BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1. Mesin Induksi Mesin induksi ialah mesin yang bekerja berdasarkan perbedaan kecepatan putar antara stator dan rotor. Apabila kecepatan putar stator sama dengan kecepatan putar rotor ( = ), maka tidak ada tegangan yang terinduksi baik ke stator maupun ke rotor. Apabila kecepatan putar stator lebih besar daripada kecepatan rotor ( > ), maka tegangan akan terinduksi ke rotor sehingga mesin induksi beroperasi sebagai motor listrik. Apabila kecepatan putar rotor lebih besar daripada kecepatan putar rotor ( > ), maka tegangan akan terinduksi ke stator sehingga mesin induksi akan beroperasi sebagai generator listrik. Perbedaan kecepatan putar antara stator dan rotor dinamakan slip (S). Slip dinyatakan dengan: S = ( - )/ (2.1) Konstruksi Mesin Induksi Mesin induksi terdiri dari tiga bagian utama yaitu stator, rotor dan celah udara. Stator adalah bagian yang diam dan rotor adalah bagian yang bergerak dalam bentuk putaran. Celah udara berada diantara stator dan rotor yang merupakan tempat terjadinya proses induksi elektromagnetik. Gambar 2.1 Konstruksi mesin induksi 5

2 Konstruksi dari mesin induksi diperlihatkan secara jelas pada Gambar 2.1 baik itu dalam konstruksi sebenarnya maupun konstruksi sederhananya. Berikut adalah penjelasan dari bagian-bagian konstruksi yang terdapat pada mesin induksi. Stator Gambar 2.2 Konstruksi stator mesin induksi Stator adalah bagian terluar dari mesin yang merupakan gulungan kawat yang disusun sedemikian rupa dan ditempatkan pada alur-alur inti besi. Bagian stator dipisahkan dengan bagian rotor oleh celah udara yang sempit (air gap). Bagian stator terdiri atas tumpukan laminasi inti yang memiliki alur yang menjadi tempat belitan dililitkan yang berbentuk silinder. Alur pada tumpukan laminasi inti diisolasi dengan kertas, tiap elemen laminasi inti dibentuk dari lembaran besi. Tiap lembaran besi tersebut memiliki beberapa alur dan beberapa lubang pengikat untuk menyatukan inti. Kawat belitan yang digunakan terbuat dari tembaga yang dilapisi dengan isolasi tipis. Kemudian tumpukan inti dan belitan stator diletakkan dalam cangkang silinder. Konstruksi stator terdiri dari beberapa bagian yaitu: 1. Rumah stator (rangka stator) 2. Inti stator 3. Alur, dimana alur ini merupakan tempat meletakkan belitan (kumparan stator). 4. Belitan (kumparan) stator. 6

3 yaitu: Rangka stator mesin induksi ini didesain dengan baik dengan empat tujuan 1. Menutupi inti dan kumparannya. 2. Melindungi bagian-bagian mesin yang bergerak dari kontak langsung dengan manusia dan dari goresan yang disebabkan oleh gangguan objek atau gangguan udara terbuka (cuaca luar). 3. Menyalurkan torsi ke bagian peralatan pendukung mesin dan oleh karena itu stator didesain untuk tahan terhadap gaya putar dan goncangan. 4. Berguna sebagai sarana rumahan ventilasi udara sehingga pendinginan lebih efektif. Rotor Rotor adalah bagian dari mesin induksi yang bergerak dalam bentuk putaran. Berdasarkan bentuk konstruksi rotornya, maka motor induksi dapat dibagi menjadi dua jenis yaitu: 1. Mesin induksi dengan rotor sangkar (squirrel cage). 2. Mesin induksi dengan rotor belitan (wound rotor). (a) (b) Gambar 2.3 Konstruksi rotor mesin induksi: (a) rotor belitan (b) rotor sangkar 7

4 Rotor sangkar atau rotor kurungan (Squirrel Cage) adalah konstruksi dari inti berlapis dengan konduktor dipasang paralel dengan poros dan mengelilingi permukaan inti. Konduktornya tidak terisolasi dari inti karena arus motor secara alamiah akan mengalir melalui tahanan yang paling kecil yaitu konduktor rotor. Pada setiap ujung rotor, konduktor rotor semuanya dihubung singkat dengan cincin ujung. Konduktor rotor dan cincin ujung serupa dengan sangkar tupai yang berputar sehingga dinamakan demikian. Pada rotor ini terdapat juga alur-alur yang bentuknya lebih dalam daripada alur-alur pada rotor sangkar. Dalam alur-alur terdapat kawat yang dibelitkan pada sebuah rotor dengan hubungan bintang ataupun hubungan segitiga seperti belitan kawat pada stator. Dengan adanya hubungan ini, maka belitan-belitan pada rotor mempunyai tiga ujung. Ujung belitan rotor dihubungkan dengan suatu tahanan awal melalui tiga buah cincin geser yang ada pada poros. Kemudian melalui cincin geser ini ujung-ujung kumparan jangkar dihubungkan dengan tahanan luar atau dihubung singkat. Konstruksi rotor mesin induksi terdiri atas beberapa bagian yaitu: 1. Inti rotor 2. Alur, Alur merupakan tempat meletakkan belitan (kumparan) rotor. 3. Belitan rotor. 4. Poros atau as. Celah udara Diantara stator dan rotor terdapat ruang yang disebut celah udara. Pada celah udara ini tempat berlangsungnya proses pengkonversian energi dalam bentuk induksi elektromagnetis. Celah udara sangat mempengaruhi efesiensi dari mesin induksi. Apabila celah udara besar, maka efisiensinya akan berkurang karena proses induksi listrik membutuhkan energi yang besar. Apabila celah udara sangat kecil, maka akan mengganggu perputaran rotor secara mekanis. Untuk itu celah udara antara stator dan rotor harus diatur sedemikian rupa agar mesin induksi dapat bekerja secara optimum 8

5 Terminal box Terminal box ialah tempat dihubungkannya mesin induksi dengan power suplay (kondisi sebagai motor) atau tempat dihubungkannya mesin induksi dengan beban (kondisi sebagai generator). Kipas rotor Pada saat mesin induksi beroperasi, mesin induksi menghasilkan rugi-rugi yaitu energi yang terbuang dalam bentuk panas. Semakin lama mesin induksi bekerja maka panas yang dihasilkan juga semakin besar. Hal itu akan mengganggu kinerja dari mesin induksi dan dapat menimbulkan kerusakan pada mesin induksi. Untuk itu pada rotor terdapat kipas yang dipasang seporos dengan rotor. Jadi pada saat mesin induksi beroperasi dalam bentuk putaran maka kipaspun akan berputar sehingga kipas dapat mengurangi panas yang ditimbulkan dari mesin induksi Karakteristik Mesin Induksi Mesin induksi memiliki karakteristik sebagai berikut Gambar 2.4 Grafik kurva karakteristik mesin induksi 9

