MAKALAH FISIKA II HUKUM TERMODINAMIKA II

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAKALAH FISIKA II HUKUM TERMODINAMIKA II"

Transkripsi

1 MAKALAH FISIKA II HUKUM TERMODINAMIKA II Disusun untuk memenuhi tugas mata kuliah Fisika II Dosen : Dwi Hadi Sulistyarini, ST., MT. Oleh : 1. Farisio Nadhilsyah ( ) 2. Franz Joshua Setiawan ( ) 3. Puspa Nila Cempaka Ledy ( ) 4. Siti Badriyah ( ) JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA MALANG 2014

2 KATA PENGANTAR Puji dan syukur kami panjatkan kehadirat Allah Yang Maha Esa yang telah melimpahkan rahmat, karunia, dan bimbingan-nya dalam penyusunan makalah ini. Makalah ini disusun dalam rangka melengkapi nilai tugas mata kuliah Fisika II pada Semester Genap Tahun Ajaran 2013/2014. Pembuatan makalah ini tidak lepas dari bantuan berbagai pihak. Untuk itu, kami ingin mengucapkan terima kasih kepada pihak yang telah membantu. Kami menyadari sepenuhnya bahwa makalah ini masih jauh dari sempurna. Oleh karena itu dengan segala kerendahan hati, semua kritik dan saran yang membangun sangat kami harapkan demi menyempurnakan makalah ini. Tim Penulis Malang, 8 Mei 2014

3 DAFTAR ISI HALAMAN JUDUL KATA PENGANTAR DAFTAR ISI BAB I PENDAHULUAN 1.1 Latar Belakang Rumusan Masalah Tujuan Penulisan 2 BAB II PEMBAHASAN 2.1 Hukum Termodinamika II Reservoir Energi Panas 2.3 Mesin Kalor 2.4 Mesin Pendingin dan Pompa Kalor 2.5 Proses Reversibel dan Irreversibel 2.6 Siklus Carnot 2.7 Prinsip Carnot 2.8 Mesin Kalor Carnot 2.9 Mesin Pendingin dan Pompa Kalor Carnot 2.10 Mesin Gerak Abadi BAB III PENUTUP 3.1 Kesimpulan 3.2 Saran DAFTAR PUSTAKA

4 BAB I PENDAHULUAN 1.1 Latar Belakang Hukum Termodinamika I menyatakan bahwa energi tidak dapat diciptakan dan dimusnahkan tetapi hanya dapat diubah dari satu bentuk ke bentuk yang lain. Prinsip tersebut juga dikenal dengan istilah konservasi energi yang berlaku untuk sistem tertutup dan terbuka. Secangkir kopi panas ditaruh dalam suatu ruangan, maka akan dengan sendirinya kopi tersebut menjadi dingin. Dalam kasus tersebut Hukum Termodinamika I telah terpenuhi, karena energi yang dilepaskan kopi sebanding dengan energi yang diterima oleh lingkungan. Tetapi jika dibalik, secangkir kopi menjadi panas dalam sebuah ruangan yang dingin, tentu hal tersebut tidak akan terjadi. Salah satu contoh diatas menjelaskan bahwa proses berjalan dalam suatu arah tertentu, tidak sebaliknya. Suatu proses yang telah memenuhi Hukum Termodinamika I, belum tentu dapat berlangsung. Diperlukan suatu prinsip selain Hukum Termodinamika I untuk menyatakan bahwa suatu proses dapat berlangsung, yaitu Hukum Termodinamika II. Dengan kata lain, suatu proses dapat berlangsung jika memenuhi Hukum Termodinamika I dan Hukum Termodinamika II. Kegunaan Hukum Termodinamika II tidak sebatas hanya pada mengidentifikasi arah dari suatu proses, tetapi juga bisa untuk mengetahui kualitas energi (Hukum Termodinamika I berhubungan dengan kuantitas energi dan perubahan bentuk energi); menentukan batas teoritis unjuk kerja suatu sistem; dan memperkirakan kelangsungan reaksi kimia (degree of completion of chemical reaction). Sementara itu dalam bahasannya, Hukum Termodinamika II membahas tentang proses reversibel dan irreversibel, mesin kalor, mesin pendingin dan pompa kalor, siklus carnot, serta entropi. 1.2 Rumusan Masalah Rumusan masalah yang akan dibahas dalam makalah ini adalah : 1. Bagaimana bunyi Hukum Termodinamika II? 2. Bagaimana penerapan Hukum Termodinamika II?

5 1.3 Tujuan Penulisan Adapun tujuan dari penulisan makalah ini adalah sebagai berikut : 1. Mengetahui bunyi Hukum Termodinamika II. 2. Mengetahui penerapan Hukum Termodinamika II.

6 BAB II PEMBAHASAN 2.1 Hukum Termodinamika II Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah. Dengan kata lain, tidak semua proses di alam adalah reversibel (arahnya dapat dibalik). Hukum kedua termodinamika menyatakan bahwa kalor mengalir secara spontan dari benda bersuhu tinggi ke benda bersuhu rendah dan tidak pernah mengalir secara spontan dalam arah kebalikannya. Misalnya, jika sebuah kubus kecil dicelupkan ke dalam secangkir air kopi panas, kalor akan mengalir dari air kopi panas ke kubus es sampai suhu keduanya sama (Marthen Kanginan, 2007: ). Hukum pertama termodinamika tidak dapat menjelaskan apakah proses tersebut mungkin terjadi ataukah tidak mungkin terjadi. Oleh karena itu, muncullah hukum kedua termodinamika yang disusun tidak lepas dari usaha untuk mencari sifat atau besaran sistem yang merupakan fungsi keadaan. Sehingga hukum termodinamika kedua dapat dirumuskan sebagai berikut: Proses suatu sistem terisolasi yang disertai dengan penurunan entropi tidak mungkin terjadi. Dalam setiap proses yang terjadi pada sistem terisolasi, maka entropi sistem tersebut selalu naik atau tetap tidak berubah. Hukum kedua termodinamika juga memberikan batasan dasar pada efisiensi sebuah mesin atau pembangkit daya. Hukum ini juga memberikan batasan energi masukan minimum yang dibutuhkan untuk menjalankan sebuah sistem pendingin. Selain itu, hukum kedua termodinamika juga dapat dinyatakan dalam konsep entropi yaitu sebuah ukuran kuantitatif derajat ketidakaturan atau keacakan sebuah sistem. Dari hasil percobaan para ahli menyimpulkan bahwa mustahil untuk membuat sebuah mesin kalor yang mengubah panas seluruhnya menjadi kerja, yaitu mesin dengan efisiensi termal 100%. Kemustahilan ini adalah dasar dari satu pernyataan hukum kedua termodinamika sebagai berikut : Adalah mustahil bagi sistem manapun untuk mengalami sebuah proses di mana sistem menyerap panas dari reservoir pada suhu tunggal dan mengubah panas seluruhnya menjadi kerja mekanik, dengan sistem berakhir pada keadaan yang sama seperti keadaan awalnya. Pernyataan ini dikenal dengan sebutan pernyataan mesin dari hukum kedua termodinamika.

