BAB II MOTOR INDUKSI TIGA PHASA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II MOTOR INDUKSI TIGA PHASA"

Transkripsi

1 BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan arus yang terinduksi sebagai akibat adanya perbedaan antara putaran rotor dengan medan putar yang dihasilkan arus stator. Motor ini memiliki konstruksi yang kuat, sederhana, dan handal. Disamping itu motor ini juga memiliki efisiensi yang cukup tinggi saat berbeban penuh dan tidak membutuhkan perawatan yang banyak. 2.2 KONSTRUKSI MOTOR INDUKSI TIGA PHASA Secara umum motor induksi terdiri dari rotor dan stator. Rotor merupakan bagian yang bergerak, sedangkan stator bagian yang diam. Diantara stator dan rotor terdapat celah udara yang jaraknya sangat kecil.

2 Rotor Stator Gambar 2.1. Penampang rotor dan stator motor induksi Komponen stator adalah bagian terluar dari motor yang merupakan bagian yang diam dan mengalirkan arus phasa. Stator terdiri atas tumpukan laminasi inti yang memiliki alur yang menjadi tempat kumparan dililitkan yang berbentuk silindris. Alur pada tumpukan laminasi inti diisolasi dengan kertas (Gambar 2.2.(b)). Tiap elemen laminasi inti dibentuk dari lembaran besi (Gambar 2.2 (a)). Tiap lembaran besi tersebut memiliki beberapa alur dan beberapa lubang pengikat untuk menyatukan inti. Tiap kumparan tersebar dalam alur yang disebut belitan phasa dimana untuk motor tiga phasa, belitan tersebut terpisah secara listrik sebesar 120 o. Kawat kumparan yang digunakan terbuat dari tembaga yang dilapis dengan isolasi tipis. Kemudian tumpukan inti dan belitan stator diletakkan dalam cangkang silindris (Gambar 2.2.(c)). Berikut ini contoh lempengan laminasi inti, lempengan inti yang telah disatukan, belitan stator yang telah dilekatkan pada cangkang luar untuk motor induksi tiga phasa.

3 ( a ) ( b ) ( c ) Gambar 2.2. Menggambarkan komponen stator motor induksi tiga phasa (a) Lempengan inti (b) Tumpukan inti dengan kertas isolasi pada beberapa alurnya (c) Tumpukan inti dan kumparan dalam cangkang stator Untuk rotor akan dibahas pada bagian berikutnya, yaitu jenis jenis motor induksi tiga fasa berdasarka jenis rotornya. 2.3 JENIS MOTOR INDUKSI TIGA FASA Ada dua jenis motor induksi tiga fasa berdasarkan rotornya yaitu: 1. motor induksi tiga fasa sangkar tupai ( squirrel-cage motor) 2. motor induksi tiga fasa rotor belitan ( wound-rotor motor ) kedua motor ini bekerja pada prinsip yang sama dan mempunyai konstruksi stator yang sama tetapi berbeda dalam konstruksi rotor MOTOR INDUKSI TIGA FASA SANGKAR TUPAI ( SQUIRREL- CAGE MOTOR) Penampang motor sangkar tupai memiliki konstruksi yang sederhana. Inti stator pada motor sangkar tupai tiga fasa terbuat dari lapisan lapisan pelat baja beralur yang didukung dalam rangka stator yang terbuat dari besi tuang atau pelat baja yang dipabrikasi. Lilitan lilitan kumparan stator diletakkan dalam alur stator yang terpisah 120 derajat listrik. Lilitan fasa ini dapat tersambung dalam hubungan delta ( Δ ) ataupun bintang ( Υ ). Rotor jenis rotor sangkar ditunjukkan pada gambar 2.3 di bawah ini.

4 Batang Poros Cincin Aluminium Kipas Laminasi Inti Besi Aluminium Batang Poros Kipas ( a ) ( b ) (a) Gambar 2.3 Rotor sangkar, (a) Tipikal rotor sangkar, (b) Bagian-bagian rotor sangkar Batang rotor dan cincin ujung motor sangkar tupai yang lebih kecil adalah coran tembaga atau aluminium dalam satu lempeng pada inti rotor. Dalam motor yang lebih besar, batang rotor tidak dicor melainkan dibenamkan ke dalam alur rotor dan kemudian dilas dengan kuat ke cincin ujung. Batang rotor motor sangkar tupai tidak selalu ditempatkan paralel terhadap poros motor tetapi kerapkali dimiringkan. Hal ini akan menghasilkan torsi yang lebih seragam dan juga mengurangi derau dengung magnetik sewaktu motor sedang berputar. Pada ujung cincin penutup dilekatkan sirip yang berfungsi sebagai pendingin. Rotor jenis rotor sangkar standar tidak terisolasi, karena batangan membawa arus yang besar pada tegangan rendah. Motor induksi dengan rotor sangkar ditunjukkan pada gambar 2.4.

5 ( a ) ( b ) Gambar 2.4 (a) Konstruksi motor induksi rotor sangkar ukuran kecil (b) Konstruksi motor induksi rotor sangkar ukuran besar MOTOR INDUKSI TIGA FASA ROTOR BELITAN ( WOUND-ROTOR MOTOR ) Motor rotor belitan ( motor cincin slip ) berbeda dengan motor sangkar tupai dalam hal konstruksi rotornya. Seperti namanya, rotor dililit dengan lilitan terisolasi serupa dengan lilitan stator. Lilitan fasa rotor dihubungkan secara Υ dan masing masing fasa ujung terbuka yang dikeluarkan ke cincin slip yang terpasang pada poros rotor. Secara skematik dapat dilihat pada gambar 2.5. Dari gambar ini dapat dilihat bahwa cincin slip dan sikat semata mata merupakan penghubung tahanan kendali variabel luar ke dalam rangkaian rotor. Sumber tegangan Belitan Stator Belitan Rotor Slip Ring Tahanan Luar Gambar 2.5 Cicin slip

6 Pada motor ini, cincin slip yang terhubung ke sebuah tahanan variabel eksternal yang berfunsi membatasi arus pengasutan dan yang bertanggung jawab terhadap pemanasan rotor. Selama pengasutan, penambahan tahanan eksternal pada rangkaian rotor belitan menghasilkan torsi pengasutan yang lebih besar dengan arus pengasutan yang lebih kecil dibanding dengan rotor sangkar. Konstruksi motor tiga fasa rotor belitan ditunjukkan pada gambar di bawah ini. (a) (b) Gambar 2.6 (a) Rotor belitan (b) Konstruksi motor induksi tiga phasa dengan rotor belitan 2.4 PRINSIP MEDAN PUTAR

7 Perputaran motor pada mesin arus bolak balik ditimbulkan oleh adanya medan putar ( fluks yang berputar ) yang dihasilkan dalam kumparan statornya. Medan putar ini terjadi apabila kumparan stator dihubungkan dalam fasa banyak, umumnya fasa 3. Hubungan dapat berupa hubungan bintang atau delta. Misalkan kumparan a a; b b; c c dihubungkan 3 fasa, dengan beda fasa masing masing ( gambar 2.5a ) dan dialiri arus sinusoid. Distribusi arus i a, i b, i c sebagai fungsi waktu adalah seperti gambar 2.5b. Pada keadaan t 1, t 2, t 3, dan t 4, fluks resultan yang ditimbulkan oleh kumparan tersebut masing masing adalah seperti gambar 2.6c, d, e, dan f. Pada t 1 fluks resultan mempunyai arah sama dengan arah fluks yang dihasilkan oleh kumparan a a; sedangkan pada t 2, fluks resultannya mempunyai arah sama dengan arah fluks yang dihasilakan oleh kumparan c c; dan untuk t 3 fluks resultan mempunyai arah sama dengan fluks yang dihasilkan oleh kumparan b b. Untuk t 4, fluks resultannya berlawanan arah dengan fluks resultan yang dihasilkan pada saat t 1 keterangan ini akan lebih jelas pada analisa vektor. (b) Arus tiga phasa setimbang Gambar 2.7. (a) Diagram phasor fluksi tiga phasa

8 Gambar 2.8. Medan putar pada motor induksi tiga phasa Dari gambar c, d,e, dan f tersebut terlihat fluks resultan ini akan berputar satu kali. Oleh karena itu untuk mesin dengan jumlah kutub lebih dari dua, kecepatan sinkron dapat diturunkan sebagai berikut : n s = (rpm)..... (2.1) f = frekuensi ( Hz ) P = jumlah kutub Analisis secara vektor didapatkan atas dasar: 1. Arah fluks yang ditimbulkan oleh arus yang mengalir dalam suatu lingkar sesuai dengan perputaran sekrup ( gambar 2.9 ). Gambar 2.9. Arah fluks yang ditimbulkan oleh arus yang mengalir dalam suatu lingkar 2. Kebesaran fluks yang ditimbulkan ini sebanding dengan arus yang mengalir.

9 Notasi yang dipakai untuk menyatakan positif atau negatifnya arus yang mengalir pada kumparan a a, b b, dan c c pada gambar 2.5a yaitu: harga positif, apabila tanda silang (x) terletak pada pangkal konduktor tersebut ( titik a, b, c ), sedangkan negatif apabila tanda titik (. ) terletak pada pangkal konduktor tersebut (gambar 2.10). Maka diagram vektor untuk fluks total pada keadaan t 1, t 2, t 3, t 4, dapat dilihat pada gambar Gambar Diagram vektor untuk fluks total pada keadaan t 1, t 2, t 3, t 4 Dari semua diagram vektor di atas dapat pula dilihat bahwa fluks resultan berjalan (berputar).

10 2.5 PRINSIP KERJA MOTOR INDUKSI TIGA FASA Pada saat belitan stator diberi tegangan tiga fasa, maka pada stator akan dihasilkan arus tiga fasa, arus ini kemudian akan menghasilkan medan magnet yang berputar dengan kecepatan sinkron. Medan putar akan terinduksi melalui celah udara menghasilkan ggl induksi (ggl lawan) pada belitan fasa stator. Medan putar tersebut juga akan memotong konduktor-konduktor belitan rotor yang diam. Hal ini terjadi karena adanya perbedaan relatif antara kecepatan fluksi yang berputar dengan konduktor rotor yang diam yang disebut juga dengan slip (s). Akibatnya adanya slip maka ggl (gaya gerak listrik) akan terinduksi pada konduktor-konduktor rotor. Gambar Proses induksi medan putar stator pada kumparan rotor Karena belitan rotor merupakan rangkaian tertutup, baik melalui cincin ujung (end ring) ataupun tahanan luar, maka arus akan mengalir pada konduktor konduktor rotor. Karena konduktor konduktor rotor yang mengalirkan arus ditempatkan di dalam daerah medan magnet yang dihasilkan stator maka akan terbentuklah gaya mekanik (gaya lorentz) pada konduktor konduktor rotor. Hal ini sesuai dengan hukum gaya lorentz (perhatikan gambar 2.9) yaitu bila suatu konduktor yang dialiri arus berada dalam suatu kawasan medan magnet, maka konduktor tersebut akan mendapat gaya elektromagnetik (gaya lorentz) sebesar F= B.i.l.sin θ. Arah dari gaya

11 elektromagnetik tersebut dapat dijelaskan oleh kaidah tangan kanan (right-hand rule). Kaidah tangan kanan menyatakan, jika jari telunjuk menyatakan arah dari vektor arus i dan jari tengah menyatakan arah dari vektor kerapatan fluks B, maka ibu jari akan menyatakan arah gaya F yang bekerja pada konduktor tersebut. Gaya F yang dihasilkan pada konduktor konduktor rotor tersebut akan menghasilkan torsi (τ). Bila torsi mula yang dihasilkan pada rotor lebih besar daripada torsi beban (τ0 > τb), maka rotor akan berputar searah dengan putaran medan putar stator. Gambar Konduktor berarus dalam ruang medan magnet Untuk mempelajari prinsip kerja motor induksi tiga fasa, maka dapat dijabarkan dalam beberapa langkah berikut: 1. Apabila belitan stator dihubungkan dengan sumber tegangan tiga fasa yang setimbang maka akan mengalir arus pada tiap belitan fasa. 2. Arus yang mengalir pada tiap fasa menghasilkan fluks yang berubah-ubah untuk setiap waktu. 3. Resultan dari ketiga fluksi bolak-balik tersebut menghasilkan medan putar yang bergerak dengan kecepatan sinkron ns yang besarnya ditentukan oleh jumlah kutub p dan frekuensi stator f yang dirumuskan :

12 n S = (rpm)..... (2.2) 4. Akibat fluksi yang berputar akan menimbukanl ggl pada stator yang besarnya adalah: e 1 = -N 1 (volt).....(2.3) E 1 = 4,44f N 1 Φ m (volt)..(2.4) dimana : e 1 = ggl induksi sesaat stator/fasa (volt) E 1 = ggl induksi efektif stator/fasa (volt) F = frekuensi saluran (Hz) N 1 = jumlah lilitan kumparan stator/fasa Φ m = fluks magnetik maksimum (weber) 5. Fluksi yang berputar tersebut akan memotong batang konduktor pada rotor. Akibatnya pada kumparan rotor timbul tegangan induksi sebesar E 2 yang besarnya : E 2 = 4,44f N 2 Φ m (volt)...(2.5) Dimana : E 2 = tegangan induksi pada rotor saat rotor dalam keadaan diam N 2 = jumlah lilitan rotor Φ m = fluksi maksimum

13 6. Karena kumparan rotor merupakan rangkaian tertutup, maka akan mengalir arus (I 2 ). 7. Adanya arus (I 2 ) di dalam medan magnet akan menimbulkan gaya (F) pada rotor. 8. Gaya (F) akan menghasilkan torsi (τ). Apabila torsi mula yang dihasilkan lebih besar torsi beban, maka rotor akan berputar dengan kecepatan (n r ) yang searah dengan medan putar stator. 9. Pada saat berputar,maka ada perbedaan kecepatan medan putar stator (n s ) dengan kecepatan rotor (n r ) disebut dengan slip (s) dan dinyatakan dengan: s = x 100 %...(2.6) 10. Pada rotor dalam keadaan berputar, besarnya tegangan yang terinduksi pada kumparan rotor akan bervariasi tergantung besarnya slip. Tegangan induksi ini dinyatakan dengan E 2S yang besarnya : E 2S = 4,44 sf N 2 Φ m (volt) (2.7) Dimana : E 2S = tegangan induksi rotor dalam keadaan berputar (volt) sf = frekuensi rotor ( frekuensi tegangan induksi pada rotor dalam keadaan berputar ) 11. Apabila n s = n r, maka slip akan bernilai nol. Hal ini akan menyebabkan tidak adanya ggl induksi pada rotor tegangan tidak akan terinduksi dan arus tidak akan mengalir pada kumparan rotor, sehingga tidak akan dihasilkan torsi.

14 2.6 SLIP Motor induksi tidak dapat berputar pada kecepatan sinkron. Seandainya hal ini terjadi, maka rotor akan tetap diam relatif terhadap fluksi yang berputar. Maka tidak akan ada ggl yang diinduksikan dalam rotor, tidak ada arus yang mengalir pada rotor, dan karenanya tidak akan menghasilkan kopel. Kecepatan rotor sekalipun tanpa beban, harus lebih kecil sedikit dari kecepatan sinkron agar adanya tegangan induksi pada rotor, dan akan menghasilkan arus di rotor, arus induksi ini akan berinteraksi dengan fluks listrik sehingga menghasilkan kopel. Selisih antara kecepatan rotor dengan kecepatan sinkron disebut slip (s). Slip dapat dinyatakan dalam putaran setiap menit, tetapi lebih umum dinyatakan sebagai persen dari kecepatan sinkron. ns nr Slip (s) = 100% n s dimana: n r = kecepatan rotor persamaan (2.1) di atas memberikan imformasi yaitu: 1. saat s = 1 dimana n r = 0, ini berati rotor masih dalam keadaan diam atau akan berputar. 2. s = 0 menyatakan bahwa n s = n r, ini berarti rotor berputar sampai kecepatan sinkron. Hal ini dapat terjadi jika ada arus dc yang diinjeksikan ke belitan rotor, atau rotor digerakkan secara mekanik.

15 3. 0 < s < 1, ini berarti kecepatan rotor diantara keadaan diam dengan kecepatan sinkron. Kecepatan rotor dalam keadaan inilah dikatakan kecepatan tidak sinkron. Biasanya slip untuk mendapatkan efisiensi yang tinggi pada saat beban penuh adalah 0, FREKUENSI ROTOR Ketika rotor masih dalam keadaan diam, dimana frekuensi arus pada rotor sama seperti frekuensi masukan ( sumber ). Tetapi ketika rotor akan berputar, maka frekuensi rotor akan bergantung kepada kecepatan relatif atau bergantung terhadap besarnya slip. Untuk besar slip tertentu, maka frekuensi rotor sebesar ' f yaitu, ns n r =, diketahui bahwa Dengan membagikan dengan salah satu, maka didapatkan Maka ' f = sf (Hz)....(2.8) Telah diketahui bahwa arus rotor bergantung terhadap frekuensi rotor ' f = sf dan ketika arus ini mengalir pada masing masing phasa di belitan rotor, akan memberikan reaksi medan magnet. Biasanya medan magnet pada rotor akan menghasilkan medan magnet yang berputar yang besarnya bergantung atau relatif terhadap putaran rotor sebesar sn. s Pada keadaan tertentu, arus rotor dan arus stator menghasilkan distribusi medan magnet yang sinusoidal dimana medan magnet ini memiliki magnetudo yang konstan dan kecepatan medan putar n s yang konstan. Kedua Hal ini merupakan medan

16 magnetik yang berputar secara sinkron. kenyataannya tidak seperti ini karena pada stator akan ada arus magnetisasi pada kumparannya RANGKAIAN EKIVALEN MOTOR INDUKSI Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian rangkaian ekivalen motor induksi sama dengan rangkaian ekivalen transformator. Perbedaan yang ada hanyalah karena pada kenyataannya bahwa kumparan rotor (kumparan sekunder pada transformator) dari motor induksi berputar, yang mana berfungsi untuk menghasilkan daya mekanik. Awal dari rangkaian ekivalen motor induksi dihasilkan dengan cara yang sama sebagaimana halnya pada transformator. Semua parameter-parameter rangkaian ekivalen yang akan dijelaskan berikut mempunyai nilai-nilai perfasa RANGKAIAN STATOR Fluks pada celah udara yang berputar menghasilkan GGL induksi lawan pada setiap phasa dari stator. Sehingga tegangan terminal menjadi ggl induksi lawan 1 dan jatuh tegangan pada impedansi bocor stator. Sehingga persamaan tegangan pada stator adalah: 1 = (R 1 +X 1 ) (volt)...(2.9) Dimana: 1 = Tegangan nominal stator (Volt) 1 = GGL lawan yang dihasilkan oleh resultan fluks celah udara (Volt) 1 = arus stator (Ampere)

17 R 1 = resistansi stator (Ohm) X 1 = reaktansi bocor stator (Ohm) Sama seperti halnya dengan trafo, maka arus stator ( I 1 ) terdiri dari dua buah komponen. Salah satunya adalah komponen beban (I, 2 ). Salah satu komponen yang lain adalah arus eksitasi I e (exciting current). Arus eksitasi dapat dibagi menjadi dua komponen yaitu, komponen rugi-rugi inti I c yang sephasa dengan E 1 dan komponen magnetisasi Im yang tertinggal 90º dengan E 1. Arus I c akan menghasilkan rugi-rugi inti dan arus Im akan menghasilkan resultan flux celah udara. Pada trafo arus eksitasi disebut juga arus beban nol, akan tetapi dalam motor induksi tiga phasa tidak, hal ini dikarenakan pada motor induksi arus beban nol menghasilkan fluksi celah udara dan menghasilkan rugi-rugi tanpa beban ( rugi inti + rugi gesek angin + rugi I 2 R dalam jumlah yang kecil) sedangkan pada trafo fungsi arus eksitasi untuk mengahasilkan fluksi dan menghasilkan rugi inti. Sehingga rangkaian ekivalen dari stator dapat kita lihat pada Gambar Gambar Rangkaian ekivalen stator RANGKAIAN ROTOR

18 Pada saat motor start dan rotor belum berputar, maka stator dan rotor memiliki frekuensi yang sama. Tegangan induksi pada rotor dalam kondisi ini di lambangkan dengan E2. Pada saat rotor sudah berputar, maka besarnya tegangan induksi pada rotor sudah dipengaruhi slip. Besarnya tegangan induksi pada rotor pada saat berputar untuk berbagai slip sesuai dengan persamaan s = s 2...(2.10) Dimana: 2 = Tegangan induksi pada rotor pada saat diam (Volt) 2s = Tegangan induksi pada rotor sudah berputar (Volt) Tegangan induksi pada saat motor berputar akan mempengaruhi tahanan dan reaktansi pada rotor. Tahanan pada rotor adalah konstan, dan tidak dipengaruhi oleh slip. Reaktansi dari motor induksi bergantung terhadap induktansi dari rotor dan frekuensi dari tegangan dan arus pada rotor. Dengan induktansi pada rotor adalah L 2, maka reaktansi pada rotor diberikan dengan persamaan: X 2s = s X 2 (Ohm) (2.11) Dimana X 2 = Reaktansi rotor dalam keadaan diam ( Ohm ) Rangkaian ekivalen rotor dapat dilihat pada Gambar 2.14:

19 Gambar Rangkaian ekivalen rotor Sehingga arus yang mengalir pada Gambar 2.14 adalah: 2 = (Ampere)....(2.12) Pada saat dibebani (dipengaruhi slip), maka besarnya arus yang mengalir pada rotor adalah: 2s = (Ampere)...(2.13) 2s = (Ampere)..(2.14) Maka rangkaian ekivalen rotor yang dipengaruhi slip pada motor induksi dapat kita lihat pada gambar 2.15: Gambar 2.15 Rangkaian ekivalen rotor yang sudah dipengaruhi slip Impedansi ekivalen rangkaian rotor pada Gambar 2.15 adalah:

20 Z 2s = + jx 2 (Ohm).. (2.15) Pada motor induksi rotor belitan, maka rotor pada motor induksi dapat diganti dengan rangkaian ekivalen rotor yang memiliki belitan dengan jumlah phasa dan belitan yang sama dengan stator akan tetapi gaya gerak magnet (mmf) dan fluksi yang dihasilkan harus sama dengan rotor sebenarnya, maka performansi rotor yang dilihat dari sisi primer tidak akan mengalami perubahan. Sehingga hubungan antara tegangan yang diinduksikan pada rotor yang sebenarnya ( rotor) dan tegangan yang diinduksikan pada rangkaian ekivalen rotor ( 2s) adalah: 2s = a rotor.(2.16) Dimana: a : Perbandingan belitan stator dengan belitan rotor sebenarnya. Sedangkan hubungan antara arus pada rotor sebenarnya ( rotor ) dengan arus 2s Pada rangkaian ekivalen rotor haruslah 2s =.. (2.17) Rotor dari motor induksi adalah terhubung singkat, sehingga impedansi yang diinduksikan tegangan dapat disederhanakan dengan impedansi rotor hubung singkat. Sehingga hubungan antara impedansi bocor, slip dan frekuensi dari rangkaian ekivalen rotor (Z 2s ) dengan impedansi bocor, slip dan frekuensi rotor sebenarnya (Zrotor) adalah: 2s = = = a 2 Z rotor....(2.18)

21 Dengan mengingat kembali impedansi dari rangkaian ekivalen rotor yang sudah dipengaruhi slip seperti pada persamaan (2.14) maka besarnya impedansi bocor slip frekuensi dari rangkaian ekivalen rotor adalah: Z 2s = R 2 + j sx 2..(2.19) Dimana: R 2 s X 2 Z 2S = Tahanan rotor (Ohm) = Reaktansi rotor yang sudah berputar rotor (Ohm) = Impedansi bocor slip frekuensi dari rangkaian ekivalen rotor (Ohm) Pada stator dihasilkan medan putar yang berputar dengan kecepatan sinkron. Medan putar ini akan menginduksikan ggl induksi pada rangkaian ekivalen rotor ( 2s) dan menginduksikan ggl lawan pada stator sebesar 2. Bila bukan karena efek kecepatan, maka tegangan yang diinduksikan pada rangkaian rotor ekivalen ( 2s) akan sama dengan ggl induksi lawan pada rangkaian stator ( 2) karena rangkaian ekivalen rotor memiliki jumlah belitan yang sama dengan rangkaian stator. Akan tetapi karena kecepatan relatif medan putar yang direferensikan pada sisi rotor adalah s kali kecepatan medan putar yang direferensikan pada sisi stator, maka hubungan antara dua buah ggl induksi ini adalah: 2s = s 1..(2.20) Karena resultan fluks celah udara ditentukan oleh phasor penjumlahan dari arus stator dan arus rotor baik itu arus dari rotor sebenarnya maupun arus dari rangkaian ekivalen rotor, maka dalam hal ini dikarenakan jumlah belitan antara stator dan rangkaian ekivalen rotor adalah sama maka hubungan arus yang mengalir pada stator dan rotor adalah:

22 2s = 2... (2.21) Apabila persamaan 2.20 dibagi dengan persamaan 2.21 maka diperoleh :....(2.22) Dengan mensubstitusikan persamaan ( 2.22 ) ke persamaan ( 2.19 ) maka diperoleh: E I 2S 2S = se 1 = 2 I 2 R + jsx (2.23) Dengan membagi persamaan (2.24) dengan s, maka didapat E 1 = s I 2 R 2 + jx (2.24) Dari persamaan (2.17), (2.18), dan (2.22) maka dapat dibuat rangkaian ekivalen rotor seperti pada Gambar 2.9. R 2 j X 2 R 2 j X 2 I 2 2 j E sx 2 2 s E 1 I R 2 s E 1 I 2 1 R ( s 2 1) Gambar Rangkaian ekivalen pada rotor motor induksi Dimana:

23 Dari penjelasan diatas maka dapat dibuat rangkaian ekivalen per phasa motor induksi. Gambar 2.17 menunjukkan gambar rangkaian ekivalen per phasa motor induksi: R 1 j X 1 I 2 jsx 2 I 1 I Φ I 2 V 1 Rc Ic jx m I m E 1 se 2 R 2 Gambar Rangkaian ekivalen motor induksi tiga phasa Untuk mempermudah perhitungan, maka rangkaian ekivalen motor induksi dapat disederhanakan dengan sisi primer sebagai referensi. Sehingga rangkaian ekivalennya seperti pada gambar 2.18: Gambar Rangkaian ekivalen motor induksi yang disederhanakan dengan primer sebagai referensi Atau seperti pada gambar 2.19 berikut:

24 Gambar Bentuk lain rangkaian ekivalen motor induksi dilihat dari sisi stator Dimana: I 2 R 2 X 2 = 2s (Ampere) = a 2. R 2 (Ohm) = a 2. X 2 (Ohm) Pada analisa rangkaian trafo, dapat dilakukan dengan mengabaikan cabang paralel yang terdiri dari Rc dan Xm, atau memindahkan cabang ke terminal primer. Dalam rangkaian ekivalen motor induksi penyederhanaan ini tidak dibolehkan. Hal ini berhubungan dengan kenyataan bahwa arus eksitasi pada trafo bervariasi dari 2 sampai 6 % dari arus beban dan reaktansi bocor primer per unitnya kecil. Tetapi pada motor induksi, arus eksitasi bervariasi dari 30 sampai 50 % dari arus beban penuh dan reaktansi bocor primernya relatif lebih besar. Dalam keadaan kondisi kerja normal dengan tegangan dan frekuensi konstan, rugirugi inti pada motor induksi biasanya tetap. Sehingga tahanan rugi-rugi inti (Rc) dapat diabaikan dari rangkaian ekivalen. Sehingga rangkaian ekivalen motor induksi yang disederhanakan menjadi seperti Gambar 2.20:

25 R j 1 X 1 ' I 2 j ' X 2 ' R 2 I 0 V 1 I 1 j X m E 1 R 1 s ' 2 ( 1) Gambar 2.20 Rangkaian ekivalen motor induksi yang disederhanakan dengan sisi primer sebagai referensi dengan mengabaikan tahanan rugi-rugi inti (Rc) 2.9. ALIRAN DAYA DAN EFISIENSI MOTOR INDUKSI TIGA FASA ALIRAN DAYA Pada motor induksi, tidak ada sumber listrik yang langsung terhubung ke rotor, sehingga daya yang melewati celah udara sama dengan daya yang diinputkan ke rotor. Daya total yang dimasukkan pada kumparan stator (P in ) dirumuskan dengan P = V I cosθ (Watt)...(2.25) in dimana : V 1 = tegangan sumber (Volt) I 1 = arus masukan (Ampere) θ = perbedaan sudut phasa antara arus masukan dengan tegangan sumber. Daya listrik disuplai ke stator motor induksi diubah menjadi daya mekanik

26 pada poros motor. Berbagai rugi rugi yang timbul selama proses konversi energi listrik antara lain : 1. rugi rugi tetap ( fixed losses ), terdiri dari : rugi rugi inti stator ( P i ) P i = 3. E 2 1 R C (Watt).....(2.26) rugi rugi gesek dan angin 2. rugi rugi variabel, terdiri dari : rugi rugi tembaga stator ( P ts ) P ts = 3. I 1 2. R 1 (Watt)....(2.27) rugi rugi tembaga rotor ( P tr ) P tr = 3. I 2 2. R 2 (Watt).....(2.28) Daya pada celah udara ( P cu ) dapat dirumuskan dengan : (Watt) (2.29) P cu = P in P ts P i Jika dilihat pada rangkaian rotor, satu satunya elemen pada rangkaian ekivalen yang mengkonsumsi daya pada celah udara adalah resistor R 2 / s. Oleh karena itu daya pada celah udara dapat juga ditulis dengan :

27 P cu = 3. I 2 2. R 2 (Watt)..(2.30) S Apabila rugi rugi tembaga dan rugi rugi inti dikurangi dengan daya input motor, maka akan diperoleh besarnya daya listrik yang diubah menjadi daya mekanik. Besarnya daya mekanik yang dibangkitkan motor adalah : P mek = P cu P tr (Watt) (2.31) P mek = 3. I 2 2. R 2-3. I 2 2. R 2 S P mek = 3. I 2 2. R 2. ( 1 s s ) P mek = P tr x ( 1 s s ) (Watt) (2.32) Dari persamaan ( 2.28 ) dan ( 2.30 ) dapat dinyatakan hubungan rugi rugi tembaga dengan daya pada celah udara : P tr = s. P cu (Watt) (2.33) Karena daya mekanik yang dibangkitkan pada motor merupakan selisih dari daya pada celah udara dikurangi dengan rugi rugi tembaga rotor, maka daya mekanik dapat juga ditulis dengan : P mek = P cu x ( 1 s ) (Watt)....(2.34) Daya output akan diperoleh apabila daya yang dikonversikan dalam bentuk daya mekanik dikurangi dengan rugi rugi gesek dan angin, sehingga daya keluarannya : P out = P mek P a&g P b (Watt). (2.35)

28 Secara umum, perbandingan komponen daya pada motor induksi dapat dijabarkan dalam bentuk slip yaitu : P cu : P tr : P mek = 1 : s : 1 s. phasa : Gambar 2.21 menunjukkan aliran daya pada motor induksi tiga Energi listrik konversi Energi mekanik Gambar Diagram aliran daya motor induksi EFISIENSI Efisiensi motor induksi adalah ukuran keefektifan motor induksi untuk mengubah energi listrik menjadi energi mekanik yang dinyatakan sebagai perbandingan antara masukan dan keluaran atau dalam bentuk energi listrik berupa perbandingan watt keluaran dan watt masukan. Defenisi NEMA terhadap efisiensi energi adalah bahwa efisiensi merupakan perbandingan atau rasio dari daya keluaran yang berguna terhadap daya masukan total dan biasanya dinyatakan dalam persen juga sering dinyatakan dengan perbandingan antara keluaran dengan keluaran ditambah rugi - rugi, yang dirumuskan dalam persamaan berikut. = = = x 100%...(2.36) Dari persamaan terlihat bahwa efisiensi motor bergantung pada besar rugi-ruginya. Rugi-rugi pada persamaan tersebut adalah penjumlahan keseluruhan komponen rugi-

29 rugi yang dibahas pada sub bab sebelumnya. Pada motor induksi pengukuran efisiensi motor induksi ini sering dilakukan dengan beberapa cara seperti: - Mengukur langsung daya listrik masukan dan daya mekanik keluaran - Mengukur langsung seluruh rugi-rugi dan daya masukan - Mengukur setiap komponen rugi-rugi dan daya masukan, dimana pengukuran daya masukan tetap dibutuhkan pada ketiga cara di atas. Umumnya, daya listrik dapat diukur dengan sangat tepat, keberadaan daya mekanik yang lebih sulit untuk diukur. Saat ini sudah dimungkinkan untuk mengukur torsi dan kecepatan dengan cukup akurat yang bertujuan untuk mengetahui harga efisiensi yang tepat. Pengukuran pada keseluruhan rugi-rugi ada yang berdasarkan teknik kalorimetri. Walaupun pengukuran dengan metode ini relatif sulit dilakukan, keakuratan yang dihasilkan dapat dibandingkan dengan hasil yang didapat dengan pengukuran langsung pada daya keluarannya. Kebanyakan pabrikan lebih memilih melakukan pengukuran komponen rugi-rugi secara individual, karena dalam teorinya metode ini tidak memerlukan pembebanan pada motor, dan ini adalah suatu keuntungan bagi pabrikan. Keuntungan lainnya yang sering dibicarakan adalah bahwa memang benar error pada komponen rugi-rugi secara individual tidak begitu mempengaruhi keseluruhan efisiensi. Keuntungannya terutama adalah fakta bahwa ada kemungkinan koreksi untuk temperatur lingkungan yang berbeda. Biasanya data efisiensi yang disediakan oleh pembuat diukur atau dihitung berdasarkan standar tertentu DESAIN MOTOR INDUKSI TIGA FASA

30 Standard NEMA pada dasarnya mengkategorikan motor induksi ke dalam empat kelas yakni disain A,B,C, dan D. Karakteristik torsi kecepatannya dapat dilihat pada gambar Gambar Karakteristik torsi kecepatan motor induksi pada berbagai disain Kelas A : disain ini memiliki torsi start normal ( %) dari nilai ratingnya) dan arus start relatif tinggi. Torsi break down nya merupakan yang paling tinggi dari semua disain NEMA. Motor ini mampu menangani beban lebih dalam jumlah besar selama waktu yang singkat. Slip < = 5% Kelas B : merupakan disain yang paling sering dijumpai di pasaran. Motor ini memiliki torsi start yang normal seperti halnya disain kelas A, akan tetapi motor ini memberikan arus start yang rendah. Torsi locked rotor cukup baik untuk menstart berbagai beban yang dijumpai dalam aplikasi industri. Slip motor ini < =5 %. Effisiensi dan faktor dayanya pada saat berbeban penuh tinggi sehingga disain ini merupakan yang paling populer. Aplikasinya dapat dijumpai pada pompa, kipas angin/ fan, dan peralatan peralatan mesin. Kelas C : memiliki torsi start lebih tinggi (200 % dari nilai ratingnya) dari dua disain yang sebelumnya. Aplikasinya dijumpai pada beban beban seperti

31 konveyor, mesin penghancur (crusher ), komperessor,dll. Operasi dari motor ini mendekati kecepatan penuh tanpa overload dalam jumlah besar. Arus startnya rendah, slipnya < = 5 % Kelas D : memiliki torsi start yang paling tinggi. Arus start dan kecepatan beban penuhnya rendah. Memiliki nilai slip yang tinggi ( 5-13 % ), sehingga motor ini cocok untuk aplikasi dengan perubahan beban dan perubahan kecepatan secara mendadak pada motor. Contoh aplikasinya : elevator, crane, dan ekstraktor PENENTUAN PARAMETER MOTOR INDUKSI Data yang diperlukan untuk menghitung performansi dari suatu motor induksi dapat diperoleh dari hasil pengujian tanpa beban, pengujian rotor tertahan, dan pengukuran tahanan dc belitan stator PERCOBAAN BEBAN NOL Motor induksi dalam keadaan beban nol dibuat dalam keadaan berputar tanpa memikul beban pada rating tegangan dan frekuensinya. Besar tegangan yang digunakan ke belitan stator perphasanya adalah V 1 ( tegangan nominal), arus masukan sebesar I 0 dan dayanya P 0. Nilai ini semua didapat dengan melihat alat ukur pada saat percobaan beban nol. Dalam percobaan beban nol, kecepatan motor induksi mendekati kecepatan sinkronnya. Dimana besar slip 0, sehingga ~ sehingga besar impedansi total bernilai tak berhingga yang menyebabkan arus I ' 2 pada gambar 2.23 bernilai nol sehingga rangkaian ekivalen motor induksi pada pengukuran beban nol ditunjukkan pada gambar Namun karena pada umumnya nilai kecepatan motor pada

32 pengukuran ini n r0 yang diperoleh tidak sama dengan n s maka slip tidak sama dengan nol sehingga ada arus I 2 yang sangat kecil mengalir pada rangkaian rotor, arus I ' 2 tidak diabaikan tetapi digunakan untuk menghitung rugi rugi gesek + angin dan rugi rugi inti pada percobaan beban nol. Pada pengukuran ini didapat data-data antara lain : arus input (I 1 = I 0 ), tegangan input (V 1 = V 0 ), daya input perphasa (P 0 ) dan kecepatan poros motor ( n r0 ). Frekuensi yang digunakan untuk eksitasi adalah frekuensi sumber f. Gambar 2.23 Rangkaian pada saat beban nol I 1 = I φ R 1 jx 1 ' jx 2 R ' 2 s I φ I c I m V 1 R c Z m j X m Gambar 2.24 Rangkaian ekivalen pada saat beban nol

33 Dengan tidak adanya beban mekanis yang terhubung ke rotor dan tegangan normal diberikan ke terminal, dari gambar 2.21 didapat besar sudut phasa antara arus antara I 0 dan V 0 adalah : 1 P0 θ = 0 Cos...(2.37) V0I 0 Dimana: P 0 = P nl = daya saat beban nol perphasa V 0 = V 1 = tegangan masukan saat beban nol I 0 = I nl arus beban nol dengan P 0 adalah daya input perphasa. Sehingga besar E 1 dapat dinyatakan dengan E 1 = V 1 0⁰ ( Iφ θ0) ( R 1 + jx 1 ) (volt)... (2.38) n ro adalah kecepatan rotor pada saat beban nol. Daya yang didissipasikan oleh R c dinyatakan dengan : P c = P I R (Watt)...(2.39) R 1 didapat pada saat percobaan dengan tegangan DC. Harga R c dapat ditentukan dengan R = c E P (Ohm)...(2.40) Dalam keadaan yang sebenarnya R 1 lebih kecil jika dibandingkan dengan X m dan juga R c jauh lebih besar dari X m, sehingga impedansi yang didapat dari percobaan beban nol dianggap jx 1 dan jx m yang diserikan.

34 Z nl = I nl V 1 3 j X + X ) (Ohm)...(2.41) ( 1 m Sehingga didapat X m 1 = X 1 (ohm)...(2.42) I V nl PERCOBAAN DC Untuk memperoleh harga R 1 dilakukan dengan pengukuran DC yaitu dengan menghubungkan sumber tegangan DC (V DC ) pada dua terminal input dan arus DCnya (I DC ) lalu diukur. Di sini tidak mengalir arus rotor karena tidak ada tegangan yang terinduksi. 1. KUMPARAN HUBUNGAN WYE (Y) Gambar rangkaian ketika kumparan motor induksi tiga phasa terhubung Y, dan diberi suplai DC dapat dilihat pada Gambar 2.25 di bawah ini. a I DC R DC b + - V DC R DC c R DC Gambar 2.25 Rangkaian phasa stator saat pengukuran dc hubungan Y Harga R 1 DC dapat dihitung, untuk kumparan dengan hubungan Y, adalah sebagai berikut :

35 (Ohm)...(2.43) 2. KUMPARAN HUBUNGAN DELTA ( ) Gambar rangkaian ketika kumparan motor induksi tiga phasa terhubung delta dan diberi suplai DC, dapat dilihat pada gambar2.26 di bawah ini. IDC + - V DC RA RB RC Gambar 2.26 Rangkaian phasa stator saat pengukuran dc hubungan delta Diketahui bahwa tahanan pada kumparan pada masing masing phasa adalah sama, maka R = R = R R. Jadi gambar diatas dapat disederhanakan menjadi gambar A B C = berikut. I DC V DC RA RP I A Dimana R P = R + R B C

36 Jadi R A = V I DC A Dimana I A = I DC RP R + R A P 2 I A = I DC, maka 3 R ADC = V 2 I 3 DC DC = 3 2 V I DC DC Harga R 1 ini dinaikkan dengan faktor pengali 1,1 sampai dengan 1,5 untuk operasi arus bolak-balik, karena pada operasi arus bolak-balik resistansi konduktor meningkat karena distribusi arus yang tidak merata akibat efek kulit dan medan magnet yang melintasi alur. R1 ac k R1 DC = ( Ohm )...(2.44) Dimana k = faktor pengali, besarnya 1,1 s/d 1,5 Karena besar tahanan konduktor stator dipengaruhi oleh suhu, dan biasanya bila rugirugi motor ditentukan dengan pengukuran langsung pada motor, maka untuk mengetahui nilai tahanan yang paling mendekati, biasanya dilakukan dengan beberapa kali pengukuran dan mengambil besar rata-rata dari semua pengukuran yang dilakukan PERCOBAAN ROTOR TERTAHAN Pada pengukuran ini rotor dipaksa tidak berputar ( n r = 0, sehingga s = 1) dan kumparan stator dihubungkan dengan tegangan seimbang. Karena slip s = 1, maka pada Gambar 3.2, harga R ' 2 = R ' 2. Karena s R2 + jx 2 << R c jx m maka arus yang

37 melewati R c jx m dapat diabaikan. Sehingga rangkaian ekivalen motor induksi dalam keadaan rotor tertahan atau hubung singkat seperti ditunjukkan pada gambar 2.27 I 1 R 1 + R 2 jx 1 +jx 2 V 1 Gambar 2.27 Rangkaian ekivalen pada saat rotor tertahan (s = 1) Impedansi perphasa pada saat rotor tertahan ( Z BR ) dapat dirumuskan sebagai berikut: Z = ( = R + jx (Ohm)...(2.45) ' ' BR R1 + R2 + j X 1 + X 2 ) BR BR Pengukuran ini dilakukan pada arus mendekati arus rating motor. Data hasil pengukuran ini meliputi : arus input (I 1 = I BR ), tegangan input (V 1 = V BR ) dan daya input perphasa ( P BR = P in ). Karena adanya distribusi arus yang tidak merata pada batang rotor akibat efek kulit, harga R 2 menjadi tergantung frekuensi. Maka umumnya dalam praktek, pengukuran rotor tertahan dilakukan dengan mengurangi frekuensi eksitasi menjadi f BR untuk mendapatkan harga R 2 yang sesuai dengan frekuensi rotor pada saat slip rating. Dari data-data tersebut, harga R BR dan X BR dapat dihitung : P R BR = (Ohm)...(2.46) I BR 2 1 ' = (Ohm)...(2.47) R BR R 1 + R 2

38 V BR Z BR = (Ohm)...(2.48) I BR X BR = Z R (Ohm)...(2.49) 2 BR 2 BR Untuk menentukan harga X 1 dan X 2 digunakan metode empiris berdasarkan IEEE standar 112. hubungan X 1 dan X 2 terhadap Xbr dapat dilihat pada Tabel 3.1 Tabel 2.1 Distribusi Empiris dari Xbr Disain Kelas Motor X ' 1 X 2 A 0,5 Xbr 0,5 Xbr B 0,4 Xbr 0,6 Xbr C 0,3 Xbr 0,7 Xbr D 0,5 Xbr 0,5 Xbr Rotor Belitan 0,5 Xbr 0,5 Xbr di sini besar X BR harus disesuaikan dahulu dengan frekuensi rating f. X ' BR f = X BR (Ohm)...(2.50) f BR ' X BR ' = X 1 X 2 (Ohm)...(2.51)

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mekanis berupa tenaga putar. Dari konstruksinya, motor ini terdiri dari dua bagian

BAB II TINJAUAN PUSTAKA. mekanis berupa tenaga putar. Dari konstruksinya, motor ini terdiri dari dua bagian BAB II TINJAUAN PUSTAKA 2.1 Umum Pada umumnya motor induksi tiga fasa merupakan motor bolak-balik yang paling luas digunakan dan berfungsi untuk mengubah energi listrik menjadi energi mekanis berupa tenaga

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 Umum Motor induksi tiga fasa merupakan motor listrik arus bolak-balik yang paling banyak digunakan dalam dunia industri. Dinamakan motor induksi karena pada kenyataannya

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip.

BAB II MOTOR INDUKSI TIGA PHASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip. BAB II MOTOR INDUKSI TIGA PHASA 2.1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan putar pada stator, dengan kata lain putaran rotor

Lebih terperinci

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Motor induksi merupakan motor arus bolak-balik yang paling luas diaplikasikan dalam dunia industri dan juga dalam rumah tangga. Motor ini mempunyai banyak

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip.

BAB II MOTOR INDUKSI TIGA FASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip. BAB II MOTOR INDUKSI TIGA FASA 2.1. Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Pada motor

Lebih terperinci

PERANCANGAN DAN PEMBUATAN ALAT UJI MOTOR LISTRIK INDUKSI AC 3 FASA MENGGUNAKAN DINAMOMETER TALI (ROPE BRAKE DYNAMOMETER)

PERANCANGAN DAN PEMBUATAN ALAT UJI MOTOR LISTRIK INDUKSI AC 3 FASA MENGGUNAKAN DINAMOMETER TALI (ROPE BRAKE DYNAMOMETER) Jurnal J-ENSITEC, 01 (2014) PERANCANGAN DAN PEMBUATAN ALAT UJI MOTOR LISTRIK INDUKSI AC 3 FASA MENGGUNAKAN DINAMOMETER TALI (ROPE BRAKE DYNAMOMETER) Asep Rachmat, S.T., M.T., 1), Ade Ruhama, S.T. 2) Fakultas

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI

ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) O L E H EKO PRASETYO NIM : 0404007

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II MOTOR INDUKSI

BAB II MOTOR INDUKSI BAB II MOTOR INDUKSI 2.1 Umum Motor-motor listrik pada dasarnya digunakan sebagai sumber beban untuk menjalankan alat-alat tertentu atau membantu manusia dalam menjalankan pekerjaannya sehari-hari, terutama

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

BAB II TINJAUAN PUSTAKA 2. 1 Motor Induksi Tiga Fasa Motor induksi tiga fasa merupakan motor listrik arus bolak-balik yang paling banyak digunakan dalam dunia industri. Dinamakan motor induksi karena pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating BAB II TINJAUAN PUSTAKA 2.1 Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya berasal

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB MOTOR NDUKS SATU PHASA.1. Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran medan

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA Wendy Tambun, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Umum 1 Motor induksi merupakan motor arus bolak-balik (AC) yang paling BAB II TINJAUAN PUSTAKA banyak digunakan. Penamaannya berasal dari kenyataan bahwa arus rotor motor ini bukan diperoleh dari sumber

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Motor Induksi 13 Motor listrik yang paling umum digunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan.

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan. MESIN ASINKRON A. MOTOR LISTRIK Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron, dengan dua standar global yakni IEC dan NEMA. Motor asinkron IEC berbasis metrik (milimeter),

Lebih terperinci

ANALISIS PERBANDINGAN TORSI START

ANALISIS PERBANDINGAN TORSI START ANALISIS PERBANDINGAN TORSI START DAN ARUS START,DENGAN MENGGUNAKAN METODE PENGASUTAN AUTOTRAFO, STAR DELTA DAN DOL (DIRECT ON LINE) PADA MOTOR INDUKSI 3 FASA (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum )

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) Makruf Abdul Hamid,Panusur S M L Tobing Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja BAB II DASAR TEORI 2.1 Mesin arus searah 2.1.1. Prinsip kerja Motor listrik arus searah merupakan suatu alat yang berfungsi mengubah daya listrik arus searah menjadi daya mekanik. Motor listrik arus searah

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA Ali Sahbana Harahap, Raja Harahap, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Induksi 1 Secara umum motor listrik berfungsi untuk mengubah energy listrik menjadi energi mekanik yang berupa tenaga putar. Pada motor DC energi listrik diambil langsung

Lebih terperinci

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating BAB II TINJAUAN PUSTAKA 2.1. Motor Induksi Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

9/10/2015. Motor Induksi

9/10/2015. Motor Induksi 9/10/015 Motor induksi disebut juga motor tak serempak Motor Induksi Merupakan motor AC yang paling banyak dipakai di industri baik 1 phasa maupun 3 phasa Lab. istem Tenaga Lab. istem Tenaga Keuntungan

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang

BAB II DASAR TEORI. 2.1 Umum. Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang BAB II DASAR TEORI 2.1 Umum Motor induksi tiga fasa rotor belitan merupakan salah satu mesin ac yang berfungsi untuk mengubah energi listrik menjadi energi mekanis. Motor induksi terdiri atas bagian stasioner

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

I. Maksud dan tujuan praktikum pengereman motor induksi

I. Maksud dan tujuan praktikum pengereman motor induksi I. Maksud dan tujuan praktikum pengereman motor induksi Mengetahui macam-macam pengereman pada motor induksi. Menetahui karakteristik pengereman pada motor induksi. II. Alat dan bahan yang digunakan Autotrafo

Lebih terperinci

Mekatronika Modul 7 Aktuator

Mekatronika Modul 7 Aktuator Mekatronika Modul 7 Aktuator Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Aktuator Listrik Tujuan Bagian ini memberikan informasi mengenai karakteristik dan penerapan

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan BAB I PENDAHULUAN 1.1 Latar Belakang Motor listrik sudah menjadi kebutuhan kita sehari-hari untuk menggerakkan peralatan dan mesin yang membantu perkerjaan. Untuk itu sangatlah erat kaitannya antara motor

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

BAB III PENDAHULUAN 3.1. LATAR BELAKANG

BAB III PENDAHULUAN 3.1. LATAR BELAKANG 20 BAB III PENDAHULUAN 3.1. LATAR BELAKANG Motor induksi merupakan motor listrik arus bolak balik (AC) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah

BAB II DASAR TEORI. 2.1 Umum. Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah BAB II DASAR TEORI 2.1 Umum Motor arus searah (motor DC) ialah suatu mesin yang berfungsi mengubah tenaga listrik arus searah ( listrik DC ) menjadi tenaga gerak atau tenaga mekanik, dimana tenaga gerak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Induksi Tiga Fasa Motor listrik berfungsi untuk mengubah energi listrik menjadi energi mekanik yang berupa tenaga putar. Motor listrik terdiri dari dua bagian yang sangat

Lebih terperinci

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN Momentum, Vol. 10, No. 2, Oktober 2014, Hal. 62-68 ISSN 0216-7395 PERANCANGAN PARAMETER PADA MOTOR INDUKSI TIGA FASA TIPE ROTOR BELITAN UNTUK PENINGKATAN UNJUK KERJA Tejo Sukmadi Jurusan Teknik Elektro

Lebih terperinci

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT USU

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

TUGAS PERTANYAAN SOAL

TUGAS PERTANYAAN SOAL Nama: Soni Kurniawan Kelas : LT-2B No : 19 TUGAS PERTANYAAN SOAL 1. Jangkar sebuah motor DC tegangan 230 volt dengan tahanan 0.312 ohm dan mengambil arus 48 A ketika dioperasikan pada beban normal. a.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

TUGAS AKHIR PENGENDALIAN TEGANGAN MOTOR INDUKSI TIGA PHASA SEBAGAI GENERATOR (MISG) PADA SETIAP PERUBAHAN BEBAN O L E H

TUGAS AKHIR PENGENDALIAN TEGANGAN MOTOR INDUKSI TIGA PHASA SEBAGAI GENERATOR (MISG) PADA SETIAP PERUBAHAN BEBAN O L E H TUGAS AKHIR PENGENDALIAN TEGANGAN MOTOR INDUKSI TIGA PHASA SEBAGAI GENERATOR (MISG) PADA SETIAP PERUBAHAN BEBAN O L E H RUDIANTO SINAGA NIM : 03 040 075 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed BAB II TINJAUAN PUSTAKA 2.1 Kajian Pustaka Dalam tugas akhir ini, penulis memaparkan empat penelitian terdahulu yang relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed Drive

Lebih terperinci

Mesin AC. Motor Induksi. Dian Retno Sawitri

Mesin AC. Motor Induksi. Dian Retno Sawitri Mesin AC Motor Induksi Dian Retno Sawitri Pendahuluan Mesin induksi digunakan sebagai motor dan generator. Namun paling banyak digunakan sebagai motor. MI merupakan perangkat penting di industri Kebanyakan

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

Mesin AC. Dian Retno Sawitri

Mesin AC. Dian Retno Sawitri Mesin AC Dian Retno Sawitri Pendahuluan Mesin AC terdiri dari Motor AC dan Generator AC Ada 2 tipe mesin AC yaitu Mesin Sinkron arus medan magnet disuplai oleh sumber daya DC yang terpisah Mesin Induksi

Lebih terperinci

DAVID H. SIRAIT NIM :

DAVID H. SIRAIT NIM : ANALISIS STARTING MOTOR INDUKSI TIGA PHASA PADA PT. BERLIAN UNGGAS SAKTI TJ. MORAWA TUGAS AKHIR Diajukan untuk memenuhi salah satu persyaratan dalam Menyelesaikan Pendidikan Sarjana Ekstensi pada Departemen

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor DC) adalah mesin yang merubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

Bahan Kuliah Mesin-mesin Listrik II

Bahan Kuliah Mesin-mesin Listrik II Bahan Kuliah Mesin-mesin Listrik II Pada motor satu fasa terdapat dua belitan stator, yaitu belitan fasa utama (belitan U 1 -U 2 ) dan belitan fasa bantu (belitan Z 1 -Z 2 ), Belitan utama menggunakan

Lebih terperinci

Politeknik Negeri Sriwijaya

Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Umum Generator sinkron (alternator) adalah mesin listrik yang digunakan untuk mengubah energi mekanik menjadi energi listrik dengan perantara induksi medan magnet. Perubahan

Lebih terperinci

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik)

Pengenalan Sistem Catu Daya (Teknik Tenaga Listrik) Prinsip dasar dari sebuah mesin listrik adalah konversi energi elektromekanik, yaitu konversi dari energi listrik ke energi mekanik atau sebaliknya dari energi mekanik ke energi listrik. Alat yang dapat

Lebih terperinci