6 Dari Gambar 2.4 dapat dijelaskan karakteristik dari mesin induksi. Mesin induksi beroperasi sebagai motor atau generator dapat dilihat dari kecepatan rotornya terhadap kecepatan sinkronnya. Kecepatan sinkron ialah kecepatan medan putar yang terjadi pada statornya. Apabila kecepatan mesin induksi lebih kecil dari kecepatan sinkronnya maka mesin induksi akan beroperasi sebagai motor listrik. Pada keadaan ini maka mesin induksi akan mempunyai nilai torsi yang positif sebanding dengan kecepatan motor induksi. Motor induksi dapat berputar sampai kecepatan maksimum mendekati kecepatan sinkronnya dengan nilai torsi yang dihasilkan semakin besar pula. Namun apabila pada kecepatan maksimum mendapatkan bantuan putaran eksternal berupa prime mover sehingga kecepatannya melebihi kecepatan sinkronnya, pada saat itu generator induksi akan beroperasi sebagai generator. Semakin besar torsi yang yang diberikan semakin besar pula daya yang dihasilkan. Torsi maksimum yang dapat diberikan pada generator induksi dinamakan torka pushover. Apabila torsi yang diberikan lebih besar dari torka pushover maka generator induksi akan mengalami overspeed Generator Induksi Generator induksi adalah generator yang mamiliki prinsip kerja hampir sama dengan generator sinkron, hanya saja terdapat perbedaan pada kecepatan putar antara rotor dan stator, dimana rotor yang digerakkan dalam bentuk putaran oleh penggerak mula berputar lebih cepat daripada kecepatan medan putar pada stator ( > ). Gambar 2.5 Prinsip kerja generator induksi 10

7 Prinsip kerja generator induksi dapat dilihat pada Gambar 2.5. Sumber tegangan 3 fasa dipasang pada kumparan stator sehingga menimbulkan arus 3 fasa yang akan menghasilkan medan putar. Penggerak mula dipakai untuk memutar rotor searah dengan medan putar (arah medan putar). Kecepatan rotor (nr) harus lebih besar dari kecepatan medan putar stator (ns) sehingga menghasilkan slip negatif untuk dapat membangkitkan tegangan, maka mesin induksi berfungsi sebagai generator dan energi listrik akan dikembalikan pada sistem jala-jala 2.3. Jenis Generator Induksi Generator induksi tidak dapat membangkitkan tegangan jika tidak mendapatkan suplai daya reaktif untuk eksitasinya. Eksitasi dibutuhkan untuk menghasilkan medan magnet pada kumparan rotor yang nantinya akan menginduksikan tegangan pada stator untuk menghasilkan energi listrik. Selain itu eksitasi juga dibutuhkan untuk mengkompensasi daya reaktif yang diperlukan generator untuk membangkitkan tegangan listrik. Generator induksi tidak dapat memproduksi daya reaktifnya sendiri, untuk itu generator induksi akan menyerap daya reaktif dari sistem jaringan listrik. Namun, mesin induksi biasanya dioperasikan di daerah terpencil dimana di daerah seperti itu tidak terdapat jaringan listrik. Oleh karena itu, generator induksi harus dapat memenuhi daya reaktifnya sendiri untuk keperluan eksitasinya. Berdasarkan eksitasinya tersebut generator induksi dibagi menjadi dua jenis yaitu: Generator induksi masukan ganda (Double Fed Induction Generator (DFIG)) Eksitasi pada generator induksi masukan ganda didapatkan dari jaringan sistem yang telah terpasang. Generator jenis ini menyerap daya reaktif dari jaringan listrik untuk memenuhi medan magnet yang dibutuhkan untuk membangkitkan tegangan. Pada terminal generator ini dihubungkan dengan inverter yang untuk selanjutnya akan dihubungkan langsung pada kumparan rotor dari generator. Skema dari generator induksi masukan ganda ditunjukkan pada Gambar

8 Gambar 2.6 Generator induksi masukan ganda Pada Gambar 2.6 ini menunjukkan aplikasi penggunaan generator induksi masukan ganda yang diputar oleh penggerak mula berupa turbin angin. Pada generator jenis ini, digunakan inverter untuk proses eksitasi. Pada inverter ini digunakan dua konverter yaitu konverter AC-DC dan konverter DC-AC. Kedua konverter ini saling terhubung dan dihubungkan dengan sumber arus searah yang didapatkan dari kapasitor. konverter DC-AC (konverter pada sisi jaringan) dihubungkan pada terminal generator yang juga terhubung pada jaringan sistem. konverter ini bekerja pada frekuensi sistem yang berguna untuk menyerap daya reaktif yang dibutuhkan oleh generator. konverter AC-DC (Konverter pada sisi rotor) dihubungkan langsung pada kumparan rotor untuk prosses eksitasinya. Konverter ini berfungsi untuk menyalurkan daya reaktif pada frekuensi yang sesuai dengan frekuensi putaran dari rotor. Proses eksitasi seperti ini, daya reaktid yang dibutuhkan dapat diatur sesuai dengan daya yang akan dibangkitkan. Keuntungan menggunakan generator jenis ini ialah tegangan dan frekuensinya akan tetap besarnya walaupun kecepatan putar penggerak mulanya berubah-ubah. Namun pada generator jenis ini hanya dapat digunakan pada mesin induksi dengan rotor belitan karena eksitasinya dihubungkan langsung pada kumparan rotornya. Hal itu sangat mustahil bila menggunakan mesin induksi dengan rotor sangkar tupai. Sehingga mesin induksi jenis yang lain tidak dapat digunakan untuk generator induksi jenis ini. Generator jenis ini juga harus terhubung dengan sistem dan membutuhkan inverter untuk dapat memenuhi kebutuhan eksitasinya. 12

9 Generator induksi berpenguatan sendiri (Self Excitation Induction Generator (SEIG)) Pada generator induksi berpenguatan sendiri, proses eksitasinya didapatkan dari kapasitor bank yang dihubungkan paralel pada terminal keluarannnya. Skema dari generator induksi berpenguatan sendiri dapat dilihat pada Gambar 2.7. Gambar 2.7 Generator induksi berpenguatan sendiri Dari gambar 2.7 diperlihatkan bahwa kapasitor tiga fasa yang terhubung delta dihubungkan pada terminal keluaran dari generator induksi. Kapasitor ini akan menyalurkan daya reaktif pada generator untuk proses eksitasi. Proses eksitasi yang terhubung pada terminalnya, mesin induksi rotor sangkar dan mesin induksi rotor belitan dapat digunakan untuk generator induksi berpenguatan sendiri. Generator induksi jenis ini dapat beroperasi sendiri tanpa jaringan listrik dan dapat juga beroperasi bersama sistem jaringan listri. Hal ini membuat generator jenis ini lebih fleksibel untuk digunakan. Keuntungan lain dari generator ini ialah harga yang murah, perawatannya yang mudah, desainnya yang sederhana dan proses instalasinya yang tidak rumit. Namun generator jenis ini memiliki kekurangan berupa tegangan keluaran yang tidak stabil pada putaran yang tidak tetap dan pada beban yang berubah-ubah khususnya pada beban induktif. Untuk itu diperlukan adanya pengaturan tegangan untuk menjaga stabilitas dari tegangan keluaran dari generator jenis ini Kelebihan dan Kekurangan Generator Induksi Kelebihan dari generator induksi ialah sebagai berikut: 13

10 a. Ketersediaan Motor induksi dapat ditemukan dengan mudah di pasaran dibandingkan dengan generator sinkron. Motor induksi inilah digunakan sebagai generator induksi dan dalam beberapa kasus, mesin induksi bekas dapat digunakan kembali untuk mengurangi biaya. b. Harga Generator induksi yang dilengkapi dengan kapasitor eksitasinya jauh lebih murah dibandingkan dengan generator sinkron. Khususnya untuk rating daya yang kecil. Contohnya 10 kw generator induksi, harganya hanya setengah dari generator sinkron c. Ketahanan Mesin induksi sangat kuat dan konstruksinya yang simpe. Tidak memerlukan dioda atau slip ring pada rotornya. Kokoh sehingga dapat menahan peristiwa overspeed. Mesin induksi sendiri dapat beroperasi secara kontinu untuk keadaan sesulit apapun. Kekurangan dari generator induksi ialah sebagai berikut: a. Rating tegangan Mesin induksi tidak selalu tersedia dengan tegangan yang diinginkan untuk digunakan sebagai generator. Modifikasi pada koneksi belitannya atau menggulung ulang belitannya diperlukan b. Diperlukan perhitungan Generator dapat langsung digunakan, sementara generator induksi memerlukan kapasitor eksitasi agar dapat beroperasi dan hal itu membutuhkan perhitungan terlebih dahulu untuk dapat menemukan nilai kapasitansi kapasitor eksitasi yang tepat 2.5. Generator Induksi Berpenguatan Sendiri Generator induksi berpenguatan sendiri menggunakan kapasitor bank sebagai penyuplai daya reaktif yang dibutuhkan generator untuk membangkitkan tegangan. Generator induksi berpenguatan sendiri mempunyai cara kerja yang 14

11 hampir sama seperti cara kerja mesin induksi yang beroperasi pada daerah saturasi hanya saja terdapat kapasitor pada terminal Prinsip Kerja Prinsip kerja generator induksi berpenguatan sendiri dapat dijelaskan dengan melihat Gambar 2.7. Seperti yang terlihat pada gambar tersebut, generator induksi menggunakan kapasitor bank menyuplai daya reaktif yang dibutuhkan generator. Kapasitansi dari kapasitor harus sesuai dengan daya reaktif yang dibutuhkan. Besarnya daya reaktif yang dibutuhkan generator dapat ditinjau dari besar arus magnetisasi ( ) untuk proses eksitasi. Arus magnetisasi ( ) yang dibutuhkan dapat dicari dengan mengoperasi mesin induksi sebagai motor induksi pada keadaan tanpa beban dan mengukur tegangan statornya sebagai fungsi tegangan terminal generator. Penentuan nilai kapasitansi minimum yang dibutuhkan generator akan dijelaskan pada bab berikutnya. Kurva magnetisasi mesin induksi ditunjukkan pada gambar 2.8. Kurva magnetisasinya ini menrupakan plot tegangan terminal generator induksi sebagai fungsi arus magnetisasi. Untuk mencapai level tegangan yang diinginkan, maka kapasitor sebagai penyuplai daya reaktifnya harus dapat menyuplai arus magnetisasi yang dibutuhkan pada level tegangan tersebut. Gambar 2.8 Kurva magnetisasi mesin induksi 15

12 Gambar 2.9 Kurva tegangan vs arus pada kapasitor bank Arus reaktif yang dihasilkan oleh sebuah kapasitor berbanding lurus dengan tegangan yang diberikan padanya, Untuk itu semua kemungkinan kombinasi tegangan dan arus yang melalui kapasitor berupa garis lurus. Jadi kurva tegangan vs arus dari sebuah kapasitor dapat digambarkan seperti pada Gambar 2.9. Semakin besar kapasitansinya, maka semakin besar pula arus kapasitifnya ( ) pada tegangan yang sama. Arus ini mendahului tegangan fasa (leading) sebesar 90. Gambar 2.10 Kurva tegangan terminal generator induksi berpenguatan sendiri 16

13 Jika sekelompok kapasitor tiga fasa dihubungkan kepada terminal generator induksi, tegangan tanpa beban generator induksi adalah perpotongan kurva magnetisasi generator dengan garis beban kapasitor. Jadi, tegangan keluaran dari generator induksi dengan penguatan sendiri berupa kapasitor bank tiga fasa untuk tiga kelompok kapasitor dengan besar yang berbeda-beda diperlihatkan pada Gambar Tegangan terminal tanpa beban generator induksi berpenguatan sendiri dapat diperoleh dengan memplot bersama-sama kurva magnetisasi sebagai fungsi tegangan terminal generator (Gambar 2.8) dan kurva tegangan-arus kapasitor (Gambar 2.9). Perpotongan kedua kurva adalah titik dimana daya reaktif yang dibutuhkan oleh genarator induksi. Dan titik ini juga merupakan besar tegangan yang dibangkitkan oleh generator dalam keadaan tanpa beban. Gambar 2.11 Proses pembangkitan tegangan Proses pembangkitan tegangan dapat dilihat pada Gambar Ketika generator induksi pertama kali diputar, magnet sisa pada kumparan medan yang ada pada rotor akan membentuk ggl induksi awal ( ) pada belitan stator. Timbulnya ini memicu kapasitor untuk mengalirkan arus reaktif kapasitif sebesar. Arus ini merupakan arus magnetisasi yang menghasilkan fluksi celah udara. Fluksi ini kemudian menambah jumlah fluksi yang sudah ada, sehingga kemudian menghasilkan ggl induksi di stator yang lebih besar lagi yaitu sebesar. Tegangan induksi ini akan memicu kembali kapasitor mengalirkan 17

14 arus kapasitif yang semakin besar pula yaitu sebesar, yang kemudian akan menambah jumlah fluksi celah udara, sehingga dihasilkan ggl induksi yang lebih besar lagi yaitu. ini kemudian menghasilkan arus, dan kemudian membentuk ggl induksi. Demikian proses ini berjalan terus sampai akhirnya mencapai titik kesetimbangan E =. Namun proses itu dapat terjadi jika pada kumparan medan generator induksi terdapat magnet sisa. Jika tidak terdapat magnet sisa maka generator induksi harus dioperasikan sebagai motor terlebih dahulu. Ketika mesin induksi dioperasikan sebagai motor, maka mesin induksi akan menginduksikan gaya gerak listrik pada rotor. Gaya gerak listrik yang terinduksi pada rotor akan mengalirkan arus pada kumparan medan sehingga terbentuk medan magnet dan akhirnya motor berputar. Prinsip kerja motor induksi tidak dijelaskan secara detail disini. Ketika motor telah beroperasi, maka kecepatan putar rotor akan lebih kecil dari kecepatan sinkronnya. Pada saat kecepatan motor sudah tinggi maka penggerak mula dinyalakan. Ketika penggerak mula dinyalakan, kecepatan penggerak mula harus lebuh besar dari kecepatan sinkronnya. Pada saat itu pula suplai daya yang diberikan untuk mengoperasikan motor dimatikan, dan pada terminal langsung dihubungkan pada beban. Putaran penggerak mula harus searah dengan arah putaran motor induksi. Ketika suplai daya dimatikan, maka kapasitor akan bekerja untuk menyalurkan daya reaktif dan menjaga kecepatan sinkronnya. Suplai daya reaktif yang disalurkan harus tepat untuk dapat membangkitkan tegangan yang ditentukan Rangkaian Ekivalen Rangkaian ekivalen generator induksi berpenguatan sendiri hampir sama dengan rangkaian ekivalen generator tanpa penguatan, hanya saja ada penambahan kapasitor pada sisi statornya. Rangkaian ekivalen generator induksi berpenguatan sendiri ditunjukkan pada Gambar

15 Gambar 2.12 Rangkaian ekivalen generator induksi berpenguatan sendiri Dimana: = Resistansi stator = Reaktansi stator = Resistansi rotor = Reaktansi rotor = Reaktansi magnetisasi = Reaktansi kapasitor eksitasi = Slip = Arus stator = Arus beban = Arus magnetisasi V = Tegangan keluaran Dari rangkaian ekivalen generator induksi berpenguatan sendiri (Gambar 2.11), hubungan antara tegangan keluaran dengan arus stator diperlihatkan pada persamaan berikut V = - ( + j ) (2.2) 19

16 = ( + j ) (2.3) = + (2.4) Dimana: V = Tegangan keluaran generator (Volt) = ggl induksi yang dibangkitkan pada sisi stator (Volt) = ggl yang dibangkitkan pada sisi rotor (Volt) = Arus stator (Ampere) 2.6. Kapasitor Eksitasi Dalam proses eksitasinya generator induksi membutuhkan daya reaktif untuk membangkitkan tegangannya. Jika generator induksi terhubung dengan sistem tenaga listrik maka daya reaktif yang dibutuhkan akan disuplai langsung oleh sistem. Tetapi jika generator induksi tidak terhubung dengan sistem atau bekerja sendiri maka generator induksi membutuhkan sumber daya reaktif untuk menyuplai kebutuhan daya reaktifnya. Untuk itu dipasang kapasitor sebagai penyuplai daya reaktifnya yang dipasang pada terminal generator Penggunaan Kapasitor Eksitasi Kapasitor eksitasi dipasang untuk dapat menyuplai daya reaktif yang diperlukan generator induksi. Kapasitor ini dipasang paralel pada terminal keluaran generator induksi. Eksitasi dibutuhkan untuk dapat membangkitkan tegangan listrik. Dengan adanya eksitasi yang mencukupi, juga akan menambah efesiensi dan faktor daya, regulasi tegangan yang kecil dan akan meningkatkan perfomansi dari generator induksi Kapasitansi Minimum Besarnya kapasitansi dari kapasitor eksitasi sangat berpengaruh pada proses pembangkitan tegangan pada generator induksi. Untuk dapat membangkitkan tegangan, nilai dari kapasitor harus lebih besar dari nilai kapasitansi minumum dari generator induksi untuk proses eksitasinya. Apabila 20

17 kapasior yang dipasang lebih kecil dari kapasitansi minimumnya maka tegangan tidak dapat dibangkitkan. Cara menentukan kapasitansi minimum dari generator induksi ialah dengan menggunakan karakteristik magnetisasi dari mesin induksi saat beroperasi sebagai motor induksi. Karakteristik magnetisasi ini didapat dengan mengoperasikan motor induksi pada kondisi beban nol. Pada kondisi beban nol, arus yang mengalir pada kapasitor ( ) akan sama dengan arus magnetisasi ( ). Tegangan (V) yang dihasilkan akan meningkat secara linier hingga titik saturasi dari magnet inti tercapai. Sehingga dalam kondisi stabil = (2.5) = (2.6) = (2.7) Dalam kondisi beban nol motor induksi, dapat dihitung besar nilai reaktansi magnetisasi ( ) dengan memberikan catu tegangan (V) kemudian mengukur besar arus magnetisasinya = (2.8) = = (2.9) Subtitusikan persamaan 2.8 ke dalam persamaan 2.9. = = I = V C = (2.10) Persamaan 2.10 ialah nilai masing-masing kapasitansi apabila kapasitor eksitasi dihubungkan secara bintang atau star. 21

18 = (2.11) Pada sistem tiga fasa, kapasitor eksitasi dapat dihubungkan secara bintang atau secara delta. Hubungan bintang tidak dianjurkan untuk dihubungkan dengan generator karena hubungan bintang memiliki titik netral yang akan meningkatkan rugi-rugi. Gambar 2.13 Hubungan bintang dan delta kapasitor eksitasi Hubungan antara hubungan bintang dan delta adalah sebagai berikut: = (2.12) = / (2.13) = 3 (2.14) Besarnya kapasitansi dapat dirumuskan sebagai berikut C = (2.15) = (2.16) Subtitusikan persamaan 2.16 pada persamaan 2.14 = 3 22

19 = 3 ( = (2.17) Berdasarkan persamaan-persamaan diatas, kapasitor eksitasi akan lebih baik jika menggunakan hubungan delta. Hal itu dapat dilihat pada persamaan 2.17, jika dihubungkan delta besar kapasitansinya sebesar sepertiga dari besar kapasitansi jika dihubungkan bintang. Dan berdasarkan persamaan 2.12, kapasitor eksitasi apabila dihubungkan dengan hubungan delta maka kapasitor eksitasi dapat beroperasi pada tegangan yang lebih besar Metode Pengaturan Tegangan Generator induksi berpenguatan sendiri memiliki kelemahan berupa tegangan keluarannya yang tidak stabil. Pada generator induksi berpenguatan sendiri tegangan keluarannya dipengaruhi oleh kecepatan penggerak mula memutar generator, beban dan kapasitansi dari kapasitor yang dipasang pada terminalnya. Pada kondisi generator induksi beroperasi pada kecepatan putar dari penggerak mula yang tidak tetap, menyebabkan tegangan keluaran yang dibangkitkan juga tidak tetap. Begitu juga dengan perubahan beban yang bervariasi menyebabkan naik turunnya tegangan, apalagi jika dihubungkan dengan beban induktif, akan mengalami penurunan tegangan yang drastis. Hal itu akan mengurangi kualitas daya yang dihasilkan generator induksi. Untuk itu generator induksi harus dibantu dengan pengaturan daya reaktif untuk mengatur tegangan keluarannya. Penggunaan kapasitor bank saja tidak cukup untuk dapat mengatur tegangan keluarannya. Karena besar kapasitansi yang tetap maka penyaluran daya reaktif dari kapasitor bank juga tetap. Kapasitansi dari kapasitor bank hanya menyalurkan daya reaktif untuk dapat membangkitkan tegangan generator pada saat keadaan tanpa beban. Apabila terjadi perubahan kecepatan putar atau perubahan beban, maka tegangan keluarannya juga ikut berubah. Kekurangan yang terdapat pada kapasitor bank, kemudian dikembangkan beberapa metoode pengaturan tegangan yang dapat mengatur besarnya daya 23

20 reaktif yang dibutuhkan baik pada kondisi normal, perubahan kecepatan putar prenggerak mula, dan perubahan beban. Berikut beberapa metode untuk mengatur tegangan generator induksi Pengaturan tap transformator Tap transformator menggunakan prinsip mengubah rasio dari transformator. Rasio dapat diubah dengan cara mengubah jumlah lilitan pada kumparan transformator. Dengan cara itu tegangan pada sisi sekunder dapat diatur sedemikian rupa sehingga tegangan keluarannya sesuai dengaan tegangan yang diinginkan. Kondensor sinkron Kondensor sinkron ialah motor sinkron yang beroperasi pada keadaan tanpa beban. Pada keadan ini motor sinkron dapat menimbulkan daya reaktif dan bekerja seperti kapasitor. Daya reaktif ini yang digunakan sebagai eksitasi sekaligus sebagai pengaturan tegangannya, karena daya reaktif yang dihasilkan besarnya dapat diatur sesuai dengan kebutuhan. Static var compensator (SVC) Static var compensator (SVC) terdiri dari thyristor, reaktor, dan kapasitor. Kapasitor nilainya tetap dan dapat digunakan sebagai daya reaktif untuk membangkitkan tegangan pada kondisi tanpa beban. Pada saat terjadi perubahan tegangan, maka reaktor yang akan menyalurkan daya reaktif yang besarnya diatur dengan thyristor. Thyristor diatur sudut penyalaannya sedemikian rupa sehingga dapat menyalurkan daya reaktif yang sesuai besarnya sehingga dapat mengatur tegangan yang diinginkan. Konverter AC-DC-AC Konverter ini terdiri dari penyearah AC-DC yang berfungsi sebagai penyearah arus bolak-balik menjadi arus searah dan kemudian diubah kembali menjadi arus bolak-balik menggunakan inverter DC-AC. Pada saat berada pada tegangan DC ini, tegangan diatur dengan menggunakan pengaturan tegangan 24

21 elekronika daya sehingga pada saat dikonversikan kembali ke tegangan AC, tegangan keluarannya sesuai dengan tegangan yang diinginkan. Static synchronous compensator (STATCOM) Static synchronous compensator (STATCOM) adalah alat yang digunakan untuk mengkompensasi daya reaktif yang dihubungkan paralel dengan sistem. STATCOM dapat membangkitkan dan atau menyerap daya reaktif dan keluarannya dapat bervariasi untuk mengontrol spesifikasi parameter dari sistem daya listrik. Apabila tegangan lebih rendah daripada tegangan nominal sistem maka STATCOM akan membangkitkan daya reaktif, pada keadaan ini maka STATCOM bersifat kapasitif. Apabila tegangan lebih tinggi daripada tegangan nominal sistem maka STATCOM akan menyerap daya reaktif, pada keadaan ini maka STATCOM bersifat induktif. Dari beberapa metode pengaturan tegangan generator induksi berpenguatan sendiri yang telah dijelaskan, penulis menggunakan metode pengaturan tegangan dengan menggunakan Static synchronous compensator (STATCOM). STATCOM digunakan karena STATCOM merupakan metode terbaru dari beberapa metode yang telah dijelaskan diatas. Metode ini dapat menjaga tegangan tetap stabil, baik itu pada saat tegangan turun dan tegangan naik melebihi tegangan nominal. Metode pengaturan ini yang akan diaplikasikan pada simulasi generator induksi berpenguatan sendiri Static Synchronous Compensator (STATCOM) Static synchronous compensator (STATCOM) merupakan salah satu shunt device dari Flexibel AC Transmission System (FACTS) yang terdiri dari peralatan elektronika daya yang dapat mengatur aliran daya dan meningkat stabilitas transient sistem daya. STATCOM dapat mengkompensasi daya reaktif dengan cara menyuplai dan atau menyerap daya reaktif untuk mengontrol tegangan agar tetap stabil. Apabila tegangan lebih rendah dari tegangan nominal sistem, maka STATCOM akan menyuplai daya reaktif. Apabila tegangan lebih tinggi daripada tegangan nominal sistem maka STATCOM aka menyerap daya reaktif. 25

22 STATCOM terdiri dari beberapa bagian yaitu Voltage Source Converter (VSC), kapsitor DC, dan sistem kontrol. VSC ialah peralatan konverter elektronika daya yang berguna untuk mengkonversi tegangan masukan DC menjadi tegangan keluaran AC. Kapasitor DC berguna sebagai sumber tegangan untuk sistem kontrol STATCOM dan sebagai penyimpan energi (pada saat menyerap daya reaktif) dan sumber daya (pada saat menyuplai daya reaktif). Sistem kontrol berguna untuk mendeteksi arus dan tegangan pada sistem dan akan mengirimkan sinyal kepada VSC untuk menyuplai atau menyerap daya reaktif apabila terjadi perubahan tegangan Prinsip Kerja Gambar 2.14 Struktur dasar sistem STATCOM Prinsip kerja dari STATCOM dapat dilihat pada Gambar Pengontrolan STATCOM diatur oleh sistem kontrol, dimana pada sistem kontrol menerima masukan dari tegangan dan arus sistem, dan tegangan dan arus STATCOM. pada sistem kontrol diatur besar tegangan normal dari sistem dan akan mengatur tegangan keluarannya sefasa dengan tegangan sistem dan. Pada kondisi normal, tegangan pada VSC dan sistem sama. Apabila terjadi perubahan tegangan yang terjadi pada sistem, maka sistem kontrol akan mengirimkan sinyal pada VSC untuk mengatur besarnya daya reaktif yang akan disuplai atau diserap. Pada saat tegangan sistem lebih besar dari tegangan VSC maka STATCOM akan 26

23 menyerap daya reaktif dari sistem. Pada saat tegangan sistem lebih kecil dari tegangan VSC maka STATCOM akan menyuplai daya reaktif ke sistem Karakteristrik V-I Gambar 2.15 Karakteristik V-I STATCOM Pada keadaan steady state karakteristrik kontrol dari STATCOM ditunjukkan pada Gambar Rugi-rugi dari STATCOM diabaikan dan arus yang mengalir pada STATCOM ( ) dianggap arus reaktif murni. Arus negatif menandakan STATCOM sedang menyalurkan daya reaktif dan beroperasi pada keadaan kapasitif. Sedangkan arus positif menandakan STATCOM menyerap daya reaktif dan beroperasi pada keadaan induktif. Pada keadaan normal, tegangan STATCOM ( ) dan tegangan referensi ( ) besarnya sama dan sefasa. Apabila terjadi perubahan tegangan referensi, maka akan terjadi pertukaran daya reaktif. Batas maksimum arus kapasitif dan induktif adalah simetris (, ). Slope BC pada karakteristik V-I untuk mencegah STATCOM mencapai batas terlalu sering dan untuk memungkinkan operasi palalel pada dua atau lebih unit Voltage Source Converter (VSC) Voltage Source Converter (VSC) adalah bangunan utama dari STATCOM dan peralatan FACTS lainnya. VSC adalah komponen elektronika daya yang dapat diatur proses penyaklarannya sehingga tujuan yang diinginkan. Tujuan utama VSC yaitu membangkitkan tegangan sinusoidal AC dari tegangan DC, oleh karena itu VSC disebut konverter DC-AC atau inverter. VSC harus dapat 27

24 membangkitkan tegangan AC dengan magnitudo dan frekuensi yang dinginkan. Variasi magnitudo dan frekuensi dapat diatur dan dikontrol sesuai dengan yang diinginkan. Terdapat dua teknologi pada VSC yaitu: VSC berdasarkan penggunaan square-wave inverters GTO dan hubungan transformator spesial. Pada umumnya three-level inverter empat tingkat digunakan untuk membangun suatu bentuk gelombang tegangan 48-step. Interkoneksi spesial transformator digunakan untuk menetralkan harmonik yang terdapat didalam gelombang persegi yang dibangkitkan oleh individu inverter. Pada VSC jenis ini, komponen fundamental tegangan adalah proporsional terhadap. Oleh karena itu tegangan harus bervariasi untuk mengontrol daya reaktif. VSC berdasarkan penggunaan PWM inverte IGTB. Inverter jenis ini menggunakan teknik Pulse Width Modulation (PWM) untuk menghasilkan bentuk gelombang sinusoidal dari sebuah sumber tegangan DC. Tegangan divariasikan dengan mengubah indeks modulasi dari PWM modulator Sistem Kontrol STATCOM Sistem kontrol digunakan untuk memberikan sinyal pada VSC yang akan mengatur besarnya daya reaktif yang akan disalurkan atau diserap oleh STATCOM. Sistem kontrol juga akan menjaga tegangan VSC agar sefasa dengan tegangan sistem. Sistem kontrol pada STATCOM ditunjukkan pada Gambar Gambar 2.16 Diagram garis STATCOM dan diagram blok sistem kontrolnya 28

25 Sistem kontrol pada STATCOM terdiri atas : 1. Sistem pengukuran Sistem pengukuran terdiri dari pengukuran tegangan AC, pengukuran tegangan DC, pengukuran arus. Sistem pengukuran berguna untuk mengukur komponen d (direct axis) dan komponen q (quadrature axis) dari arus dan tegangan urutan positif untuk yang akan dikontrol sebagaimana tegangan DC 2. Phase Locked Loop (PLL). PLL digunakan untuk menyinkronkan komponen urutan positif dari tegangan tiga fasa sistem yang menggunakan sistem abc agar dapat beroperasi pada sistem kontrol yang menggunakan sistem dq0. Keluaran dari PLL ( = ) digunakan untuk perhitungan komponen direct axis dan komponen quadrature axis yang dari arus dan tegangan AC tiga fasa (pada gambar dilambangkan sebagai,, dan ). 3. Regulator tegangan AC. Keluaran dari regulator tegangan AC ialah tegangan terukur dan tegangan referensi. yang didapat dari perhitungan ini kemudian akan digunakan oleh regulator arus ( adalah arus dalam qudrature dengan tegangan yang mengontrol aliran daya reaktif) 4. Regulator tegangan DC. Keluaran dari regulator tegangan DC ialah tegangan terukur dan tegangan referensi. yang didapat dari perhitungan ini kemudian akan digunakan oleh regulator arus ( adalah arus yang sefasa dengan tegangan untuk mengatur aliran daya aktif) 5. Regulator arus. Regulator arus mengontrol magnitude dan fase dari tegangan yang akan dibangkitkan oleh PWM (, ) dari arus referensi yang dihasilkan oleh regulator tegangan AC dan regulator tegangan DC. Regulator dinilai oleh regulator tipe feed forward yang memprediksi tegangan keluaran ( dan ) dari pengukuran. 29

26 6. Pulse Width Modulation (PWM) modulator PWM berguna untuk menghasilkan magnitude dan fase tegangan dari komponen tegangan dan dalam bentuk pulse yang akan dikirimkan ke VSC untuk proses pensaklaran pada VSC sehingga dibangkitkan tegangan AC tiga fasa. 30

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pembangkit Listrik Tenaga Angin Pembangkit Listrik Tenaga Angin memberikan banyak keuntungan seperti bersahabat dengan lingkungan (tidak menghasilkan emisi gas), tersedia dalam

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

ANALISIS DAN SIMULASI PENGATURAN TEGANGAN GENERATOR INDUKSI BERPENGUATAN SENDIRI MENGGUNAKAN STATIC SYNCHRONOUS COMPENSATOR (STATCOM)

ANALISIS DAN SIMULASI PENGATURAN TEGANGAN GENERATOR INDUKSI BERPENGUATAN SENDIRI MENGGUNAKAN STATIC SYNCHRONOUS COMPENSATOR (STATCOM) ANALISIS DAN SIMULASI PENGATURAN TEGANGAN GENERATOR INDUKSI BERPENGUATAN SENDIRI MENGGUNAKAN STATIC SYNCHRONOUS COMPENSATOR (STATCOM) Suhendri (1), Raja Harahap (2) Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Telaah Penelitian Bansal (2005) mengungkapkan bahwa motor induksi 3 fase dapat diioperasikan sebagai generator induksi. Hal ini ditunjukkan dari diagram lingkaran mesin pada

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

Gambar 1. Karakteristik torka-kecepatan pada motor induksi, memperlihatkan wilayah operasi generator. Perhatikan torka pushover.

Gambar 1. Karakteristik torka-kecepatan pada motor induksi, memperlihatkan wilayah operasi generator. Perhatikan torka pushover. GENERATOR INDUKSI Generator induksi merupakan salah satu jenis generator AC yang menerapkan prinsip motor induksi untuk menghasilkan daya. Generator induksi dioperasikan dengan menggerakkan rotornya secara

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

I. Maksud dan tujuan praktikum pengereman motor induksi

I. Maksud dan tujuan praktikum pengereman motor induksi I. Maksud dan tujuan praktikum pengereman motor induksi Mengetahui macam-macam pengereman pada motor induksi. Menetahui karakteristik pengereman pada motor induksi. II. Alat dan bahan yang digunakan Autotrafo

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci

DAFTAR ISI PROSEDUR PERCOBAAN PERCOBAAN PENDAHULUAN PERCOBAAN Kontrol Motor Induksi dengan metode Vf...

DAFTAR ISI PROSEDUR PERCOBAAN PERCOBAAN PENDAHULUAN PERCOBAAN Kontrol Motor Induksi dengan metode Vf... DAFTAR ISI DAFTAR ISI... 1 PERCOBAAN 1... 2 1.Squirrel Cage Induction Motor (Motor Induksi dengan rotor sangkar)... 2 2.Double Fed Induction Generator (DFIG)... 6 PROSEDUR PERCOBAAN... 10 PERCOBAAN 2...

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed BAB II TINJAUAN PUSTAKA 2.1 Kajian Pustaka Dalam tugas akhir ini, penulis memaparkan empat penelitian terdahulu yang relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed Drive

Lebih terperinci

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik.

Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Generator listrik Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanik, biasanya dengan menggunakan induksi elektromagnetik. Proses ini dikenal sebagai pembangkit

Lebih terperinci

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Motor induksi merupakan motor arus bolak-balik yang paling luas diaplikasikan dalam dunia industri dan juga dalam rumah tangga. Motor ini mempunyai banyak

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

ANALISIS PERBANDINGAN TORSI START

ANALISIS PERBANDINGAN TORSI START ANALISIS PERBANDINGAN TORSI START DAN ARUS START,DENGAN MENGGUNAKAN METODE PENGASUTAN AUTOTRAFO, STAR DELTA DAN DOL (DIRECT ON LINE) PADA MOTOR INDUKSI 3 FASA (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

KONSTRUKSI GENERATOR DC

KONSTRUKSI GENERATOR DC KONSTRUKSI GENERATOR DC Disusun oleh : HENDRIL SATRIYAN PURNAMA 1300022054 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS AHMAD DAHLAN YOGYAKARTA 2015 I. DEFINISI GENERATOR DC Generator

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

PENGATURAN TEGANGAN DAN FREKUENSI GENERATOR INDUKSI MENGGUNAKAN VSI UNTUK SISTEM TIGA FASA EMPAT KAWAT

PENGATURAN TEGANGAN DAN FREKUENSI GENERATOR INDUKSI MENGGUNAKAN VSI UNTUK SISTEM TIGA FASA EMPAT KAWAT 1 PENGATURAN TEGANGAN DAN FREKUENSI GENERATOR INDUKSI MENGGUNAKAN VSI UNTUK SISTEM TIGA FASA EMPAT KAWAT Adisolech Noor Akbar, Mochamad Ashari, dan Dedet Candra Riawan. Jurusan Teknik Elektro, Fakultas

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB MOTOR NDUKS SATU PHASA.1. Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran medan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan BAB I PENDAHULUAN 1.1 Latar Belakang Motor listrik sudah menjadi kebutuhan kita sehari-hari untuk menggerakkan peralatan dan mesin yang membantu perkerjaan. Untuk itu sangatlah erat kaitannya antara motor

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA

POLITEKNIK NEGERI SRIWIJAYA BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Generator Sinkron Tegangan output dari generator sinkron adalah tegangan bolak balik, karena itu generator sinkron disebut juga generator AC. Perbedaan prinsip antara generator

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

GENERATOR DC HASBULLAH, MT, Mobile :

GENERATOR DC HASBULLAH, MT, Mobile : GENERATOR DC HASBULLAH, MT, 2009 ELECTRICAL ENGINEERING DEPT. ELECTRICAL POWER SYSTEM Email : hasbullahmsee@yahoo.com has_basri@telkom.net Mobile : 081383893175 Definisi Generator DC Sebuah perangkat mesin

Lebih terperinci

BAB III PENDAHULUAN 3.1. LATAR BELAKANG

BAB III PENDAHULUAN 3.1. LATAR BELAKANG 20 BAB III PENDAHULUAN 3.1. LATAR BELAKANG Motor induksi merupakan motor listrik arus bolak balik (AC) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan

Lebih terperinci

Penggunaan & Pengaturan Motor Listrik PENGEREMAN MOTOR LISTRIK

Penggunaan & Pengaturan Motor Listrik PENGEREMAN MOTOR LISTRIK Penggunaan & Pengaturan Motor Listrik PENGEREMAN MOTOR LISTRIK PENDAHULUAN Dalam banyak aplikasi, maka perlu untuk memberikan torsi pengereman bagi peralatan yang digerakkan oleh motor listrik. Dalam beberapa

Lebih terperinci

BAB I PENDAHULUAN. Motor listrik dewasa ini telah memiliki peranan penting dalam bidang industri.

BAB I PENDAHULUAN. Motor listrik dewasa ini telah memiliki peranan penting dalam bidang industri. BAB I PENDAHULUAN 1.1 Latar Belakang Motor listrik dewasa ini telah memiliki peranan penting dalam bidang industri. Keinginan untuk mendapatkan mesin yang mudah dirangkai, memiliki torsi yang besar, hemat

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan.

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan. MESIN ASINKRON A. MOTOR LISTRIK Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron, dengan dua standar global yakni IEC dan NEMA. Motor asinkron IEC berbasis metrik (milimeter),

Lebih terperinci

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010

SYNCHRONOUS GENERATOR. Teknik Elektro Universitas Indonesia Depok 2010 SYNCHRONOUS GENERATOR Teknik Elektro Universitas Indonesia Depok 2010 1 Kelompok 7: Ainur Rofiq (0706199022) Rudy Triandi (0706199874) Reza Perkasa Alamsyah (0806366296) Riza Tamridho (0806366320) 2 TUJUAN

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

TUGAS AKHIR ANALISIS KARAKTERISTIK TEGANGAN DAN EFISIENSI MOTOR INDUKSI TIGA FASA SEBAGAI GENERATOR INDUKSI DENGAN KELUARAN SATU FASA

TUGAS AKHIR ANALISIS KARAKTERISTIK TEGANGAN DAN EFISIENSI MOTOR INDUKSI TIGA FASA SEBAGAI GENERATOR INDUKSI DENGAN KELUARAN SATU FASA TUGAS AKHIR ANALISIS KARAKTERISTIK TEGANGAN DAN EFISIENSI MOTOR INDUKSI TIGA FASA SEBAGAI GENERATOR INDUKSI DENGAN KELUARAN SATU FASA Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT USU

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang

BAB II DASAR TEORI. 2.1 Umum. Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang BAB II DASAR TEORI 2.1 Umum Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang berfungsi untuk mengubah energi listrik menjadi energi mekanis. Motor induksi terdiri atas bagian stasioner

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang BAB III PENGUMPULAN DAN PENGOLAHAN DATA 3.1 Daya 3.1.1 Daya motor Secara umum, daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam system tenaga listrik, daya merupakan jumlah energy listrik

Lebih terperinci

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa

BAB I PENDAHULUAN. putaran tersebut dihasilkan oleh penggerak mula (prime mover) yang dapat berupa BAB I PENDAHULUAN 1.1 Latar Belakang Generator sinkron merupakan alat listrik yang berfungsi mengkonversikan energi mekanis berupa putaran menjadi energi listrik. Energi mekanis berupa putaran tersebut

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB I PENDAHULUAN. Pada suatu kondisi tertentu motor harus dapat dihentikan segera. Beberapa

BAB I PENDAHULUAN. Pada suatu kondisi tertentu motor harus dapat dihentikan segera. Beberapa BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini pada umumnya industri memerlukan motor sebagai penggerak, adapun motor yang sering digunakan adalah motor induksi,karena konstruksinya yang sederhana, kuat

Lebih terperinci

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN TUGAS AKHIR PENGATURAN OUTPUT GENERATOR INDUKSI DENGANN STATIC SYNCHRONOUS COMPENSATOR (STATCOM) PADA PEMBANGKIT LISTRIK TENAGA ANGIN Diajukan untuk memenuhi persyaratan menyelesaikan pendidikan sarjana

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Umum 1 Motor induksi merupakan motor arus bolak-balik (AC) yang paling BAB II TINJAUAN PUSTAKA banyak digunakan. Penamaannya berasal dari kenyataan bahwa arus rotor motor ini bukan diperoleh dari sumber

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

Mesin AC. Motor Induksi. Dian Retno Sawitri

Mesin AC. Motor Induksi. Dian Retno Sawitri Mesin AC Motor Induksi Dian Retno Sawitri Pendahuluan Mesin induksi digunakan sebagai motor dan generator. Namun paling banyak digunakan sebagai motor. MI merupakan perangkat penting di industri Kebanyakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Rujukan penelitian yang pernah dilakukan untuk mendukung penulisan tugas akhir ini antara lain sebagai berikut : a. Berdasarkan hasil penelitian yang telah

Lebih terperinci

BAB I PENDAHULUAN. adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi

BAB I PENDAHULUAN. adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi BAB I PENDAHULUAN 1.1 Latar Belakang Seiring meningkatnya kebutuhan listrik oleh masyarakat maka diperlukan adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi kebutuhan energi listrik

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Generator Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Ahmad Qurthobi, MT. (Teknik Fisika Telkom University) Teknik Tenaga Listrik(FTG2J2) 1 / 35 Outline 1

Lebih terperinci

TUGAS PERTANYAAN SOAL

TUGAS PERTANYAAN SOAL Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.

Lebih terperinci

PEMODELAN SISTEM GENERATOR INDUKSI TEREKSITASI SENDIRI (SELF-EXCITED INDUCTION GENERATOR (SEIG))

PEMODELAN SISTEM GENERATOR INDUKSI TEREKSITASI SENDIRI (SELF-EXCITED INDUCTION GENERATOR (SEIG)) PEMODELAN SISTEM GENERATOR INDUKSI TEREKSITASI SENDIRI (SELF-EXCITED INDUCTION GENERATOR (SEIG)) A.Y. Erwin Dodu 1 1 Jurusan Teknik Elektro Fakultas Teknik Universitas Tadulako Jl. Sukarno-Hatta Palu,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mekanis berupa tenaga putar. Dari konstruksinya, motor ini terdiri dari dua bagian

BAB II TINJAUAN PUSTAKA. mekanis berupa tenaga putar. Dari konstruksinya, motor ini terdiri dari dua bagian BAB II TINJAUAN PUSTAKA 2.1 Umum Pada umumnya motor induksi tiga fasa merupakan motor bolak-balik yang paling luas digunakan dan berfungsi untuk mengubah energi listrik menjadi energi mekanis berupa tenaga

Lebih terperinci

BAB IV ANALISIS KINERJA GENERATOR DENGAN MENGGUNAKAN AVR. Analisis kinerja generator dengan menggunakan Automatic

BAB IV ANALISIS KINERJA GENERATOR DENGAN MENGGUNAKAN AVR. Analisis kinerja generator dengan menggunakan Automatic 42 BAB IV ANALISIS KINERJA GENERATOR DENGAN MENGGUNAKAN AVR 4.1 Pendahuluan Analisis kinerja generator dengan menggunakan Automatic Voltage Regulator (AVR) dalam tugas akhir ini dilakukan pada generator

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor Induksi Tiga Fasa Motor induksi 3 fasa merupakan salah satu cabang dari jenis motor listrik yang merubah energi listrik menjadi energi gerak berupa putaran yang mempunyai

Lebih terperinci

Disusun oleh Muh. Wiji Aryanto Nasri ( ) Ryan Rezkyandi Saputra ( ) Hardina Hasyim ( ) Jusmawati ( ) Aryo Arjasa

Disusun oleh Muh. Wiji Aryanto Nasri ( ) Ryan Rezkyandi Saputra ( ) Hardina Hasyim ( ) Jusmawati ( ) Aryo Arjasa Pengaruh Perubahan Beban Terhadap Frekuensi dan Tegangan Disusun oleh Muh. Wiji Aryanto Nasri (421 13 019) Ryan Rezkyandi Saputra (421 13 018) Hardina Hasyim (421 13 017) Jusmawati (421 13 021) Aryo Arjasa

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

Bahan Kuliah Mesin-mesin Listrik II

Bahan Kuliah Mesin-mesin Listrik II Bahan Kuliah Mesin-mesin Listrik II Pada motor satu fasa terdapat dua belitan stator, yaitu belitan fasa utama (belitan U 1 -U 2 ) dan belitan fasa bantu (belitan Z 1 -Z 2 ), Belitan utama menggunakan

Lebih terperinci

PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL

PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL Arwadi Sinuraya*) Abstrak Pembangunan pembangkit listrik dengan daya antara 1kW 10 kw banyak dilaksanakan

Lebih terperinci

Universitas Medan Area

Universitas Medan Area BAB II TINJAUAN PUSTAKA 2.1 Landasan teori Generator listrik adalah suatu peralatan yang mengubah enersi mekanis menjadi enersi listrik. Konversi enersi berdasarkan prinsip pembangkitan tegangan induksi

Lebih terperinci

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum )

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) Makruf Abdul Hamid,Panusur S M L Tobing Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Induksi Tiga Fasa Motor listrik berfungsi untuk mengubah energi listrik menjadi energi mekanik yang berupa tenaga putar. Motor listrik terdiri dari dua bagian yang sangat

Lebih terperinci

Gambar 1 Motor Induksi. 2 Karakteristik Arus Starting pada Motor Induksi

Gambar 1 Motor Induksi. 2 Karakteristik Arus Starting pada Motor Induksi 1 Motor Induksi 3 Fasa Motor induksi adalah suatu mesin listrik yang merubah energi listrik menjadi energi gerak dengan menggunakan gandengan medan listrik dan mempunyai slip antara medan stator dan medan

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya 4 BAB II TINJAUAN PUSTAKA 2.1. Umum Generator sinkron adalah mesin pembangkit listrik yang mengubah energi mekanik sebagai input menjadi energi listrik sebagai output. Tegangan output dari generator sinkron

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik)

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik) Prinsip dasar dari sebuah mesin listrik adalah konversi energi elektromekanik, yaitu konversi dari energi listrik ke energi mekanik atau sebaliknya dari energi mekanik ke energi listrik. Alat yang dapat

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA Wendy Tambun, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci