BAB 3 LANDASAN TEORI
|
|
|
- Yohanes Hermawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB 3 LANDASAN TEORI 3.1 Definisi Perencanaan dan Pengendalian Produksi Menurut Teguh Baroto produksi adalah suatu proses pengubahan bahan baku menjadi produk jadi. Sedangkan sistem produksi adalah sekumpulan aktivitas untuk pembuatan suatu produk, dimana didalam pembuatan ini melibatkan tenaga kerja, bahan baku, mesin, energi, informasi, modal, dan tindakan manajemen. Sistem produksi bertujuan untuk merencanakan dan mengendalikan produksi agar lebih efektif, produktif, dan optimal. Production Planning and Control merupakan aktivitas dalam sistem produksi. Perusahaan merupakan kumpulan dari subsistem-subsistem yang saling terkait untuk mencapai suatu tujuan perusahaan. Proses produksi adalah aktivitas bagaimana membuat produk jadi dari bahan baku yang melibatkan mesin, energi, pengetahuan teknis, dan lain-lain. Perencanaan dan pengendalian produksi (PPC) adalah aktivitas bagaimana mengelola proses produksi tersebut. Aktivitas-aktivitas yang ditangani oleh departemen PPC atau PPIC secara umum adalah sebagai berikut: 1. Mengelola pesanan dari pelanggan. 2. Meramalkan permintaan. 3. Mengelola persediaan. 4. Menyusun rencana agregat. 5. Membuat jadwal induk produksi.
2 22 6. Merencanakan kebutuhan. 7. Melakukan penjadwalan pada mesin atau fasilitas produksi. 8. Monitoring dan pelaporan pembebanan kerja dibanding kapasitas produksi. 9. Evaluasi skenario pembebanan dan kapasitas. Metode perencanaan dan pengendalian produksi yang biasa digunakan pada perusahaan-perusahaan adalah: 1. Sistem produksi proyek 2. Flexible Control system 3. Material Requirement Planning 4. Just in Time 5. Optimized Production Technology 6. Continuous Process Control Sistem Berdasarkan cara pembuatan atau masa pengerjaan produksi dapat diklasifikasikan menjadi tipe-tipe berikut : 1. Engineering to order (ETO), penyiapan fasilitas sampai pembuatan dalam memenuhi pesanan dilakukan oleh perusahaan. Produk yang dipesan biasanya berjumlah satu unit dan memiliki spesifikasi yang sangat berbeda antara pesanan yang satu dengan yang lainnya. Aktivitas yang terlibat dalam pembuatannya sangat banyak. 2. Made to order (MTO), pesanan yang diterima disesuaikan dengan fasilitas produksi yang dimiliki perusahaan.
3 23 3. Assembly to order (ATO), untuk memenuhi permintaan, perakitan dilakukan dengan fasilitas yang dimiliki perusahaan. 4. Made to stock (MTS), perusahaan memproduksi dengan cara menstok hasil produksi nya untuk memenuhi permintaan, dan tidak melayani pesanan. Berdasar ukuran jumlah produk yang dihasilkan, produksi dapat dikelompokkan menjadi: 1. Produksi proyek, jumlah operasi dan sumber daya yang digunakan banyak, sedangkan unit yang diproduksi hanya satu. 2. Produksi batch, produksi yang dihasilkan banyak jenisnya, namun dalam jumlah produksi yang sedang. 3. Produksi massal, jenis produk yang diproduksi lebih sedikit dari batch, namun jumlah unit yang diproduksi sangat besar. Berdasar cara memproduksi (berhubungan dengan pengaturan fasilitas produksi), produksi dikelompokkan menjadi: 1. Produksi flow shop 2. Produksi fleksibel. 3. Produksi job shop 4. Produksi kontinu Jenis-jenis produksi diatas dapat menentukan sistem produksi yang digunakan.
4 Persediaan Pengertian Persediaan Persediaan merupakan salah satu aset yang paling mahal bagi perusahaan, mencerminkan total 40% dari total modal yang diinvestasikan (Render dan Heizer, 2001, p314). Menurut Kusuma (2001, p131), persediaan didefinisikan sebagai barang yang disimpan untuk digunakan atau dijual pada periode mendatang. Persediaan dapat berbentuk bahan baku yang disimpan untuk diproses, komponen yang diproses, barang dalam proses pada proses manufaktur, dan barang jadi yang disimpan untuk dijual. Kebutuhan akan persediaan muncul karena adanya waktu ancang (lead time) antar operasi yang berurutan, waktu ancang pembelian bahan, atau waktu ancang pendistribusian barang dari titik produksi ke titik pemasaran. Jika waktu ancang diketahui maka akan mempermudah manajemen pengendalian persediaan perusahaan. Misalnya, jika waktu ancang pembelian adalah dua minggu maka pemesanan bisa dilakukan dua minggu sebelum fungsi produksi berlangsung Tipe-tipe Persediaan Persediaan dapat dibedakan atas beberapa tipe, yaitu: 1. Supplies (persediaan bahan pembantu), yaitu barang persediaan yang diperlukan dalam proses produksi tetapi bukan merupakan bagian dari produk jadi. 2. Raw Materials (persediaan bahan mentah), yaitu barang persediaan yang dibeli atau dipasok dari supplier yang akan dijadikan sebagai masukan dalam proses produksi.
5 25 3. In-process (persediaan barang dalam proses), yaitu persediaan barang yang merupakan keluaran dari suatu bagian proses produksi, yang masih perlu diolah atau diproses lebih lanjut lagi untuk menjadi produk jadi. 4. Finished goods (persediaan barang jadi), yaitu persediaan barang yang sudah diproses dan siap untuk dikirim ke pelanggan Fungsi Persediaan Persediaan memiliki beberapa fungsi penting yang menambah fleksibilitas dari suatu perusahaan. Fungsi persediaan menurut Render dan Heizer (2001, p314), yaitu: 1. Untuk memberikan suatu stok barang-barang agar dapat memenuhi permintaan yang diantisipasi akan timbul dari konsumen. 2. Untuk memasangkan produksi dengan distribusi. Misalnya bila permintaan hanya tinggi pada musim panas, persediaan dapat diadakan selama musim dingin untuk menghindari biaya kehabisan stok. 3. Untuk mengambil keuntungan dari potongan harga dalam jumlah besar. 4. Untuk melakukan hedging terhadap inflasi dan perubahan harga. 5. Untuk menghindari kekurangan stok akibat kejadian tidak terduga. 6. Untuk menjaga agar operasi dapat berlangsung dengan baik dengan menggunakan barang-barang dalam proses dalam persediaannya Biaya-Biaya Persediaan Biaya persediaan adalah keseluruhan biaya operasi atas sistem persediaan. Menurut Handoko (2000, p333) berikut ini adalah jenis jenis biaya persediaan, yaitu :
6 26 1. Biaya penyimpanan Biaya penyimpanan (holding costs atau carrying costs) adalah biaya yang dikeluarkan atas investasi dalam persediaan dan pemeliharaan maupun investasi saran, fisik untuk menyimpan persediaan yang besarnya bervariasi secara langsung dengan kuantitas persediaan. Biaya penyimpanan per periode akan semakin besar apabila kuantitas bahan yang dipesan semakin banyak, atau ratarata persediaan semakin tinggi. Biaya-biaya ini adalah variabel bila bervariasi dengan tingkat persediaan. Bila biaya fasilitas penyimpanan (gudang) tidak variabel, tetapi tetap, maka tidak dimasukkan dalam biaya penyimpanan per unit. 2. Biaya pemesanan (pembelian) Setiap kali suatu bahan dipesan, perusahaan menanggung biaya pemesanan (order costs atau procurement costs). Biaya pemesanan adalah biaya yang berasal dari pembelian pesanan dari supplier. Biaya pemesanan seperti biaya membuat daftar permintaan, menganalisis supplier, membuat pesanan pembelian, penerimaan bahan, inspeksi bahan, dan pelaksanaan proses transaksi. Secara normal, biaya per pesanan (di luar biaya bahan dan potongan kuantitas) tidak naik bila kuantitas pesanan bertambah besar. 3. Biaya penyiapan (manufacturing). Bila perusahaan memproduksi sendiri bahan-bahan dalam pabrik, perusahaan menghadapi biaya penyiapan (setup costs) untuk memproduksi komponen tertentu. Biaya persiapan seperti biaya yang dikeluarkan akibat perubahan proses produksi, pembuatan jadwal kerja, persiapan sebelum produksi, dan pengecekan kualiatas. Karena konsep biaya ini analog dengan
7 27 biaya pemesanan, maka untuk selanjutnya akan digunakan istilah biaya pemesanan yang dapat berarti keduanya. 4. Biaya kehabisan atau kekurangan bahan (stock-out cost) Dari semua biaya-biaya yang berhubungan dengan tingkat persediaan, biaya kekurangan bahan adalah yang paling sulit diperkirakan. Biaya ini timbul bilamana persediaan tidak mencukupi adanya permintaan bahan. Kekurangan bahan bisa dari luar maupun dari dalam perusahaan. Kekurangan dari luar terjadi apabila pesanan konsumen tidak dapat dipenuhi. Sedangkan kekurangan dari dalam terjadi apabila departemen tidak dapat memenuhi kebutuhan departemen lain maupun penundaan pengiriman maupun idle kapasitas. Biaya kekurangan dari pihak luar dapat berupa biaya back order, biaya kehilangan kesempatan penjualan, dan biaya kehilangan kesempatan menerima keuntungan Penentuan Safety stock Menurut James H.Greene safety stock didapatkan dari konsep pelayanan. Jika konsumen selalu menerima pesanannya, maka service index adalah 100 persen. Berapapun di bawah 100 persen akan menjadi stock-out. Total penjumlahan service index dan stock-out index adalah 100 persen. Rumusnya menjadi: Service index = 100% - Stock-out index. Index stock-out rendah mengindikasikan tingginya service index, dan sebaliknya. Service index memiliki beberapa makna bergantung dari kita melihatnya sebagai: seringnya stock-out selama siklus order, atau selama setahun, atau kuantitas stock-out selama siklus order. Berikut adalah perhitungan safety stock berdasarkan seringnya stock-out selama siklus order.
8 28 Safety stock dapat dihitung dengan standar deviations ataupun dengan menggunakan mean absolute deviation (MAD). Keduanya menghasilkan nilai yang sama, hanya berbeda di cara penghitungannya. Berikut adalah rumus perhitungan MAD: MAD = n i= 1 x x i n Langkah-langkah menghitung safety stock dengan mengunakan MAD (Mean Absolute Deviation): 1) Menghitung nilai rata2 2) Menghitung deviasi dari nilai rata2 untuk tiap data historis 3) Menjumlahkan deviasi tanpa mempertimbangkan tandanya (menjumlahkan nilai mutlak dari deviasi) 4) Mengambil nilai rata2 deviasi 5) Mengalikan nilai MAD yang didapatkan pada perhitungan sebelumnya dengan nilai safety factor yang didapatkan dari tabel. 3.3 Perencanaan Proses Pengertian Perencanaan Proses Perencanaan Proses adalah suatu perencanaan awal terhadap proses pembuatan produk, hal ini berisi bagaimana produk tersebut akan dibuat (hal ini menentukan apakah suatu komponen akan dibuat atau dibeli dari supplier), memilih fokus proses, menentukan mesin dan peralatan yang digunakan. Perencanaan proses berkenaan dengan perancangan dan implementasi sistem kerja yang akan memproduksi produk yang diinginkan dalam kuantitas yang diperlukan.
9 Alat bantu dalam perencanaan proses Beberapa alat bantu yang digunakan dalam perencanaan proses yaitu: 1) Struktur Produk Struktur Produk adalah suatu susunan hirarki dari komponen-komponen pembentuk suatu produk akhir. Biasanya produk akhir ditempatkan di level 0 dan komponen pembentuk berikutnya adalah ditempatkan di level 1, dan seterusnya. Pada umumnya produk akhir disebut juga induk atau parent dan komponen pembentuknya disebut juga anak atau child. Manfaat Struktur Produk adalah : 1. Mengetahui berapa jumlah item penyusunan suatu produk akhir. 2. Memberikan rincian mengenai komponen apa saja yang dibutuhkan untuk menghasilkan suatu produk. Dalam Struktur Produk ada dua teknik yang digunakan yaitu : 1. Explosion Suatu teknik penguraian komponen struktur produk yang urutan dimulai dari induk sampai komponen pada level paling bawah 2. Implosion Suatu teknik penguraian komponen struktur produk yang urutan dimulai dari komponen sampai induk atau level atas. Berikut adalah contoh struktur produk dari pulpen:
10 30 Gambar 3.1 Struktur Produk Pulpen Keterangan: Nilai x menunjukkan no komponen, y menunjukkan kuantitas komponen yang diperlukan untuk menyusun produk benda 2) Bill Of Material (BOM) Bill of Material (BOM) merupakan rangkaian struktur semua komponen yang digunakan untuk memproduksi barang jadi sesuai dengan Master Production Scheduling. Bill Of Material (BOM) adalah daftar (list) dari bahan, material atau komponen yang dibutuhkan untuk dirakit, dicampur atau mebuat produk akhir. Menurut Render dan Heizer Bill Of Material dibagi menjadi: 1. Bill Of Material yang berupa modul (modular bills) Bill Of Material dapat diatur di seputar modul produk. Modul bukan merupakan produk akhir yang akan dijual, tapi merupakan komponen yang dapat diproduksi dan dirakit menjadi satu unit produk. Modul-modul ini mungkin merupakan
11 31 komponen inti dari suatu produk akhir atau pilihan produk. Bill Of Material untuk modul-modul tersebut disebut modular bill. 2. Bill untuk perencanaan dan Phantom Bills Ada lagi jenis Bill Of Material yang lain. Yaitu meliputi bill untuk perencanaan dan Phantom Bills. Bill untuk perencanaan diciptakan agar dapat menugaskan induk buatan kepada Bill Of Materialnya. Bill untuk perencanaan mungkin juga dikenal sebagai sebutan pseudo bill atau angka peralatan. Phantom Bill Of Material adalah Bill Of Material untuk komponen, biasanya sub-sub perakitan yang hanya ada sementara waktu. Bill ini langsung bergerak ke perakitan lainnya. Sehingga bill ini diberi kode agar diperlakukan secara khusus; lead timenya nol dan ditangani sebagai bahan integral dari bahan induknya. Phantom bill tidak pernah dimasukkan kedalam persediaan. Ada beberapa format dari Bill of Material (BOM) yaitu: 1. Single-Level BOM BOM yang menggambarkan hubungan sebuah induk dengan satu level komponenkomponen pembentuknya. 2. Multi-Level BOM BOM yang menggambarkan struktur produk lengkap dari level 0 sampai level paling bawah. 3. Indented BOM BOM yang dilengkapi dengan informasi level setiap komponen. 4. Summarized BOM BOM yang dilengkapi dengan jumlah total tiap komponen yang dibutuhkan.
