Architecture Net, Simple Neural Net
|
|
|
- Agus Budiaman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Architecture Net, Simple Neural Net 1
2 Materi 1. Perceptron 2. ADALINE 3. MADALINE 2
3 Perceptron Perceptron lebih powerful dari Hebb Pembelajaran perceptron mampu menemukan konvergensi terhadap bobot yang benar Fungsi aktivasi : Update bobot = learning rate 3
4 Arsitektur Perceptron Output : vektor biner Goal : klasifikasi setiap input ke dalam kelas +1 atau -1 4
5 Algoritma Perceptron Inisialisasi bobot dan bias (w=b=0) dan 0 < <= 1 (=1) Ulangi sampai sesuai kondisi kriteria berhenti Untuk setiap pasangan s:t, lakukan Set aktivasi input x i = s i Hitung Update bobot dan bias jika terjadi kesalahan Evaluasi kriteria berhenti Jika bobot tidak berubah maka berhenti, jika tidak maka lanjutkan 5
6 Fungsi AND (biner input & bipolar target) Inisialisasi: = 1, w=b=0, = 0.2 Epoch = 1 Epoch = 2 6
7 Fungsi AND (bipolar input & target) Inisialisasi: = 1, w=b==0 Epoch = 1 Epoch = 2 7
8 Latihan 8
9 Arsitektur Pengenalan 7 Huruf 9
10 ADALINE (Adaptive Linear Neuron) Biasanya menggunakan bipolar dan bias Random bobot awal dengan bilangan kecil Dilatih menggunakan aturan delta/lms dengan meminimalkan MSE antara fungsi aktivasi dan target Fungsi aktivasi : identitas / linier Update bobot = learning rate 10
11 Arsitektur ADALINE Output : vektor biner Goal : klasifikasi setiap input ke dalam kelas +1 atau -1 11
12 Algoritma Training ADALINE Inisialisasi bobot Biasanya digunakan nilai random yang kecil Inisialisasi learning rate () Biasanya digunakan nilai yang relatif kecil, yaitu 0.1 Jika nilai terlalu besar, proses learning tidak mencapai konvergen Jika nilai terlalu kecil, proses learning akan berjalan sangat lambat Secara praktis, nilai learning rate ditentukan antara 0.1 n 1.0, dimana n adalah jumlah input unit Ulangi sampai sesuai kondisi kriteria berhenti Untuk setiap pasangan s:t, lakukan Set aktivasi input x i = s i Hitung Update bobot dan bias 12
13 Algoritma Testing ADALINE Inisialisasi bobot Dapatkan bobot dari proses learning Untuk setiap bipolar input pada vektor x Set aktivasi dari input unit ke x Hitung nilai jaringan dari input ke output Terapkan fungsi aktivasi 13
14 Fungsi AND (biner input & bipolar target) ADALINE didesain untuk menemukan bobot yang bertujuan meminimalkan total error net input to output target 14
15 MADALINE (Many Adaptive Linear Neuron) Konsep ADALINE yang menggunakan jaringan multilayer Arsitektur MADALINE tergantung pada kombinasi ADALINE yang digunakan MADALINE dengan 1 hidden layer (terdiri dari 2 hidden unit ADALINE) dan 1 output unit ADALINE Fungsi aktivasi untuk hidden dan output layer: 15
16 Arsitektur MADALINE Y merupakan fungsi nonlinier dari input vektor (x 1 dan x 2 ) 16
17 Algoritma Training MADALINE MRI (Widrow dan Hoff) Inisialisasi bobot v 1 = 1 2, v 2 = 1 2, b 3 = 1 2 Bobot yang lain menggunakan bilangan random yang kecil nilai learning rate ditentukan antara 0.1 n 1.0 Untuk setiap bipolar input pada vektor x Set aktivasi dari input unit ke x Hitung masukan jaringan ke setiap hidden unit z in 1 = b 1 + x 1 w 11 + x 2 w 21 z in 2 = b 2 + x 1 w 12 + x 2 w 21 Tentukan output dari setiap hidden unit z 1 = f(z in i ) z 2 = f(z in i ) 17
18 Algoritma Training MADALINE MRI (Widrow dan Hoff) Untuk setiap bipolar input pada vektor x Tentukan keluaran dari jaringan y in = b 3 + z 1 v 1 + z 2 v 2 y = f y in Hitung error dan update bobot, jika t=y maka bobot tidak di-update Jika t=1, update bobot pada Zj b J (new) = b J (old) + (1 z in J ) w ij new = w ij old + 1 z in J x i Jika t=-1, update bobot pada semua unit Zk yang punya input positif b k (new) = b k (old) + ( 1 z in k ) w ik (new) = w ik (old) + 1 z in k x i 18
19 Algoritma Training MADALINE MRII (Widrow, Winter dan Baxter) Inisialisasi bobot v 1 = 1 2, v 2 = 1 2, b 3 = 1 2 Bobot yang lain menggunakan bilangan random yang kecil nilai learning rate ditentukan antara 0.1 n 1.0 Untuk setiap bipolar input pada vektor x Set aktivasi dari input unit ke x Hitung masukan jaringan ke setiap hidden unit z in 1 = b 1 + x 1 w 11 + x 2 w 21 z in 2 = b 2 + x 1 w 12 + x 2 w 21 Tentukan output dari setiap hidden unit z 1 = f(z in i ) z 2 = f(z in i ) 19
20 Algoritma Training MADALINE MRII (Widrow, Winter dan Baxter Untuk setiap bipolar input pada vektor x Tentukan keluaran dari jaringan Hitung error dan update bobot, jika t y maka laukan update bobot untuk setiap hidden unit dengan input mendekati 0 y in = b 3 + z 1 v 1 + z 2 v 2 y = f y in Ubah keluaran unit (dari +1 menjadi 1, atau sebaliknya) Hitung kembali respon dari jaringan. Jika kesalahan berkurang: Sesuaikan bobot pada unit ini (gunakan nilai keluaran yang baru sebagai target dan lakukan aturan Delta) b J (new) = b J (old) + (1 z in J ) w ij new = w ij old + 1 z in J x i b k (new) = b k (old) + ( 1 z in k ) w ik (new) = w ik (old) + 1 z in k x i 20
21 Algoritma Testing MADALINE Inisialisasi bobot Dapatkan bobot dari proses learning Untuk setiap bipolar input pada vektor x Set aktivasi dari input unit ke x Hitung nilai jaringan dari input ke output Terapkan fungsi aktivasi 21
22 Contoh Aplikasi fungsi Xor Inisialisasi Bobot dg random, learning rate =
23 Contoh Aplikasi fungsi Xor 23
24 Contoh Aplikasi fungsi Xor 24
terinspirasi dari sistem biologi saraf makhluk hidup seperti pemrosesan informasi
25 BAB III JARINGAN SARAF TIRUAN (JST) 3.1 Pengertian JST JST merupakan sebuah model atau pola dalam pemrosesan informasi. Model ini terinspirasi dari sistem biologi saraf makhluk hidup seperti pemrosesan
Architecture Net, Simple Neural Net
Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2
Jaringan syaraf dengan lapisan tunggal
Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang mencoba untuk mensimulasikan proses pembelajaran pada otak manusia. Syaraf manusia Jaringan syaraf dengan lapisan
Jaringan Syaraf Tiruan
Jaringan Syaraf Tiruan (Artificial Neural Network) Intelligent Systems Pembahasan Jaringan McCulloch-Pitts Jaringan Hebb Perceptron Jaringan McCulloch-Pitts Model JST Pertama Diperkenalkan oleh McCulloch
1.1. Jaringan Syaraf Tiruan
BAB I PENDAHULUAN 1.1. Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan (JST) adalah sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan syaraf biologi yang digambarkan sebagai berikut
lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,
LAMPIRAN 15 Lampiran 1 Algoritme Jaringan Syaraf Tiruan Propagasi Balik Standar Langkah 0: Inisialisasi bobot (bobot awal dengan nilai random yang paling kecil). Langkah 1: Menentukan maksimum epoch, target
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada
BACK PROPAGATION NETWORK (BPN)
BACK PROPAGATION NETWORK (BPN) Arsitektur Jaringan Digunakan untuk meminimalkan error pada output yang dihasilkan oleh jaringan. Menggunakan jaringan multilayer. Arsitektur Jaringan Proses belajar & Pengujian
BAB 2 TINJAUAN PUSTAKA
7 BAB 2 TINJAUAN PUSTAKA 2.1 Jaringan Syaraf Biologi Otak manusia memiliki struktur yang sangat kompleks dan memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang disebut
BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.
BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada
BAB 3 METODOLOGI PENELITIAN
BAB 3 METODOLOGI PENELITIAN 3.1. Data Yang Digunakan Dalam melakukan penelitian ini, penulis membutuhkan data input dalam proses jaringan saraf tiruan backpropagation. Data tersebut akan digunakan sebagai
JARINGAN SYARAF TIRUAN
JARINGAN SYARAF TIRUAN 8 Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak manusia tersebut. Istilah
SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON
Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Jaringan Saraf Tiruan (JST) Jaringan saraf tiruan pertama kali secara sederhana diperkenalkan oleh McCulloch dan Pitts pada tahun 1943. McCulloch dan Pitts menyimpulkan bahwa
BAB VIIB BACKPROPAGATION dan CONTOH
BAB VIIB BACKPROPAGATION dan CONTOH 7B. Standar Backpropagation (BP) Backpropagation (BP) merupakan JST multi-layer. Penemuannya mengatasi kelemahan JST dengan layer tunggal yang mengakibatkan perkembangan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak
PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER
PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM INTRODUCTION Jaringan Saraf Tiruan atau JST adalah merupakan salah satu representasi tiruan dari otak manusia yang selalu
Jaringan Syaraf Tiruan
Jaringan Syaraf Tiruan Pendahuluan Otak Manusia Sejarah Komponen Jaringan Syaraf Arisitektur Jaringan Fungsi Aktivasi Proses Pembelajaran Pembelajaran Terawasi Jaringan Kohonen Referensi Sri Kusumadewi
BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)
BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam
MENGENALI FUNGSI LOGIKA AND MELALUI PEMROGRAMAN PERCEPTRON DENGAN MATLAB
POLITEKNOSAINS VOL. X NO. 2 Juni 2011 MENGENALI FUNGSI LOGIKA AND MELALUI PEMROGRAMAN PERCEPTRON DENGAN MATLAB Yaya Finayani Teknik Elektro, Politeknik Pratama Mulia, Surakarta 57149, Indonesia ABSTRACT
Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6
Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia [email protected] Diterima 30 November 2011 Disetujui 14 Desember 2011
BAB 2 KONSEP DASAR PENGENAL OBJEK
BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis
BAB VIII JARINGAN SYARAF TIRUAN
BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing
Jaringan Syaraf Tiruan
07/06/06 Rumusan: Jaringan Syaraf Tiruan Shinta P. Sari Manusia = tangan + kaki + mulut + mata + hidung + Kepala + telinga Otak Manusia Bertugas untuk memproses informasi Seperti prosesor sederhana Masing-masing
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Forecasting Forecasting (peramalan) adalah seni dan ilmu untuk memperkirakan kejadian di masa yang akan datang. Hal ini dapat dilakukan dengan melibatkan data historis dan memproyeksikannya
BAB 4 DISAIN MODEL. Pengguna. Citra. Ekstraksi Ciri x. Antar muka (Interface) Data Hasil Ekstraksi Ciri. Testing dan Identifikasi.
33 BAB 4 DISAIN MODEL Disain model sistem identifikasi citra karang dirancang sedemikian rupa dengan tuuan untuk memudahkan dalam pengolahan data dan pembuatan aplikasi serta memudahkan pengguna dalam
ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION
ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION Eka Irawan1, M. Zarlis2, Erna Budhiarti Nababan3 Magister Teknik Informatika, Universitas Sumatera
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN OBAT Pada PT. METRO ARTHA PRAKARSA MENERAPKAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN OBAT Pada PT. METRO ARTHA PRAKARSA MENERAPKAN METODE BACKPROPAGATION Zulkarnain Mahasiswa Teknik Informatika STMIK Budi Darma Jl. Sisingamangaraja
BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara
BAB II DASAR TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban
Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah memin
BACK PROPAGATION Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah meminimalkan error pada output yang dihasilkan
Presentasi Tugas Akhir
Presentasi Tugas Akhir Bagian terpenting dari CRM adalah memahami kebutuhan dari pelanggan terhadap suatu produk yang ditawarkan para pelaku bisnis. CRM membutuhkan sistem yang dapat memberikan suatu
ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR
Jurnal Barekeng Vol. 8 No. Hal. 7 3 (04) ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Analysis of Backpropagation Artificial Neural Network to
JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN)
JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN) Marihot TP. Manalu Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma
PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK
PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK Naskah Publikasi disusun oleh Zul Chaedir 05.11.0999 Kepada SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No. 1, Juni 2015 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan untuk Memprediksi Prestasi
METODE BELAJAR HEBBIAN SUPERVISED & CONTOH
METODE BELAJAR HEBBIAN SUPERVISED & CONTOH 1. Jaringan Hebbian Kelemahan model McCulloch-Pitts : penentuan bobot garis dan bias secara analitik. Untuk masalah yang kompleks, hal ini akan sangat sulit dilakukan.
Studi Modifikasi standard Backpropagasi
Studi Modifikasi standard Backpropagasi 1. Modifikasi fungsi objektif dan turunan 2. Modifikasi optimasi algoritma Step Studi : 1. Studi literatur 2. Studi standard backpropagasi a. Uji coba standar backpropagasi
BAB 2 JARINGAN NEURAL SATU LAPIS
BAB 2 JARINGAN NEURAL SATU LAPIS Jaringan neural dapat dilatih untuk melakukan klasifikasi pola. Dalam klasifikasi pola setiap vektor masukan diklasifikasi menjadi anggota atau tidak dari suatu kelas tertentu
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat
VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :
PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara
BACK PROPAGATION NETWORK (BPN)
BACK PROPAGATION NETWORK (BPN) Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah meminimalkan error pada output
BAB IV B METODE BELAJAR HEBBIAN SUPERVISED & CONTOH
BAB IV B METODE BELAJAR HEBBIAN SUPERVISED & CONTOH 4B. Jaringan Hebbian Kelemahan model McCulloch-Pitts : penentuan bobot garis dan bias secara analitik. Untuk masalah yang kompleks, hal ini akan sangat
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Kecerdasan Buatan Pertemuan 11 Jaringan Syaraf Tiruan (Artificial Neural Network)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Barcode Salah satu obyek pengenalan pola yang bisa dipelajari dan akhirnya dapat dikenali yaitu PIN barcode. PIN barcode yang merupakan kode batang yang berfungsi sebagai personal
Research of Science and Informatic BROILER CHICKENS WEIGHT PREDICTION BASE ON FEED OUT USING BACKPROPAGATION
Sains dan Informatika Vol.2 (N0.2) (2016): 1-9 1 Andre Mariza Putra, Chickens Weight Prediction Using Backpropagation JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: [email protected]
BAB III METODOLOGI PENELITIAN
19 BAB III METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Kerangka pemikiran untuk penelitian ini seperti pada Gambar 9. Penelitian dibagi dalam empat tahapan yaitu persiapan penelitian, proses pengolahan
BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu
BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Tahapan yang dilakukan dalam penelitian ini disajikan pada Gambar 14, terdiri dari tahap identifikasi masalah, pengumpulan dan praproses data, pemodelan
3. METODE PENELITIAN
19 3. METODE PENELITIAN 3.1 Diagram Alir Penelitian Kerangka pemikiran pada penelitian ini dapat digambarkan dalam suatu bagan alir seperti pada Gambar 8. Gambar 8 Diagram Alir Penelitian Pengumpulan Data
RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON
RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON Liza Afriyanti Laboratorium Komputasi dan Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi Industri,Universitas Islam
Aplikasi yang dibuat adalah aplikasi untuk menghitung. prediksi jumlah dalam hal ini diambil studi kasus data balita
BAB III ANALISA DAN PERANCANGAN SISTEM 3.1. Analisa dan Kebutuhan Sistem Analisa sistem merupakan penjabaran deskripsi dari sistem yang akan dibangun kali ini. Sistem berfungsi untuk membantu menganalisis
ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang)
ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang) 1 Musli Yanto, 2 Sarjon Defit, 3 Gunadi Widi Nurcahyo
PERAMALAN JUMLAH KENDARAAN DI DKI JAKARTA DENGAN JARINGAN BACKPROPAGATION
PERAMALAN JUMLAH KENDARAAN DI DKI JAKARTA DENGAN JARINGAN BACKPROPAGATION (Forecast The Number of Vehicle in Jakarta Using Backpropagation Neural Net ) Zumrotus Sya diyah Universitas Darussalam Ambon,
BAB 3 PERANCANGAN SISTEM. Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang
BAB 3 PERANCANGAN SISTEM Bab ini menguraikan analisa penelitian terhadap metode Backpropagation yang diimplementasikan sebagai model estimasi harga saham. Analisis yang dilakukan adalah menguraikan penjelasan
METODOLOGI PENELITIAN
III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan
BAB IV IMPLEMENTASI DAN PENGUJIAN
68 BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini membahas tentang program yang telah dianalisis dan dirancang atau realisasi program yang telah dibuat. Pada bab ini juga akan dilakukan pengujian program. 4.1
BAB IV PERANCANGAN & IMPLEMENTASI SISTEM
17 BAB IV PERANCANGAN & IMPLEMENTASI SISTEM 4.1 Desain. yang digunakan adalah jaringan recurrent tipe Elman dengan 2 lapisan tersembunyi. Masukan terdiri dari data : wind, SOI, SST dan OLR dan target adalah
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab ini akan dibahas mengenai teori-teori pendukung pada penelitian ini. Adapun teori tersebut yaitu teori jaringan saraf tiruan dan algoritma backpropragation. 2.1. Jaringan Saraf
BAB 3 ANALISIS DAN PERANCANGAN SISTEM
BAB 3 ANALISIS DAN PERANCANGAN SISTEM Analisis merupakan proses penguraian konsep ke dalam bagian-bagian yang lebih sederhana, sehingga struktur logisnya menjadi jelas. Metode untuk menguji, menilai, dan
WAVELET -JARINGAN SYARAF TIRUAN UNTUK PREDIKSI DATA TIME SERIES
J. Math. and Its Appl. ISSN: 1829-605X Vol. 4, No. 2, November 2007, 53 64 WAVELET -JARINGAN SYARAF TIRUAN UNTUK PREDIKSI DATA TIME SERIES Daryono Budi Utomo Jurusan Matematika FMIPA Institut Teknologi
Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation
65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
BAB II MODEL NEURON DAN ARSITEKTUR JARINGAN
BAB II MODEL NEURON DAN ARSITEKTUR JARINGAN Neuron adalah unit pemroses informasi yang menjadi dasar dalam pengoperasian JST. Neuron terdiri dari 3 elemen: Himpunan unit2 yang dihubungkan dengan jalus
ARTIFICIAL NEURAL NETWORK TEKNIK PERAMALAN - A
ARTIFICIAL NEURAL NETWORK CAHYA YUNITA 5213100001 ALVISHA FARRASITA 5213100057 NOVIANTIANDINI 5213100075 TEKNIK PERAMALAN - A MATERI Neural Network Neural Network atau dalam bahasa Indonesia disebut Jaringan
BAB III ANALISIS DAN PERANCANGAN
32 BAB III ANALISIS DAN PERANCANGAN Pada bab ini akan dibahas tentang analisis sistem melalui pendekatan secara terstruktur dan perancangan yang akan dibangun dengan tujuan menghasilkan model atau representasi
IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI
IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI Andi Harmin Program Studi : Teknik Komputer STMIK Profesional Makassar [email protected]
ANALISIS VARIASI PARAMETER LEARNING VECTOR QUANTIZATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA ODOR
Jurnal Teknik dan Ilmu Komputer ANALISIS VARIASI PARAMETER LEARNING VECTOR QUANTIZATION ARTIFICIAL NEURAL NETWORK TERHADAP PENGENALAN POLA DATA ODOR PARAMETER VARIATION ANALYSIS OF LEARNING VECTOR QUANTIZATION
KLASIFIKASI ARITMIA EKG MENGGUNAKAN JARINGAN SYARAF TIRUAN DENGAN FUNGSI AKTIVASI ADAPTIF
KLASIFIKASI ARITMIA EKG MENGGUNAKAN JARINGAN SYARAF TIRUAN DENGAN FUNGSI AKTIVASI ADAPTIF Asti Rahma Julian 1, Nanik Suciati 2, Darlis Herumurti 3 Teknik Informatika, Fakultas Teknologi Informasi, ITS
Jurnal Informatika Mulawarman Vol 5 No. 1 Februari
Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: [email protected] ABSTRAK:
PENGENAL HURUF TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN METODE LVQ (LEARNING VECTOR QUANTIZATION) By. Togu Sihombing. Tugas Ujian Sarjana
PENGENAL HURUF TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN METODE LVQ (LEARNING VECTOR QUANTIZATION) By. Togu Sihombing Tugas Ujian Sarjana. Penjelasan Learning Vector Quantization (LVQ) Learning
IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR
Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI
Bab 5 Penerapan Neural Network Dalam Klasifikasi Citra Penginderaan Jauh
Penerapan Neural Dalam Klasifikasi Citra Penginderaan Jauh Klasifikasi citra penginderaan jarak jauh (inderaja) merupakan proses penentuan piksel-piksel masuk ke dalam suatu kelas obyek tertentu. Pendekatan
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Bagian ini membahas jaringan saraf tiruan, pengenalan tulisan tangan, dan algoritma backpropagation. 2. Jaringan Saraf Tiruan Jaringan saraf tiruan (JST)
BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian dengan jaringan syaraf tiruan propagasi balik dalam bidang kesehatan sebelumnya pernah dilakukan oleh Sudharmadi Bayu Jati Wibowo
HASIL DAN PEMBAHASAN. Tabel 3 Contoh data Shorea hasil kodefikasi
8 disajikan contoh data Shorea hasil kodefikasi dari beberapa karakter yang bernilai nominal. Tabel 2 Karakter daun yang bernilai nominal Karakter Nilai Kode Bentuk tulang Tidak menempel 1 daun Permukaan
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Penerapan Jaringan Syaraf Tiruan Untuk Estimasi Needs
PERAMALAN PRODUKSI CABAI RAWIT DENGAN NEURAL NETWORK Muhammad Fajar
PERAMALAN PRODUKSI CABAI RAWIT DENGAN NEURAL NETWORK Muhammad Fajar Abstrak Tujuan penelitian ini untuk melakukan peramalan produksi cabai rawit dengan menggunakan neural network. Data yang digunakan dalam
ANALISIS FUNGSI AKTIVASI SIGMOID BINER DAN SIGMOID BIPOLAR DALAM ALGORITMA BACKPROPAGATION PADA PREDIKSI KEMAMPUAN SISWA
ANALISIS FUNGSI AKTIVASI SIGMOID BINER DAN SIGMOID BIPOLAR DALAM ALGORITMA BACKPROPAGATION PADA PREDIKSI KEMAMPUAN SISWA Julpan 1 *, Erna Budhiarti Nababan 1 & Muhammad Zarlis 1 1 Program S2 Teknik Informatika
BAB 2 TINJAUAN PUSTAKA
5 BAB 2 TINJAUAN PUSTAKA 2.1. Analisis Analisis adalah kemampuan pemecahan masalah subjek kedalam elemen-elemen konstituen, mencari hubungan-hubungan internal dan diantara elemen-elemen, serta mengatur
ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK
ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, M. Rhifky Wayahdi 2 1 Dosen Teknik Informatika,
PENGGUNAAN METODE JARINGAN NEURAL PERCEPTRON UNTUK MENGENAL POLA KARAKTER KAPITAL
J. Pilar Sains 6 (2) Juli 2007 Jurusan Pendidikan MIPA FKIP Universitas Riau ISSN 1412-5595 PENGGUNAAN METODE JARINGAN NEURAL PERCEPTRON UNTUK MENGENAL POLA KARAKTER KAPITAL Zaiful Bahri 1 Dosen Program
Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum
Jaringan Syaraf Tiruan Disusun oleh: Liana Kusuma Ningrum Susilo Nugroho Drajad Maknawi M0105047 M0105068 M01040 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret
BAB 2 LANDASAN TEORI. Universitas Sumatera Utara
BAB 2 LANDASAN TEORI 2.1 Ginjal Ginjal adalah organ tubuh yang berfungsi untuk mengeluarkan urine, yang merupakan sisa hasil metabolisme tubuh dalam bentuk cairan. Ginjal terletak pada dinding bagian luar
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Teori-teori Dasar / Umum 2.1.1 Genetic Algorithm Genetic algorithm adalah suatu algoritma yang biasanya digunakan untuk mencari solusi-solusi yang optimal untuk berbagai masalah
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran
Penggunaan Deep Learning untuk Prediksi Churn pada Jaringan Telekomunikasi Mobile Fikrieabdillah
ISSN : 2355-9365 e-proceeding of Engineering : Vol3, No2 Agustus 2016 Page 3882 Penggunaan Deep Learning untuk Prediksi Churn pada Jaringan Telekomunikasi Mobile Fikrieabdillah Ilmu Komputasi Universitas
BAB IV HASIL DAN PEMBAHASAN. Implementasi antar muka dalam tugas akhir ini terdiri dari form halaman
BAB IV HASIL DAN PEMBAHASAN 4.1 Implementasi Antar Muka Implementasi antar muka dalam tugas akhir ini terdiri dari form halaman judul perangkat lunak, form pelatihan jaringan saraf tiruan, form pengujian
ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK
Seminar Nasional Informatika 0 ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian, Purwa Hasan Putra Dosen Teknik Informatika,
KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 21 Komputasi Quantum Teori komputasi quantum sangat terinspirasi oleh fenomena partikel pada mekanika quantum Fenomena ini disebut dengan superposisi dimana sebuah partikel dalam
Aplikasi Pengenalan Karakter Manusia Melalui Bentuk Bagian Wajah Menggunakan Metode Backpropagation
Jurnal Teknik Informatika, Vol 1 September 2012 Aplikasi Pengenalan Karakter Manusia Melalui Bentuk Bagian Wajah Menggunakan Metode Backpropagation Tito Juliasmi 1, Kartina Diah Kusuma W, S.T. 2 & Erwin
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar belakang Hujan merupakan salah satu unsur iklim yang berpengaruh pada suatu daerah aliran sungai (DAS). Pengaruh langsung yang dapat diketahui yaitu potensi sumber daya air. Besar
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER 1. Identitas Nama Departemen : Pendidikan Ilmu Komputer Nama Program Studi : Pendidikan Ilmu Komputer Nama : Jaringan Saraf Tiruan Kode : IK550 lompok : cerdasan Buatan Bobot
ANALISIS PENGGUNAAN ALGORITMA KOHONEN PADA JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM PENGENALAN POLA PENYAKIT PARU
ANALISIS PENGGUNAAN ALGORITMA KOHONEN PADA JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM PENGENALAN POLA PENYAKIT PARU Rosmelda Ginting 1*, Tulus 1, Erna Budhiarti Nababan 1 Program S2 Teknik Informatika