7 Dasar dari hukum kedua termodinamika terletak pada perbedaaan antara sifat alami energi dalam dan energi mekanik makroskopik. Dalam benda yang bergerak, molekul memiliki gerakan acak, tetapi diatas semua itu terdapat gerakan terkoordinasi dari setiap molekul pada arah yang sesuai dengan kecepatan benda tersebut. Energi kinetik dan energi potensial yang berkaitan dengan gerakan acak menghasilkan energi dalam. Jika hukum kedua tidak berlaku, seseorang dapat menggerakkan mobil atau pembangkit daya dengan mendinginkan udara sekitarnya. Dua kemustahilan ini tidak melanggar hukum pertama termodinamika. Oleh karena itu, hukum kedua termodinamika bukanlah penyimpulan dari hukum pertama termodinamika, tetapi berdiri sendiri sebagai hukum alam yang terpisah. Hukum pertama termodinamika mengabaikan kemungkinan penciptaan atau pemusnahan energi. Sedangkan hukum kedua termodinamika membatasi ketersediaan energi dan cara penggunaan serta pengubahannya. Panas mengalir secara spontan dari benda panas ke benda yang lebih dingin, tidak pernah sebaliknya. Sebuah pendingin mengambil panas dari benda dingin ke benda yang lebih panas, tetapi operasinya membutuhkan masukan energi mekanik atau kerja. Hal umum mengenai pengamatan ini dinyatakan sebagai berikut : Adalah mustahil bagi proses mana pun untuk bekerja sendiri dan menghasilkan perpindahan panas dari benda dingin ke benda yang lebih panas. Pernyataan ini dikenal dengan sebutan pernyataan pendingin dari hukum kedua termodinamika. Pernyataan pendingin ini mungkin tidak tampak berkaitan sangat dekat dengan pernyataan mesin. Tetapi pada kenyataannya, kedua pernyataan ini seutuhnya setara. Sebagai contoh, jika seseorang dapat membuat pendingin tanpa kerja, yang melanggar pernyataan pendingin dari hukum kedua termodinamika, seseorang dapat menggabungkannya dengan sebuah mesin kalor, memompa kalor yang terbuang oleh mesin kembali ke reservoir panas untuk dipakai kembali. Meski gabungan ini akan melanggar pernyataan mesin dari hukum kedua termodinamika karena selisih efeknya akan menarik selisih panas sejumlah dari reservoir panas dan mengubah seutuhnya menjadi kerja (W). Perubahan kerja menjadi panas, seperti pada gesekan atau aliran fluida kental (viskos) dan aliran panas dari panas ke dingin melewati sejumlah gradien suhu, adalah suatu proses ireversibel. Pernyataan mesin dan pendingin dari hukum kedua menyatakan bahwa proses ini hanya dapat dibalik sebagian saja. Misalnya, gas selalu mengalami kebocoran secara spontan melalui suatu celah dari daerah bertekanan tinggi ke daerah bertekanan rendah. Gas-gas dan cairan-cairan yang dapat bercampur bila dibiarkan akan selalu tercampur

8 dengan sendirinya dan bukannya terpisah. Hukum kedua termodinamika adalah sebuah pernyataan dari aspek sifat searah dari proses-proses tersebut dan banyak proses ireversibel lainnya. Perubahan energi adalah aspek utama dari seluruh kehidupan tanaman dan hewan serta teknologi manusia, maka hukum kedua termodinamika adalah dasar terpenting dari dunia tempat makhluk hidup tumbuh dan berkembang (Sears dan Zemansky, 2000: ). 2.2 Reservoir Energi Panas (Thermal Energy Reservoirs) Sebelum membahas mengenai hukum termodinamika kedua, perlu diketahui istilah reservoir energi panas atau lebih umum disebut dengan reservoir. Reservoir mempunyai pengertian adalah suatu benda atau zat yang mempunyai kapasitas energi panas yang besar. Artinya reservoir dapat menyerap/ menyuplai sejumlah panas yang tidak terbatas tanpa mengalami perubahan temperatur. Contoh dari benda atau zat besar yang disebut reservoir adalah samudera, danau dan sungai untuk benda besar berwujud air dan atmosfer untuk benda besar berwujud udara. Sistem dua-fasa juga dapat dimodelkan sebagai suatu reservoir, karena sistem duafasa dapat menyerap dan melepaskan panas tanpa mengalami perubahan temperatur. Dalam praktek, ukuran sebuah reservoir menjadi relatif. Misalnya, sebuah ruangan dapat disebut sebagai sebuah reservoir dalam suatu analisa panas yang dilepaskan oleh pesawat televisi. Reservoir yang menyuplai energi disebut dengan source dan reservoir yang menyerap energi disebut dengan sink. 2.3 Mesin Kalor (Heat Engine) Seperti kita ketahui kerja dapat dikonversi langsung menjadi panas. Seperti misalnya pengaduk air. Kerja dapat kita berikan pada poros pengaduk sehingga temperatur naik. Tetapi sebaliknya, jika kita memberikan panas pada air, maka poros tidak akan berputar. Atau dengan kata lain, jika memberikan panas pada air, maka tidak akan tercipta kerja (poros). Dari pengamatan di atas, konversi panas menjadi kerja bisa dilakukan tetapi diperlukan sebuah alat yang dinamakan dengan mesin kalor. Sebuah mesin kalor dapat dikarakteristikkan sebagai berikut : 1. Mesin kalor menerima panas dari source bertemperatur tinggi (energi matahari, furnace bahan bakar, reaktor nuklir, dll).

9 2. Mesin kalor mengkonversi sebagian panas menjadi kerja (umumnya dalam dala mbentuk poros yang berputar) 3. Mesin kalor membuang sisa panas ke sink bertemperatur rendah. 4. Mesin kalor beroperasi dalam sebuah siklus. Mengacu pada karakteristik di atas, sebenarnya motor bakar dan turbin gas tidak memenuhi kategori sebagai sebuah mesin kalor, karena fluida kerja dari motor bakar dan turbin gas tidak mengalami siklus termodinamika secara lengkap. Sebuah alat produksi kerja yang paling tepat mewakili definisi dari mesin kalor adalah pembangkit listrik tenaga air, yang merupakan mesin pembakaran luar dimana fluida kerja mengalami siklus termidinamika yang lengkap. Efisiensi Termal (Thermal Efficiencies) Efisiensi termal sebenarnya digunakan untuk mengukur unjuk kerja dari suatu mesin kalor, yaitu berapa bagian dari input panas yang diubah menjadi output kerja bersih. Unjuk kerja atau efisiensi, pada umumnya dapat di ekspresikan menjadi : Untuk mesin kalor, output yang diinginkan adalah output kerja bersih dan input yang diperlukan adalah jumlah panas yang disuplai ke fluida kerja. Kemudian efisiensi termal d ari sebuah mesin kalor dapat diekspresikan sebagai atau, Dalam peralatan- peralatan praktis, seperti mesin kalor, mesin pendingin dan pompa kalor umumnya dioperasikan antara sebuah media bertemperatur tinggi pada temperatur T H dan sebuah media bertemperatur rendah pada temperatur T L. Untuk sebuah keseragaman dalam mesin kalor, mesin pendingin dan pompa kalor perlu pendefinisian dua kuantitas : Q H = besar perpindahan panas antara peralatan siklus dan media bertemeperatur tinggi pada temperatur T H.

