. Dikatakan entropinya rendah. Setelah rata menjadi hangat, dikatakan entropinya naik. Salah satu aplikasinya yaitu kulkas. Kulkas harus mempunyai pembuang panas di belakangnya, yang suhunya lebih tinggi dari udara sekitar. Karena jika tidak Panas dari isi kulkas tidak bisa terbuang keluar. Formulasi Kelvin-Planck atau hukum termodinamika kedua menyebutkan bahwa adalah tidak mungkin untuk membuat sebuah mesin kalor yang bekerja dalam suatu siklus yang semata-mata mengubah energi panas yang diperoleh dari suatu reservoir pada suhu tertentu seluruhnya menjadi usaha mekanik. Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah; dengan kata lain, tidak semua proses di alam semesta adalah reversible (dapat dibalikkan arahnya). Sebagai contoh jika seekor beruang kutub tertidur di atas salju, maka salju dibawah tubuh nya akan mencair karena kalor dari tubuh beruang tersebut. Akan tetapi beruang tersebut tidak dapat mengambil kalor dari salju tersebut untuk menghangatkan tubuhnya. Dengan demikian, aliran energi kalor memiliki arah, yaitu dari panas ke dingin. Satu aplikasi penting dari hukum kedua adalah studi tentang mesin kalor. Mesin kalor adalah sebutan untuk alat yang berfungsi mengubah energi panas menjadi energi mekanik. Dalam mesin mobil misalnya, energi panas hasil pembakaran bahan bakar diubah menjadi energi gerak mobil. Tetapi, dalam semua mesin kalor kita ketahui bahwa pengubahan energi panas ke energi mekanik selalu disertai pengeluaran gas buang, yang membawa sejumlah energi panas. Dengan demikian, hanya sebagian energi panas hasil pembakaran bahan bakar yang diubah ke energi mekanik. Contoh lain adalah dalam mesin

4 pembangkit tenaga listrik; batu bara atau bahan bakar lain dibakar dan energi panas yang dihasilkan digunakan untuk mengubah wujud air ke uap. Uap ini diarahkan ke sudu-sudu sebuah turbin, membuat sudu-sudu ini berputar. Akhirnya energi mekanik putaran ini digunakan untuk menggerakkan generator listrik. Dalam membahas tentang Hukum II Termodinamika, yang dibahas tentang proses reversibel dan proses irreversibel, mesin kalor, siklus carnot, mesin pendingin, hukum II termodinamika, dan entropi. Tetapi, dalam pembahasa kali ini kita tidak akan membahas tentang entropi. Proses Reversibel dan Proses Irreversibel Bila kita meninjau sebuah sistem yang khas dalam kesetimbangan termodinamika dengan massa M dari suatu gas ideal yang dibatasi dalam sebuah susunan silinder pengisap dengan volume V, tekanan P serta temperatur T. Dalam kesetimbangan maka variabel-veriabel tersebut tetap konstan terhadap waktu. Dimisalkan bahwa silinder tersebut dinding-dindingnya adalah isolator panas yang ideal dan alasnya adalah penghantar panas yang ideal ditempatkan pada sebuah reservoir besar yang dipertahankan pada temperatur T sama seperti gambar 1. Kemudian keadaan sistem tersebut diubah dengan T adalah sama tetapi volume V direduksi sebesar setengah volume awalnya. 1. Proses Irreversibel (Proses Tak Terbalikkan) Apabila kita menekan pengisap tersebut dengan sangat cepat sampai kembali lagi ke kesetimbangan dengan reservoir, selama proses ini gas bergolak dan tekanan serta temperaturnya tidak dapat didefinisikan secara tepat sehingga grafik proses ini tidak dapat digambarkan sebagai sebuah garis kontinu dalam diagram P-V karena tidak diketahui berapa nilai tekanan atau temperatur yang akan diasosiasikan dengan volume yang diberikan. Proses inilah yang dinamakan proses irreversibel. 2. Proses Reversibel (Proses Terbalikkan) Apabila kita menekan pengisap dengan sangat lambat sehingga tekanan, volume, dan temperatur gas tersebut pada setiap waktu adalah kuantitas-kuantitas yang dapat didefinisikan secara tepat. Mula-mula sedikit butiran pasir dijatuhkan pada pengisap dimana kemudian volume sistem akan direduksi sedikit dan T akan naik serta terjadi penyimpangan terhadap kesetimbangan yang sangat kecil. Sejumlah kecil kalor akan

5 dipindahkan ke reservoir dan dalam waktu singkat sistem akan mencapai kesetimbangan baru dengan T adalah sama dengan T reservoir. Peristiwa ini diulakukan berulang-ulang sampai akhirnya kita mereduksi volume menjadi setengah kali volume awalnya. Selama keseluruhan proses ini, sistem tersebut tidak pernah berada dalam sebuah keadaan yang berbeda banyak dari sebuah keadaan kesetimbangan. Proses inilah yang dinamakan proses reversibel. Proses reversibel adalah sebuah proses yang dengan suatu perubahan diferensial di dalam lingkungannya dapat dibuat menelusuri kembali lintasan proses tersebut. Pada praktiknya semua proses adalah irreversibel tetapi kita dapat mendekati keterbalikan (reversibel) sedekat mungkin dengan membuat perbaikan- perbaikan eksperimen yang sesuai. Proses yang betul-betul reversibel adalah suatu abstraksi sederhana yang berguna dalam hubungannya dengan proses riel adalah serupa seperti hubungan abstraksi gas ideal dengan gas riel. Pada proses reversibel juga terjadi proses isotermal, kerena kita menganggap bahwa T gas berbeda pada setiap waktu hanya sebanyak diferensial dt dari T konstan reservoir dimana silinder berdiam. Volume gas tersebuat juga dapat direduksi secara adiabatikr dengan memindahkan silinder dari reservoir kalor dan menaruhnya pada sebuah tempat yang tidak bersifat sebagai penghantar. Dalam proses adiabatikr tidak ada kalor yang masuk ataupun keluar dari sistem. Proses adiabatikr dapat merupakan proses reversibel atau irreversibel, dimana proses reversibel kita dapat menggerakkan pengisap sangat lambat dengan cara pembebanan pasir dan proses yang irreversibel kita dapat menyodok pengisap dengan sangat cepat ke bawah. Selama proses kompresi adiabatik temperatur gas akan naik karena dari Hukum I Termodinamika bila Q = 0 maka besarnya usaha W untuk mendorong pengisap ke bawah harus muncul sebagai suatu pertambahan energi dalam sebesar ΔU. W akan bernilai berbeda untuk kecepatan yang berbeda dari pendorongan pengisap tersebut ke bawah yang diberikan oleh PdV yaitu luas daerah di bawah kurva pada diagram P V (hanya untuk proses reversibel untuk P tetap). ΔU dan ΔT tidak akan sama baik untuk proses reversibel ataupun irreversibel. Mesin Kalor Sebelum kita membahas tentang siklus Carnot dan Hukum Kedua Termodinamika maka terlebih dahulu membahas tentang mesin kalor. Bagi kita adalah mudah untuk menghasilkan energi termal dengan melakukan kerja. Contohnya adalah dengan

