REGRESI LINEAR SEDERHANA

Ukuran: px
Mulai penontonan dengan halaman:

Download "REGRESI LINEAR SEDERHANA"

Transkripsi

1 REGRESI LINEAR SEDERHANA

2

3 y (x 3,y 3 ) d 3 (x 5,y 5 ) d 5 d 2 (x 2,y 2 ) d (x 1 1,y 1 ) d 4 (x 4,y 4 ) x

4 Definisi: Dari semua kurva pendekatan terhadap satu set data, kurva yang memenuhi sifat bahwa nilai S=d 12 +d d 2 N adalah minimum disebut dengan kurva terbaik yang mewakili data.

5

6

7

8

9

10 Koefisien Diterminasi R 2 = 1 ˆ ( y ) i yi ( y ) i y 2 2 Interpretasi koefisien diterminasi: 100(R 2 )% variasi sampel dalam y dapat dijelaskan dengan menggunakan x untuk memprediksi y pada model linear.

11 Problem 1: Regresi Linear Sederhana Bagaimana pengaruh harga terhadap sales suatu produk? Dapatkah meramal sales suatu produk berdasarkan harganya? Controllable Factors F 1, F 2,, F q Biaya Iklan, Jumlah Outlet, Area Pemasaran dan faktor lain yang dapat dikontrol dalam kondisi TETAP Input (X) Process (Model Regresi) Output (Y) Harga Produk Z 1, Z 2,, Z q Uncontrollable Factors Sales Produk Harga Pesaing, Selera Konsumen, Kondisi Ekonomi Nasional (inflasi dll) dan faktor lain yang tidak dapat dikontrol dalam kondisi TETAP

12 Tahap-tahap dalam Analisis Regresi 1. Plot data identifikasi bentuk hubungan secara grafik 2. Koefisien Korelasi identifikasi hubungan linear dengan suatu angka r xy = n i= 1 n i= 1 ( x i ( x i x) 2 x)( y 3. Pendugaan (estimasi) model regresi 4. Evaluasi (diagnostic check) kesesuain model regresi 5. Prediksi (forecast) suatu nilai Y pada suatu X tertentu n i i= 1 ( y i y) y) 2, -1 r xy 1

13 Problem 1: Data hasil pengamatan (continued) Minggu Sales (ribu unit) Harga (ribu rupiah) Pengamatan dilakukan dengan mengambil secara random data 10 minggu penjualan Plot antara Harga dan Sales

14 Problem 1: MINITAB output (continued) MTB > Correlation 'Harga' 'Sales'. Pearson correlation of Harga and Sales = P-Value = MTB > Regress 'Sales' 1 'Harga' The regression equation is Sales = Harga Predictor Coef SE Coef T P Constant Harga S = R-Sq = 74.6% R-Sq(adj) = 71.4% Analysis of Variance Source DF SS MS F P Regression Residual Error Total

15 Problem 1: MINITAB output (continued) Plot data, garis regresi dan ramalan Sales dari Harga

16

17

18 Linearisasi Persamaan Pangkat Sederhana

19

20 Contoh Soal: a=1,8515 b=0,1981 Hitung: c = e a = e 1,8515 = 6, Jadi y = cx b = 6,368366x 0,1981

21

22 Linearisasi Model eksponensial y=c.ebx

23 Problem 2: Regresi Linear Berganda Bagaimana pengaruh harga dan biaya iklan terhadap sales suatu produk? Lebih baikkah ketepatan ramalannya? Controllable Factors F 1, F 2,, F q Jumlah Outlet, Area Pemasaran dan faktor faktor lain yang dapat dikontrol dalam kondisi TETAP Input (X) Process (Model Regresi) Output (Y) Harga Produk Biaya Iklan Z 1, Z 2,, Z q Uncontrollable Factors Sales Produk Harga Pesaing, Selera Konsumen, Kondisi Ekonomi Nasional (inflasi dll) dan faktor lain yang tidak dapat dikontrol dalam kondisi TETAP

24 Problem 2: Data hasil pengamatan (continued) Minggu Sales (ribu unit) Harga (ribu rupiah) Biaya Iklan (juta rupiah) Pengamatan dilakukan dengan mengambil secara random data 10 minggu penjualan Plot antara Harga, Iklan dg Sales

25 Problem 2: MINITAB output (continued) MTB > Correlation 'Sales'- 'Iklan'. Correlations: Sales, Harga, Iklan Sales Harga Harga Iklan Cell Contents: Pearson correlation P-Value MTB > Regress 'Sales' 2 'Harga' 'Iklan' The regression equation is Sales = Harga Iklan Predictor Coef SE Coef T P Constant Harga Iklan S = R-Sq = 93.2% R-Sq(adj) = 91.2% Analysis of Variance Source DF SS MS F P Regression Residual Total

26 Problem 2: MINITAB output (continued) R 2 = 74.6% R 2 = 79.5% R 2 = 93.2%

27 Problem 3: Regresi dengan Variabel Dummy Bagaimana pengaruh TES BAKAT dan GENDER thd produktifitas? Dapatkah produktifitas pekerja diramal dari tes bakat dan jenis kelaminnya? Controllable Factors F 1, F 2,, F q Usia, Pendidikan, Ruang kerja, Mesin dan faktor faktor lain yang dapat dikontrol dalam kondisi TETAP Input (X) Process (Model Regresi) Output (Y) Nilai TES BAKAT pekerja JENIS KELAMIN pekerja Z 1, Z 2,, Z q Uncontrollable Factors Produktifitas pekerja Emosi (suasana hati) pekerja dan faktor lain yang tidak dapat dikontrol dalam kondisi TETAP

28 Problem 2: Data hasil pengamatan (continued) Pengamatan dilakukan dengan mengambil secara random data 15 pekerja Plot antara Tes Bakat dan Produktifitas, antara pekerja PRIA dan WANITA