10 Q L = besar perpindahan panas antara peralatan siklus dan media berteperatur rendah pada temperatur T L. Sehingga efisiensi termal dapat dituliskan sebagai berikut : Melihat karakteristik dari sebuah mesin kalor, maka tidak ada sebuah mesin kalor yang dapat mengubah semua panas yang diterima dan kemudian mengubahnya semua menjadi kerja. Keterbatasan tersebut kemudian dibuat sebuah pernyataan oleh Kelvin - Plank yang berbunyi: Adalah tidak mungkin untuk sebuah alat/mesin yang beroperasi dalam sebuah siklus yang menerima panas dari sebuah reservoir tunggal dan memproduksi sejumlah kerja bersih. Pernyataan Kelvin-Plank (hanya diperuntuk untuk mesin kalor) diatas dapat juga diartikan sebagai tidak ada sebuah mesin atau alat yang bekerja dalam sebuah siklus menerima panas dari reservoir bertemperatur tinggi dan mengubah panas tersebut seluruh menjadi kerja bersih. Atau dengan kata lain tidak ada sebuah mesin kalor yang mempunyai efisiensi 100%. 2.5 Mesin Pendingin dan Pompa Kalor (Refrigerator and Heat Pumps) Mesin pendingin, sama seperti mesin kalor, adalah sebuah alat siklus. Fluida kerjanya disebut dengan refrigerant. Siklus refrigerasi yang paling banyak digunakan adalah daur refrigerasi kompresi-uap yang melibatkan empat komponen : kompresor, kondensor, katup ekspansi dan evaporator. Gambar 2.1 Siklus Refrigerasi

11 Refrigerant memasuki kompresor sebagai sebuah uap dan dikompres ke tekanan kondensor. Refrigerantmeninggalkan kompresor pada temperatur yang relatif tinggi dan kemudian didinginkan dan mengalami kondensasi dikondensor yang membuang panasnya ke lingkungan. Refrigerant kemudian memasuki tabung kapilar dimana tekanan refrigerantturun drastis karena efek throttling. Refrigerant bertemperatur rendah kemudian memasuki evaporator, dimana disini refrigerant menyerap panas dari ruang refrigerasi dan kemudian refrigerant kembali memasuki kompresor. Efisiensi refrigerator disebut dengan istilah coefficient of performance (COP), dinotasikan dengan COPR. Atau Perlu dicatat bahwa harga dari COPR dapat berharga lebih dari satu, karena jumlah panas yang diserap dari ruang refrigerasi dapat lebih besar dari jumlah input kerja. Hal tersebut kontras dengan efisiensi termal yang selalu kurang dari satu. Salah satu alasan penggunaan istilah coefficient of performance lebih disukai untuk menghindari kerancuan dengan istilah efisiensi, karena COP dari mesin pendingin lebih besar dari satu. Pompa Kalor (Heat Pumps) Pompa kalor adalah suatu alat yang mentransfer panas dari media bertemperatur rendah ke media bertemperatur tinggi. Tujuan dari mesin pendingin adalah untuk menjaga ruang refrigerasi tetap dingin dengan meyerap panas dari ruang tersebut. Tujuan pompa kalor adalah menjaga ruangan tetap bertemperatur tinggi. Proses pemberian panas ruangan tersebut disertai dengan menyerap panas dari sumber bertemperatur rendah. Atau Perbandingan antara COP R dan COP HP adalah sebagai berikut:

12 Air conditoner pada dasarnya adalah sebuah mesin pendingin tetapi yang didinginkan disini bukan ruang refrigerasi melainkan sebuah ruangan/gedung atau yang lain. Terdapat dua pernyataan dari hukum termodinamika kedua pernyataan Kelvin - Plank, yang diperuntukkan untuk mesin kalor, dan pernyataan Clausius, yang diperuntukkan untuk mesin pendingin/pompa kalor. Pernyataan Clausius dapat di ungkapkan sebagai berikut: Adalah tidak mungkin membuat sebuah alat yang beroperasi dalam sebuah siklus tanpa adanya efek dari luar untuk mentransfer panas dari media bertemperatur rendah ke media bertemperatur tinggi. Telah diketahui bahwa panas akan berpindah dari media bertemperatur tinggi ke media bertemperatur rendah. Pernyataan Clausius tidak mengimplikasikan bahwa membuat sebuah alat siklus yang dapat memindahkan panas dari media bertemperatur rendah ke media bertemperatur tinggi adalah tidak mungkin dibuat. Hal tersebut mungkin terjadi asalkan ada efek luar yang dalam kasus tersebut dilakukan/diwakili oleh kompresor yang mendapat energi dari energi listrik misalnya. 2.6 Proses Reversibel dan Proses Irreversibel Bila kita meninjau sebuah system yang khas dalam kesetimbangan termodinamika dengan massa M dari suatu gas ideal yang dibatasi dalam sebuah susunan silinder pengisap dengan volume V, tekanan P serta temperatur T. Dalam kesetimbangan maka variabelveriabel tersebut tetap konstan terhadap waktu. Dimisalkan bahwa silinder tersebut dinding-dindingnya adalah isolator panas yang ideal dan alasnya adalah penghantar panas yang ideal ditempatkan pada sebuah reservoir besar yang dipertahankan pada temperatur T. Kemudian keadaan sistem tersebut diubah dengan T adalah sama tetapi volume V direduksi sebesar setengah volume awalnya. 1. Proses Irreversibel (Proses Tak Terbalikkan) Apabila kita menekan pengisap tersebut dengan sangat cepat sampai kembali lagi ke kesetimbangan dengan reservoir, selama proses ini gas bergolak dan tekanan serta temperaturnya tidak dapat didefinisikan secara tepat sehingga grafik proses ini tidak dapat digambarkan sebagai sebuah garis kontinu dalam diagram P-V karena tidak diketahui berapa nilai tekanan atau temperatur yang akan diasosiasikan dengan volume yang diberikan. Proses inilah yang dinamakan proses irreversibel.