6 menggosokkan telapak tangan dengan cepat maka tangan akan terasa panas. Namun untuk mendapatkan kerja dari energi termal lebih sulit, dan penemuan alat yang praktis untuk melakukan hal ini terjadi sekitar tahun 1700 dengan pengembangan mesin uap (mesin kalor). Ide-ide yang mendasari mesin kalor adalah bahwa energi mekanik dapat diperoleh dari energi termal ketika kalor dibiarkan mengalir dari temperatur tinggi ke temperatur rendah. Dalam semua mesin kalor pengubahan energi panas ke energi mekanik selalu disertai dengan pengeluaran gas buang yang membawa sejumlah energi panas. Efisiensi Termal Mesin Kalor Efisiensi maksimum sebuah pembangkit tenaga listrik yang beroperasi antara temperatur TH = 750 K dan TL = 300 K adalah 60 persen jika menggunakan rumus efisiensi mesin reversibel, tetapi aktualnya hanya sekitar 40 persen. Hal ini sebenarnya tidak begitu buruk dan hal tersebut masih membutuhkan improvisasi untuk mendekati efisiensi mesin reversibel. Mesin menyerap kalor sejumlah Q 1 dari reservoir panas dengan temperatur tinggi (T 1 ), kalor yang diserap ini sebagian diubah menjadi kerja sebesar W dan sebagiannya lagi dibuang sebagai kalor Q 2 pada temperatur rendah (T 2 ). Karena fluida kerja melalui suatu proses siklus dimana dalam siklus berawal dari satu keadaan dan kembali ke keadaan awalnya, sehingga sangat jelas bahwa ΔU = 0. Sesuai dengan hukum pertama termodinamika maka besarnya usaha W dapat ditentukan dengan menggunakan persamaan sebagai berikut. U Q w (1)

7 0 Q Q W 1 2 W Q 1 Q 2 (2) Dengan Q 1 dan Q 2 adalah besaran yang bernilai positif. Jika fluida kerjanya adalah gas, maka usaha yang dilakukan fluida kerja untuk sebuah proses siklus sama dengan luas yang dimuat siklus pada diagram P V. Efisiensi termal sebuah mesin kalor merupakan perbandingan nilai antara usaha yang dilakukan dan kalor yang diserap dari reservoir suhu tinggi selama satu siklus. Hubungan ini dapat dirumuskan dalam suatu persamaan sebagai berikut. W Q Q 1 2 (3) Q1 Q1 Atau Q 1 2 (4) Q Dengan adalah efisiensi mesin kalor 1 Mesin Pendingin Mesin pendingin adalah mesin kalor yang prinsip kerjanya terbalik dengan mesin kalor. Mesin kalor mengambil kalor dari reservoir kalor bersuhu tinggi dan mengubahnya menjadi kerja mekanik serta membuang kelebihannya ke reservoir suhu rendah. Tetapi mesin pendingin mengambil panas dari reservoir suhu rendah kemudian kompresornya memberikan input usaha mekanik dan kalor dibuang pada reservoir suhu tinggi. COP Mesin Pendingin COP mesin pendingin dan pompa kalor menurun ketika TL menurun. Berarti hal ini memerlukan kerja untuk menyerap panas da media bertemepratur rendah. Ketika temperatur

8 ruang refrigerasi mendekati nol, jumlah kerja yang diperlukan untuk memproduksi jumlah pendinginan tertentu akan mendekati tak terbatas dan COP-nya akan mendekati nol. Sebagai contoh dari mesin pendingin adalah lemari es (kulkas) dan pendingin ruangan atau AC. Dalam lemari es, bagian dalam peralatan bertindak sebagai reservoir dingin, sedangkan bagian luar yang lebih hangat bertindak sebagai reservoir panas (seperti yang ditunjukkan oleh gambar 3). Kulkas mengambil kalor dari makanan yang tersimpan dalam kulkas dan mengalirkan kalor ke udara di sekitar kulkas. Untuk dapat mengalirkan kalor maka diperlukan energi listrik untuk melakukan usaha pada sistem sehingga kalor dapat mengalir dari reservoir dingin ke reservoir panas. Maka dari itulah pada saat kulkas bekerja permukaan-permukaan luar kebanyakan kulkas terasa hangat ketika kita sentuh (kulkas menghangatkan udara di sekitarnya). Dalam satu kali siklus panas Q 2 masuk ke dalam mesin pendingin pada suhu T 2. Besarnya usaha W dilakukan pada mesin dan kalor Q 1 dilepaskan ke reservoir suhu tinggi T 1, sehingga dapat ditulis dengan menggunakan persamaan sebagai berikut. Q W atau 1 Q 2 W Q 1 Q 2 ( 5) `Efisiensi mesin pendingin (η) didefinisikan sebagai perbandingan antara jumlah kalor yang diserap dengan usaha yang dilakukan pada sistem. Q2 Q2 100% 100% (6) W Q Q 1 2 Dengan gas ideal sebagai fluida maka persamaan di atas dapat diubah menjadi sebagai berikut. T2 100% (7) T T 1 2 Pengalaman menunjukkan bahwa tidak ada satupun dari mesin-mesin yang dibicarakan sebelumnya (mesin kalor dan mesin pendingin) mempunyai efisiensi 100%. Hal ini