29 Problem 3: MINITAB output (continued) MTB > Correlation 'Tes Bakat' 'Dummy' 'Produktifitas'. Tes Bakat Dummy Produktifitas MTB > Regress 'Produktifitas' 2 'Tes Bakat' 'Dummy' The regression equation is Produktifitas = Tes Bakat Dummy Predictor Coef SE Coef T P Constant Tes Bakat Dummy S = R-Sq = 92.1% R-Sq(adj) = 90.8%

30 Problem 3: MINITAB output (continued)

31 Problem 3: Plot hasil regresi (continued) WANITA PRIA

32 Model-model Time Series Regression 1. Model Regresi untuk LINEAR TREND Y t = a + b.t + error t = 1, 2, (dummy waktu) 2. Model Regresi untuk Data SEASONAL (variasi konstan) Y t = a + b 1 D b S-1 D S-1 + error dengan : D 1, D 2,, D S-1 adalah dummy waktu dalam satu periode seasonal. 3. Model Regresi untuk Data dengan LINEAR TREND dan SEASONAL (variasi konstan) Y t = a + b.t + c 1 D c S-1 D S-1 + error Gabungan model 1 dan 2.

33 Problem 4: Regresi Trend Linear (Video Store case) Time Series Plot data Sales

34 Problem 4: Hasil Regresi Trend dg MINITAB (continued)

35 Problem 4: Hasil Regresi Trend dg MINITAB (continued)

36 Problem 5: Regresi Data Seasonal (Data Electrical Usage) Time Series Plot (Data seasonal)

37 Problem 5: Hasil regresi dengan MINITAB MTB > Regress 'Kilowatts' 3 'Kuartal-1'-'Kuartal-3' The regression equation is Kilowatts = Kuartal Kuartal Kuartal.3 Predictor Coef SE Coef T P Constant Kuartal Kuartal Kuartal S = R-Sq = 97.7% R-Sq(adj) = 97.3% Analysis of Variance Source DF SS MS F P Regression Residual Error Total

38 Problem 5: Struktur dummy dan hasil regresinya Dummy Variable

39 Problem 5: Hasil regresi dengan MINITAB Forecast Time Series Plot (Data dan Ramalannya)

40 Problem 6: Regresi Data Trend Linear dan Seasonal Time Series Plot (Data trend dan seasonal)

41 Problem 6: Hasil regresi dengan MINITAB Dummy Variable

42 Problem 6: Hasil regresi dengan MINITAB MTB > Regress 'Sales' 4 't' 'Kuartal.1'-'Kuartal.3' The regression equation is Sales = t Kuartal Kuartal Kuartal.3 16 cases used 4 cases contain missing values Predictor Coef SE Coef T P Constant t Kuartal Kuartal Kuartal S = R-Sq = 96.3% R-Sq(adj) = 95.0% Analysis of Variance Source DF SS MS F P Regression Residual Error Total

43 Problem 6: Hasil regresi dengan MINITAB Forecast Time Series Plot (Data dan Ramalannya)

44 Perbandingan ketepatan ramalan antar metode Kasus Sales Video Store Kasus Sales Data Kuartalan Model Double M.A. Holt s Method Regresi Trend Kriteria kesalahan ramalan MSE MAD MAPE Model Winter s Method Regresi Trend & Seasonal Kriteria kesalahan ramalan MSE MAD MAPE Holt s Method : Alpha (level): Gamma (trend): Winter s Method : Alpha (level): 0.4 Gamma (trend): 0.1 Delta (seasonal): 0.3

45 Tugas : Carilah model peramalan terbaik untuk dua data sales (produk A dan B) berikut ini.

Teknik Forecasting. Pendekatan Basis Teknik Hasil Peramalan ekstrapolatif

Teknik Forecasting. Pendekatan Basis Teknik Hasil Peramalan ekstrapolatif Teknik Forecasting Pendekatan Basis Teknik Hasil Peramalan ekstrapolatif Ekstrapolasi trend Analisis rangkaian-waktu Teknik benang-hitam Teknik OLS Pembobotan eksponensial Transformasi data Metode katastrofi

Lebih terperinci

Oleh : Fuji Rahayu W ( )

Oleh : Fuji Rahayu W ( ) Oleh : Fuji Rahayu W (1208 100 043) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2012 Indonesia sebagai negara maritim Penduduk Indonesia

Lebih terperinci

STK511 Analisis Statistika. Pertemuan - 1

STK511 Analisis Statistika. Pertemuan - 1 STK511 Analisis Statistika Pertemuan - 1 PERKULIAHAN 1. Dosen : Anang Kurnia ([email protected]) 2. Asisten : Septian Rahardiantoro 3. Waktu : Rabu > 08.00 09.40 Jumat > 08.00 10.00 4. Office Hours

Lebih terperinci

LAPORAN PRAKTIKUM. Mata Kuliah : Penerapan Komputer Tanggal : 21 Desember Nama : Desi Aryanti Dosen : Ir. Rini Herlina M.S

LAPORAN PRAKTIKUM. Mata Kuliah : Penerapan Komputer Tanggal : 21 Desember Nama : Desi Aryanti Dosen : Ir. Rini Herlina M.S LAPORAN PRAKTIKUM Mata Kuliah : Penerapan Komputer Tanggal : 21 Desember 2009 Nama : Desi Aryanti Dosen : Ir. Rini Herlina M.S NRP : D14070066 Asisten Dosen : 1. Revan M. 2. Ratu Fika Hertaviani KORELASI

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1)

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1) STK511 Analisis Statistika Pertemuan 10 Analisis Korelasi & Regresi (1) Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran peubah Pemodelan Keterkaitan anang kurnia ([email protected])

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statistika Pertemuan XII Analisis Korelasi dan Regresi Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran variabel Pemodelan Keterkaitan Relationship vs Causal Relationship