12 32 3) Peta proses operasi Menurut sutalaksana, peta proses operasi merupakan suatu diagram yang menggambarkan langkah-langkah proses yang akan dialami oleh bahan baku mengenai urutan-urutan operasi dan pemeriksaan. Sejak dari awal sampai menjadi produk jadi utuh maupun sebagai komponen, dan juga memuat informasi-informasi yang diperlukan untuk analisa lebih lanjut, seperti waktu yang dihabiskan, material yang digunakan, dan tempat atau alat atau mesin yang dipakai. Lambang yang digunakan: Operasi Suatu operasi terjadi apabila benda kerja mengalami perubahan sifat, baik fisik maupun kimiawi, mengambil informasi maupun memberikan informasi pada suatu keadaan juga termasuk operasi. Pemeriksaan Suatu kegiatan pemeriksaan terjadi apabila benda kerja atau peralatan mengalami pemeriksaan baik untuk segi kualitas maupun kuantitas. Penyimpanan Proses penyimpanan terjadi apabila benda kerja disimpan untuk jangka waktu yang cukup lama. Jika benda kerja tersebut akan diambil kembali, biasanya memerlukan suatu prosedur perijinan tertentu. Aktivitas gabungan. Kegiatan ini terjadi apabila antara aktivitas operasi dan pemeriksaan dilakukan bersamaan atau dilakukan pada suatu tempat kerja.
13 33 Berikut adalah contoh peta proses operasi (OPC) pajangan: Gambar 3.2 Peta Proses Produksi Pajangan 3.4 Peramalan Definisi Peramalan Peramalan (forecasting) adalah seni dan ilmu memprediksi peristiwa-peristiwa masa depan. Peramalan memerlukan pengambilan data historis dan memproyeksikan ke masa depan dengan beberapa bentuk model matematis (Render dan Heizer, 2001, p46). Secara lebih rinci peramalan menurut Makridakis (1999,p14) adalah suatu kemampuan untuk memperkirakan / menduga keadaan permintaan produk di masa datang yang tidak pasti.
14 Horizon Waktu Peramalan biasanya dikelompokkan oleh horison waktu masa depan yang mendasarinya. Tiga kategori yang bermanfaat bagi manajer operasi adalah: 1 Peramalan jangka pendek. Rentang waktunya mencapai satu tahun tetapi umumnya kurang dari tiga bulan. Peramalan jangka pendek digunakan untuk merencanakan pembelian, penjadwalan kerja, jumlah tenaga kerja, penugasan, dan tingkat produksi. 2 Peramalan jangka menengah. Peramalan jangka menengah biasanya berjangka tiga bulan hingga tiga tahun. Peramalan ini sangat bermanfaat dalam perencanaan penjualan, perencanaan dan penganggaran produksi, penganggaran kas, dan menganalisis berbagai rencana operasi. 3 Peramalan jangka panjang. Rentang waktunya biasanya tiga tahun atau lebih; digunakan dalam merencanakan produk baru, pengeluaran modal, lokasi fasilitas, atau ekspansi dan penelitian serta pengembangan. Peramalan jangka menengah dan jangka panjang berhubungan isu yang lebih kompetentif dan mendukung keputusan manajemen berkaitan dengan perencanaan dan produk, pabrik dan proses. Peramalan jangka pendek cenderung lebih akurat daripada peramalan jangka yang lebih panjang. Faktor-faktor yang mempengaruhi permintaan berubah setiap hari, sehingga ketika horison waktu semakin panjang, keakuratan peramalan akan berkurang. Dengan demikian ramalan penjualan perlu diperbarui secara teratur untuk mempertahankan nilainya. Setelah periode penjualan berlalu, ramalan harus dikaji kembali dan diperbaiki.
15 Metode Peramalan Banyak jenis metode peramalan yang tersedia untuk meramalkan permintaan dalam produksi. Namun yang lebih penting adalah bagaimana memahami karateristik suatu metode peramalan agar sesuai dengan situasi pengambilan keputusan. Situasi peramalan sangat beragam dalam horison waktu peramalan, faktor yang menentukan hasil yang sebenarnya, tipe pola data dan berbagai aspek lainnya. Untuk menghadapi penggunaan yang luas seperti itu, beberapa teknik telah dikembangkan. Teknik tersebut dibagi dalam dua kategori utama, (Makridakis, 1999, p19-24) yaitu : 1) Metode peramalan kuantitatif Metode kuantitatif sangat beragam dan setiap teknik memiliki sifat, ketepatan dan biaya tertentu yang harus dipertimbangkan dalam memilih metode tertentu. Metode kuantitatif formal didasarkan atas prinsip-prinsip statistik yang memiliki ketepatan tinggi atau dapat meminimumkan kesalahan (error), lebih sistematis, dan lebih populer dalam penggunaannya. Untuk menggunakan metode kuantitatif terdapat tiga kondisi yang harus dipenuhi, yaitu : a. Tersedia informasi tentang masa lalu. b. Informasi tersebut dapat dikuantitatifkan dalam bentuk data numerik. c. Dapat diasumsikan bahwa beberapa aspek pola masa lalu akan terus berlanjut di masa mendatang. Metode kuantitatif dapat dibagi kedalam dua model, yaitu : a. Model deret berkala (time series) Pada model ini, pendugaan masa depan dilakukan berdasarkan nilai masa lalu dari suatu variabel dan / atau kesalahan masa lalu. Model deret berkala
16 36 menggunakan riwayat permintaan masa lalu dalam membuat ramalan untuk masa depan. Tujuan metode peramalan deret berkala ini adalah menemukan pola dalam deret berkala historis dan mengekstrapolasikan pola tersebut ke masa depan. Langkah penting dalam memilih suatu metode deret berkala yang tepat adalah dengan mempertimbangkan jenis pola data, sehingga metode yang paling tepat dengan metode tersebut dapat diuji. Pola data dapat dibedakan menjadi : 1. Pola Stasioner atau Horizontal (H) terjadi bilamana nilai data berfluktuasi disekitar nilai rata-rata yang konstan (deret seperti itu adalah stasioner terhadap nilai rata-ratanya). Suatu produk yang penjualannya tidak meningkat atau menurun selama waktu tertentu termasuk jenis ini. Demikian pula suatu pengendalian kualitas yang menyangkut pengambilan contoh dari suatu proses produksi berkelanjutan yang secara teoritis tidak mengalami perubahan juga termasuk jenis ini. Waktu Gambar 3.3 Pola Data Horisontal 2. Pola musiman (S) terjadi bilamana suatu deret dipengaruhi oleh faktor musiman (misalnya kuartal tahun tertentu, bulanan, atau hari-hari pada
17 37 minggu tertentu). Penjualan dari produk minuman ringan, es krim, dan bahan bakar pemanas ruangan, menunjukkan jenis pola ini. Waktu Gambar 3.4 Pola Data Musiman 3. Pola Siklis (C) terjadi bilamana datanya dipengaruhi oleh fluktuasi ekonomi jangka panjang seperti yang berhubungan dengan siklus bisnis. Penjualan produk seperti mobil, baja dan peralatan utama lainnya menunjukkan jenis pola data ini. Waktu Gambar 3.5 Pola Data Siklis 4. Pola trend (T) terjadi bilamana terdapat kenaikan atau penurunan sekuler jangka panjang dalam data. Penjualan banyak perusahaan, produk bruto nasional (GNP) dan berbagai indikator bisnis atau ekonomi lainnya mengikuti pola trend selama perubahannya sepanjang waktu.
18 38 Waktu Gambar 3.6 Pola Data Trend b. Model kausal Model kausal mengasumsikan bahwa faktor yang diramalkan menunjukkan suatu hubungan sebab-akibat dengan satu atau lebih variabel bebas. Maksud dari model kausal adalah menemukan bentuk hubungan tersebut dan menggunakannya untuk meramalkan nilai mendatang dari varibel tak bebas. Setelah hubungan ini ditemukan, nilai-nilai masa mendatang dapat diramalkan cukup dengan memasukkan nilai-nilai yang sesuai untuk varibelvariabel independen. Metode peramalan kausal mengasumsikan bahwa permintaan akan suatu produk bergantung pada satu atau beberapa faktor independen (misalnya, harga, iklan, persaingan, dan lain-lain). 2) Metode peramalan kualitatif atau teknologis Metode peramalan ini tidak memerlukan data yang serupa seperti metode peramalan kuantitatif. Input yang dibutuhkan tergantung pada metode tertentu dan biasanya merupakan hasil dari pemikiran intuitif, perkiraan dan pengetahuan yang telah didapat. Pendekatan teknologis seringkali memerlukan input dari sejumlah orang yang terlatih. Metode kualitatif mengandalkan opini pakar atau manajer dalam membuat prediksi tentang masa depan. Metode ini berguna untuk tugas peramalan jangka panjang. Penggunaan pertimbangan dalam peramalan, tampaknya tidak ilmiah dan
19 39 bersifat sementara. Tetapi bila data masa lalu tidak ada atau tidak mencerminkan masa mendatang, tidak banyak alternatif selain menggunakan opini dari orang-orang yang berpengetahuan. Ramalan teknologis terutama digunakan untuk memberikan petunjuk, untuk membantu perencana dan untuk melengkapi ramalan kuantitatif, bukan untuk memberikan suatu ramalan numerik tertentu. Metode kualitatif dapat dikelompokkan menjadi 2, yaitu : a. Metode eksploratoris Metode eksploratoris (seperti Delphi, kurva-s, analogi, dan penelitian morfologis) dimulai dengan masa lalu dan masa kini sebagai titik awalnya dan bergerak kearah masa depan secara heuristik, seringkali dengan melihat semua kemungkinan yang ada. b. Metode normatif. Metode normatif (seperti matriks keputusan, pohon relevansi, dan analisis sistem) dimulai dengan menetapkan sasaran dan tujuan yang akan datang, kemudian bekerja mundur untuk melihat apakah hal ini dapat dicapai, berdasarkan kendala, sumber daya, dan teknologi yang tersedia Pemilihan teknik peramalan Pola atau karakteristik data mempengaruhi teknik peramalan yang dipilih. Seringkali, pola data tersebut merupakan karakteristik inheren dari kegiatan yang sedang diteliti. Hubungan data dengan jangka waktu semakin jelas jika kita mengamati bahwa pola trend adalah merupakan kecenderungan jangka panjang, sedangkan variasi musiman menunjukkan pola data yang berulang. Dalam mengevaluasi teknik-teknik yang dikaitkan dengan pola data bisa saja diterapkan lebih dari satu teknik untuk data
20 40 yang sama. Misalnya, teknik-teknik tertentu mungkin lebih akurat dalam memprediksi titik balik, sedangkan lainnya terbukti lebih andal dalam peramalan pola perubahan yang stabil. Bisa juga terjadi beberapa model meramalkan terlalu tinggi (overestimate) atau terlalu rendah (underestimate) dalam situasi tertentu. Selain itu, mungkin juga terjadi bahwa prediksi jangka pendek dari suatu model lebih baik dari model lain yang memiliki prediksi jangka panjang yang lebih akurat Teknik Peramalan untuk Data Stasioner atau Horizontal Suatu data runtut waktu yang bersifat stasioner merupakan suatu serial data yang nilai rata-ratanya tidak berubah sepanjang waktu. Keadaan tersebut terjadi jika pola permintaan yang mempengaruhi data tersebut relatif stabil. Dalam bentuknya yang paling sederhana, peramalan suatu data runtut waktu yang stasioner memerlukan data historis dari runtut waktu tersebut untuk mengestimasi nilai rata-ratanya, yang kemudian menjadi peramalan untuk nilai-nilai masa datang. Beberapa teknik yang dapat dipertimbangkan ketika meramalkan data runtut waktu yang stasioner adalah metode naif, metode rata-rata sederhana, rata-rata bergerak, pemulusan eksponensial sederhana, model ARMA (metode Box-Jenkins) (Hanke, 2005, p75), Single Eksponensial Smoothing dan Single Moving Average (Makridakis, 1999) Teknik Peramalan untuk Data Trend Suatu data runtut waktu yang bersifat trend didefinisikan sebagai suatu series yang mengandung komponen jangka panjang yang menunjukkan pertumbuhan atau penurunan dalam data tersebut sepanjang suatu periode waktu yang panjang. Dengan kata lain, suatu data runtut waktu dikatakan mempunyai trend jika nilai harapannya berubah sepanjang waktu sehingga data tersebut diharapkan menaik atau menurun
21 41 selama periode dimana peramalan diinginkan. Biasanya data runtut waktu ekonomi mengandung suatu trend. Teknik-teknik peramalan yang digunakan untuk peramalan data runtut waktu yang mengandung trend adalah rata-rata bergerak, pemulusan eksponensial linier dari Holt, regresi sederhana, model ARIMA (metode Box-Jenkins) (Hanke, 2005, p75-76) Teknik Peramalan untuk Data Musiman Suatu data runtut waktu yang bersifat musiman didefinisikan sebagai suatu data runtut waktu yang mempunyai pola perubahan yang berulang secara tahunan. Mengembangkan suatu teknik peramalan musiman biasanya memerlukan pemilihan metode perkalian dan pertambahan dan kemudian mengestimasi indeks musiman dari data tersebut. Indeks ini kemudian digunakan untuk memasukkan sifat musiman dalam peramalan atau untuk menghilangkan pengaruh seperti itu dari nilai-nilai yang diobsevasi. Teknik-teknik yang dapat dipertimbangkan ketika kita meramalkan data runtut waktu yang bersifat musiman meliputi metode dekomposisi klasik, Census X-12, pemulusan eksponensial dari Winter, regresi berganda, model ARIMA (metode Box- Jenkins) (Hanke, 2005, p76), Weight Moving Average (Teguh Baroto, 2002, p33) Teknik Peramalan untuk Data Siklis Pengaruh siklis didefinisikan sebagai fluktuasi seperti gelombang disekitar garis trend. Pola siklis cenderung untuk berulang setiap dua, tiga tahun, atau lebih. Pola siklis sulit untuk dibuat modelnya karena polanya tidak stabil. Turun-naiknya fluktuasi di sekitar trend jarang sekali berulang pada interval waktu yang tetap, dan besarnya
22 42 fluktuasi juga selalu berubah. Metode dekomposisi bisa diperluas untuk menganalisis data siklis. Teknik-teknik yang dapat dipertimbangkan ketika kita meramalkan data runtut waktu yang bersifat siklis adalah metode dekomposisi klasik, indikator ekonomi, modelmodel ekonometrik, regresi berganda dan model ARIMA (metode Box-Jenkins) (Hanke, 2005, p76) Metode peramalan Exponential Smoothing Tiga Parameter Winter Pada umumnya, metode rata-rata bergerak dan pemulusan eksponensial dapat digunakan untuk hampir segala jenis data stasioner atau non stasioner sepanjang data tersebut tidak mengandung faktor musiman. Tetapi bilamana terdapat faktor musiman, metode-metode tersebut akan menghasilkan peramalan yang buruk. Untuk data stasioner, digunakan metode rata-rata begerak atau pemulusan eksponensial. Jika datanya menunjukkan suatu trend linear, maka baik model linear dari Brown atau Holt dapat diterapkan. Tetapi jika datanya musiman, metode tersebut tidak bisa mengatasinya dengan baik. Walaupun demikian, metode Winter dapat menangani faktor musiman secara langsung. Metode Winter didasarkan atas tiga persamaan pemulusan, yaitu satu untuk unsur stasioner, satu untuk trend dan satu untuk musiman. Hal ini serupa dengan metode Holt, dengan satu pemulusan tambahan untuk mengatasi musiman. Perumusan dasar untuk metode Winter (Makridakis, 1999, p ) adalah sebagai berikut : Pemulusan Keseluruhan : S t t = α t I X t L + ( 1 α)( S ( t 1) + b( 1) )
23 43 Pemulusan Trend : b t = γ ( S t S ( t 1) ) + (1 γ ) b ( t 1) Pemulusan Musiman : I t X t = β + ( 1 β ) I ( t L) S t Peramalan : F ( t+ m) = ( St + bt * m) I( t L+ m) Dimana : L = Panjang musiman b I = Komponen trend = Faktor penyesuaian musiman F t+m = Peramalan untuk m periode ke depan Salah satu masalah dalam menggunakan metode Winter adalah menentukan nilai-nilai untuk α, β, dan γ tersebut yang akan berpengaruh dalam perhitungan nilainilai error seperti MSE atau MAPE. Pendekatan untuk menentukan nilai ini biasanya secara trial and error, walaupun mungkin juga digunakan algoritma optimasi non-linear untuk mendapatkan nilai parameter optimal. Karena kedua pendekatan tersebut memakan banyak waktu dan mahal, maka metode ini jarang digunakan. Metode ini baru dipakai jika banyak himpunan data yang harus ditangani. Untuk menginisialisasi metode peramalan Winter yang diterangkan di atas, kita perlu menggunakan paling sedikit satu data musiman lengkap (yaitu L periode) untuk menentukan estimasi awal dari indeks musiman, L t-1, dan kita perlu menaksir faktor
24 44 trend dari satu periode ke periode selanjutnya. Adapun rumus yang digunakan untuk inisialisasi awal yaitu : X I t X X L S L+ 1 = L+ 1 = Metode peramalan Weight Moving Average Menurut Render dan Heizer apabila ada pola atau trend yang dapat kita deteksi, timbangan bisa digunakan untuk menempatkan lebih banyak tekanan pada nilai baru. Ini membuat teknik itu lebih responsif terhadap perubahan karena setiap periode yang lebih baru mungkin lebih besar timbangannya. Pilihan timbangan bersifat arbiter karena tidak ada rumus untuk menentukannya. Jika bulan terakhir ditimbang terlalu berat, ramalan bisa mencerminkan perubahan dalam permintaan yang tidak biasa atau pol penjualan yang terlalu cepat. Rumus = ( Timbangan _ untuk _ periode _ n)( Per mintaan _ dalam _ periode _ n) Timbangan Metode peramalan Single Eksponensial Smoothing Menurut Render dan Heizer rumus untuk Single Eksponensial Smoothing 1 parameter adalah : Inisialisasi : F 1 = X 1 Peramalan : Ft F + α ( A F ) = t 1 t 1 t 1 Dimana : A t-1 = data aktual permintaan pada periode t-1.