9 menunjukkan bahwa tidak ada satupun mesin-mesin tersebut yang mampu mengubah kalor seluruhnya menjadi usaha. Dalam pembahasans sebelumnya mengenai hukum pertama termodinamika ketidakmungkinan ini tidak disinggung sama sekali. Dalam membahas tentang hukum kedua termodinamika, hal ini akan dibahas. Mungkin dalam pikiran kita akan muncul pertanyaan, mungkinkah kalor mengalir dari benda bersuhu rendah ke benda bersuhu dingin? Hukum kedua termodinamika mengabaikan kemungkinan kalor dapat mengalir dari benda bertemperatur rendah ke benda bertemperatur tinggi. Hal ini berarti bahwa, pada hukum kedua termodinamika arah proses menjadi perhatian, dimana arah tersebut hanya dapat dibalik dengan adanya suatu usaha luar dari sistem. II. Hukum Ketiga Termodinamika Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol. Hukum suhu 0 Kelvin (-273,15 Celcius): Teori termodinamika menyatakan bahwa panas (dan tekanan gas) terjadi karena gerakan kinetik dalam skala molekular. Jika gerakan ini dihentikan, maka suhu material tsb akan mencapai 0 derajat kelvin. Entropi zat mumi pada titik not absolut Entropi dapat dipandang sebagai besaran makroskopis yang mengukur ketidakteraturan sistem, yang berarti suatu sifat menyangkut sejumlah besar molekulyang tersusun secara tidak teratur dalam ruangan termasuk distribusi energinya.sebagai ilustrasi, dua buah balon yang sama besar dan saling berhubungan melalui sebuah kran. Satu balon berisi N molekul gas ideal, sedangkan balon yang satu hampaudara. Jika kran dibuka, maka gas akan berdifusi ke dalam balon yang kosong secara spontan, sehingga distribusi gas dalam dua buah balon menjadi merata. Kebolehjadian untuk menemukan sebuah molekul gas pada salah satu balonadalah ½. Kebolehjadian untuk menemukan dua buah molekul dalam balon yangsama adalah (½)2, dan kebolehjadian untuk menemukan N molekul berada dalam balon yang sama adalah (½) N. Kebolehjadian semakin kecil dan praktis mendekati nol apabila harga N sangat besar (misalnya sebesar tetapan Avogadro) Gas yangberdifusi secara spontan dan mengisi stiap ruang yang ada dalam balon merupakan keadaan dengan kebolehjadian yang paling tinggi, atau keadaan yang paling memungkinkan.jika W menyatakan besarnya

10 kebolehjadian sistem untuk mencapai suatukeadaan tertentu, maka menurut Boltzmann dan Planck hubungan antara entropi dankeboleh jadian diberikan oleh ungkapan S = k ln W (k = tetapan Boltzmann) Entropi dapat dihubungkan dengan kekacauan atau ketidakteraturan sistem.keadaan sistem yang kacau ialah keadaan di mana partikel-partikel (molekul, atom atau ion) tersusun secara tidak teratur. Makin kacau susunan keadaan sistem, makinbesar kebolehjadian keadaan sistem dan makin besar entropi. Oleh karena itu zat padat kristal pada umumnya mempunyai entropi yang relatif rendah dibandingkan dengan cairan atau gas. Gas mempunyai entropi yang paling tinggi karena keadaan sistem paling tidak teratur. Seperti telah diuraikan di atas bahwa makin kacau atau tidak teratur susunan molekul, makin tinggi harga W dan entropi. Sebaliknya makin teratur susunanmolekul sistem, makin rendah harga W dan entropi. Kalau suatu zat murni didinginkan hingga dekat 0 K, semua gerakan translasi dan rotasi terhenti danmolekul-molekul mengambil kedudukan tertentu dalam kisi kristal. Molekul hanyamemiliki energi vibrasi yang sama besar sehingga berada dalam keadaan kuantum tunggal. Ditinjau dan kedudukan dan distribusi energi, penyusunan molekul-molekul dalam suatu kristal yang sempurna pad 0 K hanya dapat dilaksanakan dengan satucara. Dalam hal ini W = 1 dan ln W = 0, sehingga menurut persamaan boltzmann S = 0. Jadi, entropi suatu kristal murni yang sempurna ialah nol pada 0 K. Pernyataan initerkenal sebagai Hukum Ketiga Temomedinamika. Ungkapan matematik hukumtermodinamika ketiga adalah 0S T=0 = 0 III. Fungsi Energi Bebas Helmholtz Bagi suatu perubahan kecil yang berlangsung tak reversibel pada temperatur T berlaku: ds> δ q/t atau δ q - T d S<0 kalau sistem hanya dapat melakukan kerja volume, maka persamaan (43) dapat diubah menjadi du + pdv -T ds< 0.. pada volume tetap, dv = 0, sehingga du - T d S < 0 atau d( U TS ) T,p < 0 fungsi U - TS, yang merupakan fungsi keadaan, disebut energi bebas Helmholtz, A, A=U-TS Bila persamaan dideferensiasi, diperoleh da = du - T ds Sd T bagi proses yang berjalan reversibel dan isoterm d A = δ W.. jadi penurunan energi bebas helmholtz, - A, ialah kerja maksimum yang dapatdihasilkan dan suatu proses yang dikerjakan secara isoterm.

11 IV. Fungsi Energi Bebas Gibbs Kebanyakan proses biasanya dikerjakan pada temperatur dan tekanan tetap.pada kondisi ini, persamaan (44) dapat ditulis dalam bentuk, d( U pv TS)T,p< 0. Besaran U + PV TS merupakan fungsi keadaan, disebut energi bebas Gibbs, G. G =U+PV TS =H -TS =A + PV Jadi, suatu proses yang berlangsung pada temperatur dan tekanan tetap disertaidengan penurunan energi bebar Gibbs, (d G) T,p < 0 (hanya kerja volume) Suatu persamaan penting yang mengkaitkan H, S dan G dapat diturunkan sebagai berikut, G = H - T S

12 TUGAS TERMODINAMIKA KIMIA HUKUM KEDUA DAN KETIGA TERMODINAMIKA OLEH Nama : Ayu Marisa NIM : PROGRAM STUDI PENDIDIKAN KIMIA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA 2013

MAKALAH FISIKA II HUKUM TERMODINAMIKA II

MAKALAH FISIKA II HUKUM TERMODINAMIKA II MAKALAH FISIKA II HUKUM TERMODINAMIKA II Disusun untuk memenuhi tugas mata kuliah Fisika II Dosen : Dwi Hadi Sulistyarini, ST., MT. Oleh : 1. Farisio Nadhilsyah (135060700111014) 2. Franz Joshua Setiawan

Lebih terperinci

Heat and the Second Law of Thermodynamics

Heat and the Second Law of Thermodynamics Heat and the Second Law of Thermodynamics 1 KU1101 Konsep Pengembangan Ilmu Pengetahuan Bab 04 Great Idea: Kalor (heat) adalah bentuk energi yang mengalir dari benda yang lebih panas ke benda yang lebih

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang DAFTAR ISI BAB I...2 PENDAHULUAN...2 A. Latar Belakang...2 B. Rumusan Masalah...3 C. Tujuan...3 D. Manfaat Penulisan...3 BAB II...4 PEMBAHASAN...4 A. Hukum-Hukum Termodinaka...4 B. Penerapan Hukum-Hukum

Lebih terperinci

Termodinamika Usaha Luar Energi Dalam

Termodinamika Usaha Luar Energi Dalam Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini Hukum Termodinamika Usaha dan Kalor Mesin Kalor Mesin Carnot Entropi Hukum Termodinamika Usaha dalam Proses Termodinamika Variabel Keadaan Keadaan Sebuah Sistem Gambaran

Lebih terperinci

Efisiensi Mesin Carnot

Efisiensi Mesin Carnot Efisiensi Mesin Carnot Efisiensi mesin carnot akan dibahasa pada artikel ini. Sebelumnya apakah yang dimaksud dengan siklus carnot? siklus carnot adalah salah satu lingkup dari ilmu thermodinamika, yang

Lebih terperinci

A. HUKUM I THERMODINAMIKA

A. HUKUM I THERMODINAMIKA Standar Kompetensi : Menerapkan konsep termodinamika dalam mesin kalor Kompetensi Dasar :. Menganalisis perubahan keadaan gas ideal dengan menerapkan hukum termodinamika Indikator :. Menjelaskan hukum

Lebih terperinci

Bab 4 Termodinamika Kimia

Bab 4 Termodinamika Kimia Bab 4 Termodinamika Kimia Kimia Dasar II, Dept. Kimia, FMIPA-UI, 2009 Keseimbangan Pada keseimbangan Tidak stabil Stabil secara lokal Lebih stabil 2 2 Hukum Termodinamika Pertama Energi tidak dapat diciptakan

Lebih terperinci

Hukum Termodinamika II

Hukum Termodinamika II ukum Termodinamika II Definisi ukum Termodinamika II, memberikan batasan-batasan tentang arah yang dijalani suatu proses, dan memberikan kriteria apakah proses itu reversible atau irreversible dan salah

Lebih terperinci

BAB TERMODINAMIKA. dw = F dx = P A dx = P dv. Untuk proses dari V1 ke V2, kerja (usaha) yang dilakukan oleh gas adalah W =

BAB TERMODINAMIKA. dw = F dx = P A dx = P dv. Untuk proses dari V1 ke V2, kerja (usaha) yang dilakukan oleh gas adalah W = 1 BAB TERMODINAMIKA 14.1 Usaha dan Proses dalam Termodinamika 14.1.1 Usaha Sistem pada Lingkungannya Dalam termodinamika, kumpulan benda-benda yang kita tinjau disebut sistem, sedangkan semua yang ada

Lebih terperinci

4. Hukum-hukum Termodinamika dan Proses

4. Hukum-hukum Termodinamika dan Proses 4. Hukum-hukum Termodinamika dan Proses - Kesetimbangan termal -Kerja - Hukum Termodinamika I -- Kapasitas Panas Gas Ideal - Hukum Termodinamika II dan konsep Entropi - Relasi Termodinamika 4.1. Kesetimbangan

Lebih terperinci

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom Hukum Termodinamika 1 Adhi Harmoko S,M.Kom Apa yang dapat anda banyangkan dengan peristiwa ini Balon dicelupkan ke dalam nitrogen cair Sistem & Lingkungan Sistem: sebuah atau sekumpulan obyek yang ditinjau

Lebih terperinci

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses 1. Siklus, Hukum Termodinamika II dan Mesin Kalor a. Siklus dan Perhitungan Usaha Siklus adalah rangkaian beberapa proses termodinamika yang membuat keadaan akhir sistem kembali ke keadaan awalnya. Pada

Lebih terperinci

TERMODINAMIKA (I) Dr. Ifa Puspasari

TERMODINAMIKA (I) Dr. Ifa Puspasari TERMODINAMIKA (I) Dr. Ifa Puspasari Kenapa Mempelajari Termodinamika? Konversi Energi Reaksi-reaksi kimia dikaitkan dengan perubahan energi. Perubahan energi bisa dalam bentuk energi kalor, energi cahaya,

Lebih terperinci

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN DADANG SUPRIATMAN STT - JAWA BARAT 2013 DAFTAR ISI JUDUL 1 DAFTAR ISI 2 DAFTAR GAMBAR 3 BAB I PENDAHULUAN 4 1.1 Latar Belakang 4 1.2 Rumusan

Lebih terperinci

DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA

DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA 1 TUGAS KIMIA DASAR II TERMODINAMIKA Disusun Oleh NAMA : NIM : JURUSAN : TEKNIK PERTAMBANGAN DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA

Lebih terperinci

Pengertian Dasar Termodinamika Termodinamika secara sederhana dapat diartikan sebagai ilmu pengetahuan yang membahas dinamika panas suatu sistem Termo

Pengertian Dasar Termodinamika Termodinamika secara sederhana dapat diartikan sebagai ilmu pengetahuan yang membahas dinamika panas suatu sistem Termo Tinjauan Singkat Termodinamika Pengertian Dasar Termodinamika Termodinamika secara sederhana dapat diartikan sebagai ilmu pengetahuan yang membahas dinamika panas suatu sistem Termodinamika merupakan sains

Lebih terperinci

TERMODINAMIKA HUKUM KE-0 HUKUM KE-1 HUKUM KE-2 NK /9

TERMODINAMIKA HUKUM KE-0 HUKUM KE-1 HUKUM KE-2 NK /9 ERMODINAMIKA HUKUM KE-0 HUKUM KE- HUKUM KE-2 NK..04 /9 SISEM DAN LINGKUNGAN Sistem adalah sekumpulan benda yang menjadi perhatian Lingkungan adalah segala sesuatu di luar sistem Keadaan suatu sistem dapat

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

FIsika KTSP & K-13 TERMODINAMIKA. K e l a s. A. Pengertian Termodinamika

FIsika KTSP & K-13 TERMODINAMIKA. K e l a s. A. Pengertian Termodinamika KTSP & K-3 FIsika K e l a s XI TERMODINAMIKA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian termodinamika.. Memahami perbedaan sistem

Lebih terperinci

KIMIA FISIKA I. nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id (0271)

KIMIA FISIKA I. nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id (0271) KIMIA FISIKA I NANIK DWI NURHAYATI,S.SI, M.SI nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id (0271) 821585 MESIN KALOR W U = 0 = W Ketika sebuah sistem melakukan proses siklus maka tidak terjadi

Lebih terperinci

Dengan mengalikan kedua sisi persamaan dengan T akan dihasilkan

Dengan mengalikan kedua sisi persamaan dengan T akan dihasilkan Hukum III termodinamika Hukum termodinamika terkait dengan temperature nol absolute. Hukum ini menyatakan bahwa pada saat suatu system mencapai temperature nol absolute, semua proses akan berhenti dan

Lebih terperinci

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles HUKUM ERMODINAMIKA II hermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles Hukum ermodinamika II Sistem a. Suatu benda pada temperatur tinggi, yang mengalami sentuhan

Lebih terperinci

REVERSIBLE, IRREVERSIBLE

REVERSIBLE, IRREVERSIBLE REVERSIBLE, IRREVERSIBLE Sebelum membahas apa itu siklus carnot, pertama-tama kita harus memahami yang disebut dengan proses terbalikkan (reversible) dan tak terbalikkan (Irreversible). Proses reversible

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. sulistyani@uny.ac.id Pendahuluan Termodinamika berasal dari bahasayunani, yaitu thermos yang berarti panas, dan dynamic yang berarti perubahan. Termodinamika adalah ilmu yang mempelajari

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

TERMODINAMIKA. Thermos = Panas Dynamic = Perubahan

TERMODINAMIKA. Thermos = Panas Dynamic = Perubahan TERMODINAMIKA Thermos = Panas Dynamic = Perubahan Termodinamika Cabang ilmu fisika yang mempelajari: 1. Pertukaran energi dalam bentuk: - Kalor - Kerja 2. Sistem ----------------Pembatas (boundary) 3.

Lebih terperinci

HUKUM I TERMODINAMIKA

HUKUM I TERMODINAMIKA HUKUM I TERMODINAMIKA Diajukan sebagai salah satu syarat untuk memenuhi Tugas Mata Kuliah Termodinamika Kelompok 3 Di susun oleh : Novita Dwi Andayani 21030113060071 Bagaskara Denny 21030113060082 Nuswa

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika Fisika Umum (MA-301) Topik hari ini Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan

Lebih terperinci

Xpedia Fisika. Soal Zat dan Kalor

Xpedia Fisika. Soal Zat dan Kalor Xpedia Fisika Soal Zat dan Kalor Doc. Name: XPPHY0399 Version: 2013-04 halaman 1 01. Jika 400 g air pada suhu 40 C dicampur dengan 100 g air pada 30 C, suhu akhir adalah... (A) 13 C (B) 26 C (C) 36 C (D)

Lebih terperinci

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain Fisika Umum (MA-301) Topik hari ini (minggu 5) Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C,

Lebih terperinci

NAMA : FAHMI YAHYA NIM : DBD TEKNIK PERTAMBANGAN TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA

NAMA : FAHMI YAHYA NIM : DBD TEKNIK PERTAMBANGAN TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA NAMA : FAHMI YAHYA NIM : DBD 111 0022 TEKNIK PERTAMBANGAN TUGAS KIMIA DASAR 2 TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA CONTOH SOAL DAN PEMBAHASAN FAHMI YAHYA TUGAS TERMODINAMIKA