13 2. Proses Reversibel (Proses Terbalikkan) Apabila kita menekan pengisap dengan sangat lambat sehingga tekanan, volume, dan temperatur gas tersebut pada setiap waktu adalah kuantitas-kuantitas yang dapat didefinisikan secara tepat. Mula-mula sedikit butiran pasir dijatuhkan pada pengisap dimana kemudian volume sistem akan direduksi sedikit dan T akan naik serta terjadi penyimpangan terhadap kesetimbangan yang sangat kecil. Sejumlah kecil kalor akan dipindahkan ke reservoir dan dalam waktu singkat sistem akan mencapai kesetimbangan baru dengan T adalah sama dengan T reservoir. Peristiwa ini diulakukan berulang-ulang sampai akhirnya kita mereduksi volume menjadi setengah kali volume awalnya. Selama keseluruhan proses ini, sistem tersebut tidak pernah berada dalam sebuah keadaan yang berbeda banyak dari sebuah keadaan kesetimbangan. Proses inilah yang dinamakan proses reversibel. Proses reversibel adalah sebuah proses yang dengan suatu perubahan diferensial di dalam lingkungannya dapat dibuat menelusuri kembali lintasan proses tersebut. Pada praktiknya semua proses adalah irreversibel tetapi kita dapat mendekati keterbalikan (reversibel) sedekat mungkin dengan membuat perbaikan- perbaikan eksperimen yang sesuai. Proses yang betul-betul reversibel adalah suatu abstraksi sederhana yang berguna dalam hubungannya dengan proses riel adalah serupa seperti hubungan abstraksi gas ideal dengan gas riel. Pada proses reversibel juga terjadi proses isotermal, kerena kita menganggap bahwa T gas berbeda pada setiap waktu hanya sebanyak diferensial dt dari T konstan reservoir dimana silinder berdiam. Volume gas tersebuat juga dapat direduksi secara adiabatikr dengan memindahkan silinder dari reservoir kalor dan menaruhnya pada sebuah tempat yang tidak bersifat sebagai penghantar. Dalam proses adiabatikr tidak ada kalor yang masuk ataupun keluar dari sistem. Proses adiabatikr dapat merupakan proses reversibel atau irreversibel, dimana proses reversibel kita dapat menggerakkan pengisap sangat lambat dengan cara pembebanan pasir dan proses yang irreversibel kita dapat menyodok pengisap dengan sangat cepat ke bawah. Selama proses kompresi adiabatik temperatur gas akan naik karena dari Hukum I Termodinamika bila Q = 0 maka besarnya usaha W untuk mendorong pengisap ke bawah harus muncul sebagai suatu pertambahan energi dalam sebesar ΔU. W akan bernilai berbeda untuk kecepatan yang berbeda dari pendorongan pengisap tersebut ke bawah yang diberikan oleh PdV yaitu luas daerah di bawah kurva pada diagram P V (hanya untuk proses reversibel untuk P tetap). ΔU dan ΔT tidak akan sama baik untuk proses reversibel ataupun irreversibel.

14 2.7 Siklus Carnot Sebelum membahas siklus Carnot terlebih dahulu perlu diketahui istilah reversibel dan irreversibel. Sebuah proses reversibel didefinisikan sebagai sebuah proses yang dapat dibalik tanpa meningggal jejak pada lingkungan. Atau dengan kata lain, sebuah proses yang jika dibalik akan melalui lintasan yang sama--ingat pengertian panas dan kerja sebagai fungsi lintasan. Proses irreversibel adalah kebalikan dari proses reversibel. Siklus Carnot adalah sebuah siklus reversibel, yang pertama kali dikemukakan oleh Sadi Carnot pada tahun 1824, seorang insinyur Perancis. Mesin teoritis yang menggunakan siklus Carnot disebut dengan Mesin Kalor Carnot. Siklus Carnot yang dibalik dinamakan dengan siklus Carnot terbalik dan mesin yang menggunakan siklus carnot terbalik disebut dengan mesin refrigerasi Carnot. Urutan proses pada siklus Carnot adalah sebagai berikut : 1. Ekspansi isotermal reversibel 2. Ekspansi adiabatis reversibel 3. Kompresi isotermal reversibel 4. Kompresi adiabatis reversibel Hukum termodinamika kedua meletakkan pembatasan pada operasi peralatan siklus seperti yang diekspresikan oleh Kelvin-Plank dan Clausius. Sebuah mesin kalor tidak dapat beroperasi dengan menukarkan panas hanya dengan reservoir tunggal, dan refrigerator tidak dapat beroperasi tanpa adanya input kerja dari sebuah sumber luar. Dari pernyataan diatas kita dapat mengambil kesimpulan yang berhubungan dengan efisiensi termal dari proses reversibel dan irreversibel : 1. Efisiensi sebuah mesin kalor irreversibel selalu lebih kecil dari mesin kalor reversibel yang beroperasi antara dua reservoir yang sama. 2. Efisiensi semua mesin kalor reversibel yang beroperasi antara dua reservoir yang sama adalah sama.

15 Gambar 2.2 Prinsip Carnot 2.8 Mesin Kalor Carnot Efisiensi termal dari semua mesin kalor reversibel atau irreversible dapat dituliskan sebagai berikut : dimana Q H adalah panas yang ditransfer ke mesin kalor pada temperatur T H, dan Q L adalah panas yang diteransfer ke mesin kalor pada temperatur T L. Hubungan di atas adalah hubungan yang mengacu pada efisiensi Carnot, karena mesin kalor Carnot adalah mesin reversibel yang baik. Perlu dicatat bahwa T L dan T H adalah temperatur absolut. Penggunaan o C atau o F akan sering menimbulkan kesalahan. Efisiensi termal dari suatu mesin kalor aktual dan reversibel yang beroperasi pada batas temperatur yang sama adalah sebagai berikut : Hampir semua mesin kalor mempunyai efisiensi termal dibawah 40 persen, yang sebenarnya relatif rendah jika dibandingkan dengan 100 persen. Tetapi bagaimanapun, ketika performance dari mesin kalor diperoleh tidak harus dibandingkan dengan 100 persen, tetapi harus dibandingkan dengan efisiensi sebuah mesin kalor reversibel yang beroperasi diantara batas temperatur yang sama. Gambar 2.3 Efisiensi Termal Mesin Kalor