25 45 F t = data peramalan pada periode t F t-1 = data peramalan pada periode t-1 α = konstanta pemulusan yang bernilai antara 0 sampai Metode peramalan Single Moving Average Rata-rata bergerak bermanfaat jika mengasumsikan bahwa permintaan pasar tetap stabil sepanjang waktu. Menurut Render dan Heizer rumus untuk Single Moving Average adalah: Rata-rata bergerak = Per mintaan _ data _ n _ periode _ sebelumnya n 3.5 Statistik Ketepatan Peramalan Ukuran Statistik Standar Jika X t merupakan data aktual untuk periode t dan F t merupakan ramalan (atau nilai kecocokan / fitted value) untuk periode yang sama, maka kesalahan didefinisikan sebagai : e t = X t F t Jika terdapat nilai pengamatan dan ramalan untuk n periode waktu, maka akan terdapat n buah galat dan ukuran statistik standar berikut dapat didefinisikan : Nilai Tengah Galat Absolut (Mean Absolute Error) 1 MAE = n n t = 1 et
26 46 Nilai Tengah Galat Kuadrat (Mean Squared Error) 1 MSE= n n t = 1 et 2 Deviasi Standar Galat (Standard Deviation of Error) SDE = 1 n 1 n t = 1 et 2 Dua formulasi yang sering digunakan dalam menghitung kesalahan yaitu mean absolute error (yang dalam beberapa buku disebut sebagai mean absolute deviation) dan mean squared error (MSE). Perbedaan keduanya adalah terletak pada bobot kesalahan, satu dalam bentuk angka kesalahan absolut dan yang lainnya dalam bentuk nilai kuadrat. Tujuan optimalisasi statistik seringkali adalah untuk memilih suatu model agar MSE minimal, tetapi ukuran ini mempunyai dua kelemahan. Pertama, ukuran ini menunjukkan pencocokan (fitting) suatu model terhadap data hitoris. Pencocokan seperti ini tidak perlu mengimplikasikan peramalan yang baik. Suatu model terlalu cocok (over fitting) dengan deret data, yang berarti sama dengan memasukkan unsur random sebagai bagian proses bangkitan, berarti tidak berhasil mengenali pola non-acak dalam data dengan baik. Perbandingan nilai MSE yang terjadi selama fase pencocokan peramalan adalah mungkin memberikan sedikit indikasi ketepatan model dalam peramalan. Kedua, sebagai ukuran ketepatan model adalah berhubungan dengan kenyataan bahwa metode yang berbeda akan menggunakan prosedur yang berbeda pula dalam fase pencocokan. Dalam fase peramalan, penggunaan MSE sebagai suatu ukuran ketepatan juga dapat menimbulkan masalah. Ukuran ini tidak memudahkan perbandingan deret berkala yang berbeda dan untuk selang waktu yang berlainan, karena MSE merupakan ukuran
27 47 para absolut. Lagipula, interpretasinya tidak bersifat intuitif bahkan untuk para spesialis sekalipun, karena ukuran ini menyangkut pengkuadratan sederetan nilai (Makridakis, 1999, p58-61) Ukuran ukuran Relatif Karena adanya keterbatasan MSE sebagai suatu ukuran ketepatan peramalan, maka muncul usulan alternatif alternatif lain yang diantaranya menyangkut galat persentase. Tiga ukuran yang sering digunakan (Makridakis, 1999, p61-62) adalah : Galat Persentase (Percentage Error) Xt Ft PE = *100 Xt Nilai Tengah Galat Persentase (Mean Percentage Error) MPE 1 n = n = t 1 PE t Nilai Tengah Galat Persentase Absolut (Mean Absolute Percentage Error) 1 n MAPE n = t = 1 PE t PE dapat digunakan untuk menghitung kesalahan persentase setiap periode waktu. Nilai-nilai ini kemudian dapat dirata-ratakan untuk memberikan nilai tengah kesalahan persentase (MPE). Namun MPE mungkin mengecil karena PE positif dan negatif cenderung saling meniadakan. Dari sana MAPE didefinisikan dengan menggunakan nilai absolut dari PE.
28 Pengukuran Waktu Menurut pendapat Sutalaksana (1979, p131) pengukuran waktu adalah pekerjaan mengamati dan mencatat waktu kerja baik setiap elemen ataupun siklus dengan menggunakan alat-alat yang telah disiapkan. Teknik pengukuran waktu terbagi atas dua bagian yaitu secara langsung dan secara tidak langsung. Pengukuran secara langsung adalah pengukuran yang dilakukan secara langsung yaitu ditempat dimana pekerjaan yang bersangkutan dilaksanakan. Dua cara yang termasuk didalamnya adalah cara jam henti dan sampling pekerjaan. Cara tidak langsung melakukan perhitungan waktu tanpa harus berada ditempat pekerjaan yaitu dengan membaca tabel-tabel yang tersedia asalkan mengetahui jalannya pekerjaan melalui elemen-elemen pekerjaan atau elemenelemen gerakan. Pengukuran waktu ditujukan untuk mendapatkan waktu baku penyelesaian pekerjaan yaitu waktu yang dibutuhkan secara wajar oleh seorang pekerja normal untuk menyelesaikan suatu pekerjaan yang dijalankan dalam sistem kerja terbaik (Sutalaksana, 1979, p117). 3.7 Pengukuran Waktu baku Waktu baku merupakan waktu yang dibutuhkan oleh seorang pekerja yang memiliki tingkat kemampuan rata-rata untuk menyelesaikan suatu pekerjaan. Di sini sudah meliputi kelonggaran waktu yang diberikan dengan memperhatikan situasi dan kondisi pekerjaan yang harus diselesaikan tersebut. Dengan demikian, maka waktu baku yang dihasilkan dalam aktivitas pengukuran kerja ini akan dapat digunakan sebagai alat untuk membuat rencana penjadwalan kerja yang menyatakan berapa lama suatu kegiatan
29 49 itu harus berlangsung dan berapa output yang dihasilkan serta berapa jumlah tenaga kerja yang dibutuhkan untuk menyelesaikan pekerjaan tersebut Pengukuran Pendahuluan Tujuan dilakukan pengukuran pendahuluan adalah untuk mengetahui berapa kali pengukuran harus dilakukan untuk tingkat-tingkat ketelitian dan kepercayaan yang diinginkan. Tahap-tahapnya adalah sebagai berikut (Sutalaksana, 1979, p132) : 1. Melakukan beberapa buah pengukuran yang banyaknya ditentukan oleh pengukur. 2. Menguji keseragaman data, menghitung jumlah pengukuran yang diperlukan, dan bila pengukuran belum mencukupi maka dilanjutkan dengan pengukuran pendahuluan kedua Uji Keseragaman Data Uji keseragaman data perlu untuk dilakukan terlebih dahulu sebelum menggunakan data yang diperoleh guna menetapkan waktu baku. Uji keseragaman data bisa dilaksanakan dengan cara visual dan/atau mengaplikasikan peta kontrol (control chart). Peta kontrol (control chart) adalah suatu alat yang tepat guna dalam menguji keseragaman data dan/atau keajegan data yang diperoleh dari hasil pengamatan. Uji keseragaman data secara visual dilakukan secara sederhana mudah dan cepat. Disini kita hanya sekedar melihat data yang terkumpul dan seterusnya mengedentifikasikan data yang terlalu ekstrim. Yang dimaksud dengan data yang terlalu ekstrim adalah data yang terlalu besar atau yang terlalu kecil dan jauh menyimpang dari trend rata-ratanya. Data yang terlalu ekstrim ini sebaiknya dibuang jauh-jauh dan tidak dimasukkan ke dalam perhitungan selanjutnya (Wignjosoebroto, 2000, p ).