Lebih terperinci

KATA PENGANTAR. Tangerang, 24 September Penulis

KATA PENGANTAR. Tangerang, 24 September Penulis KATA PENGANTAR Puji serta syukur kami panjatkan atas kehadirat Allah SWT, karena dengan rahmat dan ridhonya kami bisa menyelesaikan makalah yang kami beri judul suhu dan kalor ini tepat pada waktu yang

Lebih terperinci

Catatan : Dalam menghitung Q dan W selama satu siklus, sebaiknya digunakan harga-harga mutlak

Catatan : Dalam menghitung Q dan W selama satu siklus, sebaiknya digunakan harga-harga mutlak BAB VII 7. Dari pengalaman (eksperimen) kita ketahui bahwa usaha dapat diybah menjadi kalor seluruhnya. Misalnya, kalau dua benda kita gosokkan satu terhadap yang lain di dalam suatu fluida (sistem), maka

Lebih terperinci

BAB VI SIKLUS UDARA TERMODINAMIKA

BAB VI SIKLUS UDARA TERMODINAMIKA BAB VI SIKLUS UDARA ERMODINAMIKA Siklus termodinamika terdiri dari urutan operasi/proses termodinamika, yang berlangsung dengan urutan tertentu, dan kondisi awal diulangi pada akhir proses. Jika operasi

Lebih terperinci

Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama.

Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. 1. KONSEP TEMPERATUR 2 Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. Kalor (heat) adalah energi yang mengalir dari benda

Lebih terperinci

FISIKA TERMAL PENGENALAN ENTROPI DAN HUKUM KE DUA TERMODINAMIKA

FISIKA TERMAL PENGENALAN ENTROPI DAN HUKUM KE DUA TERMODINAMIKA FISIKA TERMAL PENGENALAN ENTROPI DAN HUKUM KE DUA TERMODINAMIKA TERMODINAMIKA Istilah ini berarti aliran panas yang selalu mengalir dari benda bertemperatur tinggi ke benda bertemperatur rendah. Aliran

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA HUKUM PERTAMA TERMODINAMIKA Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

Merupakan cabang ilmu fisika yang membahas hubungan panas/kalor dan usaha yang dilakukan oleh panas/kalor tersebut

Merupakan cabang ilmu fisika yang membahas hubungan panas/kalor dan usaha yang dilakukan oleh panas/kalor tersebut Termodinamika Merupakan cabang ilmu fisika yang membahas hubungan panas/kalor dan usaha yang dilakukan oleh panas/kalor tersebut Usaha sistem terhadap lingkungan Persamaan usaha yang dilakukan gas dapat

Lebih terperinci

Contoh soal dan pembahasan

Contoh soal dan pembahasan Contoh soal dan pembahasan Soal No. 1 Suatu gas memiliki volume awal 2,0 m 3 dipanaskan dengan kondisi isobaris hingga volume akhirnya menjadi 4,5 m 3. Jika tekanan gas adalah 2 atm, tentukan usaha luar

Lebih terperinci

Siklus Carnot dan Hukum Termodinamika II

Siklus Carnot dan Hukum Termodinamika II Siklus Carnot dan Hukum Termodinamika II Siklus Carnot Siklus adalah suatu rangkaian roses sedemikian rua sehingga akhirnya kembali keada keadaan semula. Perhatikan Gambar 1! Gambar 1. Siklus termodinamika.

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode Mata Kuliah Jumlah SKS/Semester Program Kode/Nama Dosen : : : : / FI343 3/III S1 (Pendidikan Fisika dan Fisika) 1736/ Drs. Saeful Karim,M.Si Tujuan Mata Kuliah : Setelah

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini. Suhu dan Kalor

Fisika Umum (MA-301) Topik hari ini. Suhu dan Kalor Fisika Umum (MA-301) Topik hari ini Suhu dan Kalor RIVIEW Keadaan/Wujud Zat ES (H 2 O Padat) AIR (H 2 O Cair) UAP (H 2 O Gas) Secara mikroskopis, apa perbedaan ketiga jenis keadaan/wujud zat tersebut?

Lebih terperinci

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil. Teori Kinetik Zat Teori Kinetik Zat Teori kinetik zat membicarakan sifat zat dipandang dari sudut momentum. Peninjauan teori ini bukan pada kelakuan sebuah partikel, tetapi diutamakan pada sifat zat secara

Lebih terperinci

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA SOAL-SOAL KONSEP: 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! Temperatur adalah ukuran gerakan molekuler. Panas/kalor adalah

Lebih terperinci

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI

SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN KALOR OLEH SAEFUL KARIM JURUSAN PENDIDIKAN FISIKA FPMIPA UPI SUHU DAN PENGUKURAN SUHU Untuk mempelajari KONSEP SUHU dan hukum ke-nol termodinamika, Kita perlu mendefinisikan pengertian sistem,

Lebih terperinci

BAB VIII. Kelompok ke-1 Usaha Isotermik

BAB VIII. Kelompok ke-1 Usaha Isotermik BAB VIII 8. Kita tahu : dalam termodinamika semua proses dianggap berlangsung secara kuasistatik; setiap saat antara i dan f, sistem berada dalam keadaan seimbang. Proses demikian tidak sesuai dengan kenyataan

Lebih terperinci

BAB TERMODINAMIKA V(L)

BAB TERMODINAMIKA V(L) 1 BAB TERMODINAMIKA Contoh 14.1 P (kpa) 300 A B Suatu gas dalam wadah silinder tertutup mengalami proses seperti pada gambar. Tentukan usaha yang dilakukan oleh gas untuk (a) proses AB, (b) proses BC,

Lebih terperinci

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan

Xpedia Fisika. Kapita Selekta Set Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan Xpedia Fisika Kapita Selekta Set 07 Doc. Name: XPFIS0107 Doc. Version : 2011-06 halaman 1 01. Energi kinetik rata-rata dari molekul dalam sauatu bahan paling dekat berhubungan dengan... (A) Panas (B) Suhu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

Bab 4 Analisis Energi dalam Sistem Tertutup

Bab 4 Analisis Energi dalam Sistem Tertutup Catatan Kuliah TERMODINAMIKA Bab 4 Analisis Energi dalam Sistem Tertutup Pada bab ini pembahasan mengenai perpindahan pekerjaan batas atau pekerjaan P dv yang biasa dijumpai pada perangkat reciprocating

Lebih terperinci

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I Bab ini hanya akan membahas Sistem Tertutup (Massa Atur). Energi Energi: konsep dasar Termodinamika. Energi: - dapat disimpan, di dalam sistem - dapat diubah bentuknya

Lebih terperinci

TERMODINAMIKA (II) Dr. Ifa Puspasari

TERMODINAMIKA (II) Dr. Ifa Puspasari TERMODINAMIKA (II) Dr. Ifa Puspasari PV Work Irreversible (Pressure External Constant) Kompresi ireversibel: Kerja = Gaya x Jarak perpindahan W = F x l dimana F = P ex x A W = P ex x A x l W = - P ex x

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

Contoh soal mesin Carnot mesin kalor ideal (penerapan hukum II termodinamika)

Contoh soal mesin Carnot mesin kalor ideal (penerapan hukum II termodinamika) Contoh soal mesin Carnot mesin kalor ideal (penerapan hukum II termodinamika) 1. Efisiensi suatu mesin Carnot yang menyerap kalor pada suhu 1200 Kelvin dan membuang kalor pada suhu 300 Kelvin adalah Suhu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

Bab VIII Teori Kinetik Gas

Bab VIII Teori Kinetik Gas Bab VIII Teori Kinetik Gas Sumber : Internet : www.nonemigas.com. Balon udara yang diisi dengan gas massa jenisnya lebih kecil dari massa jenis udara mengakibatkan balon udara mengapung. 249 Peta Konsep

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS)

PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS) PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS) Laporan ini disusun untuk memenuhi tugas mata kuliah Termodinamika Dosen Pengampu : Drs.Harto Nuroso,M.Pd. Disusun oleh : Kelompok 2 1. Feny Febriana

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

TUGAS THERMODINAMIKA PENERAPAN THERMODINAMIKA PADA ALAT PENGERING PAKAIAN. Oleh : Wisnu Dimas Sasongko NIM : K

TUGAS THERMODINAMIKA PENERAPAN THERMODINAMIKA PADA ALAT PENGERING PAKAIAN. Oleh : Wisnu Dimas Sasongko NIM : K TUGAS THERMODINAMIKA PENERAPAN THERMODINAMIKA PADA ALAT PENGERING PAKAIAN Oleh : Wisnu Dimas Sasongko NIM : K2513071 Dosen Pengampu : Danar Susilo Wijayanto S.T.,M.Eng Artikel Ilmiah Ini Disusun Untuk

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

I. Beberapa Pengertian Dasar dan Konsep

I. Beberapa Pengertian Dasar dan Konsep BAB II ENERGETIKA I. Beberapa Pengertian Dasar dan Konsep Sistem : Bagian dari alam semesta yang menjadi pusat perhatian kita dengan batasbatas yang jelas Lingkungan : Bagian di luar sistem Antara sistem

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 12-0 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 12 Pengertian Dasar hermodinamika Sampai dengan Bab-11, kita membahas

Lebih terperinci

Termodinamika Material

Termodinamika Material Termdinamika Material Kuliah 4: Enthalphy(cnt d), Hukum II Termdinamika & Entrpi Oleh: Fajar Yusya Ramadhan 1306448312 (21) Ira Adelina 1306448331 (22) Kelmpk 11- paralel Teknik Metalurgi & Material Universitas

Lebih terperinci

Kunci Jawaban Latihan Termodinamika Bab 5 & 6 Kamis, 12 April 2012 W NET

Kunci Jawaban Latihan Termodinamika Bab 5 & 6 Kamis, 12 April 2012 W NET Kunci Jawaban Latihan Termodinamika Bab 5 & 6 Kamis, 12 April 2012 1. Sebuah mesin mobil mampu menghasilkan daya keluaran sebesar 136 hp dengan efisiensi termal 30% bila dipasok dengan bahan bakar yang

Lebih terperinci

KALOR. hogasaragih.wordpress.com

KALOR. hogasaragih.wordpress.com KALOR Ketika satu ketel air dingin diletakkan di atas kompor, temperatur air akan naik. Kita katakan bahwa kalor mengalir dari kompor ke air yang dingin. Ketika dua benda yang temperaturnya berbeda diletakkan

Lebih terperinci

Xpedia Fisika. Soal - Termodinamika

Xpedia Fisika. Soal - Termodinamika Xpedia Fisika Soal - Termodinamika Doc Name : XPFIS0605 Version : 2016-05 halaman 1 01. Hukum 1 termodinamika menyatakan baha... (A kalor tidak dapat masuk dan keluar dari suatu sistem (B energi adalah

Lebih terperinci

Disampaikan oleh : Dr. Sri Handayani 2013

Disampaikan oleh : Dr. Sri Handayani 2013 Disampaikan oleh : Dr. Sri Handayani 2013 PENGERTIAN Termokimia adalah cabang dari ilmu kimia yang mempelajari hubungan antara reaksi dengan panas. HAL-HAL YANG DIPELAJARI Perubahan energi yang menyertai

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. sulistyani@uny.ac.id Termokimia adalah cabang dari ilmu kimia yang mempelajari hubungan antara reaksi dengan panas. Cakupan Perubahan energi yang menyertai reaksi kimia Reaksi kimia yang

Lebih terperinci

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar.

