BAB IV BUOYANCY DAN STABILITAS BENDA MENGAPUNG
|
|
|
- Lanny Hermanto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 A IV UOYANCY DAN STAIITAS ENDA ENAPUN Tujuan Pembelajaran Umum :. ahasiswa memahami konsep kesetimbangan statis untuk menyelesaikan gaya-gaya yang bekerja pada kasus benda yang mengapung, 2. ahasiswa mampu menganalisis stabilitas benda yang mengapung dalam kondisi tegak maupun miring. Tujuan Pembelajaran Khusus :. ahasiswa mampu menghitung besar dan letak titik berat benda yang mengapung, 2. ahasiswa mampu menghitung besar dan letak titik tangkap gaya buoyancy,. ahasiswa mampu melakukan kontrol stabilitas benda yang mengapung, melalui analisa radius metasentrum dan tinggi metasentrum. aya uoyancy H ki H ka Sembarang benda yang mengapung di permukaan air, akan mendapat perlakuan macam gaya yang bekerca pada arah horisintal dan vertikal, yaitu : ) aya horizontal (H), gaya menekan sebelah sisi kiri dan sisi kanan dari benda, yang saling menghapuskan, sehingga tidak ada gaya horizontal pada benda. 2) erat sendiri benda (), yaitu suatu gaya yang bekerja vertical ke bawah dan mempunyai titik tangkap di titik, titik berat benda. m g dimana : m = massa benda, dalam satuan kg g = percepatan gravitasi bumi, dalam satuan m/detik2. H i d r o l i k a 4 -
2 didesak ke atas oleh gaya buoyancy ( ) sebesar berat air yang dipindahkannya. Hal ini dapat dinyatakan secara matematik oleh prinsip Archimedes sebagai berikut : a. Vd (4.) dimana : F b = gaya buoyant, dinyatakan dalam satuan [kn] a = berat jenis cairan, dinyatakan dalam satuan [kn/m ] V d = Volume cairan yang dipindahkan, dinyatakan dalam satuan [m ] - aya buoyancy (F ), yaitu gaya tekan ke atas pada suatu benda yang mengapung sama dengan berat air yang dipindahkan (Archimede s prinsiple). Titik tangkap gaya buoyancy di titik sama dengan titik berat dari volume air yang dipindahkan, atau sama dengan titik berat dari bidang yang tercelup. Stabilitas enda Yang Terapung Stabilitas benda terapung tercapai, jika titik dan terletak pada satu garis vertical yang sama, dan gaya buoyancy (berat air yang dipindahkan) sama besar dengan berat benda. Dapat dibedakan macam keseimbangan dari benda yg mengapung di air (ambar 4.) : K θ K θ K θ ambar 4. erbagai kemungkinan letak titik tangkap gaya. ) Titik terletak di atas titik, benda ini stabil dan bila ada perobahan dari posisi ini benda akan kembali lagi pada posisi stabilnya yang semula. 2) Titik terletak di bawah titik, benda ini dalam kondisi labil. Perubahan sedikit dari posisi ini akan menggulingkan benda untuk mencari keseimbangan yang baru. ) Titik dan titik berimpit, benda dalam kondisi netral/keseimbangan indifferent. Perubahan dari posisi ini tidak akan mempengaruhi tempat titik dan. Sehingga macam-macam keseimbangan transversal dari suatu benda yang terapung : Stabil : bila di atas ( positif) abil : bila di bawah ( negative) Netral : bila = ( nol). H i d r o l i k a 4-2
3 4.2. Tinggi etasentrum etasentrum (titik ) adalah titik pusat dari gerak oscilasi benda yang mengapung bila diberikan sedikit perubahan sudut putar (d). Tinggi metasentrum () adalah jarak antara titik berat dari benda yang mengapung () terhadap titik metasentrum (). Persamaan: Radius metasentrum, I T = Volume air yang dipindahkan I T = momen inersia tranversal bidang air (waterplane). Tinggi metasentrum, = ila ditinjau terhadap titik K pada bidang dasar (baseline), maka tinggi metasentrum : = K K Radius etasentrum enghitung untuk sebuah sudut kecil d (lihat ambar 4.2) Kapal saat terjadi oleng titik akan berpindah ke g, g 2 : pusat gravitasi juring-juring. (juring : adalah bagian berbentuk segitiga di sekitar titik-titik g, g 2 ) V : volume satu juring = V : volume juring sepanjang dx = ½. y. y tan. dx = ½. y 2..dx V dφ dx y g δv g 2 y y tan dφ ambar 4.2 Juring segitiga. H i d r o l i k a 4 -
4 Dari teori mekanika, Hukum perpindahan sentroid : a) ' parallel dengan g, g 2. b) omen terhadap sb-x : '. Vd g g V dengan g g 2 ( ) y ( ) '. V d ( 4 2 ) y (½. y..dx) ' V d ( 2 ) y.dx y Hubungan antara ' dan : ' tan sehingga : ' tan tan V IT maka : V d d ( 2 ) y.dx dimana : tan dimana : = radius metasentrum I T = I x = (2/) y dx = momen inersia transversal bidang air (waterplane) 4.2. engan Penahan uling (The Righting Arm) Z Z omen righting cenderung untuk mengembalikan kapal pada posisi tegak ke atas. omen ini ditimbulkan oleh gaya berat dan gaya buoyancy ke atas. F x Z (momen righting/momen penahan) b φ ambar 4.. engan penahan guling Z. Z = lengan righting, tegak lurus terhadap garis-garis sejajar yang melalui titik-titik aksi gaya berat dan gaya buoyancy, dan panjang lengan merupakan jarak garis-garis kerja kedua gaya tersebut (lihat ambar 4.) H i d r o l i k a 4-4
5 Stabilitas awal : Z sin Rumus all-sided (Kapal dengan sisi-sisinya menyerupai dinding tegak) : Z tan sin 2 Rumus ini dapat digunakan untuk kapal-kapal yang memiliki sisi-sisi dengan tipe wallsided, yaitu yang menyerupai dinding tegak, misal : kapal tongkang (barge), kapal tangker, kapal angkut (carrier), hingga sudut 0 o. 4. Contoh Soal Contoh Soal : Sebuah perahu penambang pasir sungai berukuran panjang = 6,00m, lebar = 2,40m, tinggi H =,40m. erat perahu berikut muatannya = 50 kn, dan titik tangkap berada pada kedalaman K = 0,80 m dari bidang dasar perahu. K = 0,80 H =,40 = 2,40 = 6,00 m Hitung : a. bagian tinggi perahu yang tercelup dalam air sungai b. etak titik tangkap gaya buoyancy, c. etak titik metasentrum, dan tinggi metasentrum d. Apakah perahu tersebut dalam kondisi stabil/tidak. Jawab : a) bagian tinggi perahu yang tercelup dalam air sungai. Vol.air yg dipindahkan, V d = * * X aya buoyancy, K = 0,98 X =,06 = a Vd a * * * X = 50 K = 0,80 K = 0,5 kn. Sehingga : F x x x X = 2,40 50 kn m,06 m (2,40 m x 6,00 m) (9,8 kn) b) etak titik tangkap gaya buoyancy, K = ½ X = ½ x,06 m = 0,5 m (dari bidang dasar) b a X x x a H i d r o l i k a 4-5
6 c) etak titik metasentrum, dan tinggi metasentrum, I x x T 2 2 (6,00 m)(2,40 m) 0,45 m Vd x x X (2,40 m)(6,00 m)(,06 m) Tinggi metasentrum : = K K = 0,5 0,45 0, 80 = 0,8 m. d) Kontrol apakah perahu tersebut dalam kondisi stabil/tidak. Perahu dalam kondisi stabil, karena titik berada diatas titik ( positif). Contoh Soal 2 : Pada saat sungai banjir besar menimbulkan rubuhnya jembatan yang melintasi sungai tersebut. Seorang mahasiswa polban mengambil kebijakan untuk memasang jembatan ponton selama program perbaikan jembatan sedang berjalan (ambar 4.6). ebar sungai 80 m dan kedalaman aliran 7 m, tidak termasuk pasang-surut. aris besar spesifikasi teknis dari pekerjaan ponton tersebut adalah sedemikian : - jarak antara dasar sungai terhadap dasar pontoon = 5,5 m - pontoon freeboard (jarak muka air thd dasar pontoon) =,5 m - berat sendiri pontoon maksimum = 220 ton - lebar jalan raya = 0 m - kemiringan ijin ke samping maksimum untuk beban kendaraan 40 ton = 4 o. - Titik berat kendaraan terhadap deck pontoon = m, dan 2 m thd sumbu vertikal. - Titik berat pontoon terhadap dasar =,5 m. Diminta : Perkirakan dimensi pontoon yang memenuhi spesifikasi di atas? Jawaban : = 0 m 2 m 2,00 freeboard =,50 draft =,50 Kgab = 2,92 gab K =,50 K 2 = 6,00 H =,00 clearance = 5,50 C y = 7,00 dasar sungai ambar 4.4. Jembatan pontoon. H i d r o l i k a 4-6
7 Draft pontoon (kedaman bagian pontoon yang tercelup air) = 7 5,5 =,5 m Tinggi total pontoon (draft + freeboard), H =,5 +,5 = m erat total pontoon + berat kendaraan, = = 260 ton. 260 t Oleh karena itu, volume air yang dipindahkan, Vd = 260 m. t / m Vd 260 Panjang pontoon, 7, m 20 m ( dibulatkan) x draft (0 m) (,5 m) V Draft terkoreksi yang sesuai dengan = 20 m, adalah draft d 260, m (0) (20) Checking stabilitas pontoon terhadap hasil estimasi pendimensian tersebut di atas : I x , 4 m V 260 d Titik berat pontoon di atas dasar ponton, K =,5 m Titik berat kendaraan terhadap deck pontoon = m, karena itu K 2 = 6 m di atas dasar pontoon. (220 t,5 m) (40 t 6 m) Titik berat gabungan (pontoon + kendaraan), K gab 2, 92 m 260 t draft terkoreksi, m Titik tangkap gaya buoyancy, K 0,65 m. (terhadap dasar) 2 2 Tinggi metasentrum, K Kgab 6,4 m 0,65 m 2,92 m 4, 868 m omen guling akibat beban kendaraan, = (40 ton) (2 m) = 80 t.m. omen penahan guling (righting moment) = x Z = total * x = (260 ton) (4,868 m) Sudut kemiringan pontoon : Ringhting moment = momen guling (260) (4,868) = 80 ton.m. 80 t. m o o 0,062 rad,55 4 (Oke, dimensi memenuhispec. ) (260 m) (4,868 m) 4.4 Soal atihan Soal : Sebuah pontoon dengan ukuran = 20 m, = 60 m, H = 0 m, bermassa 5600 ton. Ponton tersebut mengambang dipermukaan air laut (ρ al = 025 kg/m ) dan titik berat pontoon yang dibebani berada 4,5 m dari sisi atasnya. Ditanya : a) etak titik tangkap gaya, bila mengambang dengan sekeimbangan. b) ila pertanyaan seperti (a), tapi pontoon miring 0 o. c) etak titik metasentrum untuk kemiringan 0 o. a H i d r o l i k a 4-7
8 Kunci jawaban : a) etak titik tangkap gaya buoyancy, K = X/2 = 2,28 m. (dari dasar pontoon) b),28 m ke sebelah kanan c) 4,7 m di atas titik. Soal 2 : Sebuah perahu dalamnya,048 m mempunyai irisan penampang trapesium 9,44 m lebar puncak dan 6,096 m lebar alasnya. Perahu tersebut 5,24 m panjangnya dan ujungujungnya tegak. Tentukanlah : a) beratnya, jika ia masuk,829 m di air? b) Rendamannya jika 76,66 ton batu diletakkan dalam perahu tersebut? Kunci jawaban : a),97 mn. b) 2,44 m ooo H i d r o l i k a 4-8
Keseimbangan benda terapung
Keseimbangan benda terapung Pendahuluan Benda yang terendam di dalam air akan mengalami gaya berat sendiri benda atau gaya gravity ( Fg ) dengan arah vertikal ke bawah dan gaya tekanan air dengan arah
Keseimbangan benda terapung
Keseimbangan benda terapung Pendahuluan Benda yang terendam di dalam air akan mengalami gaya gaya sbb: a. Berat sendiri benda atau gaya gravity ( Fg )=m.g dengan arah vertikal ke bawah di titik berat benda
Soal :Stabilitas Benda Terapung
TUGAS 3 Soal :Stabilitas Benda Terapung 1. Batu di udara mempunyai berat 500 N, sedang beratnya di dalam air adalah 300 N. Hitung volume dan rapat relatif batu itu. 2. Balok segi empat dengan ukuran 75
PENERAPAN KESETIMBANGAN BENDA TERAPUNG
PENERAPAN KESETIMBANGAN BENDA TERAPUNG Mata Kuliah Mekanika Fluida Oleh: 1. Annida Unnatiq Ulya 21080110120028 2. Pratiwi Listyaningrum 21080110120030 PROGRAM STUDI TEKNIK LINGKUNGAN FAKULTAS TEKNIK UNIVERSITAS
Hidrostatika. Civil Engineering Department University of Brawijaya. Kesetimbangan Benda Terapung. TKS 4005 HIDROLIKA DASAR / 2 sks
TKS 4005 HIDROLIKA DASAR / 2 sks Hidrostatika Kesetimbangan Benda Terapung Ir. Suroso, M.Eng., Dipl.HE Dr. Eng. Alwafi Pujiraharjo Department University of Brawijaya Statika Fluida Membahas sistem yang
KESEIMBANGAN BENDA TEGAR
KESETIMBANGAN BENDA TEGAR 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINEMATIKA = Ilmu gerak Ilmu yang mempelajari
Kuliah kedua STATIKA. Ilmu Gaya : Pengenalan Ilmu Gaya Konsep dasar analisa gaya secara analitis dan grafis Kesimbangan Gaya Superposisi gaya
Kuliah kedua STATIKA Ilmu Gaya : Pengenalan Ilmu Gaya Konsep dasar analisa gaya secara analitis dan grafis Kesimbangan Gaya Superposisi gaya Pendahuluan Pada bagian kedua dari kuliah Statika akan diperkenalkan
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Kehidupan sehari-hari manusia tidak terpisahkan dengan adanya penerapan berbagai ilmu pengetahuan yang sangat menunjang dan mempermudah kegiatan yang dilakukan. Seperti
BAB 5 STABILITAS BENDA TERAPUNG
BAB 5 STABIITAS BENDA TERAPUNG 5. STABIITAS AWA Sebagai dasar pemahaman mengenai struktur terapung maka diperlukan studi mengenai stabilitas benda terapung. Kestabilan sangat diperlukan suatu struktur
Kapal juga harus memenuhi kondisi keseimbangan statis (static equilibrium condition) selain gaya apung oleh air.
A.A. B. Dinariyana Jurusan Teknik istem Perkapalan Fakultas Teknologi Kelautan IT urabaya 2011 Kapal/bangunan apung memerlukan gaya apung (buoyancy) untuk melawan berat dari kapal/bangunan apung itu sendiri.
Kuliah Mekanika Fluida 21/03/2005. Kuliah Mekanika Fluida Keseimbangan Benda Terapung
Kuiah ekanika Fuida Keseimbangan enda Terapung Ir. Djoko Luknanto.Sc., Ph.D. Dosen Jurusan Teknik Sipi FT U 21/03/2005 Jack a otta 1 Fuida Diam embahas sistem yang berhubungan dengan cairan: yang tidak
BAB IV KESEIMBANGAN BENDA TERAPUNG
BAB I KESEIMBANGAN BENDA TERAPUNG Tujuan Intruksinal Umum (TIU) Mahasiswa diharapkan dapat merencanakan suatu bangunan air berdasarkan knsep mekanika fluida, teri hidrstatika dan hidrdinamika. Tujuan Intruksinal
A. Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu :
BAB VI KESEIMBANGAN BENDA TEGAR Standar Kompetensi 2. Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar 2.1 Menformulasikan hubungan antara konsep
2 TINJAUAN PUSTAKA 2.1 Stabilitas
2 TINJAUAN PUSTAKA 2.1 Stabilitas Nomura dan Yamazaki (1977) menjelaskan bahwa stabilitas merupakan kemampuan kapal untuk kembali ke posisi semula setelah miring akibat pengaruh gaya dari dalam maupun
2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan
4 2 TINJAUAN PUSTAKA 2.1 Kapal Perikanan Kapal perikanan adalah kapal yang digunakan didalam usaha perikanan yang mencakup penggunaan atau aktivitas dalam usaha menangkap atau mengumpulkan sumberdaya perairan
2 Mekanika Rekayasa 1
BAB 1 PENDAHULUAN S ebuah konstruksi dibuat dengan ukuran-ukuran fisik tertentu haruslah mampu menahan gaya-gaya yang bekerja dan konstruksi tersebut harus kokoh sehingga tidak hancur dan rusak. Konstruksi
BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN
BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN 4.1 Pemilihan Tipe Dinding Penahan Dalam penulisan skripsi ini penulis akan menganalisis dinding penahan tipe gravitasi yang terbuat dari beton yang
BAB DINAMIKA ROTASI DAN KESEIMBANGAN BENDA TEGAR
BAB DNAMKA OTAS DAN KESEMBANGAN BENDA TEGA. SOA PHAN GANDA. Dengan menetapkan arah keluar bidang kertas, sebagai arah Z positif dengan vektor satuan k, maka torsi total yang bekerja pada batang terhadap
B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis
BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,
Modul Sifat dan Operasi Gaya. Ir.Yoke Lestyowati, MT
Modul Sifat dan Operasi Gaya Ir.Yoke Lestyowati, MT Konten E-Learning IDB 7in1 Terintegrasi PDITT 2015 BAB I SIFAT DAN OPEASI GAYA 1.1. Capaian Pembelajaran 1.1.1. Umum 1. Mampu menggunakan teori gaya
juga didefinisikan sebagai sebuah titik batas dimana titik G tidak melewatinya, agar kapal selalu memiliki stabilitas yang positif.
3 STABILITAS KAPAL Stabilitas sebuah kapal mengacu pada kemampuan kapal untuk tetap mengapung tegak di air. Berbagai penyebab dapat mempengaruhi stabilitas sebuah kapal dan menyebabkan kapal terbalik.
STATIKA. Dan lain-lain. Ilmu pengetahuan terapan yang berhubungan dengan GAYA dan GERAK
3 sks Ilmu pengetahuan terapan yang berhubungan dengan GAYA dan GERAK Statika Ilmu Mekanika berhubungan dengan gaya-gaya yang bekerja pada benda. STATIKA DINAMIKA STRUKTUR Kekuatan Bahan Dan lain-lain
Bab 6 Momentum Sudut dan Rotasi Benda Tegar
Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya
Metacentra dan Titik dalam Bangunan Kapal
Metacentra dan Titik dalam Bangunan Kapal 1. Titik Berat (Centre of Gravity) Setiap benda memiliki tittik berat. Titik berat inilah titik tangkap dari sebuah gaya berat. Dari sebuah segitiga, titik beratnya
KESEIMBANGAN BENDA TEGAR
Dinamika Rotasi, Statika dan Titik Berat 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal ME KANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINE MATI KA = Ilmu
FISIKA XI SMA 3
FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,
BAB 1 Keseimban gan dan Dinamika Rotasi
BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1
BAB 3 DINAMIKA GERAK LURUS
BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan
9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.
SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning
BAB IV HASIL DAN PEMBAHASAN
BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis data tanah Data tanah yang digunakan peneliti dalam peneltian ini adalah menggunakan data sekunder yang didapat dari hasil penelitian sebelumnya. Data properties
BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser
BAB 4 Tegangan dan Regangan pada Balok akibat Lentur, Gaya Normal dan Geser 4.1 Tegangan dan Regangan Balok akibat Lentur Murni Pada bab berikut akan dibahas mengenai respons balok akibat pembebanan. Balok
BAB II PELENGKUNG TIGA SENDI
BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya
Pertemuan I, II I. Gaya dan Konstruksi
Pertemuan I, II I. Gaya dan Konstruksi I.1 Pendahuluan Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik,
BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika
25 BAB 3 DINAMIKA Tujuan Pembelajaran 1. Menerapkan Hukum I Newton untuk menganalisis gaya pada benda diam 2. Menerapkan Hukum II Newton untuk menganalisis gaya dan percepatan benda 3. Menentukan pasangan
Untuk tanah terkonsolidasi normal, hubungan untuk K o (Jaky, 1944) :
TEKANAN TANAH LATERAL Tekanan tanah lateral ada 3 (tiga) macam, yaitu : 1. Tekanan tanah dalam keadaan diam atau keadaan statis ( at-rest earth pressure). Tekanan tanah yang terjadi akibat massa tanah
Mekanika Rekayasa/Teknik I
Mekanika Rekayasa/Teknik I Norma Puspita, ST. MT. Universitas Indo Global Mandiri Mekanika??? Mekanika adalah Ilmu yang mempelajari dan meramalkan kondisi benda diam atau bergerak akibat pengaruh gaya
6 KESELAMATAN OPERASIONAL KAPAL POLE AND LINE PADA GELOMBANG BEAM SEAS
6 KESELAMATAN OPERASIONAL KAPAL POLE AND LINE PADA GELOMBANG BEAM SEAS 6.1 Keragaan Kapal Bentuk dan jenis kapal ikan berbeda-beda bergantung dari tujuan usaha penangkapan. Setiap jenis alat penangkapan
DASAR PENGUKURAN MEKANIKA
DASAR PENGUKURAN MEKANIKA 1. Jelaskan pengertian beberapa istilah alat ukur berikut dan berikan contoh! a. Kemampuan bacaan b. Cacah terkecil 2. Jelaskan tentang proses kalibrasi alat ukur! 3. Tunjukkan
Bagaimana menentukan spesifikasi kantung udara yang efektif dengan memvariasikan ukuran tongkang, spesifikasi airbag dan jarak antar airbag?
Latar Balakang Peluncuran yaitu proses memindahkan berat kapal dari darat ke perairan. Metode peluncuran mengalami perkembangan sejalan dengan perkembangan teknologi. Peluncuran dengan sarana Airbag semakin
Mempelajari masalah : Prinsip hukum Archimedes Prinsip keseimbangan dan kestabilan Menghitung besar gaya apung dan letak pusat apung Mengevaluasi
Mempelajari masalah : Prinsip hukum Archimedes Prinsip keseimbangan dan kestabilan Menghitung besar gaya apung dan letak pusat apung Mengevaluasi kestabilan benda terendam atau terapung Archimedes (287-212
MODUL 1 STATIKA I PENGERTIAN DASAR STATIKA. Dosen Pengasuh : Ir. Thamrin Nasution
STATIKA I MODUL 1 PENGETIAN DASA STATIKA Dosen Pengasuh : Materi Pembelajaran : 1. Pengertian Dasar Statika. Gaya. Pembagian Gaya Menurut Macamnya. Gaya terpusat. Gaya terbagi rata. Gaya Momen, Torsi.
2.1 Zat Cair Dalam Kesetimbangan Relatif
PERTEMUAN VI 1.1 Latar Belakang Zat cair dalam tangki yang bergerak dengan kecepatan konstan tidak mengalami tegangan geser karena tidak adanya gerak relative antar partikel zat cair atau antara partikel
PRINCIPLES OF STATIC
HUKUM NEWTON HUKUM NEWTON PETAMA Σ = 0 Keseimbangan gaya HUKUM NEWTON KEDUA = m.a benda bergerak dengan percepatan konstan HUKUM NEWTON KETIGA Aksi = - eaksi STATIK terkait dengan kesetimbangan, aksi dan
FIsika USAHA DAN ENERGI
KTSP & K-3 FIsika K e l a s XI USAHA DAN ENERGI Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep usaha dan energi.. Menjelaskan hubungan
BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya.
BAB II TEORI DASAR 2.1 Hydraulic Excavator Secara Umum. 2.1.1 Definisi Hydraulic Excavator. Excavator adalah alat berat yang digunakan untuk operasi loading dan unloading. Berdasarkan sistem penggeraknya,
Statika. Pusat Massa Dan Titik Berat
Statika Pusat Massa Dan Titik Berat STATIKA adalah ilmu kesetimbangan yang menyelidiki syarat-syarat gaya yang bekerja pada sebuah benda/titik materi agar benda/titik materi tersebut setimbang. PUSAT MASSA
BAB III LANDASAN TEORI. batu yang berfungsi untuk tanggul penahan longsor. Langkah perencanaan yang
BAB III LANDASAN TEORI 3.1 Perencanaan Talud Bronjong Perencanaan talud pada embung memanjang menggunakan bronjong. Bronjong adalah kawat yang dianyam dengan lubang segi enam, sebagai wadah batu yang berfungsi
KHAIRUL MUKMIN LUBIS IK 13
Fakultas Perikanan - KESETIMBANGAN Kondisi benda setelah menerima gaya-gaya luar SEIMBANG : Bila memenuhi HUKUM NEWTON I Resultan Gaya yang bekerja pada benda besarnya sama dengan nol sehingga benda tersebut
SOAL MID SEMESTER GENAP TP. 2011/2012 : Fisika : Rabu/7 Maret 2012 : 90 menit
Mata Pelajaran Hari / tanggal Waktu SOAL MID SEMESTER GENAP TP. 2011/2012 : Fisika : Rabu/7 Maret 2012 : 90 menit Petunjuk : a. Pilihan jawaban yang paling benar diantaraa huruf A, B, C, D dan E A. Soal
2. FLUIDA STATIS (FLUID AT REST)
2. FLUIDA STATIS (FLUID AT REST) 2.1. PENGERTIAN DASAR Fluida Statis secara prinsip diartikan sebagai situasi dimana antar molekul tidak ada perbedaan kecepatan. Hal ini dapat terjadi dalam keadaan (1)
4 STABILITAS STATIS KAPAL POLE AND LINE SULAWESI SELATAN
4 STABILITAS STATIS KAPAL POLE AND LINE SULAWESI SELATAN 4.1 Pendahuluan Masalah teknis yang perlu diperhatikan dalam penentuan perencanaan pembangunan kapal ikan, adalah agar hasil dari pembangunan kapal
II. KAJIAN PUSTAKA. gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila
II. KAJIAN PUSTAKA A. Balok dan Gaya Balok (beam) adalah suatu batang struktural yang didesain untuk menahan gaya-gaya yang bekerja secara transversal terhadap sumbunya. Apabila beban yang dialami pada
PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA
PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan
Wardaya College. Soal Terpisah. Latihan Soal Olimpiade FISIKA SMA. Spring Camp Persiapan OSN Part I. Departemen Fisika - Wardaya College
Latihan Soal Olimpiade FISIKA SMA Spring Camp Persiapan OSN 2018 - Part I Soal Terpisah 1. Sebuah kepingan kecil dengan massa m ditempatkan dengan hati-hati ke permukaan dalam dari silinder tipis berongga
III. TUJUAN Miniatur Jembatan Ponton 1
BAB I PENDAHULUAN I. LATAR BELAKANG Hukum Archimedes mengatakan bahwa Jika suatu benda dicelupkan ke dalam sesuatu zat cair, maka benda itu akan mendapat tekanan keatas yang sama besarnya dengan beratnya
Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut!
Fluida Statis Fisikastudycenter.com- Contoh Soal dan tentang Fluida Statis, Materi Fisika kelas 2 SMA. Cakupan : tekanan hidrostatis, tekanan total, penggunaan hukum Pascal, bejana berhubungan, viskositas,
GAYA DAN HUKUM NEWTON
GAYA DAN HUKUM NEWTON 1. Gaya Gaya merupakan suatu besaran yang mempunyai besar dan arah. Satuan gaya adalah Newton (N). Gbr. 1 Gaya berupa tarikan pada sebuah balok Pada gambar 1 ditunjukkan sebuah balok
A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)
A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah
BAB VI PERENCANAAN CHECK DAM
VI- BAB VI PERENCANAAN CHECK DAM 6.. Latar Belakang Perencanaan pembangunan check dam dimulai dari STA. yang terletak di Desa Wonorejo, dan dilanjutkan dengan STA berikutnya. Dalam perencanaan ini, penulis
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Umum. 2.1.1 Defenisi Stabilitas Stabilitas adalah merupakan masalah yang sangat penting bagi sebuah kapal yang terapung dilaut untuk apapun jenis penggunaannya, untuk
BAB VI FONDASI TELAPAK GABUNGAN DAN TELAPAK KANTILEVER
BB V FONDS TEPK GBUNGN DN TEPK KNTEVE Fondasi telapak tunggal tidak selalu dapat digunakan, disebabkan oleh. Beban kolom terlalu besar sedang jarak kolom dengan kolom terlalu dekat, sehingga menimbulkan
ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG
ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG Olga Catherina Pattipawaej 1, Edith Dwi Kurnia 2 1 Jurusan Teknik Sipil, Fakultas Teknik, Universitas Kristen Maranatha Jl. Prof. drg. Suria
Rumus Minimal. Debit Q = V/t Q = Av
Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q
A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)
A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah
ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL
ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL Niken Silmi Surjandari 1), Bambang Setiawan 2), Ernha Nindyantika 3) 1,2 Staf Pengajar dan Anggota Laboratorium Mekanika Tanah Jurusan Teknik Sipil
F L U I D A TIM FISIKA
L U I D A TIM ISIKA 1 Materi Kuliah luida dan enomena luida Massa Jenis Tekanan Prinsip Pascal Prinsip Archimedes LUIDA luida merupakan sesuatu yang dapat mengalir sehingga sering disebut sebagai zat alir.
Ilmu Gaya : 1.Kesimbangan gaya 2.Superposisi gaya / resultante gaya
Ilmu Gaya : 1.Kesimbangan gaya 2.Superposisi gaya / resultante gaya Pada bagian kedua dari kuliah Statika kita sudah berkenalan dengan Gaya yang secara grafis digambarkan sebagai tanda panah. Definisi
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR
DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Fisika Kelas XI SCI Semester I Oleh: M. Kholid, M.Pd. 43 P a g e 6 DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR Kompetensi Inti : Memahami, menerapkan, dan
Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.
gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya
A.A. B. Dinariyana. Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan ITS Surabaya 2010
A.A. B. Dinariyana Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Kelautan ITS Surabaya 2010 Apabila kapal oleng oleh gayagaya dari luar kapal, seperti angin dan gelombang, titik pusat gaya apung
BAB IV KRITERIA DESAIN
BAB IV KRITERIA DESAIN 4.1 PARAMETER DESAIN Merupakan langkah yang harus dikerjakan setelah penentuan type penanggulangan adalah pembuatan desain. Desain penanggulangan mencangkup perencanaan, analisa
BAB VIII PERENCANAAN PONDASI SUMURAN
BAB VIII PERENCANAAN PONDASI SUMURAN 8.1 IDENTIFIKASI PROGRAM Program/software ini menggunakan satuan kn-meter dalam melakukan perencanaan pondasi sumuran. Pendekatan yang digunakan dalam menghitung daya
PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA. Oleh : LEONARDO TRI PUTRA SIRAIT NPM.
PERANCANGAN STRUKTUR ATAS GEDUNG TRANS NATIONAL CRIME CENTER MABES POLRI JAKARTA Laporan Tugas Akhir Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh
Gambar 6.1 Gaya-gaya yang Bekerja pada Tembok Penahan Tanah Pintu Pengambilan
BAB VI ANALISIS STABILITAS BENDUNG 6.1 Uraian Umum Perhitungan Stabilitas pada Perencanaan Modifikasi Bendung Kaligending ini hanya pada bangunan yang mengalami modifikasi atau perbaikan saja, yaitu pada
Soal SBMPTN Fisika - Kode Soal 121
SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap
SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan
SP FISDAS I Perihal : Matriks, pengulturan, dimensi, dan sebagainya. Bisa baca sendiri di tippler..!! KINEMATIKA : Gerak benda tanpa diketahui penyebabnya ( cabang dari ilmu mekanika ) DINAMIKA : Pengaruh
Hukum Coulomb. Penyelesaian: Kedua muatan dan gambar gaya yang bekerja seperti berikut. (a) F = k = = 2, N. (b) q = Ne N = = 3,
Hukum Coulomb Dua muatan titik masing-masing sebesar 0,05 μc dipisahkan pada jarak 10 cm. Tentukan (a) besarnya gaya yang dilakukan oleh satu muatan pada muatan lainnya dan (b) Jumlah satuan muatan dasar
Gaya Hidrostatika. Gaya hidrostatika pada permukaan bidang datar: (1) Bidang horizontal (2) Bidang vertikal (3) Bidang miring (dengan kemiringan θ)
Gaya Hidrostatika Bila sebuah permukaan bidang tenggelam dalam fluida (inkompresibel) maka gaya-gaya akan bekerja pada permukaan karena fluida tersebut. Gaya tersebut dinamakan Gaya Hidrostatika. Penentuan
TEST KEMAMPUAN DASAR FISIKA
TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Uraian Umum Abutmen merupakan bangunan yang berfungsi untuk mendukung bangunan atas dan juga sebagai penahan tanah. Adapun fungsi abutmen ini antara lain : Sebagai perletakan
BAB II TINJAUAN PUSTAKA. Menurut Supriyadi (1997) struktur pokok jembatan antara lain : Struktur jembatan atas merupakan bagian bagian jembatan yang
BAB II TINJAUAN PUSTAKA 2.1. Komponen Jembatan Menurut Supriyadi (1997) struktur pokok jembatan antara lain : 1. Struktur jembatan atas Struktur jembatan atas merupakan bagian bagian jembatan yang memindahkan
GAYA HIDROSTATIK DALAM FLUIDA BERLAPIS
GAYA HIDROSTATIK DALAM FLUIDA BERLAPIS Kemiringan distribusi tekanan linier berubah di perbatasan lapisan yang satu dan lapisan berikutnya. Rumus-rumus terdahulu berlaku hanya pada masing-masing lapisan
BAB V PONDASI DANGKAL
BAB V PONDASI DANGKAL Pendahuluan Pondasi adalah sesuatu yang menyongkong suatu bangunan seperti kolom atau dinding yang membawa beban bangunan tersebut. Pondasi Dangkal pondasi yang diletakan tepat dibawah
1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar.
1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar. Berdasar gambar diatas, diketahui: 1) percepatan benda nol 2) benda bergerak lurus beraturan 3) benda dalam keadaan diam 4) benda akan bergerak
Integral yang berhubungan dengan kepentingan fisika
Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai
Mata Kuliah: Statika Struktur Satuan Acara Pengajaran:
Mata Kuliah: Statika Struktur Satuan Acara engajaran: Minggu I II III IV V VI VII VIII IX X XI Materi Sistem aya meliputi Hk Newton, sifat, komposisi, komponen, resultan, keseimbangan gaya, Momen dan Torsi
DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1
Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen
BESARAN VEKTOR B A B B A B
Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?
Bab 3 (3.1) Universitas Gadjah Mada
Bab 3 Sifat Penampang Datar 3.1. Umum Didalam mekanika bahan, diperlukan operasi-operasi yang melihatkan sifatsifat geometrik penampang batang yang berupa permukaan datar. Sebagai contoh, untuk mengetahui
1.1. Mekanika benda tegar : Statika : mempelajari benda dalam keadaan diam. Dinamika : mempelajari benda dalam keadaan bergerak.
BAB I. PENDAHULUAN Mekanika : Ilmu yang mempelajari dan meramalkan kondisi benda diam atau bergerak akibat pengaruh gaya yang bereaksi pada benda tersebut. Dibedakan: 1. Mekanika benda tegar (mechanics
DINAMIKA PARTIKEL KEGIATAN BELAJAR 1. Hukum I Newton. A. Gaya Mempengaruhi Gerak Benda
KEGIATAN BELAJAR 1 Hukum I Newton A. Gaya Mempengaruhi Gerak Benda DINAMIKA PARTIKEL Mungkin Anda pernah mendorong mobil mainan yang diam, jika dorongan Anda lemah mungkin mobil mainan belum bergerak,
Hukum Archimedes. Tenggelam
Hukum Archimedes Hukum Archimedes menyatakan sebagai berikut, Sebuah benda yang tercelup sebagian atau seluruhnya ke dalam zat cair akan mengalami gaya ke atas yang besarnya sama dengan berat zat cair
MODUL ILMU STATIKA DAN TEGANGAN (MEKANIKA TEKNIK)
MODUL ILMU STATIKA DAN TEGANGAN (MEKANIKA TEKNIK) PROGRAM KEAHLIAN TEKNIK GAMBAR BANGUNAN SMK NEGERI 1 JAKARTA 1 KATA PENGANTAR Modul dengan kompetensi menerapkan ilmu statika dan tegangan ini merupakan
Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam.
Gaya Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik, gaya dapat diartikan sebagai muatan yang bekerja
Kinematika Gerak KINEMATIKA GERAK. Sumber:
Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba
BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor
BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan
ANALISA STABILITAS DINDING PENAHAN TANAH (RETAINING WALL) AKIBAT BEBAN DINAMIS DENGAN SIMULASI NUMERIK ABSTRAK
VOLUME 6 NO., OKTOBER 010 ANALISA STABILITAS DINDING PENAHAN TANAH (RETAINING WALL) AKIBAT BEBAN DINAMIS DENGAN SIMULASI NUMERIK Oscar Fithrah Nur 1, Abdul Hakam ABSTRAK Penggunaan simulasi numerik dalam
Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal.
Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal. Setelah membaca modul dan membuat latihan mahasiswa a memahami bahwa apabila menggunakan kecepatan rata-rata
BAB 5: DINAMIKA: HUKUM-HUKUM DASAR
BAB 5: DINAMIKA: HUKUM-HUKUM DASAR Dinamika mempelajari pengaruh lingkungan terhadap keadaan gerak suatu sistem. Pada dasarya persoalan dinamika dapat dirumuskan sebagai berikut: Bila sebuah sistem dengan
