BAB 1: SATUAN STANDAR DAN VEKTOR
|
|
|
- Erlin Sumadi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB : AUAN ANDA DAN VKO x Pe e Gi Me Kilo Heco Dek Deci Ceni Mili Mico Nno Pico eo Ao. un Awln-wln Meik I) Awln inkn Nili P G M k h d d c µ n p f Veko co θ f = x + y + z Y Z
2 y Y x BAB : KINMAIKA GAK. Gek luu Lju - Kecepn - x x Jk y diepuh Wku epuh y dipelukn Pepindhn Wku epuh y dipelukn : Lju / ; /d ) o: Lju ul-ul / ; /d ) : Lju - / ; /d ) x : Jk epuh ) : Pecepn - / ; /d ) : wku y dipelukn ; d ). Gek eikl Gek juh beb: h x
3 Veikl ke: Veikl kebwh eluncu): ) ) h ) ) h h : Keinin bend ) : Pecepn bend / ) : Pecepn ii 9.8 / ). Gek pbol Adlh bunn di ek hoizonl dn eikl/juh beb Conoh: ebuh bol dilep ec hoizonl denn kecepn ebe x di keinin h di peukn nh. Bep jk kiu y pu diepuh oleh bol pi bol enyenuh nh) bil hbn nin dibikn? Penyelein: Dikehui: Hoizonl: = = x ; = ken hbn nin dibikn) Veicl : = ; ; =+) ken idk d pecepn ec eikl) Diny : x=? Jwb : h x x x h h
4 = = H h h x x x h BAB : GAK DAN GAYA. Huku ek Newon pe huku Inei): eip bend bed dl kedn di u beek denn lju ep jik idk d peubhn y o Jik. Huku ek Newon kedu: Pecepn ebuh bend bebndin luu denn Gy ol yn bekej pdny dn bebndin eblik denn Mny, denn h Pecepn denn h y ol yn bekej pd ie Y Y Z Z : Gy yn bekej pd bend/ie N k/ ; Dyne c/ ; Pound lb lb = 4.45 N ) : M bend k ; ; lu ) : Pecepn yn ejdi) pd bend / )
5 . Huku ek Newon kei: Keik uu bend ebeikn y pd bend kedu, bend kedu eebu kn ebeikn y y be pi belwnn h ehdp bend y pe x x f 4. Gy eek i dn Kinei K N N 5. Penepn i Dini Be, Gii dn y Nol N=w N w N ) w=
6 Kol dn enn li Bidn iin w i w f f ) ) ) ) N=w w= f w= = Y w= N=w f ) ) i Co N in in i in N Co Co Y f Y f α
7 BAB 4: GAK MLINGKA DAN GAIAI A. Kineik ek elink beun Definii : ek elink ejdi keik ebuh bend beek linie dn beek pd h ek luuny ec ben. ehin ek elink epunyi du h koponen ek yiu : &. : Pecepn enipel / ) : Kecepn linie / ) : Ji-ji linkn) ). Pebukin uu: A θ l V B V V V θ l l l Cn : bil θ n kecil k kn eh denn. Dinik ek elink beun : Gy enipel N ) : M bend K ) : Pecepn enipel / )
8 f. Penepn Bol bn y y w θ x Mx x x x co konn w Bil x K x n K Penjeln: ) Bil & ep, k. Dn bil x K x k x x. Dn bil bend ul-ul di, k Mx. Dn ken x x Mx b) Bil dikehui co co hk. Newon II). denn in w, dn k ebei penein bhw, ken.