30 50 Langkah langkah yang dilakukan untuk menguji keseragaman data sebagai berikut : 1. Hasil pengukuran dikelompokkan ke dalam subgrup-subgrup dan hitung rata-rata dari tiap subgrup : X k = Xi n dimana : n = ukuran subgrup, yaitu banyaknya data dalam satu subgrup k = jumlah subgrup yang terbentuk Xi = data pengamatan 2. Hitung rata-rata keseluruhan, yaitu rata-rata dari rata-rata subgrup : X = k X k 3. Hitung standar deviasi dari waktu penyelesaian : Xi X σ = N 1 dimana: N = jumlah pengamatan pendahuluan yang telah dilakukan 4. Hitung standar deviasi dari distribusi harga rata-rata subgrup : 2 σ = X σ n 5. Tentukan Batas Kontrol Atas (BKA) dan Batas Kontrol Bawah (BKB) : BKA = x + ( Zσ ) X BKB = x ( Zσ ) X
31 51 Dimana : Z = koefisien pada distribusi normal sesuai dengan tingkat kepercayaan, rumusnya : Z = 1 1 β 2 6. Jika seluruh rata-rata data waktu subgrup berada di daerah antara BKA dan BKB, maka data waktu dikatakan seragam Uji Kecukupan Data Waktu yang diperlukan untuk melaksanakan elemen kerja pada umumnya akan sedikit berbeda dari siklus ke siklus kerja sekalipun operator bekerja pada kecepatan normal dan uniform, tiap elemen dalam siklus yang berbeda tidak selalu akan bisa diselesaikan dalam waktu yang persis sama. Aktivitas pengukuran kerja pada dasarnya adalah merupakan proses sampling. Konsekuensi yang diperoleh adalah bahwa semakin besar jumlah siklus kerja yang diamati atau diukur maka akan semakin mendekati kebenaran akan data waktu yang diperoleh. Konsistensi dari hasil pengukuran dan pembacaan waktu oleh stop-watch akan merupakan hal yang diinginkan dalam proses pengukuran kerja. Semakin kecil variasi atau perbedaan data waktu yang ada, maka jumlah pengukuran atau pengamatan yang harus dilakukan juga akan cukup kecil. Sebaliknya, semakin besar variabilitas dari data waktu pengukuran, akan menyebabkan jumlah siklus kerja yang diamati juga akan semakin besar agar bisa diperoleh ketelitian yang dikehendaki (Wignjosoebroto, 2000, p183). Perhitungan uji kecukupan data dapat dilakukan setelah semua harga rata-rata subgrup berada dalam batas kendali. Rumus dari kecukupan data adalah:
32 52 Z N' = s N Xi 2 Xi ( Xi) 2 2 dimana: N = jumlah pengukuran data minimum yang dibutuhkan N = jumlah pengukuran pendahuluan yang telah dilakukan setelah dikurangi data pengukuran di luar BKA atau BKB Z = bilangan konversi pada distribusi normal sesuai dengan tingkat kepercayaan s = tingkat ketelitian Jumlah pengukuran waktu dapat dikatakan cukup apabila jumlah pengukuran data minimum yang dibutuhkan secara teoritis lebih kecil atau sama dengan jumlah pengukuran pendahuluan yang sudah dilakukan (N N). Jika jumlah pengukuran masih belum mencukupi, maka harus dilakukan pengukuran lagi sampai jumlah pengukuran tersebut cukup Tingkat Ketelitian dan Tingkat Kepercayaan Yang dicari dengan melakukan pengukuran-pengukuran ini adalah waktu yang sebenarnya dibutuhkan untuk menyelesaikan suatu pekerjaan. Karena waktu penyelesaian ini tidak pernah diketahui sebelumnya maka harus diadakan pengukuranpengukuran. Yang ideal tentunya dilakukan pengukuran-pengukuran yang sangat banyak (sampai tak terhingga kali) karena dengan demikian diperoleh jawaban yang pasti. Tetapi hal ini jelas tidak mungkin karena keterbatasan waktu, tenaga dan tentunya biaya. Namun sebaliknya jika tidak dilakukan beberapa kali pengukuran saja, dapat diduga
33 53 hasilnya sangat kasar. Sehingga yang diperlukan adalah jumlah pengukuran yang tidak membebankan waktu, tenaga dan biaya yang besar tetapi hasilnya tidak dapat dipercaya. Jadi,walaupun jumlah pengukuran tidak berjuta kali, tetapi jelas tidak hanya beberapa kali saja. Dengan tidak dilakukannya pengukuran yang banyak sekali ini, pengukur akan kehilangan sebagian kepastian akan ketetapan/rata-rata waktu penyelesaian yang sebenarnya. Hal ini harus disadari. Tingkat ketelitian dan tingkat kepercayaan adalah pencerminan tingkat kepastian yang diinginkan oleh pengukur setelah memutuskan tidak akan melakukan pengukuran yang sangat banyak. Tingkat ketelitian menunjukkan penyimpangan maksimum hasil pengukuran dari waktu penyelesaian sebenarnya. Hal ini biasanya dinyatakan dalam persen. Sedangkan, tingkat kepercayaan menunjukkan besarnya kepercayaan pengukur bahwa hasil yang diperoleh memenuhi syarat ketelitian tadi. Inipun dinyatakan dalam persen (Sutalaksana, 1979, p135) Penyesuaian Penyesuaian adalah proses dimana analisa pengukuran waktu membandingkan penampilan operator (kecepatan atau tempo) dalam pengamatan dengan konsep pengukur sendiri tentang bekerja secara wajar. Setelah pengukuran berlangsung, pengukur harus mengamati kewajaran kerja yang ditunjukkan operator. Ketidakwajaran dapat saja terjadi, misalnya bekerja tanpa kesungguhan, sangat cepat seolah-olah diburu waktu, atau karena menjumpai kesulitan-kesulitan, seperti karena kondisi ruangan yang buruk. Sebab-sebab seperti ini mempengaruhi kecepatan kerja yang berakibat terlalu singkat atau terlalu panjangnya waktu penyelesaian. Hal ini jelas tidak diinginkan karena
34 54 waktu baku yang dicari adalah waktu yang diperoleh dari kondisi dan cara kerja yang baku yang diselesaikan secara wajar. Andai kata ketidakwajaran ada, maka pengukur harus mengetahuinya dan menilai seberapa jauh hal itu terjadi. Penilaian perlu diadakan karena berdasarkan inilah penyesuaian dilakukan. Jadi jika pengukur mendapatkan harga rata-rata siklus/elemen yang diketahui diselesaikan dengan kecepatan tidak wajar oleh operator, maka agar harga rata-rata tersebut menjadi wajar, pengukur harus menormalkannya dengan melakukan penyesuaian. Biasanya penyesuaian dilakukan dengan mengalikan waktu siklus rata-rata atau waktu elemen rata-rata dengan suatu harga p yang disebut faktor penyesuaian. Besarnya harga p tentunya sedemikian rupa sehingga hasil perkalian yang diperoleh mencerminkan waktu yang sewajarnya atau yang normal. Bila pengukur berpendapat bahwa operator bekerja di atas normal (terlalu cepat), maka harga p-nya akan lebih besar dari satu (p 1 ); sebaliknya jika operator dipandang bekerja di bawah normal, maka harga p akan lebih kecil dari satu (p). Seandainya pengukur berpendapat bahwa operator bekerja dengan wajar, maka harga p-nya sama dengan satu (p=1) (Sutalaksana, 1979, p138). Terdapat beberapa metode dalam menentukan faktor penyesuaian (Sutalaksana, 1979, p ), yaitu : a. Metode Persentase Merupakan cara yang paling awal digunakan dalam melakukan penyesuaian. Besarnya faktor penyesuaian sepenuhnya dilakukan oleh pengukur melalui pengamatannya selama melakukan pengukuran. Cara ini adalah cara yang paling
35 55 mudah dan sederhana tetapi cara ini bersifat subyektif, kurang teliti karena kasarnya penilaian. b. Metode Shumard Cara ini memberikan patokan-patokan penilaian melalui kelas-kelas performance kerja dimana setiap setiap kelas tersebut mempunyai nilai sendiri-sendiri. Di sini pengukur diberi patokan untuk menilai performansi kerja operator menurut kelas-kelas Superfast +, Fast, Fast -, Excellent, dan seterusnya. c. Metode Westinghouse Cara ini mengarahkan penilaian pada empat faktor yang dianggap menentukan kewajaran atau ketidakwajaran dalam bekerja, yaitu : keterampilan, usaha, kondisi kerja dan konsistensi. Setiap faktor terbagi dalam kelas-kelas dan nilainya masing-masing. d. Metode Objektif Merupakan metode yang memperhatikan dua faktor, yaitu : kecepatan kerja dan tingkat kesulitan pekerjaan. Kedua faktor inilah yang dipandang bersama-sama untuk menentukan berapa harga penyesuaian untuk mendapatkan waktu normal. e. Metode Bedaux dan Sintesa Cara Bedaux tidak banyak berbeda dengan cara Shumard, hanya saja niali-nilai pada cara Bedaux dinyatakan dalam B. Sedangkan cara sintesa waktu penyelesaian setiap elemen gerakan dibandingkan dengan harga-harga yang diperoleh dari tabel-tabel waktu gerakan untuk kemudain dihitung harga rataratanya.
36 Kelonggaran Kelonggaran diberikan untuk tiga hal yaitu untuk kebutuhan pribadi, menghilangkan rasa fatique, dan hambatan-hambatan yang tidak dapat dihindarkan. Ketiganya ini merupakan hal-hal yang secara nyata dibutuhkan oleh pekerja, dan yang selama pengukuran tidak diamati, diukur, dicatat ataupun dihitung. Karenanya sesuai pengukuran dan setelah mendapatkan waktu normal, kelonggaran perlu ditambahkan (Sutalaksana, 1979, p ). 1) Kelonggaran untuk kebutuhan pribadi Yang temasauk dalam kebutuhan pribadi disini adalah hal-hal seperti minum sekadarnya untuk menghilangkan rasa haus, kekamar kecil, becakap-cakap dengan teman sekerja untuk menghilangkan ketegangan dan kejemuhan kerja. Kebutuhan-kebutuhan ini jelas terlihat sebagai sesuatu yang mutlak. Besarnya kelonggaran yang diberikan untuk kebutuhan pribadi seperti itu berbeda-beda dari satu pekerjaan ke pekerjaan lainnya karena setiap pekerjaan memiliki karakteristik sendiri-sendiri dengan tuntutan yang berbeda-beda. 2) Kelonggaran untuk menghilangkan rasa fatique Rasa fatique tercermin antara lain dari menurunnya hasil produksi baik jumlah maupun kualitas. Salah satu cara untuk menentukan besarnya kelonggaran ini adalah dengan melakukan pengamatan sepanjang hari kerja dan mencatat pada saat-saat dimana hasil produksi menurun. 3) Kelonggaran untuk hambatan-hambatan tak terhindarkan Dalam melaksanakan pekerjaannya, pekerja tidak akan lepas dari berbagai hambatan. Ada hambatan yang dapat dihindarkan seperti mengobrol yang berlebihan dan menganggur dengan sengaja ada pula hambatan yang tidak dapat
37 57 dihindarkan karena berada diluar kekuasaan pekerja untuk mengendalikannya. Beberapa contoh yang termasuk kedalam hambatan tak terhindarkan adalah : a. Menerima atau meminta petunjuk kepada pengawas b. Melakukan penyesuaian-penyesuaian mesin c. Memperbaiki kemacetan-kemacetan singkat seperti mengganti alat potong yang patah, memasang kembali ban yang lepas dan sebagainya. d. Mengasah peralatan potong. e. Mengambil alat-alat khusus atau bahan-bahan khusus dari gudang Perhitungan Waktu Baku Kegiatan pengukuran waktu dinyatakan selesai bila semua data yang diperoleh telah seragam, dan jumlahnya telah memenuhi tingkat ketelitian dan keyakinan yang diinginkan. Selanjutnya adalah mengolah data untuk menghitung waktu baku yang diperoleh dengan langkah-langkah: 1. Menghitung waktu siklus Xi Wr = N dimana : Xi = data yang termasuk dalam batas kendali 2. Menghitung waktu normal dimana : p adalah faktor penyesuaian 3. Menghitung waktu baku Wn = Wr p Wb = Wn (1+ a)
38 58 dimana : a = kelonggaran yang diberikan pekerja untuk menyelesaikan pekerjaannya disamping waktu normal. 3.8 Master Production Schedule (MPS) Pengertian MPS Menurut Gaspersz (1998, p ) pada dasarnya jadwal produksi induk (Master Production Schedulling = MPS) merupakan suatu pernyataan tentang produk akhir (termasuk parts pengganti dan suku cadang) dari suatu perusahaan industri manufaktur yang merencanakan memproduksi output berkaitan dengan kuantitas dan periode waktu. MPS mendisagregasikan dan mengimplementasikan rencana produksi. Apabila rencana produksi yang merupakan hasil dari proses perencanaan produksi dinyatakan dalam bentuk agregat, jadwal produksi induk yang merupakan hasil dari proses penjadwalan produksi induk dinyatakan dalam konfigurasi spesifik dengan nomor-nomor item yang ada dalam Item Master and BOM (Bill of Material) files. Aktifitas penjadwalan produksi induk pada dasarnya berkaitan dengan bagaimana menyusun dan memperbaharui jadwal produksi induk, memproses transaksi MPS, memelihara catatan-catatan MPS, mengevaluasi efektifitas dari MPS, dan memberikan laporan evaluasi dalam periode waktu yang teratur untuk keperluan umpanbalik dan tinjauan ulang. MPS sering didefinisikan sebagai anticipated build schedule untuk item-item yang disusun oleh perencana jadwal produksi induk (master schedule). MPS membentuk jalinan komunikasi antara bagian pemasaran dan bagian manufakturing, sehingga seyogyanya bagian pemasaran juga mengetahui informasi yang ada dalam MPS
39 59 terutama berkaitan dengan ATP (Available To Promise) agar dapat memberikan janji yang akurat kepada pelanggan. Penjadwalan produksi induk pada dasarnya berkaitan dengan aktifitas melakukan empat fungsi utama berikut : 1. Menyediakan atau memberikan input utama kepada sistem perencanaan kebutuhan material dan kapasitas (material and capacity requirements planning = M&CRP). 2. Menjadwalkan pesanan-pesanan produksi dan pembelian (production and purchase orders) untuk item-item MPS. 3. Memberikan landasan untuk penentuan kebutuhan sumber daya dan kapasitas. 4. Memberikan basis untuk pembuatan janji tentang penyerahan produk (delivery promises) kepada pelanggan. Gambar 3.7 Proses Penjadwalan Produksi Sebagai suatu aktifitas proses, penjadwalan produksi induk (MPS) yang terlihat pada gambar 3.7, MPS membutuhkan lima input utama yaitu antara lain :
40 60 Data Permintaan Total merupakan salah satu sumber data bagi proses penjadwalan produksi induk. Data permintaan total berkaitan dengan ramalan penjualan (sales forecasts) dan pesanan-pesanan (orders). Status Inventori berkaitan dengan informasi tentang on-hand inventory, stok yang dialokasikan untuk penggunaan tertentu (allocated stock), pesanan-pesanan produksi dan pembelian yang dikeluarkan (released production and purchase orders), dan firm planned orders. MPS harus mengetahui secara akurat berapa banyak inventori yang tersedia dan menentukan berapa banyak yang harus dipesan. Rencana Produksi memberikan sekumpulan batasan kepada MPS. MPS harus menjumlahkannya untuk menentukan tingkat produksi, inventori, dan sumbersumber daya lain dalam rencana produksi itu. Data Perencanaan berkaitan dengan aturan-aturan tentang lot-sizing yang harus digunakan, shrinkage factor, stok pengaman (safety stock), dan waktu tunggu (lead time) dari masing-masing item yang biasanya tersedia dalam file induk dari item (Item Master File). Informasi dari RCCP berupa kebutuhan kapasitas untuk mengimplementasikan MPS menjadi salah satu input bagi MPS. RCCP menentukan kebutuhan kapasitas untuk mengimplementasikan MPS, menguji kelayakan dari MPS, dan memberikan umpan-balik kepada perencana atau penyusun jadwal produksi induk (Master Scheduler) untuk mengambil tindakan perbaikan apabila ditemukan adanya ketidaksesuaian antara penjadwalan produksi induk dan kapasitas tersedia.
41 Teknik Penyusunan MPS Tabel 3.1 Contoh Tabel MPS Item No : Description : Lead time : Safety stock : On Hand : Demand Time Fences : Planning Time Fences : Period Past Due Forecast Actual Order (AO) Project Available Balance (PAB) Available to Promise (ATP) Master Schedule (MS) Penjelasan mengenai komponen-komponen yang terdapat dalam tabel 3.1 MPS adalah sebagai berikut : a) Item No menyatakan kode produk yang akan diproduksi. b) Lead time menyatakan waktu yang dibutuhkan untuk me-release atau memanufaktur suatu produk. c) On hand menyatakan jumlah produk yang ada di gudang sebagai sisa periode sebelumnya. d) Description menyatakan deskripsi produk secara umum. e) Safety stock merupakan stok pengaman yang harus ada di tangan sebagai antisipasi terhadap kebutuhan di masa akan datang.
42 62 f) Demand Time Fences (DTF) adalah periode mendatang dari MPS di mana dalam periode ini perubahan terhadap MPS tidak diijinkan atau tidak diterima karena akan menimbulkan kerugian biaya yang besar akibat ketidaksesuaian atau kekacauan jadwal. g) Planning Time Fences (PTF) merupakan batas waktu penyesuaian pesanan di mana permintaan masih boleh berubah. Perubahan masih akan dilayani sepanjang material dan kapasitas masih tersedia. h) Forecast merupakan rencana penjualan atau peramalan penjualan untuk item yang dijadwalkan itu. i) Actual Order (AO) merupakan pesanan-pesanan yang diterima dan bersifat pasti. j) Projected Available Balance (PAB) merupakan perkiraan jumlah sisa produk pada akhir periode. PAB dihitung dengan menggunakan rumus: PAB t < DTF = PAB t-1 + MS t AO PAB DTF < t < PTF = PAB t-1 + MS t AO atau F t (pilih yang besar) k) Available to Promise memberikan informasi tentang berapa banyak item atau produk tertentu yang dijadwalkan pada periode waktu itu tersedia untuk pesanan pelanggan, sehingga berdasarkan informasi ini bagian pemasaran dapat membuat janji yang tepat bagi pelanggan. ATP t = ATP t-1 + MS t AO t l) Master Schedule merupakan jadwal produksi atau manufakturing yang diantisipasi untuk produk atau item tertentu.
43 Material Requirement Planning (MRP) Pengertian MRP MRP merupakan suatu prosedur logis berupa aturan keputusan dan teknik transaksi berbasis komputer yang dirancang untuk menerjemahkan jadwal induk produksi menjadi kebutuhan bersih untuk semua item. Sistem MRP dikembangkan untuk membantu perusahaan manufaktur mengatasi kebutuhan akan item-item dependent secara lebih baik dan efisien. Menurut Schoeder (2000, p368) persediaan untuk independent demand didefinisikan sebagai persediaan yang dipengaruhi atau tunduk pada kondisi-kondisi pasar dan bebas dari operasi misalnya : persediaan barang jadi dan suku cadang pada suatu perusahaan manufaktur yang digunakan untuk memenuhi permintaan konsumen pada suatu perusahaan persediaan ini harus dikelola dengan metoda titik pemesanan. Sebaliknya untuk dependent demand tidak dipengaruhi oleh kondisi-kondisi pasar dan hanya tergantung pada permintaan suku cadang ditingkat atasnya. Beberapa ciri-ciri dependent demand adalah : - Ada hubungan matematis antara kebutuhan suatu item dengan item yang lain yang berada pada level yang lebih tinggi - Kebutuhan diturunkan dari pemakaian item dalam pembuatan item lain - Misal kebutuhan akan bahan baku, komponen atau su assembly dalam pembuatan suatu produk jadi - Item perlu ada hanya pada saat dibutuhkan - Diperlukan MRP untuk menjadwalkan seluruh komponen dependent yang diperlukan dalam rencana MPS/JIP
44 Tujuan dan Manfaat Sistem MRP Sistem MRP adalah suatu sistem yang bertujuan untuk menghasilkan informasi yang tepat untuk melakukan tindakan yang tepat (pembatalan pesanan, pesan ulang, dan penjadwalan ulang). Tindakan ini juga merupakan dasar untuk membuat keputusan baru mengenai pembelian atau produksi yang merupakan perbaikan atas keputusan yang telah dibuat sebelumnya. Ada empat tujuan yang menjadi ciri utama sistem MRP yaitu sebagai berikut : 1. Menentukan kebutuhan pada saat yang tepat Menentukan secara tepat kapan sutu pekerjaan harus selesai (atau meterial harus tersedia) untuk memenuhi permintaan atas produk akhir yang sudah direncanakan dalam jadwal induk produksi (JIP). 2. Menentukan kebutuhan minimal setiap item Dengan diketahuinya kebutuhan akhir, sistem MRP dapat menentukan secara tepat sistem penjadwalan (prioritas) untuk memenuhi semua kebutuhan minimal setiap item. 3. Menentukan pelaksanaan rencana pemesanan Memberikan indikasi kapan pemesanan atau pembatalan pemesanan harus dilakukan. Pemesanan perlu dilakukan lewat pembelian atau dibuat pada pabrik sendiri. 4. Menentukan penjadwalan ulang atau pembatalan atas suatu jadwal yang sudah direncanakan Apabila kapasitas yang ada tidak mampu memenuhi pesanan yang dijadwalkan pada waktu yang diinginkan, maka sistem MRP dapat memberikan indikasi untuk melakukan rencana penjadwalan ulang (jika mungkin) dengan menentukan
45 65 prioritas pesanan yang realistik. Jika penjadwalan ulang ini masih tidak memungkinkan untuk memenuhi pesanan, maka pembatalan atas suatu pesanan harus dilakukan. Beberapa manfaat dari MRP (Render dan Heizer, 1997, p362), adalah: - Peningkatan pelayanan dan kepuasan konsumen - Peningkatan pemanfaatan fasilitas dan tenaga kerja - Perencanaan dan penjadwalan persediaan yang lebih baik - Tanggapan yang lebih cepat terhadap perubahan dan pergeseran pasar - Tingkat persediaan menurun tanpa mengurangi pelayanan kepada konsumen Input MRP Sebagai suatu sistem, MRP membutuhkan lima input utama (Gaspersz, 2001, p177) seperti pada gambar 3.8 berikut : Perencanaan Kapasitas (Capacity Planning) INPUT : 1. MPS 2. Bill of Materials 3. Item Master 4. Pesanan-pesanan 5. Kebutuhan PROSES : Perencanaan Kebutuhan Material (MRP) OUTPUT : - Primary (orders) Report - Action Report - Pegging Report Umpan Balik Gambar 3.8 Proses Kerja dari MRP
46 66 Kelima sumber input utama pada gambar 3.8 di atas adalah : 1. Master Production Schedule (MPS) yang suatu rencana terperinci tentang tentang produk akhir apa yang direncanakan perusahaan untuk diproduksi, berapa kuantitas yang dibutuhkan, pada waktu kapan dibutuhkan, dan kapan produk itu akan diproduksi. 2. Bill of Material (BOM) merupakan daftar jumlah komponen, campuran bahan, dan bahan baku yang diperlukan untuk membuat suatu produk. MRP menggunakan BOM sebagai basis untuk perhitungan banyaknya setiap material yang dibutuhkan untuk setiap periode waktu. Bagan bahan dalam komputer harus selalu benar dan dapat menggambarkan bagaimana produk itu dibuat. 3. Item master merupakan suatu file yang berisi informasi tentang material, parts subassemblies, dan produk-produk yang menunjukkan kuantitas on-hand, kuantitas yang dialokasikan (allocated quantity), waktu tunggu yang direncanakan (planned lead times), ukuran lot (lot size), stok pengaman, kriteria lot sizing, toleransi untuk scrap atau hasil, dan berbagai informasi penting lainnya yang berkaitan dengan suatu item. 4. Pesanan-pesanan (orders) berisi tentang banyaknya dari setiap item yang akan diperoleh sehingga akan meningkatkan stock on-hand di masa mendatang. Pada dasarnya terdapat dua jenis pesanan, yaitu: shop orders or work orders or manufacturing orders berupa pesanan-pesanan yang akan dibuat atau diproduksi di dalam pabrik, dan purchase orders yang merupakan pesanan-pesanan pembelian suatu item dan pemasok eksternal. 5. Kebutuhan-kebutuhan (requirements) akan memberitahukan tentang banyaknya masing-masing item itu dibutuhkan sehingga akan mengurangi stock on-hand di
47 67 masa mendatang. Pada dasarnya terdapat dua jenis kebutuhan, yaitu kebutuhan internal dan eksternal. Kebutuhan internal digunakan dalam PABrik untuk membuat produk lain, dan kebutuhan eksternal yang akan dikirim ke luar PABrik berupa: pesanan pelanggan (customer orders), service parts, dan sales forecasts Mekanisme Dasar dari Proses MRP Tabel 3.2 Contoh Tabel MRP Part no : Description: BOM UOM : On hand : Lead time : Order policy : Safety stock : Lot size : period Past due gross requirement scheduled receipts projected available balance 1 net requirement planned order receipts planned order release projected available balance 2 Penjelasan mengenai tabel sebelumnya adalah sebagai berikut : 1. Part no menyatakan kode komponen atau material yang akan dirakit 2. BOM (Bill of Materials) UOM (Unit of Material) menyatakan satuan komponen atau material yang akan dirakit
48 68 3. Lead time menyatakan waktu yang dibutuhkan untuk merilis atau mengirim suatu komponen. 4. Safety stock menyatakan cadangan material yang harus ada sebagai antisipasi kebutuhan dimasa yang akan datang. 5. Description menyatakan deskripsi material secara umum. 6. On Hand menyatakan jumlah material yang ada di tangan sebagai sisa periode sebelumnya. 7. Order Policy menyatakan jenis pendekatan yang digunakan untuk menentukan ukuran lot yang dibutuhkan saat memesan barang. 8. Lot Size menyatakan penentuan ukuran lot saat memesan barang. 9. Gross Requirement menyatakan jumlah yang akan diproduksi atau dipakai pada setiap periode. Untuk item akhir (produk jadi), kuantitas gross requirement sama dengan MPS (Master Production Schedule). Untuk komponen, kuantitas gross requirement diturunkan dari Planned Order Release induknya. 10. Scheduled Receipts menyatakan material yang dipesan dan akan diterima pada periode tertentu. 11. Projected Available Balance I ( PAB I ) menyatakan kuantitas material yang ada di tangan sebagai persediaan pada awal periode. PAB I dapat dihitung dengan menambahkan material on hand periode sebelumnya dengan Scheduled Receipts pada periode itu dan menguranginya dengan Gross Requirement pada periode yang sama. Atau jika dimasukkan pada rumus adalah sebagai berikut : PAB I = (PAB II) t-1 - (Gross Requirement) t + (Scheduled Receipts) t 12. Net Requirements menyatakan jumlah bersih (netto) dari setiap komponen yang harus disediakan untuk memenuhi induk komponennya atau untuk memenuhi
49 69 Master Production Scheduled. Net Requirements sama dengan nol jika Projected Available Balance I lebih besar dari nol dan sama dengan minus jika Projected Available Balance I kurang sama dengan dari nol. Net Requirement = -(PAB I) t + Safety stock 13. Planned Order Receipts menyatakan kuantitas pemesanan yang dibutuhkan pada suatu periode. Planned Order Receipts muncul pada saat yang sama dengan Net Requirements, akan tetapi ukuran pemesanannya (lot sizing) bergantung kepada Order Policy-nya. Selain itu juga harus mempertimbangkan Safety stock juga. 14. Planned Order Release menyatakan kapan suatu pesanan sudah harus dilakukan atau dimanufaktur sehingga komponen ini tersedia ketika dibutuhkan oleh induk itemnya. Kapan suatu pesanan harus dilakukan ditetapkan dengan periode Lead time sebelum dibutuhkan. 15. Projected Available Balance II ( PAB II ) menyatakan kuantitas material yang ada di tanagn sebagai persediaan pada akhir periode. PAB II dapat dihitung dengan cara mengurangkan Planned Order Receipts pada Net Requirements. PAB II = (PAB II) t-1 + (Schedule receipt) t (Gross Requirement) t + atau dapat disingkat : (Planned Order Receipt) t PAB II = (PAB I) t + (Planned Order Receipt) t Prosedur Sistem MRP Sistem MRP memiliki empat langkah utama yang selanjutnya keempat langkah ini harus diterapkan satu per satu pada periode perencanaan dan pada setiap item. Langkah-langkah tersebut adalah sebagai berikut :
50 70 - Netting : Perhitungan kebutuhan bersih. - Lotting : Penentuan ukuran lot. - Offsetting : Penetapan besarnya lead time. - Explosion : Perhitungan selanjutnya untuk item level di bawahnya Netting Netting adalah proses perhitungan untuk menetapkan jumlah kebutuhan bersih, yang besarnya merupakan selisih antara kebutuhan kotor dengan keadaaan persediaan ( yang ada dalam persediaan dan yang sedang dipesan). Data yang diperlukan dalam proses perhitungan kebutuhan bersih ini adalah : 1. Kebutuhan kotor untuk setiap periode. 2. Persediaan yang dipunyai pada awal perencanaan. 3. Rencana penerimaan untuk setiap periode perencanaan Lotting Untuk menjamin bahwa semua kebutuhan-kebutuhan akan dipenuhi, pesanan akan dijadwalkan untuk penyelesaian pada awal periode dimana ada kebutuhan bersih yang positif. Ukuran dari pesanan dapat mungkin sama dengan kebutuhan bersih di periode yang bersangkutan, atau mungkin saja lebih besar yang meliputi kebutuhan bersih di periode mendatang untuk memanfaatkan skala ekonominya. Lotting adalah suatu proses untuk menentukan besarnya jumlah pesanan optimal untuk setiap item secara individual didasarkan pada hasil perhitungan kebutuhan bersih yang telah dilakukan. Ukuran lot menentukan besarnya jumlah komponen yang diterima setiap kali pesan. Penentuan ukuran lot ini sangat tergantung pada besarnya biaya-biaya persediaan, seperti biaya pesan, biaya simpan, biaya modal, dan harga
51 71 barang itu sendiri. Ada banyak alternatif metode untuk menentukan ukuran lot. Beberapa teknik diarahkan untuk meminimalkan total ongkos set-up dan ongkos simpan. Teknikteknik tersebut adalah sebagai berikut : 1. Fixed Order Quantity (FOQ) Dalam metode FOQ ukuran lot ditentukan secara subjektif. Berapa besarnya dapat ditentukan berdasarkan pengalaman produksi atau intuisi. Tidak ada teknik yang dapat dikemukakan untuk menentukan berapa ukuran lot ini. Kapasitas produksi selama lead time produksi dalam hal ini dapat digunakan sebagai dasar untuk menentukan besarnya lot. Sekali lot ditetapkan, maka lot ini akan digunakan untuk seluruh periode selanjutnya dalam perencanaan. Berapa pun kebutuhan bersihnya, rencana pesan akan tetap sebesar lot yang telah ditentukan tersebut. Apabila teknik ini diterapkan dalam sistem MRP, maka besarnya jumlah pesanan dapat menjadi sama atau lebih besar dari kebutuhan bersih, yang kadang-kadang diperlukan bila ada lonjakan permintaan. Salah satu ciri dari metode FOQ ini adalah ukuran lot-nya selalu tetap, tetapi periode pemesanannya yang selalu berubah. 2. Economic Order Quantity (EOQ) Dalam teknik ini besarnya ukuran lot adalah tetap. Penentuan lot berdasarkan biaya pesan dan biaya simpan, dengan formula seperti berikut : EOQ = 2AD H dimana : EOQ = jumlah pemesanan yang ekonomis D = Demand rata-rata per horison
52 72 A = biaya pesan bahan baku H = biaya simpan bahan baku dalam suatu periode Metode EOQ ini biasanya dipakai untuk horizon perencanaan selama satu tahun sebesar dua belas bulan. Metode EOQ baik digunakan bila semua data konstan dan perbandingan biaya pesan dan simpan sangat besar. 3. Lot-For-Lot (LFL) Teknik penetapan ukuran lot dilakukan atas dasar pesanan diskrit. Di samping itu, teknik ini merupakan cara paling sederhana dari semua teknik ukuran lot yang ada. Teknik ini selalu melakukan perhitungan kembali (bersifat dinamis) terutama apabila terjadi perubahan pada kebutuhan bersih. Penggunaan teknik ini bertujuan untuk meminimumkan ongkos simpan, sehingga dengan teknik ini ongkos simpan menjadi nol. Oleh karena itu sering digunakan untuk item-item yang mempunyai biaya simpan per unit sangat mahal. 4. Silver Meal Adalah metode pemesanan lot dinamis (Dynamic Lot sizing Method) yang mempertimbangkan pemesanan untuk beberapa periode ke depan. Tujuan dari teknik lotting ini yaitu untuk meminimumkan rata-rata biaya per periode selama m periode perencanaan. Biaya yang termasuk di dalam teknik lotting ini yaitu biaya pesan dan biaya simpan. Permintaan untuk beberapa periode n ke depan dilambangkan dengan : D 1, D 2,..., D n K(m) adalah biaya variabel rata-rata per periode jika pesanan mencakup m periode. Diasumsikan biaya simpan terjadi pada akhir periode dan kuantitas yang diperlukan di setiap periode digunakan pada awal periode.
53 73 Untuk periode 1 : K(1) = A Jika kita memsan D1+D2 pada periode 1 untuk memenuhi permintaan di periode 1 dan 2, kita mendapatkan: 1 K(2) = ( A + hd 2 ) 2 Dimana h adalah biaya simpan satu unit untuk 1 periode. Rumus: K(m) = 1 ( A + hd m + 2hD ( m 2 3 1) hd m Hitung K(m), m= 1, 2,..., m dan berhenti jika: K(m+1) > K(m) Q i = D 1 + D Dm Secara umum, Q i adalah kuantitas yang dipesan pada periode i dan mencakup m periode ke depan. Jika tidak ada pemesanan pada periode i maka Q i adalah nol. 5. Part Period Balancing Metode ini berusahan meminimalkan jumlah biaya variabel untuk semua lot. Untuk mendapatkan biaya simpan barang, dikenalkan nama part period yaitu satu unit barang yang disimpan pada satu periode. Jadi apabila ada 10 unit disimpan untuk 1 periode sama dengan 10 part period, dan sama juga dengan 5 unit disimpan untuk 2 periode. PPm = part period for m periods Jadi PP 1 = 0 PP 2 = D 2 PP 2 = D D 3
54 74 PPF = part period factor = A / h Stopping Rule = PPm > PPF PP m = D D (m-1)d m Keterangan: Dm = permintaan pada periode ke m A = Biaya Pesan H = Biaya Simpan Offsetting Langkah ini bertujuan untuk menentukan saat yang tepat untuk melakukan rencana pemesanan dalam rangka memenuhi tingkat kebutuhan bersih. Rencana pemesanan diperoleh dengan cara mengurangkan saat awal tersedianya ukuran lot yang diinginkan dengan besarnya lead time. Lead time adalah besarnya waktu saat barang mulai dipesan atau diproduksi sampai barang tersebut selesai dan diterima siap untuk dipakai Explosion Proses explosion adalah proses penghitungan kebutuhan kotor untuk tingkat item/komponen yang lebih bawah. Perhitungan kebutuhan kotor ini didasarkan pada rencana pemesanan item-item produk pada level yang lebih atas. Untuk penghitungan kebutuhan kotor ini, diperlukan struktur produk dan informasi mengenai berapa jumlah kebutuhan tiap item untuk iem yang akan dihitung. Dalam proses ini, data mengenai struktur produk harus tersedia secara akurat. Ketidakakuratan data struktur produk akan mengakibatkan kesalahan pada perhitungan.
55 75 Atas dasar struktur produk inilah proses explosion dibuat.dengan data struktur produk dapat ditentukan kearah komponen mana harus dilakukan explosion. Struktur produk juga harus langsung dimodifikasi bila ada perubahan pada cara produksi atau perakitan Gantt Chart Tujuan dari grafik ini adalab untuk menampilkan status dari tiap sumber daya (biasanya adalah mesin) pada semua waktu. Sumbu x merepresentasikan waktu dan sumbu y merepresentasikan batang horisontal untuk setiap mesin. Ketika sebuah kerja diproses pada sebuah mesin, sebuah kotak ditempatkan di batang horisontal, dimulai dengan waktu mulainya pekerjaan dan diakhiri dengan waktu penyelesaian. Selain mesin Gantt chart juga dapat menampilkan status pekerjaan pada sumbu y Pengertian Sistem Berdasarkan pendapat McLeod (2004, p9) sistem adalah sekelompok elemenelemen yang terintegrasi dengan maksud untuk mencapai suatu tujuan tertentu. Definisi ini cocok untuk suatu organisasi seperti suatu perusahaan atau bidang fungsional lainnya. Organisasi terdiri dari sejumlah sumber daya seperti manusia, material, uang, mesin, dan informasi dimana sumber daya tersebut bekerja menuju tercapainya suatu tujuan yang ditentukan oleh pemilik atau manajemen. Model dasar dari sistem ialah sebagai berikut : a. Input Merupakan sekumpulan data baik dari luar organisasi maupun dari dalam organisasi yang akan digunakan dalam proses sistem informasi.
56 76 b. Process Merupakan kegiatan konversi, manipulasi, dan analisis dari data input menjadi lebih berarti bagi manusia. c. Output Merupakan proses menditribusikan informasi kepada orang atau kegiatan yang memerlukannya. d. Feedback Merupakan output yang dikembalikan kepada orang-orang dalam organisasi untuk membantu mengevaluasi input. e. Subsistem Merupakan sebagian dari sistem yang mempunyai fungsi khusus. Masing-masing subsistem itu sendiri memiliki komponen input, proses, output, dan feedback. Organisasi juga merupakan suatu sistem yang berisi beberapa subsistem yang menjalankan aktivitas utama dan beberapa subsistem yang menjalankan aktivitas pendukung. Aktivitas utama mempengaruhi secara langsung keunggulan kompetitif produk seperti biaya, kualitas, ketersediaan, dan pelayanan. Sedangkan aktivitas pendukung tidak secara langsung menciptakan nilai suatu produk Pengertian Informasi McLeod (2004, p12) berpendapat informasi adalah data yang telah diproses, atau data yang memiliki arti. Sedangkan menurut O Brien (2004, p13) informasi adalah data yang telah dikonversikan menjadi konteks yang berarti dan berguna bagi pemakai tertentu.
57 77 Terdapat empat dimensi informasi menurut pendapat McLeod (2001, p145), yaitu: - Ketepatan Waktu Informasi harus dapat tersedia untuk memecahkan masalah pada waktu yang tepat sebelum situasi menjadi tidak terkendali atau kesempatan yang ada menghilang. Manajer juga harus mampu memperoleh informasi yang menggambarkan keadaan yang sedang terjadi sekarang, selain apa yang telah terjadi pada masa lalu. - Kelengkapan Perusahaan khususnya manajer harus dapat memperoleh informasi yang memberi gambaran lengkap dari suatu permasalahan atau penyelesaian. Namun pemberian informasi yang tidak berguna secara berlebihan harus dihindari. - Akurasi Secara ideal, semua informasi harus akurat untuk menunjang terbentuknya sistem yang akurat pula. Akurasi ini terutama diperlukan dalam aplikasi-aplikasi tertentu seperti aplikasi yang melibatkan keuangan, semakin teliti informasi yang diinginkan maka biaya pun semakin bertambah. - Relevansi Informasi disebut relevan jika informasi tersebut berkaitan langsung dengan masalah yang sedang dihadapi. Manajer harus mampu memilih informasi yang diperlukan Pengertian Sistem Informasi Berdasarkan pendapat McLeod (2001, p4) sistem informasi adalah kombinasi secara terorgansir antara orang, perangkat keras, perangkat lunak, jaringan komunikasi, sumber data yang menerima, mentransformasikan, dan menyebarkan informasi dalam organisasi.
58 78 Berdasarkan pendapat Laudon (2001, p8) sistem informasi adalah sekumpulan komponen yang saling berhubungan yang menerima, memproses, menyimpan, dan menyebarkan informasi untuk mendukung pengambilan keputusan dan pengendalian dalam sebuah organisasi. Dalam suatu organisasi, sistem informasi memiliki beberapa peranan dasar yaitu sistem informasi berusaha memberikan informasi aktual tentang lingkungan dari organisasi tersebut sehingga organisasi mendapat gambaran yang akurat tentang lingkungannya. Selain itu dengan aliran informasinya, sistem informasi berusaha agar elemen elemen di dalam organisasi selalu kompak dan harmonis dimana tidak terjadi duplikasi kerja dan lepas satu sama lain. Dengan demikian dapat dilihat bahwa manfaat dari sistem informasi ialah : a) Menjadikan organisasi lebih efisien dan lebih efektif b) Lebih cepat tanggap dalam merespon perubahan c) Mengelola kualitas output d) Memudahkan melakukan fungsi kontrol e) Memprediksi masa depan f) Melancarkan operasi organisasi g) Menstabilkan beroperasinya organisasi h) Membantu pengambilan keputusan Unified Modelling Language (UML) Sejarah UML Unified Modeling Language (UML) dikembangkan dengan tujuan untuk menyederhanakan dan mengkonsolidasikan sejumlah besar metode pengembangan
59 79 object oriented yang muncul. Metode pengembangan untuk bahasa pemrograman tradisional muncul pada tahun 1970 an dan menjadi menyebar pada tahun 1980 an. Yang paling terkenal diantaranya adalah structured analysis and structured design. Pendekatan analisa dan rancangan dengan menggunakan metode Object Oriented mulai diperkenalkan sekitar pertengahan 1970 hingga akhir 1980 dikarenakan pada saat itu aplikasi software sudah meningkat dan mulai kompleks. Jumlah yang menggunakan metode OO mulai diuji coba dan diaplikasikan antara 1989 hingga 1994, seperti halnya oleh Grady Booch dari Rational Software Co., dikenal dengan OOSE (Object-Oriented Software Engineering), serta James Rumbaugh dari General Electric, dikenal dengan OMT (Object Modelling Technique). Kelemahan saat itu mulai disadari oleh Booch maupun Rumbaugh, ketika mereka bertemu rekan lainnya, Ivar Jacobson dari Objectory. Kelemahannya adalah tidak adanya standar penggunaan model yang berbasis OO, sehingga mereka mulai mendiskusikan untuk mengadopsi masing-masing pendekatan metoda OO untuk membuat suatu model bahasa yang seragam, yaitu UML (Unified Modeling Language) dan dapat digunakan oleh seluruh dunia.
60 Kegunaan UML UML diperuntukan untuk pemakaian sistem software yang intensif. Ada banyak tujuan dibelakang pengembangan dari UML, yang paling pertama dan penting adalah agar dapat digunakan oleh semua pengembang atau modelers dan tujuan akhir dari UML adalah untuk menjadi sesederhana mungkin selama masih memenuhi kebutuhan untuk melakukan modeling pada sistem yang akan dibangun Analisis dan perancangan berorientasi objek Menurut Mathiassen et al. (2000, p5), Analisis dan Perancangan Berorientasi Objek mendeskripsikan dua permasalahan yang berbeda, yakni di dalam sistem dan di luar sistem. Analisis objek mendeskripsikan fenomena di luar sistem, seperti orang dan barang, yang dapat berdiri sendiri. Perancangan objek mendeskripsikan fenomena di dalam sistem yang dapat diawasi. Kita dapat mendeskripsikan behavior mereka sebagai operasi untuk komputer yang menyelesaikannya. Berikut adalah gambar yang menerangkan tahapan analisis dan perancangan berorientasi objek. Gambar 3.9 Main activitities in Object Oriented Design Menurut Mathiassen et al. (2000, p15)
61 81 Menurut Mathiassen et al. (2000, p15), analisis dan perancangan berorientasi objek mempunyai 4 tahapan atau aktivitas utama, yakni : Problem Domain Analysis Menurut Mathiassen et al. (2000, p45), Problem Domain Analysis merupakan bagian dari sebuah konteks yang diadministrasi, dimonitor dan dikontrol oleh sebuah sistem. Tujuannya adalah untuk mengidentifikasi dan memodelkan sebuah problem domain. Menurut Mathiassen et al. (2000, p46), Problem Domain Modelling mempunyai 3 aktivitas : a. Classes Object adalah suatu entitas dengan identity (identitas), state (pernyataan) dan behavior (perilaku). Sedangkan Event adalah kejadian terus menerus yang melibatkan satu atau dua objek. (Mathiassen et al, 2000, p51). Menurut Mathiassen et al. (2000, p53), Class adalah suatu deskripsi dari sekumpulan objek yang mempunyai structure, behavioral pattern dan attributes. Dapat dinyatakan bahwa sebuah objek dijelaskan di sebuah class, class menjelaskannya dengan bentuk struktur dan kelakukan dari semua objeknya. Sebuah objek yang diciptakan dari sebuah kelas disebut juga instansi dari class, dengan kata lain class adalah deskripsi statik dan objek adalah instansi dinamis dari class. Menurut Mathiassen et al. (2000, p55) ada 3 sub aktivitas dalam memilih Class dan Event, yaitu :
62 82 1. Menemukan kandidat untuk classes Pemilihan class merupakan kunci utama dalam membuat problem domain. Pada umumnya yang dilakukan adalah mencari semua kata benda sebanyak mungkin yang terdapat pada system definition. Menurut Mathiassen et al. (2000, p57), penggunaan nama class sebaiknya : - Sederhana dan mudah dimengerti - Sesuai dengan problem domain - Menunjukkan satu kejadian Gambar 3.10 Memilih Class dan Event Menurut Mathiassen et al. (2000, p55) 2. Menemukan kandidat untuk event Selain class, event juga merupakan bagian penting dalam problem domain. Cara untuk mencarinya adalah dengan mencari kata kerja pada system definition sebanyak mungkin. 3. Mengevaluasi dan memilih secara sistematik Jika daftar class dan event telah lengkap, maka mereka dievaluasi secara sistematik. Kriteria umum untuk mengevaluasi adalah :
63 83 - class dan event ada dalam system definition - class dan event relevan untuk problem domain b. Structure Menurut Mathiassen et al. (2000, p69), tujuan structure adalah untuk mendeskripsikan hubungan struktural antara classes dan objects dalam problem domain. Menurut Mathiassen et al. (2000, p72), konsep structure dibedakan atas : 1. Class structure Menggambarkan hubungan konseptual yang statis antar class. Terdiri atas : - Generalization Structure : Merupakan suatu hubungan antara satu atau lebih subclass dengan satu atau lebih superclass. - Cluster Structure Merupakan kumpulan dari classes yang saling berhubungan. 2. Object structure Menggambarkan hubungan yang dinamis antara objects yang ada dalam problem domain. Terdiri atas : Agregation structure Mendefinisilkan hubungan antara 2 buah objects atau lebih. Menurut Mathiassen et al. (2000, p79), ada 3 tipe aplikasi dari aggregation structure:
64 84 1. Whole part Object superior adalah jumlah dari object inferior, jika menambah atau mengurangi maka akan mengubah pokok object superior. 2. Container content Object superior adalah container bagi object inferior, jika menambah atau mengurangi object inferior maka tidak akan mengubah object superior. 3. Union member Object superior adalah object inferior yang terorganisasi. Tidak akan terjadi perubahan pada object superior apabila melakukan penambahan atau pengurangan pada object inferior namun tetap memiliki batasan batasan. Association structure Merupakan relasi antara 2 atau lebih objek Digambarkan sebagai sebuah garis sederhana antara class yang berhubungan. Association multiplicity diuraikan dengan cara yang sama seperti menguraikan aggregation. Perbedaan antara association structure dan aggregation structure adalah hubungan antar class pada aggregation mempunyai pertalian yang kuat sedangkan pada association tidak kuat. Dan dalam aggregation dilukiskan hubungan yang definitive serta fundamental sedangkan dalam association dilukiskan hubungan yang tidak tetap.
65 85 c. Behavior Menurut Mathiassen et al. (2000, p89), tujuan behavior adalah untuk memodelkan problem domain yang dinamis. Dan 3 konsep yang terkandung dalam behavior adalah : Event Trace Merupakan urutan dari events yang melibatkan objek secara spesifik. Behavioral Pattern Suatu deskripsi dari kemungkinan events traces untuk semua object dalam class. Attribute Suatu deskripsi dari class atau event. Gambar 3.11 Activities in Problem Domain Menurut Mathiassen et al. (2000, p46)
66 Application Domain Analysis Menurut Mathiassen et al. (2000, p115), Application Domain Analysis adalah organisasi yang mengadministrasi, memonitor atau mengontrol sebuah problem domain. Tujuannya adalah untuk menetapkan system usage requirements. Aktivitas dari Application Domain Analysis adalah : Usage, Functions dan Interfaces. Gambar 3.12 Application Domain Analysis Menurut Mathiassen et al. (2000, p117) a. Usage Menurut Mathiassen ( 2000, p119 ), usage untuk menetapkan bagaimana actor berinteraksi dengan sistem. Konsepnya adalah : - Actor : sebuah abstraksi dari user atau sistem lain yang berinteraksi dengan target system. Actor1 Gambar 3.13 Actor
67 87 - Use case : urutan kejadian kejadian anatara system dan actor dalam application domain. create software record grades Gambar 3.14 Use Case b. Functions Menurut Mathiassen et al. (2000, p137), functions merupakan fasilitas untuk membuat sebuah model berguna bagi actor. Tujuannya adalah untuk menetapkan kemampuan berproses sistem informasi. Tipe tipe functions adalah : - Update functions Diaktifkan dengan problem domain event dan hasilnya didalam perubahan model state. - Signal functions Diaktifkan dengan merubah model state dan hasilnya pada reaksi di konteks. Reaksi ini mungkin menampilkan actor pada application domain atau intervensi langsung di problem domain. - Read functions Diaktifkan oleh kebutuhan akan informasi di lembar kerja actor dan hasilnya tampilan sistem yang relevan dari model. - Compute functions Diaktifkan oleh kebutuhan akan informasi di lembar kerja actor melibatkan informasi yang disediakan actor atau model. Hasilnya adalah tampilan dari kegiatan compute tersebut.
68 88 c. Interfaces Menurut Mathiassen et al. (2000, p151), interfaces adalah fasilitas yang membuat system model dan functions dapat digunakan oleh actor. Tujuannya adalah untuk menetapkan system interfaces. Hasil dari interfaces adalah : - User interfaces Tipe dialog dan form presentasi, daftar lengkap dari elemen user interface, window diagram dan navigation diagram. - System interfaces Class diagram untuk peralatan luar dan protokol - protokol untuk berinteraksi dengan sistem lain Architectural Design Menurut Mathiassen et al. (2000, p173), tujuan dari architectural design adalah untuk menstruktur sistem yang terkomputerisasi. Gambar 3.15 Activities in Architectural Design Menurut Mathiassen et al. (2000, p176) Menurut Mathiassen et al. (2000, p173), 3 aktivitas yang terdapat pada Architectural Design :
69 89 a. Criteria Menurut Mathiassen et al. (2000, p177), tujuan dari criteria adalah untuk mengatur prioritas perancangan. Konsepnya adalah : - Criterion : Properti dari architecture - Conditions : kesempatan dan batas technical, organizational dan human yang telibat dalam suatu tugas. Menurut Mathiassen et al. (2000, p178) terdapat 12 jenis kriteria software : 1. Usable Adalah kemampuan sistem untuk beradapatasi dengan situasi organisasi, tugas dan hal hal teknis. 2. Secure Adalah kemampuan untuk melakukan pencegahan terhadap akses yang tidak berwenang. 3. Efficient Adalah penggunaan secara ekonomis terhadap fasilitas technical platform. 4. Correct Adalah sesuai dengan kebutuhan., 5. Reliable Adalah ketepatan dalam melakukan suatu fungsi. 6. Maintainable Adalah kemampuan untuk perbaikan sistem yang rusak. 7. Testable Adalah penempatan biaya untuk memastikan sistem bekerja sesuai dengan yang diinginkan.
70 90 8. Flexible Adalah kemampuan untuk modifikasi sistem yang berjalan. 9. Comprehensible Adalah usaha yang diperlukan untuk memperoleh pengertian akan suatu sistem. 10. Reusable Adalah potensi untuk menggunakan sistem pada bagian sistem lain yang saling berhubungan. 11. Portable Adalah kemampuan sistem untuk dapat dipindahkan ke technical platform yang lain. 12. Interoperable Adalah kemampuan untuk merangkai sistem ke dalam sistem yang lain. Selain kriteria kriteria diatas, menurut Mathiassen et al. (2000, p184), terdapat pula kondisi kondisi yang harus diperhitungkan : - Technical Adalah perangkat keras yang tersedia, perangkat lunak dasar dan sistem; menggunakan kembali bahan bahan dan komponen komponen yang telah ada; menggunakan komponen standar yang dapat dibeli. - Organizational Adalah perjanjian kontrak; rencana pengembangan dan pembagian kerja antara pengembang.
71 91 - Human Adalah kemampuan untuk mendesain; pengalaman dengan sistem yang serupa; pengalaman dengan technical platform. b. Component Menurut Mathiassen et al. (2000, p189), tujuan dari components adalah untuk menciptakan sistem yang comprehensible dan flexible. Component architecture adalah sebuah struktur sistem dari components yang saling berhubungan. c. Process Menurut Mathiassen et al. (2000, p209), tujuan process adalah untuk mendefinisikan struktur program secara fisik Component Design Menurut Mathiassen et al. (2000, p231), tujuan component design adalah untuk menetapkan sebuah implementasi pada sebuah architectural framework. Aktivitas pada component design adalah : 1. Model component Menurut Mathiassen et al. (2000, p235), model component adalah bagian dari sistem yang mengimplementasikan problem domain model. 2. Function component Tujuan Function component menurut Mathiassen et al. (2000, p252) adalah untuk menetapkan functions implementation. Function implementation adalah bagian dari sistem yang mengimplementasikan persyaratan functions.
72 92 3. Connecting component Tujuan dari connecting components menurut Mathiassen et al. (2000, p271) adalah untuk menggabungkan system components. Ada 2 konsep dalam connenting component yaitu : a. Coupling Merupakan suatu ukuran seberapa dekat 2 classes atau components terhubungkan. b. Cohesion Merupakan ukuran seberapa dekat class atau component saling terkait satu sama lain. Gambar 3.16 Components Design Menurut Mathiassen et al. (2000, p232) Gambar 3.1 Struktur Produk Pulpen...30 Gambar 3.2 Peta Proses Produksi Pajangan...33 Gambar 3.3 Pola Data Horisontal...36 Gambar 3.4 Pola Data Musiman...37 Gambar 3.5 Pola Data Siklis...37 Gambar 3.6 Pola Data Trend...38 Gambar 3.7 Proses Penjadwalan Produksi...59 Gambar 3.8 Proses Kerja dari MRP...65 Gambar 3.9 Main activitities in Object Oriented Design...80 Gambar 3.10 Memilih Class dan Event...82 Gambar 3.11 Activities in Problem Domain...85
73 Gambar 3.12 Application Domain Analysis...86 Gambar 3.13 Actor...86 Gambar 3.14 Use Case...87 Gambar 3.15 Activities in Architectural Design...88 Gambar 3.16 Components Design
BAB 3 LANDASAN TEORI
BAB 3 LANDASAN TEORI 3.1 Perencanaan dan Pengendalian Produksi Menurut Teguh Baroto produksi adalah suatu proses pengubahan bahan baku menjadi produk jadi. Sedangkan sistem produksi adalah sekumpulan aktivitas
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),
BAB 2 LANDASAN TEORI
26 BAB 2 LANDASAN TEORI 21 Tinjauan Pustaka 211 Pengumpulan Data Statistika Deskriptif adalah metode-metode yang berkaitan dengan pengumpulan dan penyajian suatu gugus data sehingga memberikan informasi
BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi
BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Konsep Peramalan Peramalan ( forecasting) merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien khususnya dalam bidang ekonomi. Dalam organisasi modern
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Manajemen 2.1.1 Pengertian Manajemen Manajemen berasal dari bahasa kata to manage yang artinya mengatur atau mengelola. Pengaturan dilakukan melalui proses dan diatur berdasarkan
BAB 2 TINJAUAN TEORITIS
BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan meramalkan atau memprediksi apa yang akan terjadi dimasa yang akan datang dengan waktu tenggang (lead time) yang relative lama,
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Persediaan 2.1.1 Pengertian Persediaan Keberadaan persediaan dalam suatu unit usaha perlu diatur sedemikian rupa sehingga kelancaran pemenuhan kebutuhan pemakai dapat dijamin
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Perencanaan dan Pengendalian Produksi Produksi adalah suatu proses pengubahan bahan baku menjadi produk jadi. Sedangkan sistem produksi adalah sekumpulan aktivitas untuk pembuatan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan
BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan
BAB 2 LADASA TEORI 2.1 Pengertian Peramalan (Forecasting) Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan terjadi pada masa mendatang. Peramalan penjualan adalah peramalan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan merupakan usaha yang dilakukan oleh suatu perusahaan untuk melihat dan mengkaji situasi dan kondisi di masa mendatang. Terdapat beberapa faktor yang mempengaruhi
BAB 2 LANDASAN TEORI. future. Forecasting require historical data retrieval and project into the
BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Forecasting is the art and science of predicting the events of the future. Forecasting require historical data retrieval and project into the future with some
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian dan Peranan Peramalan Aktivitas manajerial khususnya dalam proses perencanaan, seringkali membutuhkan pengetahuan tentang kondisi yang akan datang. Pengetahuan
BAB II LANDASAN TEORI. saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan
BAB II LANDASAN TEORI 2.1 Pengertian Sistem Menurut Amsyah (2005), definisi sistem adalah elemen-elemen yang saling berhubungan membentuk suatu kesatuan atau organisasi atau suatu jaringan kerja dari prosedur
BAB 2 LANDASAN TEORITIS
BAB 2 LANDASAN TEORITIS 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksikan apa yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.
BAB III TINJAUAN PUSTAKA
BAB III TINJAUAN PUSTAKA 3.1 Teori Dunia industri biasanya tak lepas dari suatu peramalan, hal ini disebabkan bahwa peramalan dapat memprediksi kejadian di masa yang akan datang untuk mengambil keputusan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Peramalan (Forecasting) Menurut Mahmuda (2016), pada dasarnya peramalan merupakan suatu dugaan atau perkiraan atas terjadinya kejadian di waktu mendatang. Ramalan bersifat kualitatif
BAB II LANDASAN TEORI. Suatu sistem adalah suatu jaringan kerja dari prosedur-prosedur yang
7 BAB II LANDASAN TEORI 2.1 Sistem Informasi 2.1.1 Sistem Suatu sistem adalah suatu jaringan kerja dari prosedur-prosedur yang saling berhubungan, berkumpul bersama-sama untuk melakukan suatu kegiatan
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan sering dipandang sebagai seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Secara teoritis peramalan
BAB IV JADWAL INDUK PRODUKSI
BAB IV JADWAL INDUK PRODUKSI 4.1 Landasan Teori Jadwal induk produksi (master production schedule, MPS) merupakan gambaran atas periode perencanaan dari suatu permintaan, termasuk peramalan, backlog, rencana
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Defenisi Peramalan Peramalan adalah suatu kegiatan dalam memperkirakan atau kegiatan yang meliputi pembuatan perencanaan di masa yang akan datang dengan menggunakan data masa lalu
BAB 2 LANDASAN TEORI
24 BAB 2 LANDASAN TEORI 2.1 Pengukuran Waktu Pengukuran waktu adalah pekerjaan mengamati dan mencatat waktu kerja baik setiap elemen ataupun siklus dengan mengunakan alat-alat yang telah disiapkan. Teknik
BAB 2 TINJAUAN TEORITIS
BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang
BAB II LANDASAN TEORI. Pengukuran waktu ini akan berhubungan dengan usaha-usaha untuk
Laporan Tugas Akhir BAB II LANDASAN TEORI 2.1 Pengukuran Waktu Kerja Pengukuran waktu ini akan berhubungan dengan usaha-usaha untuk menetapkan waktu baku yang dibutuhkan untuk menyelesaikan suati pekerjaan.
PERENCANAAN PRODUKSI
PERENCANAAN PRODUKSI Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi
Team project 2017 Dony Pratidana S. Hum Bima Agus Setyawan S. IIP
Hak cipta dan penggunaan kembali: Lisensi ini mengizinkan setiap orang untuk menggubah, memperbaiki, dan membuat ciptaan turunan bukan untuk kepentingan komersial, selama anda mencantumkan nama penulis
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Material Requirements Planning 2.1.1 Definisi MRP MRP adalah dasar komputer mengenai perencanaan produksi dan inventory control. MRP juga dikenal sebagai tahapan waktu perencanaan
BAB II TINJAUAN PUSTAKA. bidang manufaktur, suatu peramalan (forecasting) sangat diperlukan untuk
BAB II TINJAUAN PUSTAKA 2.1. Peramalan 2.1.1 Pengertian Peramalan Di dalam melakukan suatu kegiatan dan analisis usaha atau produksi bidang manufaktur, suatu peramalan (forecasting) sangat diperlukan untuk
BAB 2 LANDASAN TEORI
BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah
III. KERANGKA PEMIKIRAN
III. KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Konsep Harga Harga yang terjadi di pasar merupakan nilai yang harus dibayarkan konsumen untuk mendapatkan suatu produk yang diinginkannya.
III KERANGKA PEMIKIRAN
III KERANGKA PEMIKIRAN 3.1.Kerangka Pemikiran Teoritis Kerangka pemikiran teoritis merupakan suatu kerangka yang mengungkapkan suatu teori-teori yang sesuai dengan pokok permasalahan penelitian yang dibahas.
Membuat keputusan yang baik
Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi masa yang akan datang
BAB II LANDASAN TEORI. Sistem informasi terdiri dari input, proses, dan output, seperti yang terlihat pada
BAB II LANDASAN TEORI 2.1 Konsep Sistem Informasi Sebelum merancang sistem perlu dikaji konsep dan definisi dari sistem.. Sistem informasi terdiri dari input, proses, dan output, seperti yang terlihat
BAB II TINJAUAN PUSTAKA. sebelum penggunaan MRP biaya yang dikeluarkan Rp ,55,- dan. MRP biaya menjadi Rp ,-.
BAB II TINJAUAN PUSTAKA A. Landasan Penelitian Terdahulu Nastiti (UMM:2001) judul: penerapan MRP pada perusahaan tenun Pelangi lawang. Pendekatan yang digunakan untuk pengolahan data yaitu membuat Jadwal
BAB 3 LANDASAN TEORI
BAB 3 LANDASAN TEORI 3.1 Definisi Perencanaan dan Pengendalian Produksi Menurut Baroto (2002, p13), proses produksi adalah aktivitas bagaimana membuat produk jadi dari bahan baku yang melibatkan mesin,
BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK
BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan
BAB 2 LANDASAN TEORI
BAB 2 LADASA TEORI 2.1 Peramalan (forecasting) 2.1.1. Hubungan Forecast dengan Rencana Forecast adalah peramalan apa yang akan terjadi pada waktu yang akan datang, sedang rencana merupakan penentuan apa
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pengertian Peramalan (Forecasting) Menurut Kusuma (2004:13), peramalan (forecasting) adalah perkiraan tingkat permintaan satu atau lebih produk selama beberapa periode mendatang.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Penelitian cara kerja atau yang dikenal juga dengan nama methods analysis merupakan hal yang sangat penting dalam menentukan metode kerja yang akan dipilih untuk melakukan suatu pekerjaan.
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI 3.1 Definisi Peramalan Peramalan adalah suatu proses dalam menggunakan data historis yang telah dimiliki untuk diproyeksikan ke dalam suatu model peramalan. Dengan model peramalan
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI.1. Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan
BAB II OPC, APC, STRUKTUR PRODUK, DAN BOM
II-13 BAB II OPC, APC, STRUKTUR PRODUK, DAN BOM 2.1 Landasan Teori Peta proses operasi adalah peta kerja yang yang mencoba menggambarkan urutan kerja dengan jalan membagi pekerjaan tersebut menjadi elemen-elemen
BAB 2 LANDASAN TEORI
10 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjaan waktu
BAB II TINJAUAN PUSTAKA
10 BAB II TINJAUAN PUSTAKA 2.1. Pengertian Material Requirement Planning (MRP) Material Requirement Planning (MRP) adalah metode penjadwalan untuk purchased planned orders dan manufactured planned orders,
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. PengertianPeramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Dalam usaha mengetahui atau melihat perkembangan di masa depan,
BAB 2 LANDASAN TEORI
4 BAB 2 LANDASAN TEORI 2.1 Perancangan Kerja Dari penelitian menerangkan bahwa, Perancangan kerja merupakan suatu disiplin ilmu yang dirancang untuk memberikan pengetahuan mengenai prosedur dan prinsip
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA Jika dalam suatu organisasi atau perusahan telah diterapkan sistem kerja yang baik dengan diperhatikannya faktor-faktor kerja serta segi-segi ergonomis,tentunya perusahaan tersebut
BAB 2 Landasan Teori
BAB 2 Landasan Teori 2.1. Manajemen Operasional Menurut Jay Heizer dan Barry Render (2010:4), manajemen operasi adalah serangkaian aktifitas yang menghasilkan nilai dalam bentuk barang dan jasa dengan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertian Manajemen Menurut Robbins dan Coulter (2009:7) manajemen adalah aktivitas kerja yang melibatkan koordinasi dan pengawasan terhadap pekerjaan orang lain, sehingga pekerjaan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Peringkat Kinerja Operator (Performance Rating) Perancangan sistem kerja menghasilkan beberapa alternatif sehingga harus dipilih alternatif terbaik. Pemilihan alternatif rancangan
BAB II TINJAUAN PUSTAKA. Bagian bab ini memuat teori-teori dari para ahli yang dijadikan sebagai
BAB II TINJAUAN PUSTAKA Bagian bab ini memuat teori-teori dari para ahli yang dijadikan sebagai pendukung teori adanya penelitian ini. Teori-teori yang menjadi bahan rujukan berkaitan tentang manajemen
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Untuk memecahkan masalah yang diuraikan pada sub bab 1.2 diperlukan beberapa terori pendukung yang relevan. 2.1 Inventory Control Pengawasan persediaan digunakan untuk mengatur tersedianya
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Arti dan Peran Persediaan Persediaan sesungguhnya memiliki arti yang penting bagi perusahaan, baik yang berorintasi perdagangan, industri jasa maupun industri
BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013
BAB I PENDAHULUAN 1.1. Latar Belakang Tingkat pencemaran udara di beberapa kota besar cenderung meningkat dari tahun ke tahun. Hal ini disebabkan oleh beberapa faktor diantaranya jumlah transportasi terus
BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto
18 BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto Dalam menghitung pendapatan regional, dipakai konsep domestik. Berarti seluruh nilai tambah yang ditimbulkan oleh berbagai sektor atau lapangan
BAB III PERAMALAN 3.1 Landasan Teori Peramalan
BAB III PERAMALAN 3.1 Landasan Teori Peramalan Menurut Gaspersz (2004), aktivitas peramalan merupakan suatu fungsi bisnis yang berusaha memperkirakan permintaan dan penggunaan produk sehingga produk-produk
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Pengertian Produksi dan Proses Produksi 2.1.1 Pengertian Produksi Dari beberapa ahli mendifinisikan tentang produksi, antara lain 1. Pengertian produksi adalah suatu proses pengubahan
BAB 4 METODOLOGI PENELITIAN
BAB 4 METODOLOGI PENELITIAN 4.1 Model Perumusan Masalah Metodologi penelitian penting dilakukan untuk menentukan pola pikir dalam mengindentifikasi masalah dan melakukan pemecahannya. Untuk melakukan pemecahan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 SEJARAH SINGKAT PT. GMF AEROASIA Dimulai pada tahun 1949, GMF AeroAsia berasal dari Divisi Teknik Garuda Indonesia Airlines di Kemayoran dan Bandara Halim Perdana Kusuma di Jakarta,
BAB 2 LANDASAN TEORI
20 BAB 2 LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah pemikiran terhadap suatu besaran, misalnya permintaan terhadap satu atau beberapa produk pada periode yang akan datang.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Pengukuran Waktu Kerja Di dalam sebuah sistem kerja unsur manusia, mesin, peralatan kerja dan lingkungan fisik pekerjaan harus diperhatikan dengan baik secara sendirisendiri maupun
BAB 2 LANDASAN TEORI. diperkirakan akan terjadi pada masa yang akan datang. Ramalan tersebut dapat
BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi dimasa yang akan datang. Sedangkan ramalan adalah suatu situasi atau kondisi yang diperkirakan
BAB III PERAMALAN. Praktikum Sistem Produksi ATA 2014/2015
BAB III PERAMALAN 3.1 Landasan Teori Peramalan merupakan suatu bentuk usaha untuk meramalkan keadaan di masa mendatang melalui pengujian keadaan di masa lalu. Esensi peramalan adalah perkiraan peristiwa-peristiwa
BAB III LANGKAH PEMECAHAN MASALAH
BAB III LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Koperasi Niaga Abadi Ridhotullah (KNAR) adalah badan usaha yang bergerak dalam bidang distributor makanan dan minuman ringan (snack). Koperasi
BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI Edward (1998) menjelaskan bahwa sebuah work center terdiri dari banyak jenis mesin, dan pada kenyataannya work center lebih sering diindikasikan sebagai mesin
BAB II LANDASAN TEORI. dan bekerja sama untuk memproses masukan atau input yang ditunjukkan kepada
BAB II LANDASAN TEORI 2.1 Konsep Dasar Sistem Informasi Menurut Kristanto (2003:2), sistem adalah kumpulan elemen elemen dan bekerja sama untuk memproses masukan atau input yang ditunjukkan kepada sistem
BAB 1 PENDAHULUAN. Praktikum Sistem Produksi ATA 2014/2015
BAB 1 PENDAHULUAN 1.1 Latar Belakang Aktifitas produksi yang terjadi pada sebuah perusahaan tidak hanya terbatas pada hal yang berkaitan dengan menghasilkan produk saja, namun kegiatan tersebut erat kaitannya
BAB 5 HASIL DAN PEMBAHASAN
BAB 5 HASIL DAN PEMBAHASAN 5.1 Ekstraksi Hasil Pengumpulan Data 5.1.1 Data Umum Produk Perusahaan menggunakan batch sebagai satuan dalam produksi, dimana 1 batch adalah sebesar : 1. Spon untuk ukuran 9
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS)
SI403 Riset Operasi Suryo Widiantoro, MMSI, M.Com(IS) Mahasiswa mampu melakukan perencanaan untuk memastikan kelancaran operasi rantai pasok 1. Peramalan dalam organisasi 2. Pola permintaan 3. Metode peramalan
BAB II KAJIAN PUSTAKA DAN RERANGKA PEMIKIRAN. penggerakan, dan pengendalian aktivitas organisasi atau perusahaan bisnis atau jasa
5 BAB II KAJIAN PUSTAKA DAN RERANGKA PEMIKIRAN A. Kajian Pustaka A.1. Teori A.1.1 Manajemen Produksi dan Operasi Menurut Haming (2011:24) Manajemen Operasional dapat diartikan sebagai kegiatan yang berhubungan
BAB 3 METODOLOGI PEMECAHAN MASALAH
126 BAB 3 METODOLOGI PEMECAHAN MASALAH 3.1 Flow Diagram Pemecahan Masalah Gambar 3.1 Flow Diagram Pemecahan Masalah 127 1 PENGUMPULAN DATA - Data spesifikasi produk - Data bahan baku - Data jumlah mesin
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Manajemen Permintaan 2.1.1 Pengertian Manajemen permintaan didefinisikan sebagai suatu fungsi pengelolaan dari semua permintaan produk untuk menjamin bahwa penyusunan jadwal induk
BAB 5 HASIL DAN PEMBAHASAN
BAB 5 HASIL DAN PEMBAHASAN 5.1 Pengumpulan Data 5.1.1 Pembuatan Daftar Pemesan Rutin ke Perusahaan Berdasarkan data yang diterima dari perusahaan, terdapat total delapan perusahaan yang secara rutin per
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Definisi Line Balancing Line Balancing adalah serangkaian stasiun kerja (mesin dan peralatan) yang dipergunakan untuk pembuatan produk. Line Balancing (Lintasan Perakitan) biasanya
PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG
PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG Siti Rohana Nasution 1, Temotius Agung Lukito 2 1,2) Jurusan Teknik Industri Fakultas Teknik Universitas Pancasila 1) [email protected],
BAB II LANDASAN TEORI
6 BAB II LANDASAN TEORI Jika dalam suatu organisasi atau perusahan telah diterapkan sistem kerja yang baik dengan diperhatikannya faktor-faktor kerja serta segi-segi ergonomis, tentunya perusahaan tersebut
3 BAB III LANDASAN TEORI
3 BAB III LANDASAN TEORI 3.1 Bahan Baku Bahan baku atau yang lebih dikenal dengan sebutan raw material merupakan bahan mentah yang akan diolah menjadi barang jadi sebagai hasil utama dari perusahaan yang
BAB II KAJIAN TEORITIS
BAB II KAJIAN TEORITIS 2.1 Deskripsi Teori 2.1.1 Pengertian Peramalan ( forecasting ) Salah satu keputusan penting dalam perusahaan adalah kecilnya resiko kesalahan nilai produksi dan nilai penjualan.
Bab 2 LANDASAN TEORI
Bab 2 LANDASAN TEORI 1.8 Persediaan 2.1.1 Definisi dan Fungsi Persediaan Masalah umum pada suatu model persediaan bersumber dari kejadian yang dihadapi tiap saat di bidang usaha, baik dagang ataupun industri.
BAB 3 METODOLOGI. Kerangka kerja yang digunakan oleh tim penulis adalah dengan mengkombinasikan
BAB 3 METODOLOGI Kerangka kerja yang digunakan oleh tim penulis adalah dengan mengkombinasikan beberapa metode yang masuk dalam kategori praktek terbaik untuk melakukan pengurangan jumlah persediaan barang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Persediaan 2.1.1.1 Definisi serta Tujuan Perencanaan dan Pengendalian Persediaan Persediaan (inventory) didefinisikan sebagai sumber daya yang di simpan
BAB 3 METODOLOGI PEMECAHAN MASALAH
BAB 3 METODOLOGI PEMECAHAN MASALAH Mulai Identifikasi Masalah Pengumpulan Data : - data penjualan - data kebutuhan bahan baku - data IM F - data biaya pesan - data biaya simpan Pengolahan Data : - Peramalan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik
Perencanaan Produksi Kotak Karton Tipe PB/GL pada PT.Guru Indonesia Ciracas, Jakarta Timur dengan Metode Transportasi.
Perencanaan Produksi Kotak Karton Tipe PB/GL pada PT.Guru Indonesia Ciracas, Jakarta Timur dengan Metode Transportasi. Ariyanto Fakultas Teknologi Industri Jurusan Teknik Industri Universitas Gunadarma
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Pengertian Produksi Menurut (Herjanto, 1999): Secara umum, kegiatan produksi atau operasi merupakan suatu kegiatan yang berhubungan dengan penciptaan atau pembuatan barang,
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Kajian Pustaka 2.1.1 Pengertian Manajemen Operasi Menurut Jay Heizer dan Barry Render (2010 : 4), manajemen operasi adalah serangkaian aktivitas yang menghasilkan nilai dalam bentuk
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:
SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING
SISTEM PERAMALAN PERSEDIAAN UNIT MOBIL MITSUBISHI PADA PT. SARDANA INDAH BERLIAN MOTOR DENGAN MENGGUNAKAN METODE EXPONENTIAL SMOOTHING Afni Sahara (0911011) Mahasiswa Program Studi Teknik Informatika,
BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara
BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan