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar. 5 TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan. Udara

Lebih terperinci

MAKALAH TEMODINAMIKA KIMIA SISTEM TERMDINAMIKA. Disusun oleh: Kelompok

MAKALAH TEMODINAMIKA KIMIA SISTEM TERMDINAMIKA. Disusun oleh: Kelompok MAKALAH TEMODINAMIKA KIMIA SISTEM TERMDINAMIKA Disusun oleh: Kelompok Intan Wulandari (06101281419029) Nabilah Hasanah (06101281419031) Yulianti Sartika (06101281419077) Dosen Pengampu: Dr. Effendi Nawawi,

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN Uraian Singkat Silabus Definisi dan pengertian dasar, sifat-sifat unsur murni, hukum pertama termodinamika untuk sistem tertutup, hukum pertama termodinamika,

Lebih terperinci

HUKUM TERMODINAMIKA I

HUKUM TERMODINAMIKA I HUKUM TERMODINAMIKA I Pertemuan 3 Sistem Isotermal: Suhu-nya tetap Adiabatik: Tidak terjadi perpindahan panas antara sistem dan lingkungan Tertutup: Tidak terjadi pertukaran materi dengan lingkungan Terisolasi:

Lebih terperinci

GARIS BESAR PROGRAM PENGAJARAN

GARIS BESAR PROGRAM PENGAJARAN DEPARTEMEN TEKNIK MESIN FT. USU GARIS BESAR PROGRAM PENGAJARAN MATA KULIAH : TERMODINAMIKA TEKNIK I KODE / SKS : TKM 205 / 4 SKS DESKRIPSI SINGKAT : Membicarakan konsep dan definisi termodinamika,temperature,

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) KINETIKA KIMIA Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada,

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Fisika

K13 Revisi Antiremed Kelas 11 Fisika K Revisi Antiremed Kelas Fisika Termodinamika - Soal Doc Name : RKARFIS7 Version : 6- halaman. Hukum termodinamika menyatakan baha. (A kalor tidak dapat masuk dan keluar dari suatu sistem (B energi adalah

Lebih terperinci

Hukum Termodinamika I Proses-proses Persamaan Keadaan Gas Usaha

Hukum Termodinamika I Proses-proses Persamaan Keadaan Gas Usaha Contoh Soal dan tentang Termodinamika, Materi Fisika kelas 2 (XI) SMA. Mencakup Usaha, Proses-Proses Termodinamika, Hukum Termodinamika I dan Mesin Carnot. Rumus Rumus Minimal Hukum Termodinamika I ΔU

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

Fisika Dasar 13:11:24

Fisika Dasar 13:11:24 13:11:24 Coba anda gosok-gosok tangan anda, apa yang anda rasakan? 13:11:24 Apakah tangan anda menghangat? Kenapa bisa terjadi seperti itu? Mempelajari pengaruhdarikerja, aliranpanas, dan energi di dalam

Lebih terperinci

IV. Entropi dan Hukum Termodinamika II

IV. Entropi dan Hukum Termodinamika II IV. Entropi dan Hukum ermodinamika II Perhatikan peristiwa sehari-hari di bawah ini: Juga perhatikan peristiwa yang dapat dilakukan di laboratorium: :: 2 (a) (b) (c) Peristiwa (a): benda pada suhu dalam

Lebih terperinci

Penerapan Hukum Termodinamika II dalam Bidang Farmasi 1. Penggunaan Energi Panas dalam Pengobatan, misalnya diagnostik termografi (mendeteksi

Penerapan Hukum Termodinamika II dalam Bidang Farmasi 1. Penggunaan Energi Panas dalam Pengobatan, misalnya diagnostik termografi (mendeteksi Penerapan Hukum Termodinamika II dalam Bidang Farmasi 1. Penggunaan Energi Panas dalam Pengobatan, misalnya diagnostik termografi (mendeteksi temperatur permukaan kulit) Termografi dengan prinsip fotokonduktivitas:

Lebih terperinci

-Ibnu Fariz A -Akhmad Rivaldi C -Ghanang Samanata Y -Fadlan Izra -Raihan Aldo -Dimas Nur. Kelompok 6 Termokimia, Arah dan Proses

-Ibnu Fariz A -Akhmad Rivaldi C -Ghanang Samanata Y -Fadlan Izra -Raihan Aldo -Dimas Nur. Kelompok 6 Termokimia, Arah dan Proses -Ibnu Fariz A -Akhmad Rivaldi C -Ghanang Samanata Y -Fadlan Izra -Raihan Aldo -Dimas Nur Kelompok 6 Termokimia, Arah dan Proses Pendahuluan Termokimia mempelajari perubahan energi yang menyertai reaksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

γ = = γ = konstanta Laplace. c c dipanaskan (pada tekanan tetap) ; maka volume akan bertambah dengan V. D.TERMODINAMIKA

γ = = γ = konstanta Laplace. c c dipanaskan (pada tekanan tetap) ; maka volume akan bertambah dengan V. D.TERMODINAMIKA D.ERMODINAMIKA. Kalor Jenis Gas Suhu suatu gas dapat dinaikkan dalam kondisi yang bermacam-macam. olumenya dikonstankan, tekanannya dikonstankan atau kedua-duanya dapat dirubah-rubah sesuai dengan kehendak

Lebih terperinci

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S

Fisika Panas 2 SKS. Adhi Harmoko S Fisika Panas SKS Adhi Harmoko S Balon dicelupkan ke Nitrogen Cair Balon dicelupkan ke Nitrogen Cair Bagaimana fenomena ini dapat diterangkan? Apa yang terjadi dengan molekul-molekul gas di dalam balon?

Lebih terperinci