9 c) Bil dn bend ul-ul di, k Mx Mx pen ek linie Ji-ji bend). Kinci ikunn iin V V V w w w w w N=wcoθ = coθ w= θ w w n in co in in Cn : & θ : dlh udu y dipelukn bend dk eelinci u elep kelu bend beek d kecepn
10 4. Gek elink beubh beun Adlh ek elink yn enli peubhn kecepn linie ec beun h. n n B. Huku Gfii Uniel Newon G G G Conoh: Obi buln di ekelilin bui yn hpi bul epunyi diu eki 84. k dn peiode el 7, hi. enukn pecepn Buln ehdp bui. Dikehui : = 84. k = 7, hi = 7, x 4 x 6 = 587 deik Diny : Buln =? Penyelein : 8,4,84 x 6 8,6 x,84 x,7,7x
11 . Gy fii n du bend M M G. Penepn G G Gfii dek/pd peukn bui G : 9,8 : 5,98 x 4 k : 6,8 x 6 : keinin bend + ) G 9,8 6,67x k 6 6,8x 4 5,98x k G N 6,667x bil bend bed pd peukn bui k
12 Conoh: Pekikn nili efekif di punck M. ee, kki) di peukn bui. Yiu bep pecepn fii pd bend-bend y dibikn juh beb pd keinin ini? Dikehui : = 5,98 = 6,8 x 6 G = 6,67 x - N k Diny : =? 4 6,67 N x 5,98 x k k Penyelein : G 9, ,89x N eli dn kedn np bobo =w w G G N Cn: dlh kecepn y dibuuhkn eli uk ep bed di jluny
13 . Huku keple dn ine Newon 4 Mhi Huku keple pe: Linn eip plne y enelilini hi dlh elip denn hi elek pd lh u fokuny Huku keple kedu: eip plne beek edeikin ehin uu i khyl y diik di hi ke plne eebu enckup deh denn lu y dl wku y Huku keple kei: Pebndinn kud peiode wku y dibuuhkn unuk u pun enelilini hi) du plne y enii Mhi denn pebndinn pnk i jk - plne-plne eebu di hi & & : Peiode in-in plne : Jk - in-in plne di Mhi Plne. Mekuiu. Venu. Bui 4. M 5. Jupie 6. unu 7. Unu 8. Nepunu 9. Pluo Jk - di Mhi, 6 k) 57,9 8, 49,6 7,9 778, Peiode, hun Bui),4,65,,88,86 9,5 84, / 4 k /h ),4,5,5,5,5,4,5,4,
14 Pebukin uu: GM GM M G M G M G Conoh: enukn Mhi jik dikehui jk bui di Mhi dlh =,5x. Dikehui : =,5 x G = 6,67x - N. / k =,46 x 7 Diny : M =? Penyelein : k x k N x x G M 7,x,6. 6,67,5 4 4 Cn : penukun di idk ellu ben dn bhkn kdn enli penyipnn ehin plne beee di linn elipny, iu dikenkn dny y fii n u plne d plne y linny Huku Kul Newon)
15 BAB 5: KJA DAN NGI A. Definii: Hil kli be pepindhn denn koponen y yn ejj denn pepindhn W d W co d θ coθ d Penepn: Gy np kej x = d W W co9 d Conoh di d pd knun belnj yn dibw ec hoizonl pi dink ek luu ec eikl
16 Bebn y dink pd bidn iin nel) N=coθ θ inθ d Mx l co W in d d θ l B. nei. nei kineik V V o o d x x Wo o d d d d K
17 Conoh: ) Bep kej y dipelukn unuk epecep ebuh obil d k di / pi /? Dikehui : = k = / = / Diny : K =? Penyelein : W K K k 5,5 x J k ) ebuh obil y bejln denn kecepn 6 k/j dp die/dihenikn dl jk. Jik obil iu bejln du kli lebih cep, k/j, bep jk penheninny? Dikehui : = 6 k/j ; = beheni) d = = k/j ; = beheni) Diny : = k/j d =? Penyelein : W K K d 6k j 5 6k j x x k j x k j 5
18 . nei poenil nei poenil fii Y h d ex G = W P W x x x d h y P P P y y Y Conoh: ebuh olle coe d k beek di iik A, ke iik B & keudin iik C. ) Bep P Gfii B &C elif ehdp A? b) Bep peubhn P Pepindhn di B ke C? B A = k 5 C
19 Dikehui : = k ; =9,8 / ; w=98 N h h = + ; h h = -5 Diny : ) Bep P Gfii B & C elif ehdp A? b) Bep peubhn P Pepindhn di B ke C? Jwb W ) AB : bil pd poii wl P A dlh nol P P W P P B h 98N- 98J A AC C h 98N 5) - A 47J b) W BC P C h P B h 98N 5) 98N 45J nei poenil pe P kx kiu) d= kx = iniu) -kx P kx P P Min P Mx Bil P beubh-ubh ec linie. Mk kx kx W P kx x P elik kx
Fisika Dasar I (FI-321) 3) Gerak dalam Dua dan Tiga Dimensi Posisi dan Perpindahan Kecepatan Percepatan Gerak Parabola Gerak Melingkar
Fisik Ds I (FI-31) Topik hi ini (minggu 3) Gek dlm Du dn Tig Dimensi Posisi dn Pepindhn Kecepn Pecepn Gek Pbol Gek Melingk Gek dlm Du dn Tig Dimensi Menggunkn nd u idk cukup unuk menjelskn sec lengkp gek
KINEMATIKA GERAK DENGAN ANALISIS VEKTOR A. PENDAHULUAN