16 Efisiensi maksimum sebuah pembangkit tenaga listrik yang beroperasi antara temperatur T H = 750 K dan T L = 300 K adalah 60 persen jika menggunakan rumus efisiensi mesin reversibel, tetapi aktualnya hanya sekitar 40 persen. Hal ini sebenarnya tidak begitu buruk dan hal tersebut masih membutuhkan improvisasi untuk mendekati efisiensi mesin reversibel. Kualitas Energi Sebuah mesin kalor Carnot jika menerima panas dari sebuah sumber pada temperatur 925 K dan mengubahnya 67,2 persen menjadi kerja, kemudian membuang sisanya (32,8 persent) ke sink pada 303 K. Sekarang jika dievaluasi bagaimana efisiensi termal jika sumber temperatur bervairiasi dengan temperatur sink dijaga konstan. Jika suplai panas dari temperatur sumber 500 K (bandingkan dengan 925 K), maka efisiensi termal turun drastis menjadi dari 67,2 ke 39,4 persen. Dan jika temperatur sumber sebesar 350 K, maka fraksi panas yang dikonversi hanya 13,4 persen. Harga efisiensi menunjukkan bahwa energi mempunyai kualitas sama seperti mempunyai kunatitas. Semakin tinggi temperatur, semakin tinggi kualitas energi. Contoh misalnya, jumlah yang besar dari energi matahari, jika disimpan dalam sebuah benda (body) yang disebut solar pond akan mempunyai temperatur kurang lebih 350 K. Jika hal ini disuplaikan ke sebuah mesin kalor, maka efisiensinya hanya kurang lebih 5 persen. Karena rendahnya kualitas energi yang didapat disimpan pada sebuah sumber, maka biaya konstruksi dan perawatan menjadi semakin mahal. Hal ini menjadi tidak kompetitif meskipun tersedia dalam jumlah yang banyak. 2.9 Mesin Pendingin dan Pompa Kalor Carnot Mesin pendingin dan pompa kalor yang beroperasi menggunakan siklus terbalik dinamakan mesin pendingin Carnot. Coefficient of performance mesin pendingin atau pompa kalor reversibel atau irreversibel adalah : Jika mesinnya adalah reversibel maka :

17 berikut: Perbandingan COP mesin pendingin reversiblel dan irreversibel adalah sebagai Gambar 2.4 COP Mesin Pendingin COP mesin pendingin dan pompa kalor menurun ketika TL menurun. Berarti hal ini memerlukan kerja untuk menyerap panas da media bertemepratur rendah. Ketika temperatur ruang refrigerasi mendekati nol, jumlah kerja yang diperlukan untuk memproduksi jumlah pendinginan tertentu akan mendekati tak terbatas dan COP-nya akan mendekati nol Mesin Gerak Abadi (Perpetual-Motion Machines) Kita mempunyai pernyataan yang berulang-ulang, bahwa sebuah proses tidak akan dapat berlangsung jika tidak memenuhi hukum termodinamika pertama dan kedua. Semua alat yang melanggar baik hukum termodinamika pertama maupun kedua disebut dengan mesin gerak abadi (Perpetual-Motion Machines). Sebuah alat yang melanggar hukum termodinamika pertama disebut dengan mesin gerak abadi tipe pertama (Perpetual-Motion Machines of the first kind PMM1) dan sebuah alat yang melanggar hukum termodinamika kedua disebut dengan mesin gerak abadi tipe kedua (Perpetual-Motion Machines of the second kind PMM2). Gambar 2.5 Skema PMM1 (kiri) dan PMM2 (kanan)

18 BAB III PENUTUP 3.1 Kesimpulan 3.2 Saran

19 DAFTAR PUSAKA Baedoewie, Saifuddin. Ir., Ir. Sudjito, dan Agung Sugeng W., ST., MT. Diktat Bab V: Hukum Temodinamika II. [online] Availabe at: [Diakses pada tanggal 8 Mei 2014] Makalah Hukum Termodinamika II. [online] Availabe at: [Diakses pada tanggal 8 Mei 2014] [Diakses pada tanggal 8 Mei 2014]

I. Hukum Kedua Termodinamika

I. Hukum Kedua Termodinamika I. Hukum Kedua Termodinamika Hukum termodinamika kedua menyatakan bahwa kondisi-kondisi alam selalu mengarah kepada ketidak aturan atau hilangnya informasi.hukum ini juga dikenalsebagai Hukum Entropi.Entropi

Lebih terperinci

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN

PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN PROSES ADIABATIK PADA REAKSI PEMBAKARAN MOTOR ROKET PROPELAN DADANG SUPRIATMAN STT - JAWA BARAT 2013 DAFTAR ISI JUDUL 1 DAFTAR ISI 2 DAFTAR GAMBAR 3 BAB I PENDAHULUAN 4 1.1 Latar Belakang 4 1.2 Rumusan

Lebih terperinci

Termodinamika Usaha Luar Energi Dalam

Termodinamika Usaha Luar Energi Dalam Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

A. HUKUM I THERMODINAMIKA

A. HUKUM I THERMODINAMIKA Standar Kompetensi : Menerapkan konsep termodinamika dalam mesin kalor Kompetensi Dasar :. Menganalisis perubahan keadaan gas ideal dengan menerapkan hukum termodinamika Indikator :. Menjelaskan hukum

Lebih terperinci

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin BELLA TANIA Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya May 9, 2013 Abstrak Mesin

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang DAFTAR ISI BAB I...2 PENDAHULUAN...2 A. Latar Belakang...2 B. Rumusan Masalah...3 C. Tujuan...3 D. Manfaat Penulisan...3 BAB II...4 PEMBAHASAN...4 A. Hukum-Hukum Termodinaka...4 B. Penerapan Hukum-Hukum

Lebih terperinci

BAB TERMODINAMIKA. dw = F dx = P A dx = P dv. Untuk proses dari V1 ke V2, kerja (usaha) yang dilakukan oleh gas adalah W =

BAB TERMODINAMIKA. dw = F dx = P A dx = P dv. Untuk proses dari V1 ke V2, kerja (usaha) yang dilakukan oleh gas adalah W = 1 BAB TERMODINAMIKA 14.1 Usaha dan Proses dalam Termodinamika 14.1.1 Usaha Sistem pada Lingkungannya Dalam termodinamika, kumpulan benda-benda yang kita tinjau disebut sistem, sedangkan semua yang ada

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini Hukum Termodinamika Usaha dan Kalor Mesin Kalor Mesin Carnot Entropi Hukum Termodinamika Usaha dalam Proses Termodinamika Variabel Keadaan Keadaan Sebuah Sistem Gambaran

Lebih terperinci

Efisiensi Mesin Carnot

Efisiensi Mesin Carnot Efisiensi Mesin Carnot Efisiensi mesin carnot akan dibahasa pada artikel ini. Sebelumnya apakah yang dimaksud dengan siklus carnot? siklus carnot adalah salah satu lingkup dari ilmu thermodinamika, yang

Lebih terperinci

Heat and the Second Law of Thermodynamics

Heat and the Second Law of Thermodynamics Heat and the Second Law of Thermodynamics 1 KU1101 Konsep Pengembangan Ilmu Pengetahuan Bab 04 Great Idea: Kalor (heat) adalah bentuk energi yang mengalir dari benda yang lebih panas ke benda yang lebih

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

HUKUM I TERMODINAMIKA

HUKUM I TERMODINAMIKA HUKUM I TERMODINAMIKA Diajukan sebagai salah satu syarat untuk memenuhi Tugas Mata Kuliah Termodinamika Kelompok 3 Di susun oleh : Novita Dwi Andayani 21030113060071 Bagaskara Denny 21030113060082 Nuswa

Lebih terperinci

KIMIA FISIKA I. nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id (0271)

KIMIA FISIKA I. nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id (0271) KIMIA FISIKA I NANIK DWI NURHAYATI,S.SI, M.SI nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id (0271) 821585 MESIN KALOR W U = 0 = W Ketika sebuah sistem melakukan proses siklus maka tidak terjadi

Lebih terperinci

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses 1. Siklus, Hukum Termodinamika II dan Mesin Kalor a. Siklus dan Perhitungan Usaha Siklus adalah rangkaian beberapa proses termodinamika yang membuat keadaan akhir sistem kembali ke keadaan awalnya. Pada

Lebih terperinci

TERMODINAMIKA (I) Dr. Ifa Puspasari

TERMODINAMIKA (I) Dr. Ifa Puspasari TERMODINAMIKA (I) Dr. Ifa Puspasari Kenapa Mempelajari Termodinamika? Konversi Energi Reaksi-reaksi kimia dikaitkan dengan perubahan energi. Perubahan energi bisa dalam bentuk energi kalor, energi cahaya,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

Hukum Termodinamika II

Hukum Termodinamika II ukum Termodinamika II Definisi ukum Termodinamika II, memberikan batasan-batasan tentang arah yang dijalani suatu proses, dan memberikan kriteria apakah proses itu reversible atau irreversible dan salah

Lebih terperinci

TERMODINAMIKA. Thermos = Panas Dynamic = Perubahan

TERMODINAMIKA. Thermos = Panas Dynamic = Perubahan TERMODINAMIKA Thermos = Panas Dynamic = Perubahan Termodinamika Cabang ilmu fisika yang mempelajari: 1. Pertukaran energi dalam bentuk: - Kalor - Kerja 2. Sistem ----------------Pembatas (boundary) 3.

Lebih terperinci

REVERSIBLE, IRREVERSIBLE

REVERSIBLE, IRREVERSIBLE REVERSIBLE, IRREVERSIBLE Sebelum membahas apa itu siklus carnot, pertama-tama kita harus memahami yang disebut dengan proses terbalikkan (reversible) dan tak terbalikkan (Irreversible). Proses reversible

Lebih terperinci

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom

Hukum Termodinamika 1. Adhi Harmoko S,M.Kom Hukum Termodinamika 1 Adhi Harmoko S,M.Kom Apa yang dapat anda banyangkan dengan peristiwa ini Balon dicelupkan ke dalam nitrogen cair Sistem & Lingkungan Sistem: sebuah atau sekumpulan obyek yang ditinjau

Lebih terperinci

BAB VI SIKLUS UDARA TERMODINAMIKA

BAB VI SIKLUS UDARA TERMODINAMIKA BAB VI SIKLUS UDARA ERMODINAMIKA Siklus termodinamika terdiri dari urutan operasi/proses termodinamika, yang berlangsung dengan urutan tertentu, dan kondisi awal diulangi pada akhir proses. Jika operasi

Lebih terperinci

4. Hukum-hukum Termodinamika dan Proses

4. Hukum-hukum Termodinamika dan Proses 4. Hukum-hukum Termodinamika dan Proses - Kesetimbangan termal -Kerja - Hukum Termodinamika I -- Kapasitas Panas Gas Ideal - Hukum Termodinamika II dan konsep Entropi - Relasi Termodinamika 4.1. Kesetimbangan

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA

DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA 1 TUGAS KIMIA DASAR II TERMODINAMIKA Disusun Oleh NAMA : NIM : JURUSAN : TEKNIK PERTAMBANGAN DEPARTEMEN KEMENTRIAN PENDIDIKAN NASIONAL JURUSAN TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS PALANGKA RAYA

Lebih terperinci

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM : LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC Nama Praktikan : Utari Handayani NPM : 140310110032 Nama Partner : Gita Maya Luciana NPM : 140310110045 Hari/Tgl Percobaan

Lebih terperinci

FISIKA TERMAL PENGENALAN ENTROPI DAN HUKUM KE DUA TERMODINAMIKA

FISIKA TERMAL PENGENALAN ENTROPI DAN HUKUM KE DUA TERMODINAMIKA FISIKA TERMAL PENGENALAN ENTROPI DAN HUKUM KE DUA TERMODINAMIKA TERMODINAMIKA Istilah ini berarti aliran panas yang selalu mengalir dari benda bertemperatur tinggi ke benda bertemperatur rendah. Aliran

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA

2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan atau dilenyapkan. Energi

Lebih terperinci

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA

PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP. Oleh ( ) TEKNIK MESIN UNILA 1 PENGARUH SUHU DAN TEKANAN TERHADAP PENINGKATAN EFISIENSI THERMAL SIKLUS RANKINE PADA PEMBANGKIT DAYA TENAGA UAP Oleh BAYU AGUNG PERMANA JASIRON NENI SUSANTI (0615021007) TEKNIK MESIN UNILA (0715021012)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I Bab ini hanya akan membahas Sistem Tertutup (Massa Atur). Energi Energi: konsep dasar Termodinamika. Energi: - dapat disimpan, di dalam sistem - dapat diubah bentuknya

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

TERMODINAMIKA HUKUM KE-0 HUKUM KE-1 HUKUM KE-2 NK /9

TERMODINAMIKA HUKUM KE-0 HUKUM KE-1 HUKUM KE-2 NK /9 ERMODINAMIKA HUKUM KE-0 HUKUM KE- HUKUM KE-2 NK..04 /9 SISEM DAN LINGKUNGAN Sistem adalah sekumpulan benda yang menjadi perhatian Lingkungan adalah segala sesuatu di luar sistem Keadaan suatu sistem dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

MAKALAH HUKUM 1 TERMODINAMIKA

MAKALAH HUKUM 1 TERMODINAMIKA MAKALAH HUKUM 1 TERMODINAMIKA DISUSUN OLEH : KELOMPOK 1 1. NURHIDAYAH 2. ELYNA WAHYUNITA 3. ANDI SRI WAHYUNI 4. ARMITA CAHYANI 5. AMIN RAIS KELAS : FISIKA A(1,2) JURUSAN PENDIDIKAN FISIKA FAKULTAS TARBIYAH

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama

10/18/2012. James Prescoutt Joule. Konsep dasar : Kerja. Kerja. Konsep dasar : Kerja. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Jurusan Kimia - FMIPA Universitas Gadjah Mada (UGM) TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Hukum Termodinamika Pertama Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika,, Jurusan Kimia Fakultas Matematika

Lebih terperinci

PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS)

PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS) PENERAPAN TERMODINAMIKA PADA REFRIGERATOR (KULKAS) Laporan ini disusun untuk memenuhi tugas mata kuliah Termodinamika Dosen Pengampu : Drs.Harto Nuroso,M.Pd. Disusun oleh : Kelompok 2 1. Feny Febriana

Lebih terperinci

Termodinamika Material

Termodinamika Material Termdinamika Material Kuliah 4: Enthalphy(cnt d), Hukum II Termdinamika & Entrpi Oleh: Fajar Yusya Ramadhan 1306448312 (21) Ira Adelina 1306448331 (22) Kelmpk 11- paralel Teknik Metalurgi & Material Universitas

Lebih terperinci

TUGAS THERMODINAMIKA PENERAPAN THERMODINAMIKA PADA ALAT PENGERING PAKAIAN. Oleh : Wisnu Dimas Sasongko NIM : K

TUGAS THERMODINAMIKA PENERAPAN THERMODINAMIKA PADA ALAT PENGERING PAKAIAN. Oleh : Wisnu Dimas Sasongko NIM : K TUGAS THERMODINAMIKA PENERAPAN THERMODINAMIKA PADA ALAT PENGERING PAKAIAN Oleh : Wisnu Dimas Sasongko NIM : K2513071 Dosen Pengampu : Danar Susilo Wijayanto S.T.,M.Eng Artikel Ilmiah Ini Disusun Untuk

Lebih terperinci

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA

FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA FISIKA DASAR HUKUM-HUKUM TERMODINAMIKA HUKUM PERTAMA TERMODINAMIKA Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan

Lebih terperinci

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN Eko Budiyanto Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyan Metro Jl. KH. Dewantara No.

Lebih terperinci

TUGAS AKHIR PERANCANGAN ULANG MESIN AC SPLIT 2 PK. Diajukan Sebagai Salah Satu Syarat Dalam Mencapai Gelar Strata Satu ( S-1 ) Teknik Mesin

TUGAS AKHIR PERANCANGAN ULANG MESIN AC SPLIT 2 PK. Diajukan Sebagai Salah Satu Syarat Dalam Mencapai Gelar Strata Satu ( S-1 ) Teknik Mesin TUGAS AKHIR PERANCANGAN ULANG MESIN AC SPLIT 2 PK Diajukan Sebagai Salah Satu Syarat Dalam Mencapai Gelar Strata Satu ( S-1 ) Teknik Mesin U N I V E R S I T A S MERCU BUANA Disusun oleh : Nama : Ari Siswoyo

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Penyimpanan Energi Termal Es merupakan dasar dari sistem penyimpanan energi termal di mana telah menarik banyak perhatian selama beberapa dekade terakhir. Alasan terutama dari penggunaan

Lebih terperinci

FIsika KTSP & K-13 TERMODINAMIKA. K e l a s. A. Pengertian Termodinamika

FIsika KTSP & K-13 TERMODINAMIKA. K e l a s. A. Pengertian Termodinamika KTSP & K-3 FIsika K e l a s XI TERMODINAMIKA Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian termodinamika.. Memahami perbedaan sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump BAB II DASAR TEORI 2.1 Pengertian Sistem Heat pump Heat pump adalah pengkondisi udara paket atau unit paket dengan katup pengubah arah (reversing valve) atau pengatur ubahan lainnya. Heat pump memiliki

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

Kunci Jawaban Latihan Termodinamika Bab 5 & 6 Kamis, 12 April 2012 W NET

Kunci Jawaban Latihan Termodinamika Bab 5 & 6 Kamis, 12 April 2012 W NET Kunci Jawaban Latihan Termodinamika Bab 5 & 6 Kamis, 12 April 2012 1. Sebuah mesin mobil mampu menghasilkan daya keluaran sebesar 136 hp dengan efisiensi termal 30% bila dipasok dengan bahan bakar yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

KATA PENGANTAR. Tangerang, 24 September Penulis

KATA PENGANTAR. Tangerang, 24 September Penulis KATA PENGANTAR Puji serta syukur kami panjatkan atas kehadirat Allah SWT, karena dengan rahmat dan ridhonya kami bisa menyelesaikan makalah yang kami beri judul suhu dan kalor ini tepat pada waktu yang

Lebih terperinci

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar.

TURBIN GAS. Berikut ini adalah perbandingan antara turbin gas dengan turbin uap. Berat turbin per daya kuda yang dihasilkan lebih besar. 5 TURBIN GAS Pada turbin gas, pertama-tama udara diperoleh dari udara dan di kompresi dengan menggunakan kompresor udara. Udara kompresi kemudian disalurkan ke ruang bakar, dimana udara dipanaskan. Udara

Lebih terperinci

Bab 4 Analisis Energi dalam Sistem Tertutup

Bab 4 Analisis Energi dalam Sistem Tertutup Catatan Kuliah TERMODINAMIKA Bab 4 Analisis Energi dalam Sistem Tertutup Pada bab ini pembahasan mengenai perpindahan pekerjaan batas atau pekerjaan P dv yang biasa dijumpai pada perangkat reciprocating

Lebih terperinci

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA SOAL-SOAL KONSEP: 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! Temperatur adalah ukuran gerakan molekuler. Panas/kalor adalah

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Dasar 1 Kode/SKS : FIS 1 / 3 (2-3) Deskrisi : Mata Kuliah Fisika Dasar ini diberikan untuk mayor yang memerlukan dasar fisika yang kuat, sehingga

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan,

menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan, menurun dari tekanan kondensasi ( Pc ) ke tekanan penguapan ( Pe ). Pendinginan, adsorpsi, dan penguapan (4 1) : Selama periode ini, sorber yang terus melepaskan panas ketika sedang terhubung ke evaporator,

Lebih terperinci

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin Galuh Renggani Wilis, ST.,MT ABSTRAKSI Pengkondisian udara disebut juga system refrigerasi yang mengatur temperature & kelembaban udara. Dalam beroperasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

NAMA : FAHMI YAHYA NIM : DBD TEKNIK PERTAMBANGAN TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA

NAMA : FAHMI YAHYA NIM : DBD TEKNIK PERTAMBANGAN TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA NAMA : FAHMI YAHYA NIM : DBD 111 0022 TEKNIK PERTAMBANGAN TUGAS KIMIA DASAR 2 TERMODINAMIKA DALAM KIMIA TERMODINAMIKA 1 FISIKA TERMODINAMIKA 2 FISIKA CONTOH SOAL DAN PEMBAHASAN FAHMI YAHYA TUGAS TERMODINAMIKA

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari.

1 Energi. Energi kinetic; energy yang dihasilkan oleh benda bergerak. Energi radiasi : energy matahari. 1 Energi Dapat diubah dari bentuk yang satu ke bentuk lainnya. Kemampuan untuk melakukan kerja. Kerja: perubahan energi yang langsung dihasilkan oleh suatu proses. Energi kinetic; energy yang dihasilkan

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1. Prinsip Kerja Mesin Pendingin Penemuan siklus refrigerasi dan perkembangan mesin refrigerasi merintis jalan bagi pembuatan dan penggunaan mesin penyegaran udara. Komponen utama

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Refrigerasi Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Refrigerasi dapat berupa lemari es pada rumah tangga, mesin

Lebih terperinci

TERMODINAMIKA I. DESKRIPSI

TERMODINAMIKA I. DESKRIPSI TERMODINAMIKA I. DESKRIPSI Mata kuliah ini merupakan mata kuliah wajib bagi seluruh mahasiswa Program Studi Fisika dan Pendidikan Fisika di Jurusan Pendidikan Fisika FPMIPA UPI. Setelah mengikuti perkuliahan

Lebih terperinci

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI

PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER. MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI PENGUJIAN UNJUK KERJA SOLAR ASSISTED HEAT PUMP WATER HEATER MENGGUNAKAN HFC-134a DENGAN VARIASI INTENSITAS RADIASI Diajukan Untuk Melengkapi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Oleh : TRI

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

TURBIN UAP. Penggunaan:

TURBIN UAP. Penggunaan: Turbin Uap TURBIN UAP Siklus pembangkitan tenaga terdiri dari pompa, generator uap (boiler), turbin, dan kondenser di mana fluida kerjanya (umumnya adala air) mengalami perubaan fasa dari cair ke uap

Lebih terperinci

Catatan : Dalam menghitung Q dan W selama satu siklus, sebaiknya digunakan harga-harga mutlak

Catatan : Dalam menghitung Q dan W selama satu siklus, sebaiknya digunakan harga-harga mutlak BAB VII 7. Dari pengalaman (eksperimen) kita ketahui bahwa usaha dapat diybah menjadi kalor seluruhnya. Misalnya, kalau dua benda kita gosokkan satu terhadap yang lain di dalam suatu fluida (sistem), maka

Lebih terperinci

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain

Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan B dalam kesetimbangan termal satu sama lain Fisika Umum (MA-301) Topik hari ini (minggu 5) Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C,

Lebih terperinci

Contoh soal dan pembahasan

Contoh soal dan pembahasan Contoh soal dan pembahasan Soal No. 1 Suatu gas memiliki volume awal 2,0 m 3 dipanaskan dengan kondisi isobaris hingga volume akhirnya menjadi 4,5 m 3. Jika tekanan gas adalah 2 atm, tentukan usaha luar

Lebih terperinci

Xpedia Fisika. Soal Zat dan Kalor

Xpedia Fisika. Soal Zat dan Kalor Xpedia Fisika Soal Zat dan Kalor Doc. Name: XPPHY0399 Version: 2013-04 halaman 1 01. Jika 400 g air pada suhu 40 C dicampur dengan 100 g air pada 30 C, suhu akhir adalah... (A) 13 C (B) 26 C (C) 36 C (D)

Lebih terperinci

ANALISIS EKSERGI PENGGUNAAN REFRIGERAN PADA SISTEM REFRIGERASI KOMPRESI UAP. Oleh : SANTI ROSELINDA SILALAHI F

ANALISIS EKSERGI PENGGUNAAN REFRIGERAN PADA SISTEM REFRIGERASI KOMPRESI UAP. Oleh : SANTI ROSELINDA SILALAHI F ANALISIS EKSERGI PENGGUNAAN REFRIGERAN PADA SISTEM REFRIGERASI KOMPRESI UAP Oleh : SANTI ROSELINDA SILALAHI F14101107 2006 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR

Lebih terperinci

Nama Mata Kuliah/kode Termodinamika/ FIS 509. Jumlah Kredit 3 SKS. Status Mata Kuliah MKBS; Wajib

Nama Mata Kuliah/kode Termodinamika/ FIS 509. Jumlah Kredit 3 SKS. Status Mata Kuliah MKBS; Wajib Nama Mata Kuliah/kode Termodinamika/ FIS 509 Jumlah Kredit 3 SKS Status Mata Kuliah MKBS; Wajib Jumlah Pertemuan/Minggu 2 Pertemuan (Kuliah dan Responsi) Prasyarat Telah mengikuti Kuliah Matfis I dan II

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. sulistyani@uny.ac.id Pendahuluan Termodinamika berasal dari bahasayunani, yaitu thermos yang berarti panas, dan dynamic yang berarti perubahan. Termodinamika adalah ilmu yang mempelajari

Lebih terperinci

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles HUKUM ERMODINAMIKA II hermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles Hukum ermodinamika II Sistem a. Suatu benda pada temperatur tinggi, yang mengalami sentuhan

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika

Fisika Umum (MA-301) Topik hari ini. Kalor dan Hukum Termodinamika Fisika Umum (MA-301) Topik hari ini Kalor dan Hukum Termodinamika Kalor Hukum Ke Nol Termodinamika Jika benda A dan B secara terpisah berada dalam kesetimbangan termal dengan benda ketiga C, maka A dan

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39 BAB IV PEMBAHASAN Pada pengujian ini dilakukan untuk membandingkan kerja sistem refrigerasi tanpa metode cooled energy storage dengan sistem refrigerasi yang menggunakan metode cooled energy storage. Pengujian

Lebih terperinci

Energetika dalam sistem kimia

Energetika dalam sistem kimia Thermodinamika - kajian sainstifik tentang panas dan kerja. Energetika dalam sistem kimia Drs. Iqmal Tahir, M.Si. iqmal@ugm.ac.id I. Energi: prinsip dasar A. Energi Kapasitas untuk melakukan kerja Ada

Lebih terperinci

SILABI Mata Kuliah Termodinamika Kode FIS 509 Nama Dosen

SILABI Mata Kuliah Termodinamika Kode FIS 509 Nama Dosen Jurusan Pendidikan Fisika Fakultas Pendidikan Matematikan dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia SILABI Mata Kuliah Termodinamika Kode FIS 509 Nama Dosen Drs. Saeful Karim,M.Si Semester

Lebih terperinci

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN

Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN Teknik Lingkungan S1 TERMODINAMIKA LINGKUNGAN Uraian Singkat Silabus Definisi dan pengertian dasar, sifat-sifat unsur murni, hukum pertama termodinamika untuk sistem tertutup, hukum pertama termodinamika,

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah... DAFTAR ISI KATA PENGANTAR... i ABSTRAK... iii ABSTRACT... iv DAFTAR ISI... v DAFTAR GAMBAR... viii DAFTAR TABEL... x DAFTAR NOTASI... xi BAB I PENDAHULUAN... 1 1.1. Latar Belakang... 1 1.2. Rumusan Masalah...

Lebih terperinci