Lebih terperinci

Pencilan. Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya

Pencilan. Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya Pencilan Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya Bisa jadi terletak pada tiga atau empat simpangan baku atau lebih jauh lagi dari rata-rata

Lebih terperinci

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun 1991-2003 48 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun 1991-2003, Tahun Bulan Wisman 1991 1 27,00 1991 2 30,60

Lebih terperinci

Analisis Regresi 1. Model-model Regresi yang Lebih Lanjut. Pokok Bahasan : Itasia & Y Angraini Dep. STK FMIPA-IPB

Analisis Regresi 1. Model-model Regresi yang Lebih Lanjut. Pokok Bahasan : Itasia & Y Angraini Dep. STK FMIPA-IPB Analisis Regresi Pokok Bahasan : Model-model Regresi yang Lebih Lanjut Itasia & Angraini Dep. STK FMIPA-IPB Macam-macam Model Regresi Model Regresi peubah penjelas > peubah penjelas Sederhana Berganda

Lebih terperinci

Analisis Korelasi dan Regresi. Dr. Kusman Sadik, M.Si Dept. Statistika IPB

Analisis Korelasi dan Regresi. Dr. Kusman Sadik, M.Si Dept. Statistika IPB Analisis Korelasi dan Regresi Dr. Kusman Sadik, M.Si Dept. Statistika IPB - 015 1 Hubungan Dua Peubah atau Lebih PEUBAH KASUS PENGUMPULAN DATA JENIS HUBUNGANNYA 1.Dosis pupuk.banyaknya padi yg dihasilkan

Lebih terperinci

Analisis Regresi 2. Multikolinier & penanganannya

Analisis Regresi 2. Multikolinier & penanganannya Analisis Regresi 2 Pokok Bahasan : Multikolinier & penanganannya TUJUAN INSTRUKSIONAL KHUSUS : Mahasiswa dapat menjelaskan adanya multikolinieritas pada regresi linier berganda serta prosedur penanganannya

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut :

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut : 4 BAB IV HASIL PEMBAHASAN DAN EVALUASI Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtut waktu. Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data harga

Lebih terperinci

Hasil Peramalan dengan Menggunakan Software Minitab

Hasil Peramalan dengan Menggunakan Software Minitab 71 Lampiran 1. Hasil Peramalan dengan Menggunakan Software Minitab Moving Average Data C1 Length 12 NMissing 0 Moving Average Length 4 Accuracy Measures MAPE 25 MAD 54372 MSD 4819232571 Time C1 MA Predict

Lebih terperinci

Membuat keputusan yang baik

Membuat keputusan yang baik Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi masa yang akan datang

Lebih terperinci

Analisis Regresi 2. Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda

Analisis Regresi 2. Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda Analisis Regresi Pokok Bahasan : Review Regresi Linier Sederhana dan Berganda Tuuan Instruksional Khusus : Mahasiswa dapat menelaskan regresi linier sederhana dan berganda dan asumsi-asumsi yang mendasarinya

Lebih terperinci

PERENCANAAN PRODUKSI

PERENCANAAN PRODUKSI PERENCANAAN PRODUKSI Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi

Lebih terperinci

Lampiran 1. Struktur Organisasi PTP Nusantara VIII Kebun Cianten

Lampiran 1. Struktur Organisasi PTP Nusantara VIII Kebun Cianten LAMPIRAN 71 Lampiran 1. Struktur Organisasi PTP Nusantara VIII Kebun Cianten 72 Lampiran 2. Spesifikasi persyaratan mutu teh hitam (SNI 01-1902-1995) No. Jenis Uji Satuan Spesifikasi 1 Kadar air % b/b

Lebih terperinci

Pengaruh Suku Bunga, Inflasi dan Kurs terhadap Perkembangan Harga Saham PT. Telkom Tbk Menggunakan Analisis Regresi

Pengaruh Suku Bunga, Inflasi dan Kurs terhadap Perkembangan Harga Saham PT. Telkom Tbk Menggunakan Analisis Regresi Pengaruh Suku Bunga, Inflasi dan Kurs terhadap Perkembangan Harga Saham PT. Telkom Tbk Menggunakan Analisis Regresi Novita Homer 1, Jantje D. Prang 2, Nelson Nainggolan 3 1 Program Studi Matematika, FMIPA,

Lebih terperinci

Jumlah tanggungan (org) Lama bekerja di kawasan TWA (thn)

Jumlah tanggungan (org) Lama bekerja di kawasan TWA (thn) LAMPIRAN 88 Lampiran 1. Data Responden Masyarakat Desa Karang Tengah 11 No Jenis pekerjaan Jenis kelamin (L=1 ; P=) Umur (thn) Lama pendidikan (thn) Jumlah tanggungan (org) Lama bekerja di kawasan TWA

Lebih terperinci

REGRESI BEDA DAN REGRESI RIDGE Ria Dhea Layla N.K 1, Febti Eka P. 2 1)

REGRESI BEDA DAN REGRESI RIDGE Ria Dhea Layla N.K 1, Febti Eka P. 2 1) REGRESI BEDA DAN REGRESI RIDGE Ria Dhea Layla N.K 1, Febti Eka P. 2 1) 1311105003 2) 1311106009 email: 1) [email protected] 2) [email protected] ABSTRAK Analisis regresi dalam statistika adalah

Lebih terperinci

Analisis Regresi 1. Pokok Bahasan Pengujian pada Regresi Ganda

Analisis Regresi 1. Pokok Bahasan Pengujian pada Regresi Ganda Analisis Regresi Pokok Bahasan Pengujian pada Regresi Ganda Model Regresi Linier Berganda Model Regresi Linier Berganda, dengan k peubah penjelas : Y β β X β X β X k k Parameter regresi sebanyak k+ diduga

Lebih terperinci

(FORECASTING ANALYSIS):