mei78.co.n FIS KIEMIK GERK DEG LISIS VEKOR. PEDHULU Dlm eko edp du komponen um, yiu komponen hoizonl (sumbu ) dn komponen eikl (sumbu y). Kedu komponen eko esebu memiliki esuln yng memiliki h yng meupkn
Gerak Suatu benda dikatakan bergerak jika:
GERAK Gerk Suu bend dikkn bergerk jik: Keduduknny berubh erhdp uu iik cun Dp eiliki linn perubhn kedudukn upun idk Jeni Gerk: Gerk Seu: bend bergerk engi bend lin yng di (penupng kendrn elih pohon) Gerk
Bab 3: Vektor & Gerak Dua Dimensi
Bb 3: Vek & Gek Du Dimensi Vek Semu besn fisik n kn ki pelji dilnkn sebi sebuh besn ek u skl. Suu skl hn menkn bes, sedn ek dinkn denn bes dn h. Cnh Skl : empeu, lju, mss, lume, pnjn, dll. Vek : Pepindhn,
adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v
Gek Melingk Betun (GMB) dlh jik sebuh bend begek ebentuk sutu lingkn dengn keceptn konstn. 1 = = Peceptn dlh bes peubhn keceptn selng wktu t, h keceptn jug enyebbkn peceptn. 1 = peubhn keceptn t = peubhn
DINAMIKA DAN BEBERAPA CONTOH DIAGRAM GAYA BEBAS
DINAMIKA DAN BEBERAPA CONOH DIAGRAM GAYA BEBAS Huku I Newton Huku ini bersl dri Glileo: Jik resultn y yn bekerj pd bend = 0, k bend tsb tidk enli perubhn erk. Artiny jik di tetp di, jik bererk lurus berturn,
Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr
tei78.co.n Huku Gek ewton A. PEDAHULUA Huku gek ewton enjelskn hubungn gy dn gek yng dikibtkn oleh gy tesebut. Huku gek ewton tedii di huku kelebn, huku ewton II dn huku ksieksi. B. HUKUM EO I Huku ewton
Materi Fisika Kelas XI. Semester 1. S M A Negeri 1 Blahbatuh. BAB. I. GERAK DALAM DUA DIMENSI
A. Pesn ge bend :. eo Posisi : Mei isi Kels XI. Seese. S M A Negei Blhbuh. BAB. I. GERAK DALAM DUA DIMENSI Yiu sebuh eo ng dii di ii sl spi e posisi ii iu bed. eo posisi suu piel pd bidng dp dinn dengn
1. Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.
G E R A K Kompeeni Dr Mengnlii bern fiik pd gerk dengn kecepn dn percepn konn Mengnlii bern fiik pd gerk melingkr dengn lju konn 3 Menerpkn Hukum Newon ebgi prinip dr dinmik unuk gerk luru, gerk erikl,
B.3. Aliran mantap satu arah pada akuifer tak tertekan di atas lapisan impermeable dengan pengisian
B.. Alin mnp u pd uife een di lpin impemeble denn peniin Alin i n pd uife een n beub id ny mellui peniin embli ole i ujn epi ju en dny peoli mellui lpin emipemebel. Ji oefiien nmiibili dinp dn ini mu i
Suku ke-n akan menjadi 0 bila n =.. Jawab : 3. Jika k + 1, k 1, k 5 membentuk barisan geometri, maka tentukan harga k! Jawab :
BARIAN DAN DERET Dikehui i,,77, uku ke- k mejdi il = Jw : 7 Teuk jumlh emu ilg-ilg ul di d yg hi digi Jw : 9 9 9 9 9 7 9 Jik k +, k, k memeuk i geomei, mk euk hg k! Jw : k k k k k Jik uku em dee geomei
Analisis Rangkaian Listrik Di Kawasan s
Sudno Sudihm Anlii Rngkin Liik Di Kwn Sudno Sudihm, Anlii Rngkin Liik BAB 7 Siem Dn Pemn Rung Su Pemn ung u e pce euion u epeeni ung kedn e pce epenion meupkn u lenif unuk menkn iem dlm enuk pemn difeenil.
BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )
BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b
MATERI POKOK MATA PELAJARAN FISIKA-1
MATERI POKOK MATA PELAJARAN FISIKA-1 Penyuun Nuzi eryno, SPd Progrm pc rjn Unieri Negeri mkr 16 TUJUAN UMUM PEMBELAJARAN A Sndr Kompeeni Menerpkn konep dn prinip dr kinemik dn dinmik bend iik B Kompeeni
Volume Bangun Ruang. 1. Balok. Perhatikan gambar di atas. 1. Bangun apa saja yang ada di atas meja? 2. Termasuk bangun apa benda yang dibawa Tini?
Volume Bngun Rung Bend-bend di mej ini merupkn bngun rung. Kleng uu ini berbenuk p, y? Tono Tini Di kel V kmu elh mempeljri beberp jeni bngun rung. Blok Kubu Prim Lim Tbung Kerucu Tin Em... p, y? Perhikn
DE DF. = maka tentukan nilai x + 1!
50. d egiig dikehui 5 m, 6 m dn m. Tiik erlek pd ii ehingg pnjng m. ri iik diu gri egk luru di E dn diu euh gri lgi dri egk luru di iik F. Tenukn E : F! E T F 5 L L.... F 6E F E F 9 5. il log, log dn mk
MODUL VIII FISIKA MODERN Transformasi Lorentz
MODUL VIII FISIKA MODERN Trnsformsi Loren Tujun Insruksionl Umum : Agr mhsisw dp memhmi mengeni Trnsformsi Loren Tujun Insruksionl Khusus : Dp menjelskn enng kedu posul Einsein Dp menjelskn enng perbedn
Matematika EBTANAS Tahun 1987
Memik EBTANAS Thun 987 EBT-SMA-87-0 Himpunn penyelesin dri persmn : x + = x unuk x R dlh {, } {, } {, } {, } {, } EBT-SMA-87-0 Di bwh ini dlh gmbrpenmpng sebuh pip. Jik jri jri pip cm dn AB = 0 cm (AB
1, 1 PENANGKAPAN IKAN DENGAN PURSE SEINE
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N A N G K A P A N I K A N D E N G A N P U R S E S E I N E P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N A N G K A P A
Teori yang mendasari : Hukum Newton tentang gerak GLBB
. Sebuh bu berny dileprn eril e s diudr dri lni denn ecepn l. Ji d y onsn ib esen/hbn udr sel elyn dn susin percepn risi bui onsn, enun : ). ini siu yn dicpi (nyn dl :,, dn ) b). lju bu s enyenuh lni ebli
Diana Holidah Bagian Farmasi Klinik dan Komunitas Fakultas Farmasi Universitas Jember
Din Holidh Bgin Frmsi Klinik dn Komunis Fkuls Frmsi Universis Jember Absorpsi Ob Absorpsi sisemik dri slurn cern ergnung pd:. Benuk sedin ble, kpsul, sirup dll b. Anomi fisiologi emp bsorpsi, melipui :
BAB BESARAN DAN SATUAN
BAB BESARAN DAN SATUAN Contoh 4. Du buh y bekej pd sebuh blok yn mssny k sebimn ditunujukkn pd mb beikut. Jik F = 0 N dn F = 30 N, hitunlh peceptn blok. Denn memlih h keknn sebi h positif, mk F betnd positif,
2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT
. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun
+ = gerak diprcpt - = gerak diprlmbt
hp://ii79.wop.co K 7 D (oo) W uku Ju. uu. J oo j uu p j oo :, 6,,5 c,6,5 c l cil j oo =, c. b. io up l U o iu j uu p io up : 6,5 7,,5 6,85,5 l cil io up =,.. o julh o o ul : co cp: Ji = = + Ji = 8 = Ji
5 S u k u B u n g a 1 5 %
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N B A N K I N D O N E S I A K A
KINEMATIKA. Membahas gerak suatu benda tanpa memandang penyebabnya. Dinamika : Membahas hubungan gaya & gerak
KINEMATIKA Membhs gerk suu bend np memndng penyebbny. Dinmik : Membhs hubungn gy & gerk Trnslsi : Gerk yg berhubungn dgn perpindhn seluruh bgin bend dri suu emp ke emp lin PENDAHULUAN Suu bend dikkn bergerk
Chapter 7. hogasaragih.wordpress.com
Chaper 7 7. ebuah gaya berpengaruh erhadap kg peluru meriam yang bergerak pada ebuah bidang xy yang mempunyai bear 5,0 N. Kecepaan mula mula peluru 4 m/ pada arah x poiif dan beberapa aa kemudian memiliki
INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing.
INTEGRAL TAK-WAJAR A. Tk Terhingg Seip ilngn sli merupkn ilngn erhingg dn dp menykn sesuu yng nykny erhingg. Arisoeles menykn hw ilngn sli n dp ernili seesr-esrny epi ep erhingg dn idk kn pernh sm dengn
RENCANA PELAKSANAAN PEMBELAJARAN
7 RENCANA PELAKSANAAN PEMBELAJARAN M Peljrn : Memik Kels/ Semeser: XI Progrm IPA/ Aloksi Wku: 6 jm Peljrn ( Peremun) A. Sndr Kompeensi Menggunkn konsep i fungsi dn urunn fungsi dlm pemehn mslh. B. Kompeensi
SOAL PILIHAN GANDA A. 10 B. 100 C D E
OLIMPIADE SAINS TAHUN 004 TINGKAT KABUPATEN/KOTA DIREKTORAT PENDIDIKAN LANJUTAN PERTAMA DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL BIDANG STUDI: MATEMATIKA. Ad du
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 00 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 00 Bidng Memik Wku : 90 Meni DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH
MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI
MATERI DAN SOAL MATEMATIKA SMP Mter Dn Sol Mtetk SMP GEOMETRI Geoetr dn MODUL Bnun Run PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI STANDAR KOMPETENSI LULUSAN. Meh
ANALISIS KINEMATIKA: Sistim Koordinat, Analisis Vektor dan Analisis Posisi KINEMATIKA DAN DINAMIKA TEKNIK
ANALISIS KINEMATIKA: Ssm Koon, Anlss Veko n Anlss Poss 1 KINEMATIKA DAN DINAMIKA TEKNIK SISTIM KOORDINAT DAN ANALISIS VEKTOR Koon Kesn Lek me (pkel) lm ssem koon kesn nkn sebg, (, u mens) u (,, z g mens).
MEDAN ELEKTROMAGNETIK II
MDAN LKTROMAGNTIK II Disusun oleh : D. Ds. Jj Kusij, M.Sc. JURUSAN TKNIK LKTRO UNIVRSITAS PNDIDIKAN INDONSIA 4 Gelombng lekomgneik BAB I GLOMBANG LKTROMAGNTIK PADA MDIUM UDARA/RUANG BBAS A. Tejdiny Gelombng
8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.
http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =
Solusi provinsi v 0. h max. w w. a. Batu ke atas Percepatan (perlambatan) : Tinggi maksimum yang dicapai :
Solusi proinsi 7. Sebuh bu berny dileprn eril e s diudr dri lni denn ecepn l. Ji d y onsn ib esen/hbn udr sel elyn dn susin percepn risi bui onsn, enun : ). ini siu yn dicpi (nyn dl :,, dn ) b). lju bu
1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut:
triks dn opersiny by yudiri ATRIKS DAN OPERASINYA. triks dn Jenisny Definisi: trik A berukurn x n ilh sutu susunn ngk dl persegi ept ukurn x n, sebgi berikut: A = n n n triks berukurn (ordo) x n. tu A
c. keseluruhan perjalanannya jawab: 1. Perhatikan gambar berikut ini.
. Perhikn gmbr beriku ini. A B C D -6-5 - - - - 5 6 jik iik nol diepkn sebgi iik cun, enukn: (i) posisi A, B, D, dn (ii) perpindhn dri A ke B, A ke C, D ke B, dn ke A. jwblh pernyn jik iik C diepkn jdi
M E K A N I K A. Dr. Muktar Panjaitan, M.Pd
M E K A N I K A Dr. Mukr Pnjin, M.Pd MEKANIKA Meknik dlh cbng ilmu fisik ng berhubungn dengn perilku bend ng menjdi subek g u perpindhn, dn efek selnjun pd bend ersebu dlm lingkungn merek. HUKUM NEWTON
Eyus Sudihartinih Tugas MK Geometri
Eyus Sudihrinih Tugs MK Geomeri Posul Prlel Euclid Mellui suu iik A yng idk erlek pd gris m, erdp pling nyk su gris yng kn mellui A dn prlel erhdp m Konvers Teorem Sudu Dlm Berseerngn Jik erdp du gris
FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.
FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.
Isi Pembahasan Wek 3: Elektromagnetika pada Antenna. Solusi untuk antena elementar. Antena hertz loop
si mbhsn Wk 3: lkmgnik pd Annn Slusi unuk nn lmn Ann hz dipl Ann hz lp Mudik Alydus, Univ. Mcu Bun, 008 snsi 3 lkmgnik pd Ann smn Mxwll dngnsinylhmnis smn Mxwll dngnsinylhmnis J ε μ μ ε 0 Vk yning (Dy
RANCANGAN DAN ANALISA SISTEM ORIENTASI TURBIN ANGIN KAPASITAS 2,5 KW
Rncngn dn Anlis Sisem Oiensi Tubin Angin... (Agus Byu Um) RACAA DA AALISA SISTEM ORIETASI TURBI AI KAPASITAS,5 KW Agus Byu Um Penelii Pus Teknologi Dign Tepn, LAPA ABSTRACT The oienion (sey) sysem wih
GERAK LURUS. = v b. kecepatan rata-ratanya x. = = t = = = 3. x x. x, v 90 + = + =
www.imelsmes.cm imel Perm dn Su-suny yng Memerikn Cshck Tk Ters GERK LURUS Cnh Sl & pemhsn. Seuh end ergerk dengn linsn C dengn pnjng C 8 m seperi diunjukkn pd gmr dengn keljun ep m/s. Hiung:. selng wku
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA Yogyakarta 2011
Progrm Sudi M Kulih Pokok hsn : Memik : Geomeri : Kesengunn isusun oleh r. li Mhmudi FKULTS MTEMTIK N ILMU PENGETHUN LM UNIVERSITS NEGERI YOGYKRT Yogykr 0 Lemr Kegin Mhsisw Geomeri Lemr Kegin Mhsisw M
Sekolah Olimpiade Fisika
SOLUSI SIULASI OLIPIADE FISIKA SA Septeber 06 TINGKAT KABUPATEN/KOTA Wktu : 3 j Sekolh Olipide Fisik . Seseorng berdiri di dl eletor gedung bertingkt. ul-ul eletor gedung di. Eletor keudin uli nik enuju
Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan.
Apliksi Teori Perminn Lwn pemin (puny intelegensi yng sm) Setip pemin mempunyi beberp strtegi untuk sling menglhkn Two-Person Zero-Sum Gme Perminn dengn pemin dengn perolehn (keuntungn) bgi slh stu pemin
II. Potensial listrik
II. Potensil listik Penjelsn/deskipsi gejl listik: * gy * potensil * medn * enegi Enegi Potensil Listik enegi yng dipelukn untuk memindhkn seuh mutn ( melwn gy listik) q E enegi potensil pestun mutn potensil
Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip
Gs Gy Lstk Konsep fluks Teoem Guss Teoem Guss Penggunn Teoem Guss Medn oleh mutn ttk Medn oleh kwt pnjng tk behngg Medn lstk oleh plt lus tk behngg Medn lstk oleh bol solto dn kondukto Medn lstk oleh slnde
INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.
INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl
Bank soal Trigonometri Page 1 of 7 C. 3 + A. 3 D. 2 B. 3 E. 2 C Nilai x yang memenuhi cos3x
Bnk sl Trignmetri Pge f. Jik tn =, mk sin + sin + + cs( ) =... 0. sin cs =... sin cs sin cs sin cs sin + cs sin + cs sin cs. Jik tn = dn mk cs + sin =... 0. Jik sin + cs = 0 dn 0 80 mk nili yng memenuhi
Persamaan Garis Singgung Lingkaran Melalui Titik di Luar Lingkaran
Mtei Pesn Gis Singgung Lingkn Mellui Titik di Lu Lingkn Oleh: Anng Wibowo, S.Pd Apil MtikZone s Seies Eil : [email protected] Blog : www.tikzone.wodpess.co HP : 8 87 87 Hk Cipt Dilindungi Undng-undng. Dilng
Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0
PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn
5. Persamaan Diferensial (2) (Orde Dua) Sudaryatno Sudirham
Drulic www.drulic.com 5. Prmn Difrnil Ord Du Sudrno Sudirhm 5.. Prmn Difrnil Linir Ord Du Scr umum rmn difrnil linir ord du rnuk d d c f 5. d d Pd rmn difrnil ord u ki lh mlih hw olui ol rdiri dri du komonn
1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)
MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.
4 E 6? E 2988*e8. e * +es $ st. ,5 ^ Sl El. E $' Cg3ss il? fa E d-.$.el. o g *l= E ie titsl. B"HF-A x 5 HC 9. H ; sef. f I F E.
P G c e cl & 11 3 il il & ] u ) ] 4.' \l 1 1 \ { e i \ f l C,) 1 l ( (,) q { \'D c1 Tl 8 g *l l?). ( x \ fi Y &Ē. 38 \l l S e ili,5 ^ Sl l 3 R f.$.l ie i $' Cg3 il?.;x \l e * +e$ 4 6? 2988*e8 ; ci cci+b..2
6 S u k u B u n g a 1 5 % 16,57 % 4,84 tahun PENGOLAHAN IKAN BERBASIS FISH JELLY PRODUCT
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N G O L A H A N I K A N B E R B A S I S F I S H J E L L Y P R O D U C T ( O T A K -O T A K d a n K A K I N A G A ) P O L A P E M B I A Y
Nomor 547lB3.1lKMl2A17. Perihal : Penugasan Program Kreativitas Mahasiswa (PKM) 5 Bidang Tahun 2017
KMTRA RST, TK, DA PDDKA T DRKTRAT DRA PMAARA DA KMAHASSWAA dun D,. nd: Sudin Pinu, Snyn, k Pu 1070 Tn/k. 1 794007,.,",",.-...,, W.b RKD{T 47.1KMA17 in 1(u Pih : Pnun P Kivi Mhiw (PKM idn Thun 017 09 M
Desain dan Analisa Sistem Tenaga dan Transmsi pada Mobil Angkutan Multiguna Pedesaan Bertenaga Listrik
JURNAL TEKNIK ITS ol. 6, No. (017), 337-350 (301-98X Pin) A734 Desin dn Anlis Sisem Teng dn Tnsmsi pd Mobil Angkun Muligun Pedesn Beeng Lisik Dik Byu Pseyo, Unggul Wsiwiono, I Nyomn Sun Teknik Mesin, Fkuls
Titik Biasa dan Titik Singular Misalkan ada suatu persamaan diferensial orde dua h(x)y + p(x)y + q(x)y = 0 (3)
PERSAMAAN LEGENDRE Fugi Rel Alitik Sutu fugi f( diktk litik pd jik fugi itu dpt diytk dl deret pgkt deg rdiu kovergei poitif. f ( ( + ( + ( + ( +... dl elg kovergeiy diperoleh f ( ( f '( f "(. f '''(......
Menerapkan konsep vektor dalam pemecahan masalah. Menerapkan konsep vektor pada bangun ruang
VEKTOR PADA BIDANG SK : Menerpkn konsep vektor dlm pemechn mslh KD : Menerpkn konsep vektor pd bidng dtr Menerpkn konsep vektor pd bngun rung TUJUAN PELATIHAN: Pesert memiliki kemmpun untuk mengembngkn
POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd
POTNSIL LISTRIK Oleh : S Nuohmn,M.Pd Ke Menu Utm Liht Tmpiln eikut: POTNSIL LISTRIK il seuh ptikel emutn egek dlm seuh medn listik, mk medn itu kn mengehkn seuh gy yng dpt melkukn kej pd ptikel teseut.
MA1201 MATEMATIKA 2A Hendra Gunawan
MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk
I z. s\3 ; E AEE 7 2 J8EE. 3 Ai 3o:: bheee .E E 2,98. s.9 H. fii.f 5 E EE-O. FHi. ts R,E ;Kg ? J, F. I (l. lg.e. E ra E = E ^6 FI. qp = 3 E E E 49, ;
c..l cn b >l h/n ; i 46 C.) 96 bb C.)! G' ( ]! ] &! c). ] l u.9 cc' h0 c. ' * il Q ) 3 Ri.f, cn.. _ ;. 2,98.,1c4 R, ;K?, (..6 l. jcc cc> c6 " l < > ifi i< h l l (n 7 2 8. ;i.. 16S i.! i,?p66 63 j n 6 9!
NILAI EIGEN DAN VEKTOR EIGEN
Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)
MODA KELELEHAN SAMBUNGAN
OA KELELEHAN SABUNGAN Thnn lrl ungn dngn l ung u u pku dinukn olh rp fkor pri ku lnur l ung, ku upu ku, dn gori ungn ng lipui: dir u u pku, kln ku, r udu ungn. Prn unuk nghiung hnn lrl dp diprolh dngn
10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c
BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)
det DEFINISI Jika A 0 disebut matriks non singular
DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:
Jawaban Tugas Awal Gerak dan Gaya. Eksperimen Kereta dinamika
Jwbn Tugs Awl Gerk dn Gy Eksperimen Kere dinmik. Bil du buh blok erbu dri bhn yng sm epi M>M dijuhkn pd bidng miring yng sm dengn posisi yng sm, mn yng lebih cep smpi ke dsr? Mengp demikin? Jwb : Mg sin
Vektor di R 2 dan R 3
Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl
BAB VII TRANSFORMASI LAPLACE
BAB VII TRANSFORMASI APACE Tujun Pmbljrn Slh mmpljr bb n, dhrpkn mhw mmlk kmmpun unuk mmbu bnuk-bnuk Trnform plc dr brbg jn fung. Dmkn jug dngn nvr Trnform plc yng dbuny. Slnjuny dhrpkn gr mhw mmpu mrubh
Matematika Lanjut 1. Onggo Wiryawan
Mtemtik Lnjut 1 Onggo Wirywn Setip mtriks persegi tu bujur sngkr memiliki nili determinn Nili determinn sklr Mtriks Singulr= Mtriks yng determinnny bernili 0 Determinn & Invers - Onggo Wr 2 Mislkn A sutu
G Nopember2Ol5. :oal /K'.1/LT/2015 : Satu set. 2. Inspektur Jenderal Kemenristekdikti; 3. Ketua LPPM Masing-masing PTS.
M K KMRA RS, KOLOG A KA GG KOORAS RGRA GG SWASA WLAYA _ n Se B njn S Men 1 eepn: 1 81488,819, : 81 Ln : www.kp Lpn : /K'.1/L/1 : S e : Lpn eknn bh enen n enbn Kep Myk b en Lnknn Kpe Wyh G pebeo Yh.pnn
PEMERINTAH KABUPATEN NGANJUK DINAS PENDAPATAN PENGELOLAAN KEUANGAN DAN ASET DAERAH
MRTAH KABUAT GAUK DAS DAATA GAA KUAGA DA AST DARAH. end. Buk Rmd. 1 njuk Tep. 03581 3240 b 3224 KUTUSA BUAT GAUK MR 7881 e7 K 4.24 22 TTAG TAA RAA UMUM GADAA ADA DAS DAATA GAA KUAGA DA AST DARAH KABUAT
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =
pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.
MATEMATIKA DASAR. 1. Jika x 1 dan x 2 adalah penyelesaian. persamaan Diketahui x 1 dan x 2 akar-akar persamaan 6x 2 5x + 2m 5 = 0.
MATEMATIKA ASAR. Jik dn dlh penyelesin persmn mk ( ).. E. B 7 6 6 + - ( + ) ( ). ( ) ( ) 7. Jik dn y b dengn, y > + y, mk. + y + b log b. + b log b b E. + log b E log dn y log b + y + y log + log b log
NILAI EIGEN DAN VEKTOR EIGEN
Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn
BAB III PORTFOLIO OPTIMAL
BAB III PORTFOLIO OPTIMAL Pd seelmny el dis eori-eori yn erkin denn penenn porolio opiml Seelm menenkn porolio opiml enny erlei dl rs dimodelkn s porolio invessi Model porolio invessi yn kn erenk persmn
Sebaran Kontinu Khusus
Sttistik Mtemtik I Sern Kontinu Khusus Hzmir Yozz Izzti rhmi HG Jurusn Mtemtik LOGO FMIPA Universits Andls SEBARAN SERAGAM KONTINU Definisi 4.1. Sutu peuh ck kontinu X diktkn memiliki sergm kontinu pd
FAKULTAS DESAIN dan TEKNIK PERENCANAAN UJIAN AKHIR SEMESTER SEMESTER GENAP TA 2006/2007
FKULTS DSIN d TKNIK PRNCNN UJIN KHIR SMSTR SMSTR GNP T 006/007 Js : Tekik Sipil Hi / Tl : Sels -05-007 Mt Klih : Stkt Bj I Wkt : 10.50 1.30 Dose : I. Wiyto Dewoboto, MT. Seeste : IV Sift Uji : ope ote
SIMAK UI 2011 Matematika Dasar
SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls
Bab IV Model Difusi Oksigen di Jaringan dengan Laju Konsumsi Linier terhadap Konsentrasi
Bb IV Model Difusi Oksigen di Jingn dengn Lju Konsumsi Linie tehdp Konsentsi Poses metbolisme yng tejdi di jingn menggunkn oksigen sebgi bhn utmny. Dlm hl ini disumsikn lju konsumsi oksigen di jingn niliny
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
BAB 7. LIMIT DAN LAJU PERUBAHAN
BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?
A s p e k P a s a r P e r m i n t a a n... 9
P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K E R U P U K I K A N P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R
Program Kerja TFPPED KBI Semarang 1
U P A Y A M E N G G E R A K K A N P E R E K O N O M I A N D A E R A H M E L A L U I F A S I L I T A S I P E R C E P A T A N P E M B E R D A Y A A N E K O N O M I D A E R A H ( F P P E D ) S E K T O R P
ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y
Megeg Jejk Sebgi Kecil Bgs Idoesi Yg Peh Megikuti Uji Sekolh Pd Awl Ms Keedek UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 949 ALJABAR. AMS (Algeeee Middelbe School)-HBS (Hogee Buge School), 949
a. Buktikan 16 Jawab : Jika a, b, c dan d adalah bilangan-bilangan real positif, tunjukkan bahwa d c x adalah a, b dan c.
Jik,,, > ukik Jw : Jik,, lh ilg-ilg rel oiif, ujukk hw Jw : Dikehui kr-kr erm lh, Teuk ili Jw : Dikehui kr-kr erm memeuk ri rimeik eg e Teuk ili,! Jw : Mil kr-kr erm :,,, Mk,,, Dikehui meruk u kr erm Tujukk
http://meetbied.wordpress.com SMAN Bone-Bone, Luwu Utr, Sul-Sel Bnyk keggln dlm hidup ini dikrenkn orng tidk menydri betp dektny merek dengn keberhsiln, st merek menyerh (Thoms Alf Edison) [RUMUS CEPAT
Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga
udrytn udirh nlii Kedn Mntp Rngkin ite eng ii 9 Pebebnn k eibng Pd pebebnn eibng, del tu f eperudh nlii ite tig f. pbil bebn tidk eibng, ite kn engndung fr-fr tidk eibng, bik ru upun tegngnny. pbil fr-fr
Bahan 3 Fungsi Transfer Filter
Bhn 3 Fungi Trnfer Filter Aep Njmurrokhmn Jurun Teknik Elektro Univerit Jenderl Achmd Yni EK36 Perncngn Filter Anlog Polinomil dn kr A n n Koefiien :,,, n n menytkn derjt (orde) polinomil Akr polinomil
Antiremed Kelas 11 Matematika
Antiremed Kels 11 Mtemtik Persipn UAS - 0 Doc. Nme: AR11MAT0UAS Version : 016-07 hlmn 1 01. Pd ulngn mtemtik, dikethui nili rt -rt kels dlh 58. Jik rt-rt nili mtemtik untuk sisw priny dlh 65, sedngkn untuk
Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40
Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu
BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)
BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,
M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.
M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil [email protected] JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng
