RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON
|
|
|
- Shinta Sutedja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON Liza Afriyanti Laboratorium Komputasi dan Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi Industri,Universitas Islam Indonesia Jl. Kaliurang Km. 14 Yogyakarta ABSTRAKS Jaringan Syaraf Tiruan (JST) merupakan topik yang hangat dibicarakan dan mengundang banyak kekaguman dalam dasa warsa terakhir. Hal ini disebabkan karena kemampuan JST untuk meniru sifat sistem yang dimasukkan. Pada dasarnya JST mencoba meniru cara kerja otak makhluk hidup, yaitu bentuk neuron-nya (sel syaraf). Faktor kecerdasan dari syaraf tidak ditentukan di dalam sel tetapi terletak pada bentuk dan topologi jaringannya. Salah satu model JST yang sering digunakan untuk pembelajaran adalah perceptron. Metode perceptron merupakan metode pembelajaran dengan pengawasan dalam sistem jaringan syaraf. Dalam merancang jaringan neuron yang perlu diperhatikan adalah banyaknya spesifikasi yang akan diidentifikasi. Jaringan neuron terdiri dari sejumlah neuron dan sejumlah masukan. Penelitian dilakukan dengan membangun sebuah tool yang digunakan untuk membuat struktur Jaringan Syaraf Tiruan model perceptron. Sehingga dapat membantu user dalam memahami teori sekaligus dapat memahami struktur JST secara visual. Hasil akhir dari penelitian skripsi ini adalah untuk membangun sebuah tool untuk membuat struktur Jaringan Syaraf Tiruan model perceptron. Tool untuk struktur Jaringan Syaraf Tiruan (JST) model perceptron dapat digunakan untuk melakukan proses pelatihan dan pengujian serta menampilkan struktur jaringan perceptron. Kata-kunci : Jaringan Syaraf Tiruan, Perceptron, Struktur Jaringan. 1. PENDAHULUAN 1.1 Latar Belakang Jaringan Syaraf Tiruan (Artificial Neural Networks) adalah salah satu cabang ilmu dari bidang ilmu Kecerdasan Buatan. Salah satu model JST yang sering digunakan untuk pembelajaran adalah perceptron. Metode perceptron merupakan metode pembelajaran dengan pengawasan dalam sistem jaringan syaraf. Dalam merancang jaringan neuron yang perlu diperhatikan adalah banyaknya spesifikasi yang akan diidentifikasi. Jaringan neuron terdiri dari sejumlah neuron dan sejumlah masukan. Salah satu permasalahan dalam JST yang dihadapi user adalah tidak dapat memahami struktur pada jaringannya. Hal ini terjadi karena tidak didukung dengan tersedianya suatu aplikasi yang dapat membantu user dalam memahami struktur JST. Untuk dapat memahami struktur JST selain memahami teori juga diperlukan pemahaman secara visual. Untuk itu diperlukan sebuah aplikasi handal yang dapat membantu user dalam memahami struktur JST model Perceptron. Salah satu bahasa pemrograman yang banyak digunakan adalah Java. Java telah menerapkan konsep pemrograman berorientasi objek yang modern dalam implementasinya. Dengan kemudahannya, Java dapat digunakan dalam perancangan pembuatan tool untuk JST model Perceptron. Berdasarkan latar belakang tersebut, maka pada penelitian ini akan dibangun sebuah tool untuk membuat Jaringan Syaraf Tiruan model perceptron. 1.2 Tujuan Tujuan yang diharapkan dari penulisan tugas akhir ini adalah membangun aplikasi untuk mengimplementasikan struktur Jaringan Syaraf Tiruan model Perceptron dengan menggunakan bahasa pemrograman Java. 1.3 Batasan Masalah Dalam melaksanakan suatu penelitian diperlukan adanya batasan agar tidak menyimpang dari yang telah direncanakan sehingga tujuan yang sebenarnya dapat tercapai. Batasan masalah yang diperlukan yaitu : 1. Aplikasi ini dibuat untuk dijalankan pada desktop. 2. Program yang akan dibuat nantinya akan menampilkan struktur JST model Perceptron. 3. Masukan yang diperlukan antara lain jumlah variabel input, nilai variabel input, bobot, alpha (learning rate), threshold, maksimum epoh dan target (output). 4. Iterasi dilakukan terus hingga semua pola memiliki keluaran jaringan yang sama dengan targetnya. E-85
2 2. PERCEPTRON 2.1 Teori Jaringan Syaraf Tiruan (JST) Elemen yang paling mendasar dari jaringan syaraf adalah sel syaraf. Sel-sel syaraf inilah membentuk bagian kesadaran manusia yang meliputi beberapa kemampuan umum. Pada dasarnya sel syaraf biologi menerima masukan dari sumber yang lain dan mengkombinasikannya dengan beberapa cara, melaksanakan suatu operasi yang non-linear untuk mendapatkan hasil dan kemudian mengeluarkan hasil akhir tersebut. Jaringan syaraf tiruan dapat dibayangkan seperti otak buatan yang dapat berpikir seperti manusia dan juga sepandai manusia dalam menyimpulkan sesuatu dari potongan-potongan informasi yang diterima. Khayalan manusia tersebut mendorong para peneliti untuk mewujudkannya. Komputer diusahankan agar bisa berpikir sama seperti cara berpikir manusia. Caranya adalah dengan melakukan peniruan terhadap aktivitasaktivitas yang terjadi di dalam sebuah jaringan syaraf biologis. [KUS03] Salah satu contoh pengambilan ide dari jaringan syaraf biologis adalah adanya elemenelemen pemrosesan pada jaringan syaraf tiruan yang saling terhubung dan beroperasi secara paralel. Ini meniru jaringan syaraf biologis yang tersusun dari sel-sel syaraf (neuron). Cara kerja dari elemenelemen pemrosesan jaringan syaraf tiruan juga sama seperti meng-encode informasi yang diterimanya. Jaringan syaraf biologis merupakan kumpulan sel-sel syaraf (neuron). Neuron mempunyai tugas mengolah informasi. Komponen-komponen utama dari sebuah neuron dapat dikelompokkan menjadi tiga bagian, yaitu: 1. Dendrit. Dendrit bertugas untuk menerima informasi. 2. Badan sel (soma). Badan sel berfungsi sebagai tempat pengolahan informasi. 3. Akson (neurit). Akson mengirimkan impulsimpuls ke sel syaraf lainnya. tertentu yang sering dikenal dengan pemisahan secara linear. Pada dasarnya perceptron pada jaringan syaraf dengan satu lapisan memiliki bobot yang dapat diatur. Dapat digunakan dalam kasus untuk mengenali fungsi logika dan dengan masukan dan keluaran bipolar. [SIA05] Arsitektur jaringan perceptron mirip dengan arsitektur jaringan Hebb. Jaringan terdiri dari beberapa unit masukan (ditambah sebuah bias), dan memiliki sebuah unit keluaran. Hanya saja fungsi aktivasi bukan merupakan fungsi biner (atau bipolar), tetapi memiliki kemungkinan nilai -1, 0 atau 1. Algoritma yang digunakan oleh aturan perceptron ini akan mengatur parameter-parameter bebasnya melalu proses pembelajaran. Fungsi aktivasinya dibuat sedemikian rupa sehingga terjadi pembatasan antara daerah positif dan negatif Algortima Pelatihan Perceptron Misalkan s sebagai vektor masukan, t adalah target keluaran, α adalah laju pemahaman, θ adalah nilai threshold. Perhatikan algoritma untuk pelatihan perceptron di bawah ini : Langkah 0 : Inisialisasi semua bobot dan bias (umumnya w i = b = 0 ). Set laju pembelajaran α ( 0 < α 1) (untuk penyederhanaan set α =1). Kemudian set epoh = 0. Langkah 1 : Selama kondisi berhenti benilai FALSE atau selama ada elemen vektor masukan yang respon unit keluarannya tidak sama dengan target (y t), lakukan langkah-langkah 2 6. Langkah 2 : Untuk setiap pasangan (s, t), kerjakan langkah 3 5. Pada langkah ini epoh = epoh + 1. Epoh atau iterasi akan berhenti jika y = t atau tercapainya epoh maksimum. Langkah 3 : Set aktivasi unit masukan x i = s i (i = 1,..., n) Langkah 4 : Hitung respon untuk unit output :... (3.3)... (3.4) Gambar 1. Sel Syaraf Biologis [KUS03] 2.2 Jaringan Syaraf Tiruan Model Perceptron Model jaringan perceptron ditemukan pertama kali oleh Rosenbatt (1962) dan Minsky Papert (1969). Model tersebut merupakan model yang memiliki aplikasi dan pelatihan yang paling baik pada era tersebut. Perceptron merupakan salah satu bentuk jaringan sederhana, perceptron biasanya digunakan untuk mengklasifikasikan suatu pola tipe Langkah 5 : Perbaiki bobot dan bias pola jika terjadi kesalahan, y t. Jika pada setiap epoh diketahui bahwa keluaran jaringan tidak sama dengan target yang diinginkan, maka bobot harus di ubah menggunakan rumus : Δw i = α t x i = t x i (karena α = 1). Bobot baru = bobot(lama) + Δw i E-86
3 Langkah 6 : Test kondisi berhenti, jika tidak terjadi perubahan bobot pada epoh tersebut maka kondisi berhenti TRUE, namun jika masih terjadi perubahan maka kondisi berhenti FALSE Proses Pengujian Proses pengujian merupakan tahap penyesuaian terhadap bobot yang telah terbentuk pada proses pelatihan. Algoritma untuk proses pengujian adalah sebagai berikut : Langkah 0 : Ambil bobot dari hasil pembelajaran, Langkah 1 : Untuk setiap vektor x, lakukan langkah 2 4, Langkah 2 : Set nilai aktivasi dari unit masukan, x i = s i ; i=1,.,n, Langkah 3 : Hitung total masukan ke unit keluaran, Net = x i w i + b, Langkah 4 : Gunakan fungsi aktivasi, Y = f(net). 3. HASIL DAN PEMBAHASAN 3.1 Model Sistem Gambaran umum perangkat lunak tool untuk struktur Jaringan Syaraf Tiruan (JST) model perceptron dapat dilihat pada gambar 2. Pada gambar 3 menjelaskan bagaimana struktur akan dibangun berdasarkan input data yang akan dimasukan oleh user. User akan menentukan jumlah variabel input (X 1, X 2,, X n ) yang akan dibangun, setelah itu user harus memasukan nilai variabel input berupa bilangan biner ataupun bipolar. Gambar 3. Arsitektur JST Model Perceptron Kemudian user memasukkan nilai bobot (umumnya nilai bobot adalah 0) dimana sistem akan memperbaharui nilai bobot selama masih ada error berdasarkan α adalah laju pembelajaran dan t adalah target keluaran (±1). Fungsi aktifasi mempunyai kemungkinan nilai -1, 0, dan 1. Untuk nilai threshold θ yang ditentukan adalah berdasarkan pada persamaan 2. Net = x i w i + b...(1)... (2) Gambar 2. Gambaran Umum Sistem Dari gambar 2 diatas dapat dibagi menjadi beberapa bagian, yaitu instalasi sistem, arsitektur jaringan, setting data dan terakhir sistem dapat digunakan untuk membangun struktur jaringan melalui proses pengujian dan pelatihan. 3.2 Proses Pembuatan Arsitektur Jaringan Pada proses pembuatan arsitektur jaringan, user harus mempunyai rancangan data yang akan digunakan untuk membangun sebuah struktur jaringan. Data (input) yang dibutuhkan seperti alpha, bobot, threshold, bias, jumlah variabel input, nilai variabel input dan target (output) yang nantinya akan digunakan dalam proses pelatihan dan pengujian sistem. 3.3 Analisis Kebutuhan Masukan Kebutuhan masukan dari user dibutuhkan untuk menentukan struktur jaringan. Masukan yang dibutuhkan adalah : a. Jumlah variabel input. b. Nilai variabel input. c. Bobot awal. d. Alpha. e. Threshold. f. Maksimum epoh. g. Target (output). 3.4 Analisis Kebutuhan Keluaran Sedangkan kebutuhan keluaran yang dihasilkan oleh tool untuk JST model perceptron yaitu hasil perhitungan dan gambar struktur Jaringan Syaraf Tiruan (JST) model perceptron. 3.5 Analisis Kebutuhan Proses Kebutuhan proses dalam pembuatan tool untuk struktur Jaringan Syaraf Tiruan (JST) model perceptron antara lain proses input data untuk pembentukan jaringan. Kebutuhan proses tool untuk JST model perceptron adalah sebagai berikut : a. Proses input data ke sistem. Input berupa parameter JST model perceptron seperti jumlah E-87
4 variabel input, nilai variabel input, bobot, alpha (learning rate), threshold, maksimum epoh dan target (output). b. Proses perhitungan data dan pembentukan jaringan. Setelah semua data dimasukkan kemudian diproses untuk menghasilkan perhitungan perceptron dan struktur jaringan dapat divisualisasikan ke bidang yang ada 3.6 Kebutuhan Antar Muka Kebutuhan antar muka yang diperlukan antara lain : a. Antar muka halaman home, sebagai halaman utama sistem. b. Antar muka untuk input data, halaman untuk memasukkan data seperti jumlah variabel input, nilai variabel input, bobot, alpha (learning rate), threshold, maksimum epoh dan target (output). c. Antar muka untuk informasi hasil perhitungan, halaman untuk menampilkan hasil perhitungan epoh. d. Antar muka untuk tabel perhitungan epoh terkahir, halaman untuk menampilkan tabel hasil perhitungan epoh yang terkahir. e. Antar muka untuk proses pengujian, halaman yang berguna untuk melakukan proses pengujian terhadap proses pembelajaran perceptron. f. Antar muka untuk struktur jaringan, halaman yang menampilkan struktur jaringan. g. Antar muka halaman about, merupakan halaman untuk memberikan informasi mengenai program dan programmer. h. Antar muka halaman help, merupakan halaman untuk panduan penggunaan tool untuk JST model perceptron. 3.7 Perancangan Sistem Pada proses perancangan, diawali dengan membuat rancangan antarmuka perangkat lunak. Rancangan antarmuka yang dikembangkan pada perangkat lunak menggunakan sistem yang user friendly. Tool untuk JST model perceptron ini sudah berbasi GUI dimana terdapat icon-icon yang dapat mempermudah user dalam pemakaian dan membuat menarik aplikasi perangkat lunak ini. Pemilihan bahasa pemrograman Java karena memiliki kemudahan dalam pemakaian, kelengkapan fungsi, stabil, aman dan cross-platform serta masih banyak lagi kelebihan dari Java. Rancangan antarmuka dalam tool untuk JST model perceptron ini antara lain : 1. Antar Muka Halaman Home 2. Antar Muka Halaman Input Data 3. Antar Muka Halaman Hasil Data 4. Antar Muka Halaman Tabel Epoh Teakhir 5. Antar Muka Halaman Pengujian Data 6. Antar Muka Halaman Struktur Jaringan 7. Antar Muka Halaman About 8. Antar Muka Halaman Help 3.8 Kinerja Yang Diharapkan Dari hasil analisis yang sudah dijelaskan sebelumnya, diharapkan aplikasi yang dibuat nantinya mampu menangani berbagai macam model Jaringan Syaraf Tiruan. 4. PENGUJIAN Proses pengujian tool untuk JST model perceptron ini meliputi proses pelatihan dan pengujian pada data masukan oleh user. Pada tahap pengujian dan analisis tool untuk struktur Jaringan Syaraf Tiruan (JST) model Perceptron, dilakukan pembandingan antara kebenaran serta kesesuaian program dengan kebutuhan system. Setelah sistem melakukan proses pelatihan dan pengujian, user dapat melihat struktur jaringan yang telah terbentuk. 4.1 Input Data Awal Untuk melakukan proses pelatihan dan pengujian perceptron, langkah pertama yang harus dilakukan oleh user adalah memasukkan data awal seperti jumlah variabel input, nilai variabel input, bobot, alpha (learning rate), threshold, maksimum epoh dan target (output). Misalkan untuk inisialisasi awal tiap parameter yang digunakan adalah jumlah variabel input (x) = 2, bobot awal (w) = 0, alpha (α) = 0.8, threshold (θ) = 0.5 dan maksimum epoh adalah 11 dengan input biner dan target bipolar. 4.2 Implementasi Pada implementasi tool untuk Jaringan Syaraf Tiruan (JST) model perceptron akan dijelaskan bagaimana sistem ini bekerja, dengan memberikan tampilan form-form dan tampilan output yang dibuat. Gambar 4 merupakan halaman home. Gambar 5 adalah halaman untuk input data awal seperti seperti jumlah variabel input, nilai variabel input, bobot, alpha (learning rate), threshold, maksimum epoh dan target (output). Gambar 6 adalah halaman hasil perhitungan proses pelatihan perceptron. Gambar 7 merupakan tabel epoh hasil iterasi terkahir pada proses pelatihan. E-88
5 Gambar 4. Home Gambar 8. Proses Pengujian Gambar 5. Input Data Awal Gambar 9. Struktur Jaringan Gambar 8 menunjukkan proses pengujian pada sistem. Bobot yang digunakan pada proses pengujian adalah bobot terakhir proses pelatihan dan user memasukkan nilai variabel input yang baru untuk proses pengujian. Gambar 9 merupakan gambar struktur jaringan. Jumlah neuron dibentuk berdasarkan jumlah variabel input oleh user pada halaman input data awal. Gambar 6. Result Data 5. KESIMPULAN Dari hasil penelitian dan pembahasan yang telah dilakukan, dapat diambil kesimpulan bahwa tool untuk struktur Jaringan Syaraf Tiruan (JST) model perceptron : 1. Mampu melakukan proses pelatihan data berdasarkan nilai masukkan dari user seperti jumlah variabel input, nilai variabel input, bobot, alpha (learning rate), threshold, maksimum epoh dan target (output). 2. Mampu melakukan proses pengujian data berdasarkan nilai bobot yang didapat dari proses pelatihan. 3. Sistem dapat membuat struktur Jaringan Syaraf Tiruan model perceptron. Jumlah neuron terbentuk berdasarkan jumlah variabel input. Gambar 7. Tabel Epoh Terakhir Diharapkan dalam pengembangan sistem selanjutnya dapat mencakup beberapa metode jaringan syaraf tiruan (jst) seperti model hebb, E-89
6 model adaline, back propagation, dan lain-lain. Penyajian data akan lebih baik jika dapat menampilkan keseluruhan hasil perhitungan termasuk tabel epoh pada setiap iterasi. PUSTAKA [BAM03] Hariyanto, Bambang.Esensi-esensi Bahasa Pemrograman JAVA. Penerbit Informatika. Bandung [RAC09] Hakim, Rachmad. Mastering Java (Konsep Pemrogramana Java dan Penerapannya untuk membuat software aplikasi). Elex Media Komputindo [KUS03] Kusumadewi, Sri. Artificial Intelligence(teknik dan aplikasinya). Graha Ilmu, Yogyakarta [NAS09] Nasution, Fithlail Gudie. Jaringan saraf tiruan (Neural Network). rk/ diakses tanggal 17 Maret [ISA02] Rickyanto, Isak. Dasar Pemrograman Berorientasi Objek Dengan JAVA 2(JDK 1.4). Penerbit Andi. Yogyakarta [SIA05] Siang, Jong Jek. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Penerbit Andi. Yogyakarta E-90
PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER
PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify
terinspirasi dari sistem biologi saraf makhluk hidup seperti pemrosesan informasi
25 BAB III JARINGAN SARAF TIRUAN (JST) 3.1 Pengertian JST JST merupakan sebuah model atau pola dalam pemrosesan informasi. Model ini terinspirasi dari sistem biologi saraf makhluk hidup seperti pemrosesan
Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia
Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 2017 ISSN: 0852-730X Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia Muhammad Ulinnuha
SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON
Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,
Jaringan Syaraf Tiruan
Jaringan Syaraf Tiruan (Artificial Neural Network) Intelligent Systems Pembahasan Jaringan McCulloch-Pitts Jaringan Hebb Perceptron Jaringan McCulloch-Pitts Model JST Pertama Diperkenalkan oleh McCulloch
IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI
IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI Andi Harmin Program Studi : Teknik Komputer STMIK Profesional Makassar [email protected]
MENGENALI FUNGSI LOGIKA AND MELALUI PEMROGRAMAN PERCEPTRON DENGAN MATLAB
POLITEKNOSAINS VOL. X NO. 2 Juni 2011 MENGENALI FUNGSI LOGIKA AND MELALUI PEMROGRAMAN PERCEPTRON DENGAN MATLAB Yaya Finayani Teknik Elektro, Politeknik Pratama Mulia, Surakarta 57149, Indonesia ABSTRACT
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK [1] Meishytah Eka Aprilianti, [2] Dedi Triyanto, [3] Ilhamsyah [1] [2] [3] Jurusan Sistem Komputer, Fakultas
IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM
IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM Ayu Trimulya 1, Syaifurrahman 2, Fatma Agus Setyaningsih 3 1,3 Jurusan Sistem Komputer, Fakultas MIPA Universitas
ARTIFICIAL NEURAL NETWORK TEKNIK PERAMALAN - A
ARTIFICIAL NEURAL NETWORK CAHYA YUNITA 5213100001 ALVISHA FARRASITA 5213100057 NOVIANTIANDINI 5213100075 TEKNIK PERAMALAN - A MATERI Neural Network Neural Network atau dalam bahasa Indonesia disebut Jaringan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat
APLIKASI JARINGAN SARAF TIRUAN METODE PERCEPTRON PADA PENGENALAN POLA NOTASI
APLIKASI JARINGAN SARAF TIRUAN METODE PERCEPTRON PADA PENGENALAN POLA NOTASI Muhamad Arifin SMK Telkom Malang Email: [email protected] Khoirudin Asfani Fakultas Teknik, Universitas Negeri Malang
Analisis Jaringan Saraf Tiruan Pengenalan Pola Huruf Hiragana dengan Model Jaringan Perceptron
Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 017 ISSN: 085-70X Analisis Jaringan Saraf Tiruan Pengenalan Pola Huruf Hiragana dengan Model Jaringan Perceptron Irfan Ramadhani
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No. 1, Juni 2015 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan untuk Memprediksi Prestasi
APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA
APLIKASI JARINGAN SYARAF TIRUAN DALAM PENGHITUNGAN PERSENTASE KEBENARAN KLASIFIKASI PADA KLASIFIKASI JURUSAN SISWA DI SMA N 8 SURAKARTA Pembimbing: Desi Fitria Utami M0103025 Drs. Y. S. Palgunadi, M. Sc
BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)
BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam
PENGENALAN AKSARA JAWAMENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ)
PENGENALAN AKSARA JAWAMENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) Alfa Ceria Agustina (1) Sri Suwarno (2) Umi Proboyekti (3) [email protected] [email protected] Abstraksi Saat ini jaringan saraf tiruan
JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN)
JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI CURAH HUJAN SUMATERA UTARA DENGAN METODE BACK PROPAGATION (STUDI KASUS : BMKG MEDAN) Marihot TP. Manalu Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma
BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA
BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA Anggi Purnama Undergraduate Program, Computer Science, 2007 Gunadarma Universiy http://www.gunadarma.ac.id
PERANCANGAN SISTEM MANAJEMEN RUANG KULIAH MENGGUNAKAN JARINGAN SYARAF TIRUAN (STUDI KASUS PADA FIKST UNIVERSITAS DHYANA PURA)
PERANCANGAN SISTEM MANAJEMEN RUANG KULIAH MENGGUNAKAN JARINGAN SYARAF TIRUAN (STUDI KASUS PADA FIKST UNIVERSITAS DHYANA PURA) I Gusti Ngurah Anom Cahyadi Putra 1) Made Agung Raharja 2) Program Studi Sistem
BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu
BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan
MADM-TOOL : APLIKASI UJI SENSITIVITAS UNTUK MODEL MADM MENGGUNAKAN METODE SAW DAN TOPSIS.
MADM-TOOL : APLIKASI UJI SENSITIVITAS UNTUK MODEL MADM MENGGUNAKAN METODE SAW DAN TOPSIS. Henry Wibowo S Laboratorium Komputasi dan Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi Industri,Universitas
APLIKASI JARINGAN SYARAF TIRUAN UNTUK PENGENALAN POLA PEMBUKAAN PERMAINAN CATUR
APLIKASI JARINGAN SYARAF TIRUAN UNTUK PENGENALAN POLA PEMBUKAAN PERMAINAN CATUR Zulfian Azmi Program Studi Sistem Komputer, STMIK Triguna Dharma [email protected] ABSTRAK: Penelitian ini dilakukan
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENYAKIT SALURAN PERNAFASAN DENGAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENYAKIT SALURAN PERNAFASAN DENGAN METODE BACKPROPAGATION [1] Novi Indah Pradasari, [2] F.Trias Pontia W, [3] Dedi Triyanto [1][3] Jurusan Sistem Komputer,
MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA
MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA Ramli e-mail:[email protected] Dosen Tetap Amik Harapan Medan ABSTRAK Jaringan Syaraf Tiruan adalah pemrosesan
BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses
8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran
Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Kecerdasan Buatan Pertemuan 11 Jaringan Syaraf Tiruan (Artificial Neural Network)
PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Dwi Marisa Midyanti Sistem Komputer Universitas Tanjungpura Pontianak Jl Prof.Dr.Hadari Nawawi, Pontianak
BAB VIII JARINGAN SYARAF TIRUAN
BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing
Aplikasi yang dibuat adalah aplikasi untuk menghitung. prediksi jumlah dalam hal ini diambil studi kasus data balita
BAB III ANALISA DAN PERANCANGAN SISTEM 3.1. Analisa dan Kebutuhan Sistem Analisa sistem merupakan penjabaran deskripsi dari sistem yang akan dibangun kali ini. Sistem berfungsi untuk membantu menganalisis
JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORKS)
JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORKS) (Artificial Neural Networks) BAB I PENDAHULUAN 1.1 Sejarah JST JST : merupakan cabang dari Kecerdasan Buatan (Artificial Intelligence ) JST : meniru
BAB 2 TINJAUAN PUSTAKA
7 BAB 2 TINJAUAN PUSTAKA 21 Anatomi Ayam Pengetahuan tentang anatomi ayam sangat diperlukan dan penting dalam pencegahan dan penanganan penyakit Hal ini karena pengetahuan tersebut dipakai sebagai dasar
Jurnal Informatika Mulawarman Vol 5 No. 1 Februari
Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran
PERANCANGAN APLIKASI MENGIDENTIFIKASI PENYAKIT MATA DENGAN MENGGUNAKAN METODE BACKPROPAGATION
Jurnal Riset Komputer (JURIKOM), Volume : 3, Nomor:, Februari 206 ISSN : 2407-389X PERANCANGAN APLIKASI MENGIDENTIFIKASI PENYAKIT MATA DENGAN MENGGUNAKAN METODE BACKPROPAGATION Fahmi Hasobaran Dalimunthe
BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Jaringan Syaraf Tiruan (artificial neural network), atau disingkat JST menurut Hermawan (2006, hlm.37) adalah sistem komputasi dimana arsitektur dan operasi
IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL
IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 [email protected] Abstrak
PENERAPAN JARINGAN SYARAF TIRUAN DENGAN ALGORITMA PERCEPTRON PADA POLA PENENTUAN NILAI STATUS KELULUSAN SIDANG SKRIPSI
PENERAPAN JARINGAN SYARAF TIRUAN DENGAN ALGORITMA PERCEPTRON PADA POLA PENENTUAN NILAI STATUS KELULUSAN SIDANG SKRIPSI Musli Yanto Teknik Informatika Fakultas Ilmu Komputer Universit as Putra I ndo nesia
BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian dengan jaringan syaraf tiruan propagasi balik dalam bidang kesehatan sebelumnya pernah dilakukan oleh Sudharmadi Bayu Jati Wibowo
Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series
Implementasi Jaringan Syaraf Tiruan Backpropagation dan Steepest Descent untuk Prediksi Data Time Series Oleh: ABD. ROHIM (1206 100 058) Dosen Pembimbing: Prof. Dr. M. Isa Irawan, MT Jurusan Matematika
DAFTAR ISI. Halaman Judul. Lembar Pengesahan Pembimbing. Lembar Pengesahan Penguji. Halaman Persembahan. Halaman Motto. Kata Pengantar.
DAFTAR ISI Halaman Judul i Lembar Pengesahan Pembimbing ii Lembar Pengesahan Penguji iii Halaman Persembahan iv Halaman Motto v Kata Pengantar vi Abstraksi viii Daftar Isi ix Daftar Gambar xii Daftar Tabel
Muhammad Fahrizal. Mahasiswa Teknik Informatika STMIK Budi Darma Jl. Sisingamangaraja No. 338 Simpanglimun Medan
IMPLEMENTASI JARINGAN SARAF TIRUAN DALAM MEMPREDIKSI SERVICE KENDARAAN RODA 4 DENGAN METODE BACKPROPAGATION (STUDI KASUS PT. AUTORENT LANCAR SEJAHTERA) Muhammad Fahrizal Mahasiswa Teknik Informatika STMIK
BAB 1 PENDAHULUAN Latar Belakang
BAB 1 PENDAHULUAN 1.1. Latar Belakang Pengklasifikasian merupakan salah satu metode statistika untuk mengelompok atau menglasifikasi suatu data yang disusun secara sistematis. Masalah klasifikasi sering
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar belakang Hujan merupakan salah satu unsur iklim yang berpengaruh pada suatu daerah aliran sungai (DAS). Pengaruh langsung yang dapat diketahui yaitu potensi sumber daya air. Besar
BAB I PENDAHULUAN 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan piranti pengenal/pendeteksi yang handal sangat dibutuhkan. Pengembangan teknologi pengenalan yang berupa kecerdasan buatan (Artificial Intelligence)
PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION
PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION Amriana 1 Program Studi D1 Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik UNTAD ABSTRAK Jaringan saraf tiruan untuk aplikasi
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT
PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: [email protected] ABSTRAK:
PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR ABSTRAK
PENGGUNAAN MATLAB DALAM PENYELESAIAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN JARINGAN HOPFIELD LINEAR Rosihan Ari Yuana Program Studi Pendidikan Matematika Universitas Sebelas Maret ABSTRAK Aplikasi jaringan
Architecture Net, Simple Neural Net
Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2
1.1. Jaringan Syaraf Tiruan
BAB I PENDAHULUAN 1.1. Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan (JST) adalah sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan syaraf biologi yang digambarkan sebagai berikut
Architecture Net, Simple Neural Net
Architecture Net, Simple Neural Net 1 Materi 1. Perceptron 2. ADALINE 3. MADALINE 2 Perceptron Perceptron lebih powerful dari Hebb Pembelajaran perceptron mampu menemukan konvergensi terhadap bobot yang
METODE BELAJAR HEBBIAN SUPERVISED & CONTOH
METODE BELAJAR HEBBIAN SUPERVISED & CONTOH 1. Jaringan Hebbian Kelemahan model McCulloch-Pitts : penentuan bobot garis dan bias secara analitik. Untuk masalah yang kompleks, hal ini akan sangat sulit dilakukan.
BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.
BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION )
SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) Fachrul Kurniawan, Hani Nurhayati Jurusan Teknik Informatika, Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik
PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK
PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK Naskah Publikasi disusun oleh Zul Chaedir 05.11.0999 Kepada SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER
PROTOTYPE PENGATURAN LAMPU RUANG DENGAN JARINGAN SYARAF TIRUAN
PROTOTYPE PENGATURAN LAMPU RUANG DENGAN JARINGAN SYARAF TIRUAN Fatwa Yuniarti [email protected] Dosen Pembimbing : Dr. Haryanto, M.Pd, MT [email protected] Jurusan Pendidikan Teknik Elektro,
Penerapan E-Learning Berbasis Moodle Menggunakan Metode Problem Based Learning di SMK Negeri 1 Pasuruan Teguh Arifianto
Penerapan E-Learning Berbasis Moodle Menggunakan Metode Problem Based Learning di SMK Negeri 1 Pasuruan Teguh Arifianto Sistem Pendukung Keputusan Penentuan Sales Penerima Insentif Menggunakan Metode Simple
BAB IV B METODE BELAJAR HEBBIAN SUPERVISED & CONTOH
BAB IV B METODE BELAJAR HEBBIAN SUPERVISED & CONTOH 4B. Jaringan Hebbian Kelemahan model McCulloch-Pitts : penentuan bobot garis dan bias secara analitik. Untuk masalah yang kompleks, hal ini akan sangat
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada
Aplikasi Jaringan Syaraf Tiruan Untuk Penentuan Status Gizi Balita Dan Rekomendasi Menu Makanan Yang Dibutuhkan
119 Aplikasi Jaringan Syaraf Tiruan Untuk Penentuan Status Gizi Balita Dan Rekomendasi Menu Makanan Yang Dibutuhkan Fitri, Onny Setyawati, dan Didik Rahadi S Abstrak -Status gizi balita dapat ditentukan
PENGGUNAAN METODE JARINGAN NEURAL PERCEPTRON UNTUK MENGENAL POLA KARAKTER KAPITAL
J. Pilar Sains 6 (2) Juli 2007 Jurusan Pendidikan MIPA FKIP Universitas Riau ISSN 1412-5595 PENGGUNAAN METODE JARINGAN NEURAL PERCEPTRON UNTUK MENGENAL POLA KARAKTER KAPITAL Zaiful Bahri 1 Dosen Program
Jaringan Syaraf Tiruan
07/06/06 Rumusan: Jaringan Syaraf Tiruan Shinta P. Sari Manusia = tangan + kaki + mulut + mata + hidung + Kepala + telinga Otak Manusia Bertugas untuk memproses informasi Seperti prosesor sederhana Masing-masing
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Barcode Salah satu obyek pengenalan pola yang bisa dipelajari dan akhirnya dapat dikenali yaitu PIN barcode. PIN barcode yang merupakan kode batang yang berfungsi sebagai personal
IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR
Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI
Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6
Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia [email protected] Diterima 30 November 2011 Disetujui 14 Desember 2011
VOL. 01 NO. 02 [JURNAL ILMIAH BINARY] ISSN :
PENERAPAN JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH PRODUKSI AIR MINUM MENGGUNAKAN ALGORITMA BACKPROPAGATION (STUDI KASUS : PDAM TIRTA BUKIT SULAP KOTA LUBUKLINGGAU) Robi Yanto STMIK Bina Nusantara
BAB 2 JARINGAN NEURAL SATU LAPIS
BAB 2 JARINGAN NEURAL SATU LAPIS Jaringan neural dapat dilatih untuk melakukan klasifikasi pola. Dalam klasifikasi pola setiap vektor masukan diklasifikasi menjadi anggota atau tidak dari suatu kelas tertentu
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN OBAT Pada PT. METRO ARTHA PRAKARSA MENERAPKAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PENJUALAN OBAT Pada PT. METRO ARTHA PRAKARSA MENERAPKAN METODE BACKPROPAGATION Zulkarnain Mahasiswa Teknik Informatika STMIK Budi Darma Jl. Sisingamangaraja
PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK
PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, Erlinda Ningsih 2 1 Dosen Teknik Informatika, STMIK Potensi Utama 2 Mahasiswa Sistem Informasi, STMIK
APLIKASI PENGENALAN POLA DAUN MENGGUNAKAN JARINGAN SYARAF LEARNING VECTOR QUANTIFICATION UNTUK PENENTUAN TANAMAN OBAT
APLIKASI PENGENALAN POLA DAUN MENGGUNAKAN JARINGAN SYARAF LEARNING VECTOR QUANTIFICATION UNTUK PENENTUAN TANAMAN OBAT Fradika Indrawan Jurusan Teknik Informatika, Universitas Ahmad Dahlan, Yogyakarta Jl.
METODOLOGI PENELITIAN
III. METODOLOGI PENELITIAN A. Kerangka Pemikiran Perusahaan dalam era globalisasi pada saat ini, banyak tumbuh dan berkembang, baik dalam bidang perdagangan, jasa maupun industri manufaktur. Perusahaan
Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang)
Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang) Hadi Syahputra Universitas Putra Indonesia YPTK Padang E-mail: [email protected]
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Pengenalan Pola Pengenalan pola adalah suatu ilmu untuk mengklasifikasikan atau menggambarkan sesuatu berdasarkan pengukuran kuantitatif fitur (ciri) atau sifat utama dari suatu
MEMPREDIKSI KECERDASAN SISWA MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS ALGORITMA BACKPROPAGATION (STUDI KASUS DI LP3I COURSE CENTER PADANG)
MEMPREDIKSI KECERDASAN SISWA MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS ALGORITMA BACKPROPAGATION (STUDI KASUS DI LP3I COURSE CENTER PADANG) R. Ayu Mahessya, S.Kom, M.Kom, Fakultas Ilmu Komputer Universitas
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM
JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM INTRODUCTION Jaringan Saraf Tiruan atau JST adalah merupakan salah satu representasi tiruan dari otak manusia yang selalu
JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA
JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA Dahriani Hakim Tanjung STMIK POTENSI UTAMA Jl.K.L.Yos Sudarso Km 6.5 Tanjung Mulia Medan [email protected] Abstrak
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Karyawan atau tenaga kerja adalah bagian
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran
APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION
APLIKASI JARINGAN SYARAF TIRUAN PADA PENGENALAN POLA TULISAN DENGAN METODE BACKPROPAGATION Alvama Pattiserlihun, Andreas Setiawan, Suryasatriya Trihandaru Program Studi Fisika, Fakultas Sains dan Matematika,
PENGEMBANGAN SUMBER BELAJAR MATAKULIAH SISTEM CERDAS KOMPETENSI JARINGAN SYARAF TIRUAN
PENGEMBANGAN SUMBER BELAJAR MATAKULIAH SISTEM CERDAS KOMPETENSI JARINGAN SYARAF TIRUAN Slamet Wahyudi 1, Anik Nur Handayani 2, Heru Wahyu Herwanto 3 1.2.3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI. Jasmir, S.Kom, M.Kom
ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Pegawai atau karyawan merupakan
BAB 3 ANALISIS DAN PERANCANGAN SISTEM
BAB 3 ANALISIS DAN PERANCANGAN SISTEM Analisis merupakan proses penguraian konsep ke dalam bagian-bagian yang lebih sederhana, sehingga struktur logisnya menjadi jelas. Metode untuk menguji, menilai, dan
ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA
ANALISIS PERBANDINGAN METODE JARINGAN SYARAF TIRUAN DAN REGRESI LINEAR BERGANDA PADA PRAKIRAAN CUACA Nurmahaludin (1) (1) Staf Pengajar Jurusan Teknik Elektro Politeknik Negeri Banjarmasin Ringkasan Kebutuhan
MILIK UKDW. Bab 1 PENDAHULUAN. 1.1 Latar Belakang
Bab 1 PENDAHULUAN 1.1 Latar Belakang Beberapa tahun belakangan ini, jaringan syaraf tiruan telah berkembang dengan pesat. Berbagai aplikasi telah memanfaatkan jaringan syaraf tiruan dalam penerapannya,
BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning
BAB 2 TINJAUAN PUSTAKA 2.1. Data Mining Data mining adalah kombinasi secara logis antara pengetahuan data, dan analisa statistik yang dikembangkan dalam pengetahuan bisnis atau suatu proses yang menggunakan
ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA
Nazla Nurmila, Aris Sugiharto, Eko Adi Sarwoko ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, dan Eko Adi Sarwoko Prodi Ilmu Komputer
JURNAL SAINS DAN INFORMATIKA
39 Fauzul Sains Amri, dan Jaringan Informatika Syaraf Vol.1 Tiruan (N0.1) untuk (2015): Memprediksi 37-43 JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: [email protected]
MODEL N EURON NEURON DAN
1 MODEL NEURON DAN ARSITEKTUR JARINGAN 1 1 Model Neuron Mengadopsi esensi dasar dari system syaraf biologi, syaraf tiruan digambarkan sebagai berikut : Menerima input atau masukan (baikdari data yang dimasukkan
PENERAPAN TEKNIK JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION UNTUK PERAMALAN HARGA SAHAM Putra Christian Adyanto
PENERAPAN TEKNIK JARINGAN SYARAF TIRUAN ALGORITMA BACKPROPAGATION UNTUK PERAMALAN HARGA SAHAM Putra Christian Adyanto Teknik Informatika, Univesitas Dian Nuswantoro ABSTRACT: Peramalan saham merupakan
DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Bambang Yuwono 1), Heru Cahya Rustamaji 2), Usamah Dani 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran" Yogyakarta
SATIN Sains dan Teknologi Informasi
SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan Peramalan Inventory Barang
BAB 2 KONSEP DASAR PENGENAL OBJEK
BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis
BAB 2 TINJAUAN PUSTAKA
7 BAB 2 TINJAUAN PUSTAKA 2.1 Jaringan Syaraf Biologi Otak manusia memiliki struktur yang sangat kompleks dan memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang disebut
2 2 ... v... 3 Santoso... 21 abawa... 29... 37... 53... 59... 67... 77 Yohakim Marwanta... 85... 89... 101 ... 109... 117 D. Jaringan Komputer Amirudd... 135 andha... 141... 151... 165 Syahrir... 171...
SISTEM PAKAR DIAGNOSA PENYAKIT DEMAM BERDARAH DENGUE BERBASIS ANDROID MENGGUNAKAN JARINGAN SARAF TIRUAN
SISTEM PAKAR DIAGNOSA PENYAKIT DEMAM BERDARAH DENGUE BERBASIS ANDROID MENGGUNAKAN JARINGAN SARAF TIRUAN Ahyuna 1), Komang Aryasa 2) 1), 2) Jurusan Teknik Informatika, STMIK Dipanegara Makassar 3) Jl. Perintis
Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat
Prosiding Semirata FMIPA Universitas Lampung, 2013 Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat Andi Ihwan Prodi Fisika FMIPA Untan, Pontianak
Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation
Erlangga, Sukmawati Nur Endah dan Eko Adi Sarwoko Pengembangan Aplikasi Prediksi Pertumbuhan Ekonomi Indonesia dengan Jaringan Syaraf Tiruan Backpropagation Erlangga, Sukmawati Nur Endah dan Eko Adi Sarwoko
Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan
Estimasi Suhu Udara Bulanan Kota Pontianak Berdasarkan Metode Jaringan Syaraf Tiruan Andi Ihwan 1), Yudha Arman 1) dan Iis Solehati 1) 1) Prodi Fisika FMIPA UNTAN Abstrak Fluktuasi suhu udara berdasarkan
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier
POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :
Modifikasi Estimasi Curah Hujan Satelit TRMM Dengan Metode Jaringan Syaraf Tiruan Propagasi Balik Studi Kasus Stasiun Klimatologi Siantan Fanni Aditya 1)2)*, Joko Sampurno 2), Andi Ihwan 2) 1)BMKG Stasiun