(FORECASTING ANALYSIS): ANALISIS KUANTITATIF ANALISIS PERAMALAN Hand-out ke-3 ANALISIS PERAMALAN (FORECASTING ANALYSIS): Contoh-contoh sederhana PRODI AGRIBISNIS UNEJ, 2017 PROF DR IR RUDI WIBOWO, MS Contoh aplikasi tehnik peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

ANALISIS REGRESI 1. Pokok Bahasan : REGRESI LINIER SEDERHANA

ANALISIS REGRESI 1. Pokok Bahasan : REGRESI LINIER SEDERHANA ANALISIS REGRESI Pokok Bahasan : REGRESI LINIER SEDERHANA Deskripsi Model Macam-macam Model Regresi Model Regresi peubah penjelas > peubah penjelas Sederhana Berganda Linier Non Linier Linier Non Linier

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

STATISTIKA I. Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Kode Matakuliah: PAI111, 2sks Tujuan Instruksional Umum:

STATISTIKA I. Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Kode Matakuliah: PAI111, 2sks Tujuan Instruksional Umum: STATISTIKA I Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta Kode Matakuliah: PAI111, 2sks Tujuan Instruksional Umum: Setelah mengikuti mata kuliah ini selama satu semester, mahasiswa akan dapat

Lebih terperinci

DAFTAR PERTANYAAN KARAKTERISTIK PENGUNJUNG TAMAN WISATA ALAM TANGKUBAN PERAHU

DAFTAR PERTANYAAN KARAKTERISTIK PENGUNJUNG TAMAN WISATA ALAM TANGKUBAN PERAHU 32 Lampiran 1 DAFTAR PERTANYAAN KARAKTERISTIK PENGUNJUNG TAMAN WISATA ALAM TANGKUBAN PERAHU A. Data Pribadi Responden 1. Nomor responden :.. 2. Jenis kelamin :.. 3. Umur :.. 4. Pendidikan tertinggi :..

Lebih terperinci

Pembahasan Materi #7

Pembahasan Materi #7 1 EMA402 Manajemen Rantai Pasokan Pembahasan 2 Pengertian Moving Average Alasan Tujuan Jenis Validitas Taksonomi Metode Kualitatif Metode Kuantitatif Time Series Metode Peramalan Permintaan Weighted Woving

Lebih terperinci

BAB II. REGRESI LINIER BERGANDA DENGAN VARIABEL DUMMY

BAB II. REGRESI LINIER BERGANDA DENGAN VARIABEL DUMMY BAB II. REGRESI LINIER BERGANDA DENGAN VARIABEL DUMMY Membuka program SPSS kemudian memilih tab sheet Variable View. Melakukan input variabel yang akan diteliti pada sheet Variable View. Input dilakukan

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN Bab ini akan menguraikan proses, hasil serta pembahasan dari pengolahan data yang telah dilakukan. Analisis pengolahan data dilakukan dengan mengggunakan software Minitab

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3. Desain Penelitian Tabel 3. Desain Penelitian Tujuan Penelitian Desain Penelitian Jenis dan Metode Penelitian Unit Time T Asosiatif/ Survey PT Tirta Tama Longitudinal Bahagia

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

Kuesioner Analisis Faktor Faktor Yang Mempengaruhi Minat Beli Konsumen Terhadap Produk Tempe (Pada Pabrik Tempe H.M. YASIN Medan)

Kuesioner Analisis Faktor Faktor Yang Mempengaruhi Minat Beli Konsumen Terhadap Produk Tempe (Pada Pabrik Tempe H.M. YASIN Medan) LAMPIRAN 1 Kuesioner Analisis Faktor Faktor Yang Mempengaruhi Minat Beli Konsumen Terhadap Produk Tempe (Pada Pabrik Tempe H.M. YASIN Medan) No. Responden :... I. Identitas Responden Nama : Usia : Jenis

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Hipotesis Gambar 4.1 Hubungan variabel bebas dan variabel terikat Keterangan : X 1 = Kompensasi X 2 = Iklim Organisasi Y = Kepuasan Kerja Hipotesis : 1. H 0 : r y1 = 0 H

Lebih terperinci

Analisis Regresi: Regresi Linear Berganda

Analisis Regresi: Regresi Linear Berganda Analisis Regresi: Regresi Linear Berganda Pengantar Pada sesi sebelumnya kita hanya menggunakan satu buah X, dengan model Y = b 0 + b 1 X 0 1 Dalam banyak hal, yang mempengaruhi X bisa lebih dari satu.

Lebih terperinci

Oleh: KELOMPOK SOYA E46. Ahmad Mukti Almansur Batara Manurung Ika Novi Indriyati Indana Saramita Rachman Sali Subakti Tri Wulandari

Oleh: KELOMPOK SOYA E46. Ahmad Mukti Almansur Batara Manurung Ika Novi Indriyati Indana Saramita Rachman Sali Subakti Tri Wulandari TUGAS KELOMPOK METODE KUANTITATIF MANAJEMEN Oleh: KELOMPOK SOYA E46 Ahmad Mukti Almansur Batara Manurung Ika Novi Indriyati Indana Saramita Rachman Sali Subakti Tri Wulandari Dosen: Lukytawati Anggraeni,

Lebih terperinci

Program Magister Manajemen dan Bisnis Institut Pertanian Bogor 2014

Program Magister Manajemen dan Bisnis Institut Pertanian Bogor 2014 TUGAS Metode Kuantitatif Manajemen Analisis Regresi pada Data Penjualan Tahunan Lezat Fried Chicken (LFC) Disusun sebagai Tugas Akhir Triwulan I Mata Kuliah Metode Kuantitatif Manajemen Disusun Oleh :

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. independen dari listrik adalah satuan kilowatt (kwh), untuk minyak adalah

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. independen dari listrik adalah satuan kilowatt (kwh), untuk minyak adalah 36 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Hasil Pengolahan Data Data yang diambil untuk varibel dependen adalah produk domestic bruto di Jakarta period 1995 2005 dalam satuan rupiah. Sedangkan variabel

Lebih terperinci

DAFTAR LAMPIRAN KUESIONER PENGARUH PROMOSI DAN POTONGAN HARGA TERHADAP KEPUTUSAN PEMBELIAN MOBIL TOYOTA YARIS PADA

DAFTAR LAMPIRAN KUESIONER PENGARUH PROMOSI DAN POTONGAN HARGA TERHADAP KEPUTUSAN PEMBELIAN MOBIL TOYOTA YARIS PADA DAFTAR LAMPIRAN Lampiran 1 KUESIONER PENGARUH PROMOSI DAN POTONGAN HARGA TERHADAP KEPUTUSAN PEMBELIAN MOBIL TOYOTA YARIS PADA AUTO 2000 CABANG GATOT SUBROTO MEDAN Bersama ini saya mohon kesediaan anda

Lebih terperinci

Atina Ahdika. Universitas Islam Indonesia 2015

Atina Ahdika. Universitas Islam Indonesia 2015 Atina Ahdika Universitas Islam Indonesia 2015 Pada materi sebelumnya, kita telah belajar tentang koefisien korelasi, yaitu suatu ukuran yang menyatakan tentang kuat tidaknya hubungan linier antara dua

Lebih terperinci

VI. FAKTOR - FAKTOR YANG MEMPENGARUHI PERMINTAAN RUMAH TANGGA TERHADAP CABAI MERAH KERITING

VI. FAKTOR - FAKTOR YANG MEMPENGARUHI PERMINTAAN RUMAH TANGGA TERHADAP CABAI MERAH KERITING VI. FAKTOR - FAKTOR YANG MEMPENGARUHI PERMINTAAN RUMAH TANGGA TERHADAP CABAI MERAH KERITING 6.1. Model Permintaan Rumah Tangga Terhadap Cabai Merah Keriting Model permintaan rumah tangga di DKI Jakarta

Lebih terperinci

Analisis Regresi 2. Multikolinier & penanganannya

Analisis Regresi 2. Multikolinier & penanganannya Analisis Regresi 2 Pokok Bahasan : Multikolinier & penanganannya TUJUAN INSTRUKSIONAL KHUSUS : Mahasiswa dapat menjelaskan adanya multikolinieritas pada regresi linier berganda serta prosedur penanganannya

Lebih terperinci

BAB 4 HASIL PENELITIAN

BAB 4 HASIL PENELITIAN BAB 4 HASIL PENELITIAN 4.1 Penyajian Data Penelitian 4.1.1 Analisis Karakteristik Responden Responden yang diteliti dalam penelitian ini adalah konsumen pengguna PT. Mega Auto Finance cabang Kedoya. Penjelasan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1. Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

MODUL MINITAB UNTUK PERAMALAN DENGAN METODE ARIMA DAN DOUBLE EXPONENTIAL

MODUL MINITAB UNTUK PERAMALAN DENGAN METODE ARIMA DAN DOUBLE EXPONENTIAL MODUL MINITAB UNTUK PERAMALAN DENGAN METODE ARIMA DAN DOUBLE EXPONENTIAL Minitab adalah program statistik yang setiap versinya terus dikembangkan. Gambar 1 memperlihatkan kepada anda aspek-aspek utama

Lebih terperinci

LAMPIRAN 1 KUESIONER

LAMPIRAN 1 KUESIONER 110 LAMPIRAN 1 KUESIONER Kepada Yth. Bapak/Ibu/Saudara/i, Saya mahasiswi tingkat akhir sebuah perguruan tinggi swasta di Jakarta yang sedang melakukan penelitian tentang Analisis Pengaruh Iklan dan Promosi

Lebih terperinci

BAB I. REGRESI LINIER BERGANDA

BAB I. REGRESI LINIER BERGANDA BAB I. REGRESI LINIER BERGANDA Membuka program SPSS kemudian memilih tab sheet Variable View. Melakukan input variabel yang akan diteliti pada sheet Variable View. Input dilakukan dengan memperhatikan

Lebih terperinci

PERAMALAN (FORECASTING) #2

PERAMALAN (FORECASTING) #2 #4 - Peramalan (Forecasting) #2 1 PERAMALAN (FORECASTING) #2 EMA302 Manajemen Operasional Model Trend Linear Multiplicative 2 Kecenderungan (trend). Komponen musiman (seasonal): rasio untuk model trend.

Lebih terperinci

MODEL REGRESI LINIER DALAM MELIHAT KEBERHASILAN BELAJAR SISWA SMU

MODEL REGRESI LINIER DALAM MELIHAT KEBERHASILAN BELAJAR SISWA SMU S-19 MODEL REGRESI LINIER DALAM MELIHAT KEBERHASILAN BELAJAR SISWA SMU Siti Sunendiari Universitas Islam Bandung (Unisba) e-mai : [email protected] 1. ABSTRAK Keberhasilan dalam proses belajar mengajar

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh

STK511 Analisis Statistika. Pertemuan 4 Sebaran Penarikan Contoh STK511 Analisis Statistika Pertemuan 4 Sebaran Penarikan Contoh Konsep Dasar Suatu statistik, misalnya, adalah fungsi dari peubah acak sering kita tulis. Idea dasaranya : Karena adalah peubah acak, maka

Lebih terperinci

Analisis Korelasi & Regresi

Analisis Korelasi & Regresi Analisis Korelasi & Regresi Oleh: Ki Hariyadi,, S.Si., M.PH Nuryadi, S.Pd.Si UIN JOGJAKARTA 1 Pokok Bahasan Analisis Korelasi Uji Kemaknaan terhadap ρ (rho) Analisis Regresi Linier Analisis Kemaknaan terhadap

Lebih terperinci

Kuesioner Biaya Transportasi

Kuesioner Biaya Transportasi 64 Lampiran 1 Kuesioner Biaya Transportasi Kuesioner Biaya Transportasi Mohon anda mengisi dan memilih jawaban yang disediakan! 1. Jenis kelamin : a. wanita b. pria 2. Fakultas : a. Sastra b. Psikologi

Lebih terperinci

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi?

BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI. Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? BAB 3 PRAKIRAAAN dan PERAMALAN PRODUKSI Dalam Manajemen Operasional, mengapa perlu ada peramalan produksi? a. Ada ketidak-pastian aktivitas produksi di masa yag akan datang b. Kemampuan & sumber daya perusahaan

Lebih terperinci

LAMPIRAN. Lampiran 1. Kuesioner untuk Pengunjung

LAMPIRAN. Lampiran 1. Kuesioner untuk Pengunjung LAMPIRAN Lampiran 1. Kuesioner untuk Pengunjung Kuesioner penelitian: Penilaian Ekonomi dan Prospek Pengembangan Wisata TWA Gunung Pancar. Oleh: Devina Marcia Rumanthy Sihombing (H44070045). Departemen

Lebih terperinci

STK 511 Analisis statistika. Materi 7 Analisis Korelasi dan Regresi

STK 511 Analisis statistika. Materi 7 Analisis Korelasi dan Regresi STK 511 Analisis statistika Materi 7 Analisis Korelasi dan Regresi 1 Pendahuluan Kita umumnya ingin mengetahui hubungan antar peubah Analisis Korelasi digunakan untuk melihat keeratan hubungan linier antar

Lebih terperinci

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu

Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Estimasi, Pemilihan Model dan Peramalan Hubungan Deret Waktu Author: Junaidi Junaidi Terdapat berbagai jenis model/metode peramalan hubungan deret waktu. Diantaranya adalah: 1) Model Linear; 2) Model Quadratic;

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN. dari UD. Wingko Babat Pak Moel sebagai berikut: a. Data permintaan wingko pada tahun 2016.

BAB IV ANALISIS DAN PEMBAHASAN. dari UD. Wingko Babat Pak Moel sebagai berikut: a. Data permintaan wingko pada tahun 2016. BAB IV ANALISIS DAN PEMBAHASAN 4.1 Pengumpulan dan Pengolahan Data Untuk menganalisi permasalahan pengoptimalan produksi, diperlukan data dari UD. Wingko Babat Pak Moel sebagai berikut: a. Data permintaan

Lebih terperinci

Pengujian Kestabilan Parameter pada Model Regresi Menggunakan Dummy Variabel

Pengujian Kestabilan Parameter pada Model Regresi Menggunakan Dummy Variabel Statistika, Vol. 10 No. 2, 99 105 Nopember 2010 Pengujian Kestabilan Parameter pada Model Regresi Menggunakan Dummy Variabel Teti Sofia Yanti Program Studi Statistika Universitas Islam Bandung Email: [email protected]

Lebih terperinci

APLIKASI REGRESI SEDERHANA DENGAN SPSS. HENDRY admin teorionline.net Phone : 021-834 14694 / email : [email protected]

APLIKASI REGRESI SEDERHANA DENGAN SPSS. HENDRY admin teorionline.net Phone : 021-834 14694 / email : klik.statistik@gmail.com APLIKASI REGRESI SEDERHANA DENGAN SPSS HENDRY admin teorionline.net Phone : 02-834 4694 / email : [email protected] Tentang Regresi Sederhana Analisis regresi merupakan salah satu teknik analisis

Lebih terperinci

PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI

PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI HERRIJUNIANTO PURBA 130823002 DEPARTEMEN MATEMATIKA FAKULTAS

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto 18 BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto Dalam menghitung pendapatan regional, dipakai konsep domestik. Berarti seluruh nilai tambah yang ditimbulkan oleh berbagai sektor atau lapangan

Lebih terperinci

ANALISIS REGRESI DENGAN EXCEL

ANALISIS REGRESI DENGAN EXCEL ANALISIS REGRESI DENGAN EXCEL Dalam statistik, regresi merupakan salah satu peralatan yang populer digunakan, baik pada ilmu-ilmu sosial maupun ilmu-ilmu eksak. Karenanya, software-software statistik umumnya

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Dalam penelitian ini, analisis data yang dilakukan menggunakan pendekatan kuantitatif yaitu dengan menggunakan analisis regresi sederhana, dan perhitungannya menggunakan

Lebih terperinci

Lampiran 1 LEMBAR ANGKET (KUESIONER)

Lampiran 1 LEMBAR ANGKET (KUESIONER) Lampiran 1 LEMBAR ANGKET (KUESIONER) Nomor Responden : Bagian 1 Identitas Pribadi Responden Isi dan beri tanda ( ) pada jawaban-jawaban yang sesuai dengan Bapak/Ibu/Saudara. 1. Nama : 2. Alamat : 3. Usia

Lebih terperinci

ANALISIS PENGARUH KUALITAS PRODUK, KUALITAS LAYANAN, DAN KREATIFITAS PERIKLANAN TERHADAP PENGAMBILAN KEPUTUSAN KONSUMEN

ANALISIS PENGARUH KUALITAS PRODUK, KUALITAS LAYANAN, DAN KREATIFITAS PERIKLANAN TERHADAP PENGAMBILAN KEPUTUSAN KONSUMEN KUESIONER Kepada Yth. Para Responden. Saya adalah mahasiswa dari Universitas Bina Nusantara yang sedang melakukan penelitian untuk penyelesaian tugas akhir saya yang berjudul ANALISIS PENGARUH KUALITAS

Lebih terperinci

BAB V ANALISA DAN PEMBAHASAN

BAB V ANALISA DAN PEMBAHASAN BAB V ANALISA DAN PEMBAHASAN 5.1 KARAKTERISTIK RESPONDEN Dalam penelitian ini menggunakan sampel sebanyak 100 dari konsumen Sophie Martin yang datang berkunjung. Salah satu teknik pengumpulan data yang

Lebih terperinci

ANALISIS DERET WAKTU

ANALISIS DERET WAKTU ANALISIS DERET WAKTU JENIS DATA Cross section Beberapa pengamatan diamati bersama-sama pada periode waktu tertentu Harga saham semua perusahaan yang tercatat di BEJ pada hari Rabu 27 Februari 2008 Time

Lebih terperinci

POKOK BAHASAN. : Peramalan (Forecasting) Bab II : Manajemen Proyek. Bab III : Manajemen Persediaan. Bab IV : Supply-Chain Management

POKOK BAHASAN. : Peramalan (Forecasting) Bab II : Manajemen Proyek. Bab III : Manajemen Persediaan. Bab IV : Supply-Chain Management MANAJEMEN OPERASI 1 POKOK BAHASAN Bab I : Peramalan (Forecasting) Bab II : Manajemen Proyek Bab III : Manajemen Persediaan Bab IV : Supply-Chain Management Bab V : Penetapan Harga (Pricing) 2 BAB I PERAMALAN

Lebih terperinci

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE

MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE MODEL AUTOREGRESSIVE (AR) ATAU MODEL UNIVARIATE Data yang digunakan adalah data M2Trend.wf1 (buku rujukan pertama, bab-8). Model analisisnya adalah Xt = M2 diregresikan dengan t = waktu. Model yang akan

Lebih terperinci

PENGARUH MOTIVASI DAN PENGALAMAN KERJA TERHADAP PRODUKTIVITAS KERJA KARYAWAN PADA PT PEGADAIAN (PERSERO) CABANG CIBINONG

PENGARUH MOTIVASI DAN PENGALAMAN KERJA TERHADAP PRODUKTIVITAS KERJA KARYAWAN PADA PT PEGADAIAN (PERSERO) CABANG CIBINONG PENGARUH MOTIVASI DAN PENGALAMAN KERJA TERHADAP PRODUKTIVITAS KERJA KARYAWAN PADA PT PEGADAIAN (PERSERO) CABANG CIBINONG Oleh : Fitri Zakiyah (10208526) Latar Belakang Sumber Daya Manusia (SDM) merupakan

Lebih terperinci

Estimasi, Pemilihan Model dan Peramalan Deret Waktu dengan Microsoft Office Excel

Estimasi, Pemilihan Model dan Peramalan Deret Waktu dengan Microsoft Office Excel Estimasi, Pemilihan Model dan Peramalan Deret Waktu dengan Microsoft Office Excel Author: Junaidi Junaidi Terdapat berbagai pola pergerakan data deret waktu. Diantaranya adalah: 1) Model Linear; 2) Model

Lebih terperinci

BAB 4 PEMBAHASAN HASIL PENELITIAN

BAB 4 PEMBAHASAN HASIL PENELITIAN BAB 4 PEMBAHASAN HASIL PENELITIAN 41 Hasil Uji Statistik 411 Statistik Deskriptif Pada bagian ini akan dibahas mengenai hasil pengolahan data statistik deskriptif dari variabel-variabel yang diteliti Langkah

Lebih terperinci

METODE NAIVE DAN MOVING AVERAGE

METODE NAIVE DAN MOVING AVERAGE A. Metode Naive METODE NAIVE DAN MOVING AVERAGE Para pebisnis muda sering kali menghadapi suatu pilihan yang rumit ketika mencoba meramalkan dengan data yang berukuran sangat kecil. Situasi ini menciptakan

Lebih terperinci

LAMPIRAN 1 KUESIONER. Hormat saya, Wibiesono Wijaya

LAMPIRAN 1 KUESIONER. Hormat saya, Wibiesono Wijaya LAMPIRAN 1 KUESIONER No:.. Sehubungan dengan pemenuhan persyaratan tugas akhir, saya selaku mahasiswa Universitas Katolik Widya Mandala Surabaya dengan ini mengharapkan kesediaan Anda untuk mengisi kuesioner

Lebih terperinci

DAFTAR LAMPIRAN. Survey Pendahuluan

DAFTAR LAMPIRAN. Survey Pendahuluan DAFTAR LAMPIRAN Lampiran 1 Survey Pendahuluan Analisis Pengaruh Lingkungan Kerja, Gaji dan Reward Terhadap Kepuasan Kerja Pegawai Kantor Imigrasi Kelas I Khusus Medan Mohon Bapak/Ibu memberi jawaban yang

Lebih terperinci

LAMPIRAN. Rekapitulasi Data Jumlah Pelanggan Tahun 2016

LAMPIRAN. Rekapitulasi Data Jumlah Pelanggan Tahun 2016 71 LAMPIRAN Lampiran 1 Rekapitulasi Data Jumlah Pelanggan Tahun 2016 Tgll\Bln Januari Februari Maret April Mei Juni Rata-rata 1 0 21 38 51 0 32 2 53 60 41 34 25 49 3 0 66 52 0 30 61 4 41 31 26 62 55 56

Lebih terperinci

SALESMANSHIP PELUANG PASAR DAN PERAMALAN PENJUALAN. Ariadne Sekar Sari, S.E., M.M. Modul ke: Fakultas EKONOMI DAN BISNIS

SALESMANSHIP PELUANG PASAR DAN PERAMALAN PENJUALAN. Ariadne Sekar Sari, S.E., M.M. Modul ke:  Fakultas EKONOMI DAN BISNIS Modul ke: 05 Christina Fakultas EKONOMI DAN BISNIS SALESMANSHIP PELUANG PASAR DAN PERAMALAN PENJUALAN Ariadne Sekar Sari, S.E., M.M. Program Studi MANAJEMEN www.mercubuana.ac.id PENDAHULUAN SALESMANSHIP

Lebih terperinci

KUESIONER A. Identitas Responden : B. Petunjuk Pengisian

KUESIONER A. Identitas Responden : B. Petunjuk Pengisian LAMPIRAN 66 KUESIONER A. Identitas Responden : 1. Umur : a. < 15 tahun d. 26 30 tahun b. 16 20 tahun e. > 30 tahun c. 21 25 tahun 2. Jenis kelamin : a. Pria b. Wanita 3. Pendidikan Terakhir : a. SD d.

Lebih terperinci

ANALISIS PENGARUH MANAJEMEN KONFLIK DAN STRES KERJA TERHADAP KINERJA KARYAWAN PT GENERAL ADJUSTER INDONESIA

ANALISIS PENGARUH MANAJEMEN KONFLIK DAN STRES KERJA TERHADAP KINERJA KARYAWAN PT GENERAL ADJUSTER INDONESIA L Lampiran Kuesioner ANALISIS PENGARUH MANAJEMEN KONFLIK DAN STRES KERJA TERHADAP KINERJA KARYAWAN PT GENERAL ADJUSTER INDONESIA Responden yang terhormat, Sehubungan dengan ini kami selaku penulis beritahukan

Lebih terperinci

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder, time series triwulan dari

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder, time series triwulan dari 34 III. METODE PENELITIAN 3.1 Jenis dan Sumber Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder, time series triwulan dari tahun 2005-2012, yang diperoleh dari data yang dipublikasikan

Lebih terperinci

Lampiran 1. Hasil Dokumentasi di Kede Kopi Kami

Lampiran 1. Hasil Dokumentasi di Kede Kopi Kami Logo Kede Kopi Kami Lampiran 1 Hasil Dokumentasi di Kede Kopi Kami Lampiran 2 Kuesioner Penelitian Pengaruh Harga, Lokasi, Promosi, dan Gaya Hidup Terhadap Minat Bekunjung Ke Kede Kopi Kami Medan. Untuk

Lebih terperinci

PERAMALAN (FORECASTING)

PERAMALAN (FORECASTING) #3 - Peramalan (Forecasting) #1 1 PERAMALAN (FORECASTING) EMA302 Manajemen Operasional Pengertian (1) 2 Oxford Dictionary, Forecast is a statement about what will happen in the future, based on information

Lebih terperinci

Kualitas Fitted Model

Kualitas Fitted Model Kualitas Fitted Model Apakah model regresi sudah cukup pas mewakili data? Apakah model regresi cukup baik untuk model peramalan? Tebaran titik amatan / scatter plot y Mana di antara gambar gambar ini yang

Lebih terperinci

Prediksi Harga Saham dengan ARIMA

Prediksi Harga Saham dengan ARIMA Prediksi Harga Saham dengan ARIMA Peramalan harga saham merupakan sesuatu yang ditunggu-tunggu oleh para investor. Munculnya model prediksi yang baru yang bisa meramalkan harga saham secara tepat merupakan

Lebih terperinci

KORELASI. Alat hitung koefisien korelasi Pearson (data kuantitatif dan berskala rasio) Kendall, Spearman (data kualitatif dan berskala ordinal)

KORELASI. Alat hitung koefisien korelasi Pearson (data kuantitatif dan berskala rasio) Kendall, Spearman (data kualitatif dan berskala ordinal) KORELASI Pada SPSS korelasi ada pada menu Correlate dengan submenu: 1. BIVARIATE Besar hubungan antara dua (bi) variabel. a. Koefisien korelasi bivariate/product moment Pearson Mengukur keeratan hubungan

Lebih terperinci

ANALISIS REGRESI LINEAR

ANALISIS REGRESI LINEAR BAB V ANALISIS REGRESI LINEAR Pendahuluan Analisis regresi merupakan suatu analisis antara dua variabel yaitu variabel independen (Prediktor) yaitu variabel X dan variabel dependent (Respon) yaitu variabel

Lebih terperinci

ARIMA and Forecasting

ARIMA and Forecasting ARIMA and Forecasting We have learned linear models and their characteristics, like: AR(p), MA(q), ARMA(p,q) and ARIMA (p,d,q). The important thing that we have to know in developing the models are determining

Lebih terperinci

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat

BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan

Lebih terperinci

Analisa Regresi Berganda

Analisa Regresi Berganda Analisa Regresi Berganda Tjipto Juwono, Ph.D. June 18, 2015 TJ (SU) Regresi Ganda May 2015 1 / 23 Data Home Cost Temp Ins Age ($) ( F) (In.) (y) 1 250 35 3 6 2 360 29 4 10 3 165 36 7 3 4 43 60 6 9 5 92

Lebih terperinci

KUISIONER PENELITIAN

KUISIONER PENELITIAN Lampiran 1: Kuesioner KUISIONER PENELITIAN PENGARUH COUNTRY OF ORIGIN, BRAND IMAGE DAN PERCEIVED QUALITY TERHADAP MINAT BELI PRODUK MOBIL TOYOTA (Studi Empiris pada Masyarakat Kota Yogyakarta) Dengan hormat,

Lebih terperinci

EMA302 Manajemen Operasional

EMA302 Manajemen Operasional 1 PERAMALAN (FORECASTING) EMA302 Manajemen Operasional Pengertian (1) 2 Oxford Dictionary, Forecast is a statement about what will happen in the future, based on information that is available now. (Peramalan

Lebih terperinci

SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)

SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS) SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS) Mahasiswa mampu melakukan perencanaan untuk memastikan kelancaran operasi rantai pasok 1. Peramalan dalam organisasi 2. Pola permintaan 3. Metode peramalan

Lebih terperinci

KUESIONER PENELITIAN

KUESIONER PENELITIAN Lampiran 1. Kuesioner Penelitian KUESIONER PENELITIAN PENGARUH CITRA MEREK DAN REPUTASI PERUSAHAAN TERHADAP KEPUTUSAN PEMBELIAN SMARTPHONE SAMSUNG PADA MAHASISWA FAKULTAS EKONOMI DAN BISNIS UNIVERSITAS

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci