Studi Pengaruh Panjang Bentangan Bebas terhadap Panjang Span Efektif, Defleksi dan Frekuensi Natural Free Span Pipa Bawah Laut

Ukuran: px
Mulai penontonan dengan halaman:

Download "Studi Pengaruh Panjang Bentangan Bebas terhadap Panjang Span Efektif, Defleksi dan Frekuensi Natural Free Span Pipa Bawah Laut"

Transkripsi

1 Studi Pengaruh Panjang Bentangan Bebas terhadap Panjang Span Efektif, Defleksi dan Frekuensi Natural Free Span Pipa Bawah Laut Nurman Firdaus, Yoyok Setyo Hadiwidodo dan Hasan Ikhwani Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 6 firdaus.norman.oe@gmail.com Abstrak Bentangan bebas yang diakibatkan oleh scouring dasar laut atau bathimetri tidak merata, dapat menimbulkan karakteristik panjang dan kedalaman (gap) span segmen pipa yang berbeda-beda. Faktor lingkungan yang mempengaruhi secara signifikan terhadap bentangan bebas pipa bawah laut adalah beban hidrodinamis akibat gelombang dan arus Selain itu, bentangan bebas juga dipengaruhi oleh faktor jenis tipe tanah yang menumpu struktur pipa. Tujuan penelitian ini untuk mengetahui pengaruh panjang bentangan bebas pipa terhadap panjang span efektif, defleksi dan frekuensi natural yang ditimbulkan. Jumlah bentangan yang dianalisa dalam studi ini sebanyak 7 bentangan bebas. Panjang span aktual ini hasil seleksi dari panjang span maksimum yang diijinkan. Perhitungan parameter kekakuan tanah menggunakan variasi koefisien jenis tipe tanah liat very soft, soft, firm dan stiff. Hasil secara umum, panjang span aktual berbanding lurus dengan panjang span efektif dan defleksi. Perbedaan panjang span aktual tidak terlalu signifikan mempengaruhi nilai frekuensi natural arah getaran crossflow. Berbeda frekuensi natural arah getaran inline, berbanding lurus dengan panjang tiap bentangannya.. Kata Kunci Bentangan Bebas, Defleksi Span. Frekuensi Natural, Panjang Span efektif, pipeline. P I. PENDAHULUAN IPA bawah laut merupakan teknologi transportasi yang digunakan untuk mengangkut produk hidrokarbon seperti crude oil, gas alam bertekanan tinggi, dan condensate yang realatif rendah. Fluida yang dibawa subsea pipeline dalam jumlah besar dan jarak yang jauh, s erta dilewatkan melalui jalur dasar laut laut atau lepas pantai. Pipa bawah laut dapat bekerja selama 4 jam sehari, 365 hari dalam setahun atau selama umur pipa yang bisa mencapai 3 tahun atau bahkan lebih.[] Karena mahalnya konstruksi subsea pipeline, maka perlunya desain dan analisis yang baik agar konstruksi tersebut dapat diinstalasi dan beroperasi dengan baik sesuai tujuannya. Jalur subsea pipeline yang sudah terpasang di seabed akan memiliki beberapa permasalahan geo-hazards dan faktor lingkungan yang berdampak pada kerusakan pipa. Salah satu dampak yang bisa menimbulkan kerusakan yaitu terjadinya defleksi pada pipa yang diakibatkan oleh adanya bentangan bebas pipa di seabed. Free span yang terjadi akan menimbulkan gerakan osilasi pipa, sehingga menyebabkan kegagalan struktur pipa pada saat tertentu, jika freekuensi vortex shedding yang terjadi melebihi frekuensi natural pipa.[] Free span pada pipeline dapat terjadi ketika kehilangan sambungan antara pipeline dan dasar laut, hingga memiliki jarak tertentu.[3] Panjang span aktul yang terjadi di lapangan seharusnya tidak melebihi panjang span yang diijinkan. Aliran gelombang dan arus disekitar pipa silinder yang terbentang akan menghasilkan gerakan vortices (turbulent flow). Gerakan vortices di atas dan bawah pipa menghasilkan gaya getaran pada bentangan pipa tersebut. Getaran ini yang menyebabkan timbulnya frekuensi vortex shedding. Sehingga, pipa bawah laut akan mengalami kegagalan jika frekuensi natual pipa beresonansi dengan frekuensi vortex. Kegagalan ini akan mempengaruhi retakan pada concrete coating. Permasalahan bentangan yang terdapat di dasar laut memiliki karakteristik yang cukup komplek. Faktor lingkungan seperti kondisi arus, gelombang, tanah ikut berkontribusi pada kegagalan free span pipa bawah laut. Faktor tersebut akan mempengaruhi stabilitas pipa selama beroperasi. Beberapa panjang bentangan bebas segmen pipa bawah laut yang terjadi di lapangan dapat mempengaruhi batas aman struktur dari panjang span yang diijinkan. Untuk itu akan dikaji sejauh mana beberapa panjang bentangan bebas yang diijinkan terhadap panjang span efektif, defleksi dan frekuensi natural yang ditimbulkan. A. Pengumpulan Data II. URAIAN PENELITIAN Data yang digunakan untuk analisa studi ini yaitu menggunakan data pipa dan data lingkungan dari Chevron Indonesia Company Kalimantan Operations.[4] Data pipa meliputi data desain pipa dan data properties pipa yang sesuai dengan tipe materialnya. Sedangkan data lingkungan meliputi data arus, data gelombang serta data tanah. Kode standar yang digunakan dalam analisa menggunakan kode DNV RP F-5 tahun 6. B. Bentangan Bebas Subsea Pipeline Free span merupakan suatu kondisi dimana jalur pipa terdapat suatu bentangan (gap) dengan dasar laut (seabed) yang nantinya memiliki potensi bahaya baik terhadap pipa tersebut maupun kondisi instalasi bawah laut yang mendukungnya. Free span pada pipa bawah laut terjadi ketika kontak antara pipa dan seabed hilang dan memiliki jarak pada permukaan seabed.[] Ancaman dan bahaya yang disebabkan oleh free span diantaranya terganggunya stabilitas jalur pipa yang nantinya menimbulkan pipa mengalami stress dan terjadi bending. Analisa free span akan menghasilkan panjang bentangan yang diijinkan, agar tegangan pipa yang mengalami free span tidak melebihi

2 tegangan yield material pipa. Aliran dari gelombang dan arus yang timbul di sekitar pipa, akan memunculkan pusaran yang menghasilkan distribusi tekanan. Pusaran ini menghasilkan osilasi/getaran pada pipa. Jika frekuensi dari pusaran ini mendekati frekuensi natural pipa, maka terjadi resonansi, dan inilah yang menyebabkan kele lahan pada pipa.[3] Berikut illustrasi pipa yang mengalami bentangan bebas,[5] D. Perhitungan Kecepatan Gelombang dan Arus Sesudah mendapatkan teori gelombang yang sesuai dengan kondisi gelombang di sekitar pipeline, maka dapat dilakukan perhitungan kecepatan partikel gelombang dan arus. Pada sepanjang jalur pipeline ini memiliki karakteristik kondisi lingkungan yang sama Berikut ini perhitungan kecepatan partikel air horizontal dan percepatan horizontal,[8] U O = T cosh ks sinh kd cosθ L T cosh ks sin 4 kd cosθ () u = π H cosh ks t T sinh kd sinθ + 3π H T L T cosh ks sin 4 kd sinθ (3) d = kedalaman air laut H = tinggi gelombang T = periode gelombang L = panjang gelombang = kecepatan partikel gelombang U o u t s = percepatan partikel gelombang = jarak vertikal titik yang ditinjau dari dasar laut Gambar.. Ilustrasi Bentangan Bebas pada Subsea Pipeline C. Validasi Teori Gelombang Teori gelombang menurut literatur [6], bahwa teori gelombang yang akan digunakan dalam perancangan dapat ditentukan dengan menggunakan formulasi matematika dari teori gelombang linier sebagai berikut: H gt dan d gt () Hasil dari formulasi matematika dapat disesuaikan dengan grafik daerah aplikasi teori gelombang Regions of Validity of Wave Theories, sehingga dapat diketahui teori gelombang yang akan digunakan berdasarkan data lingkungan. Berikut grafik penentuan teori gelombang,[7] Sedangkan perhitungan kecepatan arus dapat menggunakan persamaan di bawah ini,[9] U D = U + Z O D r D. ln + Z O ln Z r Z O +. sin θ curr (4) D = diameter total pipa Z o = parameter kekasaran seabed Z r = ketinggian di arus di atas seabed = kecepatan arus saat ketinggian dari dasar laut U r Setelah itu mencari kecepatan efektif gelombang dan arus yang mengenai struktur pipa yang terbentang. Perhitungannya menggunakan persamaan sebagai berikut,[6] Ue =,778 U O (D tot /Yo).86 (5) Uo = kecepatan arus/gelombang mula-mula D tot = diameter total pipa Yo = ketinggian kecepatan yang ditinjau E. Perhitungan Massa Pipa Efektif Massa pipa yang digunakan dalam analisa studi ini yaitu, menggunakan massa pipa efektif. Massa pipa efektif menjumlahkan semua lapisan pipa serta massa tambah air yang dipindahkan. Persamaan yang dapat digunakan untuk menghitung massa pipa efektif adalah [6] M eff = M ac + M c + M st + M f + M add (6) Gambar.. Grafik Region of Suitability of Wave Theories M ac = massa pipa lapisan coating M cc = massa pipa concrete M st = massa pipa baja M f = massa fluida

3 3 M add = massa pipa baja M eff = massa efektif pipa F. Perhitungan Panjang Span Efektif Bentangan bebas yang dianalisa merupakan panjang span aktual yang sudah terjadi di lapangan. Bentangan bebas pipa memiliki karakteristik panjang bentangan dan kedalaman bentangan (gap). Perhitungan panjang span efektif dari tiap panjang span aktual menggunakan code DNV RP F5, berikut persamaannya,[] L eff L s = L eff L s = 4,73,66β +,β +,63 4,73,36β +,6β +, untuk,7 (7) untuk <,7 (8) Sedangkan untuk nilai diperoleh dari persamaan yang ada di bawah ini, β = log KL 4 +CSF E pipa I pipa (9) K = kekakuan tanah vertikal atau lateral CSF = concrete stiffness factor L s = panjang bentangan bebas (span aktual) L eff = panjang span efektif = Relative stiffness parameter Pada perhitungan panjang span efektif, faktor yang berpengaruh yaitu parameter kekakuan tanah. Pada studi ini jenis tanah yang terdapat pada pipeline yang mengalami bentangan yaitu jenis tanah liat. Berikut tabel di bawah ini beberapa koefisien kekakuan tanah jenis tanah liat, Tabel. Dynamic Stiffness Factor untuk Interaksi Pipa dengan Tanah Liat Tipe clay C V (kn/m 5/ ) C L (kn/m 5/ ) C V,S (kn/m/m) Very soft Soft Firm Stiff Very stiff 95-3 Hard Sumber : DNV RP F-5, 6 G. Perhitungan Defleksi Bentangan Bebas Bentangan bebas yang terjadi di lapangan akan mengakibatkan lendutan di tengah struktur pipa bawah laut yang terbentang. Perkiraan defleksi yang terjadi pada free span dapat menggunakan persamaan dibawah ini, δ = C 6 x q x L 4 eff x E pipa x I pi pa x +CSF C 6 = konstata ujung span P cr = euler buckling load S eff = gaya aksial pada pipa q = beban pipa E pipa = modulus elastisitas pipa baja I pipa = momen inersia pipa + S eff P cr () = defleksi H. Perhitungan Frekuensi Natural Free Span Analisa berikutnya yaitu untuk mengetahui frekuensi natural tiap bentangan bebas. Parameter frekuensi natural sangat penting untuk dianalisa, karena frekuensi natural dapat beresonansi dengan frekuensi vortex shedding. Resonansi dapat menimbulkan kegagalan struktur pipa, jika nilai frekuensi natural struktur lebih kecil dari frekuensi vortex shedding. Berikut ini persamaan yang digunakan dalam menentukan frekuensi natural bentangan, f n = C x + CSF x Epipa x Ipipa Mef f x Leff x + Seff C, C 3 = konstata ujung span f n = frekuensi natural bentangan = diameter total pipa D tot Pcr III. METODE + C 3 x δ Dtot () Berdasarkan studi yang telah dilakukan, pipa yang digunakan untuk penelitian yaitu jaringan pipa bawah laut Chevron Indonesia Company dan berlokasi di selat makasar. Secara umum langkah perhitungan studi ini dapat dijelaskan sebagai berikut:. Melakukan perhitungan kecepatan partikel air akibat gelombang, berdasarkan teori gelombang pada Gambar yang sesuai dengan data gelombang.. Menghitung kecepatan arus yang terjadi pada ketinggian diameter dari dasar laut. 3. Menghitung kecepatan partikel air efektif dan kecepatan arus efektif yang mengenai pipa. 4. Menghitung massa efektif pipa bawah laut. 5. Menghitung parameter kekakuan tanah dinamis pada lokasi pipeline yang mengalami bentangan. Besarnya parameter kekakuan tanah arah vertikal atau lateral dapat dicari menggunakan persamaan (). K L /V = c L /V x 3 x M ratio + 3 x D tot () Perhitungan specified massa rasio pada persamaan () dapat ditentukan dengan persamaan dibawah ini, M ratio = M struktur (3) M bouy dengan: K L/V = parameter kekakuan tanah arah vertikal atau lateral = koefisien kekakuan tanah arah vertikal atau lateral C L/V M ratio = specified massa rasio M struktur = massa pipa struktur M bouy = massa buoyancy pipa 6. Menghitung relative stiffness parameter sesuai dengan arah getaran inline dan crossflow. 7. Dari perhitungan point 6 dapat dihitungan panjang span efektif dengan arah getaran inline dan crossflow. 8. Menghitung euler buckling load dan gaya aksial pada pipa bawah laut dengan menggunakan persamaan di bawah ini, P cr = + CSF C π E pipa I pipa /L eff (4) S eff = H eff p i A i A s E Tα e (5)

4 4 dengan: C = konstata ujung span H eff = tegangan sisa lay pi = internal pressure difference As = luasan permukaan pipa baja T = perbedaan temperatur e = temperature expansion coefficient 9. Dari perhitungan point 8 dapat ditentukan nilai defleksi arah inline dan crossflow yang terjadi bentangan bebas yang terdapat pipa bawah laut.. Menghitung frekuensi natural arah inline dan crossflow pipa bawah laut yang mengalami bentangan bebas. Pada perhitungan di atas dimaksudkan untuk memperoleh pengaruh tiap panjang bentangan bebas yang terjadi terhadap nilai panjang span efektif, defleksi dan frekuensi natural, semua perhitungan dilakukan pengulangan dengan menggunakan variasi jenis tanah liat very soft, soft, firm dan stiff. IV. HASIL DAN DISKUSI Hasil-hasil yang disajikan studi ini dalam bentuk grafik hubungan panjang bentangan bebas dengan panjang span efektif, hubungan panjang bentangan dengan defleksi dan hubungan panjang bentangan bebas dengan frekuensi natural pipa. adapun hasil semua perhitungan disajikan dalam bentuk grafik seperti pada Gambar 3, 4, 5, 6, 7, dan 8. Panjang Span Efeektif (m) Panjang Span Efeektif (m) dengan Panjang Span Efektif Arah Inline 4.6 Gambar. 3. Hubungan Panjang Span Aktual dengan Panjang Span Efektif Arah Getaran Inline dengan Panjang Span Efektif Arah Crossflow 4.6 Gambar.4. Hubungan Panjang Span Aktual dengan Panjang Span Efektif Arah Getaran Crossflow Pada Gambar 3 dan 4 dengan menggunakan variasi koefisien kekakuan tanah jenis tipe tanah liat. Untuk nilai koefisien kekakuan tanah baik arah getaran inline maupun crossflow jika semakin besar, maka nilai panjang span efektifnya semakin kecil. Panjang span efektif arah inline lebih besar dari pada panjang span efektif arah crossflow. Dengan demikian, panjang span efektif terpanjang terjadi pada tanah liat jenis very soft dan terpendek pada jenis stiff. Pada tiap panjang bentangan bebas, semakin panjang bentangan maka semakin besar nilai panjang span efektif. Dengan variasi jenis tipe tanah liat, semua grafik menunjukkan trend yang sama. Defleksi (m) Defleksi (m) dengan Defleksi Arah Inline 4.6 Gambar. 5. Hubungan Panjang Span Aktual dengan Defleksi Arah Getaran Inline dengan Defleksi Arah Crossflow 4.6 Gambar. 6. Hubungan Panjang Span Aktual dengan Defleksi Arah Getaran Crossflow Untuk nilai defleksi dari tiap jeni tipe tanah maka nilai terbesarnya terdapat pada jenis tanah liat tipe very soft. Hal ini dipengaruhi oleh panjang span efektif. Dari grafik tersebut dapat dilihat, semakin besar panjang bentangan bebas yang terjadi maka semakin besar defleksi yang ditimbulkan. Semua variasi tipe tanah liat menujukkan bentuk yang sama. Gambar 4 dan 5 menunjukkan nilai defleksi yang berbeda, defleksi pada arah getaran inline lebih kecil dari pada arah getaran crossflow. Perbedaan ini diakibatkan oleh beban yang diterima pipa dari masing-masing arah getaran. Jadi, pengaruh panjang bentangan sangat signifikan terhadap defleksi yang ditimbulkan.

5 5 Frekuensi (Hz) Frekuensi (Hz) Gambar. 7. Hubungan Panjang Span Aktual dengan Frekuensi Natural Arah Getaran Inline dengan Frekuensi Natural Arah Inline 4.6 dengan Frekuensi Natural Arah Crossflow 4.6 Gambar. 8. Hubungan Panjang Span Aktual dengan Frekuensi Natural Arah Getaran Crossflow Pada Gambar 7 dan 8 menunjukkan bentuk grafik yang cukup berbeda, maka dari itu kondisi frekuensi natural untuk arah getaran inline berbeda dengan arah getaran crossflow pada kondisi bentangan yang semakin panjang. Untuk arah inline, semakin besar panjang bentangan maka semakin kecil nilai frekuensi natural. Pada arah ini bentuk grafik semua jenis tipe tanah liat memiliki trend yang sama. Frekuensi natural semakin kecil jika nilai kekakuan tanah semakin kecil. Untuk arah getaran crossflow, nilai frekuensi natural mulai turun dari panjang bentangan m sampai m. Dan frekuensi mulai naik ketika panjang bentangan m sampai m. frekuensi natural dipengaruhi oleh keseimbangan nilai panjang span efektif dan defleksi bentangan. Hubungan variasi jenis tipe tanah liat dengan semakin panjang bentangannya tidak konstan. Tipe stiff memiliki nilai terbesar dengan rentang panjang bentangan m sampai m. Dan tipe ini menjadi nilai terkecil mulai panjang bentangan sampai m. Jadi untuk arah getaran crossflow, semakin panjang bentangan tidak terlalu berpengaruh signifikan. span efektif dan defleksi yang ditimbulkan. Selain itu, jenis tipe tanah liat juga ikut mempengaruhi nilai panjang span efektif dan defleksi bentangan bebas pipa. Frekuensi natural bentangan bebas arah getaran inline masih dipengaruhi oleh panjang tiap bentangannya. Tetapi frekuensi natural arah getaran crossflow tidak terlalu dipengaruhi oleh bentangan bebas. Kedalaman dasar laut dan tekanan yang diterima oleh pipa bawah laut dianggap konstan. Padahal kondisi kedalaman mempengaruhi faktor hidrodinamis pada pipa, sedangkan tekanan yang diterima pipa di lapangan sangat fluktuatif. UCAPAN TERIMA KASIH Penulis mengucapkan terima kasih kepada Bapak Yoyok Setyo H. dan Bapak Hasan Ikhwani selaku dosen Pembimbing yang telah banyak member arahan dan membantu dalam pengerjaan studi ini. Kemudian karyawan Chevron Indonesia Company yang telah memberikan informasi kasus studi Serta tidak terlepas dari bantuan serta dorongan moral maupun material dari banyak pihak baik secara langsung maupun tidak langsung. DAFTAR PUSTAKA [] Soegiono. 7. Pipa Bawah Laut. Airlangga Univertsity Press. Surabaya. [] Guo, B. 5. Offshore Pipeline. Elsevier. New York. [3] Bay, Y. 3. Pipelines And Risers. Elsevier. New York. [4] Chevron Indoensia Company. 3. Data Kerja Praktek. Kerja Praktek. Balikpapan [5] Xu, T., Lauridsen, B., Bay, Y Wave Induced Fatigue of Multi Span Pipelines. Marine Structures. Vol., hal [6] Mousselli, A. H. 98. Offshore Pipeline Design, Analysis, and Methods. Penn Well book. Oklahoma [7] Le Mehaute, B An Introduction to Hydrodynamics and Water Waves, Springer-Verlag. New York. [8] Chakrabarti, S.K Hydrodynamics of Offshore Structures. Computional Mechanics Publication. London. [9] Det Norske Veritas Recommended Practices F9.. Recommended Practices for On-Bottom Stability Design of Submarine Pipelines. Det Norske Veritas, Norway. [] Det Norske Veritas Recommended Practices F5. 6. Recommended Practices for Free Spanning Pipelines. Det Norske Veritas, Norway V. KESIMPULAN/RINGKASAN Dari studi ini dapat disimpulkan bahwa panjang bentangan bebas semakin besar mempengaruhi panjang

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) G-189

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) G-189 JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-189 Analisis On-Bottom Stability Offshore Pipeline pada Kondisi Operasi: Studi Kasus Platform SP menuju Platform B1C/B2c PT.

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) G-249

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print) G-249 JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: 2337-3539 (2301-9271 Print) G-249 Analisis On-Bottom Stability dan Local Buckling: Studi Kasus Pipa Bawah Laut dari Platform Ula Menuju Platform Uw Clinton

Lebih terperinci

Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi)

Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi) JURNAL TEKNIK ITS Vol. 1, No. 1, (Sept. 2012) ISSN: 2301-9271 G-247 Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi) Muhammad

Lebih terperinci

LOGO PERBANDINGAN ANALISA FREE SPAN MENGGUNAKAN DNV RP F-105 FREESPANING PIPELINE DENGAN DNV 1981 RULE FOR SUBMARINE PIPELINE

LOGO PERBANDINGAN ANALISA FREE SPAN MENGGUNAKAN DNV RP F-105 FREESPANING PIPELINE DENGAN DNV 1981 RULE FOR SUBMARINE PIPELINE PERBANDINGAN ANALISA FREE SPAN MENGGUNAKAN DNV RP F-105 FREESPANING PIPELINE DENGAN DNV 1981 RULE FOR SUBMARINE PIPELINE DIAN FEBRIAN 4309 100 034 JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT

Lebih terperinci

METODOLOGI DAN TEORI Metodologi yang digunakan dalam studi ini dijelaskan dalam bentuk bagan alir pada Gambar 2.

METODOLOGI DAN TEORI Metodologi yang digunakan dalam studi ini dijelaskan dalam bentuk bagan alir pada Gambar 2. ANALISIS FATIGUE PADA PIPA BAWAH LAUT PGN SSWJ Adietra Rizky Ramadhan1 dan Muslim Muin, Ph.D.2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung Jalan Ganesha

Lebih terperinci

Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi)

Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi) JURNAL SAINS AN SENI POMITS Vol. 1, No. 1, (2012) 1-6 1 Analisis Pengaruh Scouring Pada Pipa Bawah Laut (Studi Kasus Pipa Gas Transmisi SSWJ Jalur Pipa Gas Labuhan Maringgai Muara Bekasi) Muhammad Catur

Lebih terperinci

DESAIN DAN ANALISIS FREE SPAN PIPELINE

DESAIN DAN ANALISIS FREE SPAN PIPELINE DESAIN DAN ANALISIS FREE SPAN PIPELINE Nur Khusnul Hapsari 1 dan Rildova 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung Jalan Ganesha 10 Bandung 40132

Lebih terperinci

1.1 LATAR BELAKANG BAB

1.1 LATAR BELAKANG BAB BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG Indonesia merupakan salah satu negara yang kaya akan sumber daya alam (SDA). Sebagian besar dari wilayah kepulauan Indonesia memiliki banyak cadangan minyak bumi dan

Lebih terperinci

PENDEKATAN NUMERIK KAJIAN RESIKO KEGAGALAN STRUKTUR SUBSEA PIPELINES PADA DAERAH FREE-SPAN

PENDEKATAN NUMERIK KAJIAN RESIKO KEGAGALAN STRUKTUR SUBSEA PIPELINES PADA DAERAH FREE-SPAN PENDEKATAN NUMERIK KAJIAN RESIKO KEGAGALAN STRUKTUR SUBSEA PIPELINES PADA DAERAH FREE-SPAN Ahmad Syafiul Mujahid 1), Ketut Buda Artana 2, dan Kriyo Sambodo 2) 1) Jurusan Teknik Sistem dan Pengendalian

Lebih terperinci

BAB. 1.1 Umum ANALISIS FREE SPAN PIPA BAWAH LAUT 1-1 BAB 1 PENDAHULUAN

BAB. 1.1 Umum ANALISIS FREE SPAN PIPA BAWAH LAUT 1-1 BAB 1 PENDAHULUAN BAB 1 PENDAHULUAN 1.1 Umum Minyak bumi, gas alam, logam merupakan beberapa contoh sumberdaya mineral yang sangat penting dan dibutuhkan bagi manusia. Dan seperti yang kita ketahui, negara Indonesia merupakan

Lebih terperinci

STUDI KASUS PENGARUH VORTEX INDUCED VIBRATION PADA FREESPAN PIPA PERTAMINA HULU ENERGI-OFFSHORE NORTH WEST JAVA

STUDI KASUS PENGARUH VORTEX INDUCED VIBRATION PADA FREESPAN PIPA PERTAMINA HULU ENERGI-OFFSHORE NORTH WEST JAVA 1 STUDI KASUS PENGARUH VORTEX INDUCED VIBRATION PADA FREESPAN PIPA PERTAMINA HULU ENERGI-OFFSHORE NORTH WEST JAVA Senna Andyanto Putra, Ir. Imam Rochani,M.Sc dan Ir. Hasan Ikhwani, M.Sc. Jurusan Teknik

Lebih terperinci

PERHITUNGAN UMUR LELAH FREESPAN MENGGUNAKAN DNV RP F-105 TENTANG FREESPANNING PIPELINES TAHUN 2002

PERHITUNGAN UMUR LELAH FREESPAN MENGGUNAKAN DNV RP F-105 TENTANG FREESPANNING PIPELINES TAHUN 2002 PERHITUNGAN UMUR LELAH FREESPAN MENGGUNAKAN DNV RP F-105 TENTANG FREESPANNING PIPELINES TAHUN 2002 Dian Febrian, Hasan Ikhwani, Yoyok Setyo Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi

Lebih terperinci

Sidang Tugas Akhir (MO ) Oleh Muhammad Catur Nugraha

Sidang Tugas Akhir (MO ) Oleh Muhammad Catur Nugraha Sidang Tugas Akhir (MO 091336) Oleh Muhammad Catur Nugraha 4308 100 065 JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA Judul Tugas Akhir Analisa Pengaruh

Lebih terperinci

Dosen Pembimbing: Dr.Ir. Wisnu Wardhana, SE, M.Sc. Prof.Ir.Soegiono

Dosen Pembimbing: Dr.Ir. Wisnu Wardhana, SE, M.Sc. Prof.Ir.Soegiono Presentasi Tugas Akhir Analisis Fatigue pada Konfigurasi Pipa Penyalur dengan Berbagai Variasi Sudut Kemiringan Akibat Pengaruh Vortex Induced Vibration Moh.Hafid 4305100080 Dosen Pembimbing: Dr.Ir. Wisnu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Offshore Pipeline merupakan pipa sangat panjang yang berfungsi untuk mendistribusikan fluida (cair atau gas) antar bangunan anjungan lepas pantai ataupun dari bangunan

Lebih terperinci

ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER

ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER ANALISA STABILITAS SUBSEA CROSSING GAS PIPELINE DENGAN SUPPORT PIPA BERUPA CONCRETE MATTRESS DAN SLEEPER (Studi Kasus Crossing Pipa South Sumatera West Java (SSWJ) milik PT.Perusahaan Gas Negara (Persero)

Lebih terperinci

Analisa Integritas Pipa Milik Joint Operation Body Saat Instalasi

Analisa Integritas Pipa Milik Joint Operation Body Saat Instalasi 1 Analisa Integritas Pipa Milik Joint Operation Body Saat Instalasi Alfaric Samudra Yudhanagara (1), Ir. Imam Rochani, M.Sc (2), Prof. Ir. Soegiono (3) Teknik Kelautan, Fakultas Teknologi Kelautan, Institut

Lebih terperinci

Studi Efek Kondisi-Ujung (end condition) Silinder Fleksibel terhadap Vortex-Induced Vibration

Studi Efek Kondisi-Ujung (end condition) Silinder Fleksibel terhadap Vortex-Induced Vibration LAPORAN TUGAS AKHIR Studi Efek Kondisi-Ujung (end condition) Silinder Fleksibel terhadap Vortex-Induced Vibration LATAR BELAKANG PERUMUSAN MASALAH TUJUAN MANFAAT BATASAN MASALAH METODOLOGI ANALISA DAN

Lebih terperinci

Ir. Imam Rochani, M,Sc. Prof. Ir. Soegiono

Ir. Imam Rochani, M,Sc. Prof. Ir. Soegiono Analisa Integritas Pipa milik Joint Operation Body Pertamina- Petrochina East Java saat Instalasi Oleh Alfariec Samudra Yudhanagara 4310 100 073 Dosen Pembimbing Ir. Imam Rochani, M,Sc. Prof. Ir. Soegiono

Lebih terperinci

STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE

STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE 1 STUDI PARAMETER PENGARUH TEMPERATUR, KEDALAMAN TANAH, DAN TIPE TANAH TERHADAP TERJADINYA UPHEAVAL BUCKLING PADA BURRIED OFFSHORE PIPELINE Saiful Rizal 1), Yoyok S. Hadiwidodo. 2), dan Joswan J. Soedjono

Lebih terperinci

ANALISA STABILITAS PIPA BAWAH LAUT DENGAN METODE DNV RP F109 : STUDI KASUS PROYEK INSTALASI PIPELINE

ANALISA STABILITAS PIPA BAWAH LAUT DENGAN METODE DNV RP F109 : STUDI KASUS PROYEK INSTALASI PIPELINE ANALISA STABILITAS PIPA BAWAH LAUT DENGAN METODE DNV RP F109 : STUDI KASUS PROYEK INSTALASI PIPELINE DARI PLATFORM EZA MENUJU PLATFORM URA SEPANJANG 7.706 KM DI LAUT JAWA Rahmat Riski (1), Murdjito (2),

Lebih terperinci

ANALISIS ON-BOTTOM STABILITY PIPA BAWAH LAUT PADA KONDISI SLOPING SEABED

ANALISIS ON-BOTTOM STABILITY PIPA BAWAH LAUT PADA KONDISI SLOPING SEABED JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-11 1 ANALISIS ON-BOTTOM STABILITY PIPA BAWAH LAUT PADA KONDISI SLOPING SEABED Oktavianus Kriswidanto, Yoyok Setyo Hadiwidodo dan Imam Rochani Jurusan Teknik

Lebih terperinci

INSTITUT TEKNOLOGI BANDUNG

INSTITUT TEKNOLOGI BANDUNG ANALISIS FREE SPAN UNTUK PIPELINE DI BAWAH LAUT STUDI KASUS: PIPELINE DI AREA HANG TUAH TUGAS SARJANA Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh Ahmad Arif 13104042 PROGRAM

Lebih terperinci

Kata Kunci: Estimasi Scouring, variasi tipe tanah, instalasi pipa jalur Poleng-Gresik.

Kata Kunci: Estimasi Scouring, variasi tipe tanah, instalasi pipa jalur Poleng-Gresik. Analisa Scouring Pipa Bawah Laut Kodeco Jalur Poleng-Gresik Dengan Variasi Tipe Tanah (Adi Nugroho 1), Wahyudi 2), Suntoyo 3) ) 1 Mahasiswa Teknik Kelautan, 2,3 Staf Pengajar Teknik Kelautan, FTK ITS Jurusan

Lebih terperinci

DESAIN DAN ANALISIS TEGANGAN PIPELINE CROSSING

DESAIN DAN ANALISIS TEGANGAN PIPELINE CROSSING DESAIN DAN ANALISIS TEGANGAN PIPELINE CROSSING Jessica Rikanti Tawekal 1 dan Krisnaldi Idris Program StudiTeknikKelautan FakultasTeknikSipildanLingkungan, InstitutTeknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

UJIAN P3 TUGAS AKHIR 20 JULI 2010

UJIAN P3 TUGAS AKHIR 20 JULI 2010 UJIAN P3 TUGAS AKHIR 20 JULI 2010 ANALISA RISIKO TERHADAP PIPA GAS BAWAH LAUT KODECO AKIBAT SCOURING SEDIMEN DASAR LAUT OLEH : REZHA RUBBYANTO 4306.100.026 DOSEN PEMBIMBING : 1. Dr. Ir. Wahyudi, M. Sc

Lebih terperinci

H 2 ANALISA INSTALASI PIPA POLYETHYLENE BAWAH LAUT DENGAN METODE S-LAY. Riki Satrio Nugroho (1), Yeyes Mulyadi (2), Murdjito (3)

H 2 ANALISA INSTALASI PIPA POLYETHYLENE BAWAH LAUT DENGAN METODE S-LAY. Riki Satrio Nugroho (1), Yeyes Mulyadi (2), Murdjito (3) ANALISA INSTALASI PIPA POLYETHYLENE BAWAH LAUT DENGAN METODE S-LAY Riki Satrio Nugroho (), Yeyes Mulyadi (), Murdjito () Mahasiswa Teknik Kelautan,, Staf Pengajar Teknik Kelautan Abstrak Karakteristik

Lebih terperinci

ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT

ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT ANALISIS MID-POINT TIE-IN PADA PIPA BAWAH LAUT Mulyadi Maslan Hamzah (mmhamzah@gmail.com) Program Studi Magister Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Jl Ganesha

Lebih terperinci

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE DESAIN DAN ANALISIS TEGANGAN PADA SISTEM OFFSHORE PIPELINE AKIBAT PENGARUH BEBAN ARUS DAN GELOMBANG LAUT DI PT. PERTAMINA (PERSERO) UNIT PENGOLAHAN VI BALONGAN MENGGUNAKAN METODE ELEMEN HINGGA *Felix Wahyu

Lebih terperinci

ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT

ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT ABOVE WATER TIE IN DAN ANALISIS GLOBAL BUCKLING PADA PIPA BAWAH LAUT Diyan Gitawanti Pratiwi 1 Dosen Pembimbing : Rildova, Ph.D Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut

Lebih terperinci

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi 1 Analisa Tegangan pada Pipa yang Memiliki Sumuran Berbentuk Limas dengan Variasi Kedalaman Muhammad S. Sholikhin, Imam Rochani, dan Yoyok S. Hadiwidodo Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan,

Lebih terperinci

BAB IV DATA SISTEM PERPIPAAN HANGTUAH

BAB IV DATA SISTEM PERPIPAAN HANGTUAH BAB IV DATA SISTEM PERPIPAAN HANGTUAH 4.1. Sistem Perpipaan 4.1.1. Lokasi Sistem Perpipaan Sistem perpipaan yang dianalisis sebagai studi kasus pada tugas akhir ini adalah sistem perpipaan milik Conoco

Lebih terperinci

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa?

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa? PENDAHULUAN Korosi yang menyerang sebuah pipa akan berbeda kedalaman dan ukurannya Jarak antara korosi satu dengan yang lain juga akan mempengaruhi kondisi pipa. Dibutuhkan analisa lebih lanjut mengenai

Lebih terperinci

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa BAB IV PEMBAHASAN Pada bab ini akan dilakukan analisis studi kasus pada pipa penyalur yang dipendam di bawah tanah (onshore pipeline) yang telah mengalami upheaval buckling. Dari analisis ini nantinya

Lebih terperinci

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline Sidang Tugas Akhir Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline HARIONO NRP. 4309 100 103 Dosen Pembimbing : 1. Dr. Ir. Handayanu, M.Sc 2. Yoyok Setyo H.,ST.MT.PhD

Lebih terperinci

Analisa Tegangan pada Vertical Subsea Gas Pipeline Akibat Pengaruh Arus dan Gelombang Laut dengan Metode Elemen Hingga

Analisa Tegangan pada Vertical Subsea Gas Pipeline Akibat Pengaruh Arus dan Gelombang Laut dengan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: 2337-3539 (2301-9271 Print) G-15 Analisa Tegangan pada Vertical Subsea Gas Pipeline Akibat Pengaruh Arus dan Gelombang Laut dengan Metode Elemen Hingga Rafli

Lebih terperinci

DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH LAUT

DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH LAUT LABORATORIUM KEANDALAN DAN KESELAMATAN JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SIDANG HASIL P3 DESAIN BASIS DAN ANALISIS STABILITAS PIPA GAS BAWAH

Lebih terperinci

Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi

Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-10 1 Optimasi konfigurasi sudut elbow dengan metode field cold bend untuk pipa darat pada kondisi operasi Yopy Hendra P., Daniel M Rosyid, dan Yoyok S Hadiwidodo

Lebih terperinci

Kajian Buoyancy Tank Untuk Stabilitas Fixed Offshore Structure Tipe Tripod Platform saat Kinerja Pondasi Pile Menurun

Kajian Buoyancy Tank Untuk Stabilitas Fixed Offshore Structure Tipe Tripod Platform saat Kinerja Pondasi Pile Menurun JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-5 1 Kajian Buoyancy Tank Untuk Stabilitas Fixed Offshore Structure Tipe Tripod Platform saat Kinerja Pondasi Menurun Herdanto Praja Utama, Wisnu Wardana dan

Lebih terperinci

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE

ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE ANALISA KONFIGURASI PIPA BAWAH LAUT PADA ANOA EKSPANSION TEE Oleh: WIRA YUDHA NATA 4305 100 014 JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 ANALISA

Lebih terperinci

NAJA HIMAWAN

NAJA HIMAWAN NAJA HIMAWAN 4306 100 093 Ir. Imam Rochani, M.Sc. Ir. Hasan Ikhwani, M.Sc. ANALISIS PERBANDINGAN PERANCANGAN PADA ONSHORE PIPELINE MENGGUNAKAN MATERIAL GLASS-REINFORCED POLYMER (GRP) DAN CARBON STEEL BERBASIS

Lebih terperinci

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM PERPIPAAN LEPAS PANTAI UNTUK SPM 250,000 DWT

DESAIN DAN ANALISIS TEGANGAN PADA SISTEM PERPIPAAN LEPAS PANTAI UNTUK SPM 250,000 DWT Available online at Website http://ejournal.undip.ac.id/index.php/rotasi DESAIN DAN ANALISIS TEGANGAN PADA SISTEM PERPIPAAN LEPAS PANTAI UNTUK SPM 250,000 DWT *Toni Prahasto a, Djoeli Satrijo a, I Nyoman

Lebih terperinci

ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER AKIBAT PENGARUH GELOMBANG ACAK

ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER AKIBAT PENGARUH GELOMBANG ACAK ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER AKIBAT PENGARUH GELOMBANG ACAK Muhammad Aldi Wicaksono 1) Pembimbing : Krisnaldi Idris, Ph.D 2) Program Studi Teknik Kelautan Fakultas Teknik

Lebih terperinci

PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR

PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR P3 PIPELINE STRESS ANALYSIS PADA ONSHORE DESIGN JALUR PIPA BARU DARI CENTRAL PROCESSING AREA(CPA) JOB -PPEJ KE PALANG STATION DENGAN PENDEKATAN CAESAR II P3 PIPELINE STRESS ANALYSIS ON THE ONSHORE DESIGN

Lebih terperinci

ANALISA PROTEKSI KATODIK DENGAN MENGGUNAKAN ANODA TUMBAL PADA PIPA GAS BAWAH TANAH PT. PUPUK KALIMANTAN TIMUR DARI STASIUN KOMPRESSOR GAS KE KALTIM-2

ANALISA PROTEKSI KATODIK DENGAN MENGGUNAKAN ANODA TUMBAL PADA PIPA GAS BAWAH TANAH PT. PUPUK KALIMANTAN TIMUR DARI STASIUN KOMPRESSOR GAS KE KALTIM-2 JURNAL TEKNIK POMITS Vol. 2, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) 1 ANALISA PROTEKSI KATODIK DENGAN MENGGUNAKAN ANODA TUMBAL PADA PIPA GAS BAWAH TANAH PT. PUPUK KALIMANTAN TIMUR DARI STASIUN

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) 1 JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 Analisa Stabilitas Crossing Pipeline antara Trunk Line Petronas dengan Existing Line Kodeco Energy Novella Musya 1), Imam

Lebih terperinci

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II

Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II 1 Analisa Rancangan Pipe Support Sistem Perpipaan dari Pressure Vessel ke Air Condenser Berdasarkan Stress Analysis dengan Pendekatan CAESAR II Andis Dian Saputro dan Budi Agung Kurniawan Jurusan Teknik

Lebih terperinci

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk

BAB I PENDAHULUAN. kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk BAB I PENDAHULUAN Sistem Perpipaan merupakan bagian yang selalu ada dalam industri masa kini, misalnya industri gas dan pengilangan minyak. Salah satu cara untuk mentransportasikan fluida adalah dengan

Lebih terperinci

ANALISA BUCKLING PADA SAAT INSTALASI PIPA BAWAH LAUT: STUDI KASUS SALURAN PIPA BARU KARMILA - TITI MILIK CNOOC DI OFFSHORE SOUTH EAST SUMATERA

ANALISA BUCKLING PADA SAAT INSTALASI PIPA BAWAH LAUT: STUDI KASUS SALURAN PIPA BARU KARMILA - TITI MILIK CNOOC DI OFFSHORE SOUTH EAST SUMATERA ANALISA BUCKLING PADA SAAT INSTALASI PIPA BAWAH LAUT: STUDI KASUS SALURAN PIPA BARU KARMILA - TITI MILIK CNOOC DI OFFSHORE SOUTH EAST SUMATERA Armando Rizaldy 1, Hasan Ikhwani 2, Sujantoko 2 1. Mahasiswa

Lebih terperinci

ANALISA RESIKO PENGGELARAN PIPA PENYALUR BAWAH LAUT Ø 6 INCH

ANALISA RESIKO PENGGELARAN PIPA PENYALUR BAWAH LAUT Ø 6 INCH Jurnal Tugas Akhir ANALISA RESIKO PENGGELARAN PIPA PENYALUR BAWAH LAUT Ø 6 INCH (Nourmalita Afifah 1), Jusuf Sutomo ), Daniel M.Rosyid 3) ) Jurusan Teknik Kelautan Fakultas Teknologi Kelautan Institute

Lebih terperinci

Perancangan Dermaga Pelabuhan

Perancangan Dermaga Pelabuhan Perancangan Dermaga Pelabuhan PENDAHULUAN 1. Latar Belakang Kompetensi mahasiswa program sarjana Teknik Kelautan dalam perancangan dermaga pelabuhan Permasalahan konkret tentang aspek desain dan analisis

Lebih terperinci

ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER PADA LAUT DALAM

ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER PADA LAUT DALAM ANALISIS RISER INTERFERENCE KONFIGURASI STEEL CATENARY RISER PADA LAUT DALAM Gilang Muhammad Gemilang dan Krisnaldi Idris, Ph.D Program Studi Sarjana Teknik Kelautan, FTSL, ITB gmg_veteran@yahoo.com Kata

Lebih terperinci

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline

Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline Bab V Analisis Tegangan, Fleksibilitas, Global Buckling dan Elekstrostatik GRP Pipeline 5.1 Analisis Tegangan dan Fleksibilitas Analisis tegangan dan fleksibilitas pipeline ini dilakukan dengan menggunakan

Lebih terperinci

4. PERILAKU TEKUK BAMBU TALI Pendahuluan

4. PERILAKU TEKUK BAMBU TALI Pendahuluan 4. PERILAKU TEKUK BAMBU TALI 4.1. Pendahuluan Dalam bidang konstruksi secara garis besar ada dua jenis konstruksi rangka, yaitu konstruksi portal (frame) dan konstruksi rangka batang (truss). Pada konstruksi

Lebih terperinci

Jurnal Teknika Atw 1

Jurnal Teknika Atw 1 PENGARUH BENTUK PENAMPANG BATANG STRUKTUR TERHADAP TEGANGAN DAN DEFLEKSI OLEH BEBAN BENDING Agung Supriyanto, Joko Yunianto P Program Studi Teknik Mesin,Akademi Teknologi Warga Surakarta ABSTRAK Dalam

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 Latar Belakang Pemasangan Struktur di Pantai Kerusakan Pantai pengangkutan Sedimen Model

Lebih terperinci

Dosen Pembimbing: 1. Ir. Imam Rochani, M.Sc. 2. Ir. Handayanu, M.Sc., Ph.D.

Dosen Pembimbing: 1. Ir. Imam Rochani, M.Sc. 2. Ir. Handayanu, M.Sc., Ph.D. Sidang Tugas Akhir (P3) Surabaya, 7 Agustus 2014 PERANCANGAN RISER DAN EXPANSION SPOOL PIPA BAWAH LAUT: STUDI KASUS KILO FIELD PT. PERTAMINA HULU ENERGI OFFSHORE NORTHWEST JAVA Oleh: Hidayat Wusta Lesmana

Lebih terperinci

Analisa Resiko Penggelaran Pipa Penyalur Bawah Laut Ø 6 inch

Analisa Resiko Penggelaran Pipa Penyalur Bawah Laut Ø 6 inch Analisa Resiko Penggelaran Pipa Penyalur Bawah Laut Ø 6 inch Oleh : NOURMALITA AFIFAH 4306 100 068 Dosen Pembimbing : Ir. Jusuf Sutomo, M.Sc Prof. Ir. Daniel M. Rosyid, Ph.D Agenda Presentasi : Latar Belakang

Lebih terperinci

Perancangan Riser dan Expansion Spool Pipa Bawah Laut: Studi Kasus Kilo Field Pertamina Hulu Energi Offshore North West Java

Perancangan Riser dan Expansion Spool Pipa Bawah Laut: Studi Kasus Kilo Field Pertamina Hulu Energi Offshore North West Java PAPER TUGAS AKHIR 1 Perancangan Riser dan Expansion Spool Pipa Bawah Laut: Studi Kasus Kilo Field Pertamina Hulu Energi Offshore North West Java Hidayat Wusta Lesmana, Imam Rochani, Handayanu Jurusan Teknik

Lebih terperinci

Analisa Penyebab Terjadinya Upheaval buckling pada Pipeline 16" dan Corrective action

Analisa Penyebab Terjadinya Upheaval buckling pada Pipeline 16 dan Corrective action JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 Analisa Penyebab Terjadinya Upheaval buckling pada Pipeline 16" dan Corrective action Fahmi Fazlur Rahman, Wisnu Wardhana, Yoyok Setyo Hadiwidodo Jurusan

Lebih terperinci

Beban hidup yang diperhitungkan pada dermaga utama adalah beban hidup merata, beban petikemas, dan beban mobile crane.

Beban hidup yang diperhitungkan pada dermaga utama adalah beban hidup merata, beban petikemas, dan beban mobile crane. Bab 4 Analisa Beban Pada Dermaga BAB 4 ANALISA BEBAN PADA DERMAGA 4.1. Dasar Teori Pembebanan Dermaga yang telah direncanakan bentuk dan jenisnya, harus ditentukan disain detailnya yang direncanakan dapat

Lebih terperinci

Optimasi Konfigurasi Sudut Stinger dan Kedalaman Laut dengan Local Buckling Check

Optimasi Konfigurasi Sudut Stinger dan Kedalaman Laut dengan Local Buckling Check 1 Optimasi Konfigurasi Sudut Stinger dan Kedalaman Laut dengan Local Buckling Check Desak Made Ayu, Daniel M. Rosyid, dan Hasan Ikhwani Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1 Perhitungan Ketebalan Minimum ( Minimum Wall Thickess) Dari persamaan 2.13 perhitungan ketebalan minimum dapat dihitung dan persamaan 2.15 dan 2.16 untuk pipa bending

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15 Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk

Lebih terperinci

BAB III METODE DAN ANALISIS INSTALASI

BAB III METODE DAN ANALISIS INSTALASI BAB III METODE DAN ANALISIS INSTALASI 3.1 UMUM Metode instalasi pipeline bawah laut telah dikembangkan dan disesuaikan dengan kondisi lingkungan pada saat proses instalasi berlangsung, ketersediaan dan

Lebih terperinci

Jurnal Tugas Akhir. Analisis Operabilitas Instalasi Pipa dengan Metode S-Lay pada Variasi Kedalaman Laut

Jurnal Tugas Akhir. Analisis Operabilitas Instalasi Pipa dengan Metode S-Lay pada Variasi Kedalaman Laut Analisis Operabilitas Instalasi Pipa dengan Metode S-Lay pada Variasi Kedalaman Laut Bondan Lukman Halimi (1), Wisnu Wardhana (2), Imam Rochani (3) 1 Mahasiswa Teknik Kelautan, 2,3 Staf Pengajar Teknik

Lebih terperinci

Analisa Variable Moment of Inertia (VMI) Flywheel pada Hydro-Shock Absorber Kendaraan

Analisa Variable Moment of Inertia (VMI) Flywheel pada Hydro-Shock Absorber Kendaraan B-542 JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) Analisa Variable Moment of Inertia (VMI) Flywheel pada Hydro-Shock Absorber Kendaraan Hasbulah Zarkasy, Harus Laksana Guntur

Lebih terperinci

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13

Laporan Tugas Akhir BAB II DASAR TEORI. 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa. 5th failure July 13 BAB II DASAR TEORI 2.1 Lokasi dan kondisi terjadinya kegagalan pada sistem pipa 4th failure February 13 1st failure March 07 5th failure July 13 2nd failure Oct 09 3rd failure Jan 11 Gambar 2.1 Riwayat

Lebih terperinci

VII. KOLOM Definisi Kolom Rumus Euler untuk Kolom. P n. [Kolom]

VII. KOLOM Definisi Kolom Rumus Euler untuk Kolom. P n. [Kolom] VII. KOOM 7.1. Definisi Kolom Kolom adalah suatu batang struktur langsing (slender) yang dikenai oleh beban aksial tekan (compres) pada ujungnya. Kolom yang ideal memiliki sifat elastis, lurus dan sempurna

Lebih terperinci

ANALISIS NUMERIK CATENARY MOORING TUNGGAL

ANALISIS NUMERIK CATENARY MOORING TUNGGAL ANALISIS NUMERIK CATENARY MOORING TUNGGAL Kenindra Pranidya 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Jl Ganesha 10 Bandung 40132

Lebih terperinci

ANALISIS KEKUATAN PIPA BAWAH LAUT TERHADAP KEMUNGKINAN KECELAKAAN AKIBAT TARIKAN JANGKAR KAPAL

ANALISIS KEKUATAN PIPA BAWAH LAUT TERHADAP KEMUNGKINAN KECELAKAAN AKIBAT TARIKAN JANGKAR KAPAL 1 ANALISIS KEKUATAN PIPA BAWAH LAUT TERHADAP KEMUNGKINAN KECELAKAAN AKIBAT TARIKAN JANGKAR KAPAL Muhammad R. Prasetyo, Wisnu Wardhana, Handayanu Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut

Lebih terperinci

DASAR TEORI PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

DASAR TEORI PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM BAB II DASAR TEORI PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM 2.1. UMUM Pada bab ini akan dijelaskan dasar teori perhitungan yang digunakan dalam keseluruhan tahap pendesainan, seperti

Lebih terperinci

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print) F 132

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print) F 132 JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) F 132 Pemodelan dan Analisa Reduksi Respon Getaran Translasi pada Sistem Utama dan Energi Listrik yang Dihasilkan oleh Mekanisme

Lebih terperinci

Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga

Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-183 Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga Ardianus, Septia Hardy Sujiatanti,

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping.

BAB I PENDAHULUAN. Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di. Offshore, semuanya mempunyai dan membutuhkan Piping. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah. Didalam sebuah Plant, entah itu LNG Plant, Petrochemical Plant, Fertilizer Plant, Nuclear Plant, Geothermal Plant, Gas Plant, baik di On-Shore maupun di Offshore,

Lebih terperinci

ANALISIS DINAMIKA STRUKTUR DAN DESAIN STRUKTUR BAGIAN ATAS DERMAGA PONTON DI BABO, PAPUA

ANALISIS DINAMIKA STRUKTUR DAN DESAIN STRUKTUR BAGIAN ATAS DERMAGA PONTON DI BABO, PAPUA ANALISIS DINAMIKA STRUKTUR DAN DESAIN STRUKTUR BAGIAN ATAS DERMAGA PONTON DI BABO, PAPUA PENDAHULUAN Rakhman Santoso 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan,

Lebih terperinci

ANALISA KEKUATAN ULTIMAT PADA KONSTRUKSI DECK JACKET PLATFORM AKIBAT SLAMMING BEBAN SLAMMING GELOMBANG

ANALISA KEKUATAN ULTIMAT PADA KONSTRUKSI DECK JACKET PLATFORM AKIBAT SLAMMING BEBAN SLAMMING GELOMBANG ANALISA KEKUATAN ULTIMAT PADA KONSTRUKSI DECK JACKET PLATFORM AKIBAT SLAMMING BEBAN SLAMMING GELOMBANG Moch.Ibnu Hardiansah*1, Murdjito*2, Rudi Waluyo Prastianto*3 1) Mahasiswa Jurusan Teknik Kelautan,

Lebih terperinci

Analisis Dampak Scouring Pada Integritas Jacket Structure dengan Pendekatan Statis Berbasis Keandalan

Analisis Dampak Scouring Pada Integritas Jacket Structure dengan Pendekatan Statis Berbasis Keandalan JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Print) G-191 Analisis Dampak Scouring Pada Integritas Jacket Structure dengan Pendekatan Statis Berbasis Keandalan Edit Hasta Prihantika,

Lebih terperinci

ESTIMASI KEDALAMAN SCOURING PADA JALUR PIPA BAWAH LAUT DI PERAIRAN TUBAN, JAWA TIMUR

ESTIMASI KEDALAMAN SCOURING PADA JALUR PIPA BAWAH LAUT DI PERAIRAN TUBAN, JAWA TIMUR ESTIMASI KEDALAMAN SCOURING PADA JALUR PIPA BAWAH LAUT DI PERAIRAN TUBAN, JAWA TIMUR Hasan Ikhwani Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan Institut Teknologi Sepuluh November (ITS) Surabaya

Lebih terperinci

PERHITUNGAN GAYA LATERAL DAN MOMEN YANG BEKERJA PADA JACKET PLATFORM TERHADAP GELOMBANG AIRY DAN GELOMBANG STOKES

PERHITUNGAN GAYA LATERAL DAN MOMEN YANG BEKERJA PADA JACKET PLATFORM TERHADAP GELOMBANG AIRY DAN GELOMBANG STOKES PERHITUNGAN GAYA LATERAL DAN MOMEN YANG BEKERJA PADA JACKET PLATFORM TERHADAP GELOMBANG AIRY DAN GELOMBANG STOKES Selvina NRP: 1221009 Pembimbing: Olga Catherina Pattipawaej, Ph.D. ABSTRAK Aktivitas bangunan

Lebih terperinci

BAB IV DATA DAN ANALISA

BAB IV DATA DAN ANALISA BAB IV DATA DAN ANALISA Penelitian ini dilakukan untuk mengetahui karakteristik dinamik dari komposit hybrid serat karbon dan serat gelas yang diwakili oleh frekuensi natural dan rasio redaman. Pengujian

Lebih terperinci

BAB 3 DESKRIPSI KASUS

BAB 3 DESKRIPSI KASUS BAB 3 DESKRIPSI KASUS 3.1 UMUM Anjungan lepas pantai yang ditinjau berada di Laut Jawa, daerah Kepulauan Seribu, yang terletak di sebelah Utara kota Jakarta. Kedalaman laut rata-rata adalah 89 ft. Anjungan

Lebih terperinci

ANALISA DESAIN SISTEM SS IMPRESSED CURRENT CATHODIC PROTECTION (ICCP) PADA OFFSHORE PIPELINE MILIK JOB PERTAMINA PETROCHINA EAST JAVA

ANALISA DESAIN SISTEM SS IMPRESSED CURRENT CATHODIC PROTECTION (ICCP) PADA OFFSHORE PIPELINE MILIK JOB PERTAMINA PETROCHINA EAST JAVA ANALISA DESAIN SISTEM SS IMPRESSED CURRENT CATHODIC PROTECTION (ICCP) PADA OFFSHORE PIPELINE MILIK JOB PERTAMINA PETROCHINA EAST JAVA OLEH : Rizky Ayu Trisnaningtyas 4306100092 DOSEN PEMBIMBING : 1. Ir.

Lebih terperinci

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul

5ton 5ton 5ton 4m 4m 4m. Contoh Detail Sambungan Batang Pelat Buhul Sistem Struktur 2ton y Sambungan batang 5ton 5ton 5ton x Contoh Detail Sambungan Batang Pelat Buhul a Baut Penyambung Profil L.70.70.7 a Potongan a-a DESAIN BATANG TARIK Dari hasil analisis struktur, elemen-elemen

Lebih terperinci

KAJI NUMERIK DAN EKSPERIMENTAL LENDUTAN BALOK BAJA KARBON ST 60 DENGAN TUMPUAN ENGSEL - ROL

KAJI NUMERIK DAN EKSPERIMENTAL LENDUTAN BALOK BAJA KARBON ST 60 DENGAN TUMPUAN ENGSEL - ROL Jurnal Mekanikal, Vol. 3 No. 1: Januari 01: 1-30 ISSN 086-3403 KAJI NUMERIK DAN EKSPERIMENTAL LENDUTAN BALOK BAJA KARBON ST 60 DENGAN TUMPUAN ENGSEL - ROL Mustafa Jurusan Teknik Mesin, Fakultas Teknik,

Lebih terperinci

ANALISIS PENGARUH MARINE GROWTH TERHADAP INTEGRITAS JACKET STRUCTURE Anom Wijaya Daru 1, Murdjito 2, Handayanu 3

ANALISIS PENGARUH MARINE GROWTH TERHADAP INTEGRITAS JACKET STRUCTURE Anom Wijaya Daru 1, Murdjito 2, Handayanu 3 ANALISIS PENGARUH MARINE GROWTH TERHADAP INTEGRITAS JACKET STRUCTURE Anom Wijaya Daru 1, Murdjito 2, Handayanu 3 1 Mahasiswa Teknik Kelautan ITS, 2,3 Staf pengajar Teknik Kelautan ITS Abstrak Analisis

Lebih terperinci

Desain Basis dan Analisis Stabilitas Pipa Gas Bawah Laut

Desain Basis dan Analisis Stabilitas Pipa Gas Bawah Laut 1 Desain Basis dan Analisis Stabilitas Pipa Gas Bawah Laut Himawan Khalid Prabowo, Ketut Buda Artana, dan M. Badruz Zaman Jurusan Teknik Sistem, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh

Lebih terperinci

Gambar 3.1 Upheaval Buckling Pada Pipa Penyalur Minyak di Riau ± 21 km

Gambar 3.1 Upheaval Buckling Pada Pipa Penyalur Minyak di Riau ± 21 km BAB III STUDI KASUS APANGAN 3.1. Umum Pada bab ini akan dilakukan studi kasus pada pipa penyalur minyak yang dipendam di bawa tana (onsore pipeline). Namun karena dibutukan untuk inspeksi keadaan pipa,

Lebih terperinci

Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga

Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-282 Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga Zaki Rabbani, Achmad Zubaydi, dan Septia

Lebih terperinci

BAB 2 DASAR TEORI DESAIN DASAR TEORI DESAIN

BAB 2 DASAR TEORI DESAIN DASAR TEORI DESAIN 2 DASAR TEORI DESAIN 2.1 Umum Dalam mengerjakan desain suatu jalur pipa bawah laut, langkah pertama yang harus diperhatikan adalah pemilihan rute yang akan dilalui oleh jalur pipa (routing). Ada berbagai

Lebih terperinci

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340 JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: 2301-9271 G-340 Analisa Pengaruh Variasi Tanggem Pada Pengelasan Pipa Carbon Steel Dengan Metode Pengelasan SMAW dan FCAW Terhadap Deformasi dan Tegangan

Lebih terperinci

DEFORMASI BALOK SEDERHANA

DEFORMASI BALOK SEDERHANA TKS 4008 Analisis Struktur I TM. IX : DEFORMASI BALOK SEDERHANA Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada prinsipnya tegangan pada balok

Lebih terperinci

ANALISA FREESPAN AKIBAT SCOURING PIPA BAWAH LAUT

ANALISA FREESPAN AKIBAT SCOURING PIPA BAWAH LAUT ANALISA FREESPAN AKIBAT SCOURING PIPA BAWAH LAUT Studi Kasus ry Gas Pipeline dari HESS (Indinesia-Pangkah) Ltd yang menghubungkan WellHead Platform-A di perairan Madura menuju Gresik Onshore Processing

Lebih terperinci

2.1 TEORI GELOMBANG LINEAR

2.1 TEORI GELOMBANG LINEAR BAB TEORI DASAR.1 TEORI GELOMBANG LINEAR Dalam suatu analisis perencanaan bangunan atau struktur yang berhubungan dengan laut, maka Teori Gelombang Linear merupakan asumsi atau penyederhanaan atas analisis

Lebih terperinci

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2] BAB II TEORI DASAR 2.1. Metode Elemen Hingga Analisa kekuatan sebuah struktur telah menjadi bagian penting dalam alur kerja pengembangan desain dan produk. Pada awalnya analisa kekuatan dilakukan dengan

Lebih terperinci

Analisis Sloshing 2D pada Dinding Tangki Tipe Membran Kapal LNG Akibat Gerakan Rolling di Gelombang Regular

Analisis Sloshing 2D pada Dinding Tangki Tipe Membran Kapal LNG Akibat Gerakan Rolling di Gelombang Regular G8 Analisis Sloshing 2D pada Dinding Tangki Tipe Membran Kapal LNG Akibat Gerakan Rolling di Gelombang Regular Ericson Estrada Sipayung, I Ketut Suastika, Aries Sulisetyono Jurusan Teknik Perkapalan, Fakultas

Lebih terperinci

RESPONS DINAMIK JACKET STEEL PLATFORM AKIBAT GELOMBANG LAUT DENGAN RIWAYAT WAKTU

RESPONS DINAMIK JACKET STEEL PLATFORM AKIBAT GELOMBANG LAUT DENGAN RIWAYAT WAKTU RESPONS DINAMIK JACKET STEEL PLATFORM AKIBAT GELOMBANG LAUT DENGAN RIWAYAT WAKTU Hans Darwin Yasin NRP : 0021031 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN

Lebih terperinci

EFISIENSI KEBUTUHAN MATERIAL PADA PERENCANAAN PORTAL TAHAN GEMPA WILAYAH 4 DENGAN EFISIENSI BALOK

EFISIENSI KEBUTUHAN MATERIAL PADA PERENCANAAN PORTAL TAHAN GEMPA WILAYAH 4 DENGAN EFISIENSI BALOK EFISIENSI KEBUTUHAN MATERIAL PADA PERENCANAAN PORTAL TAHAN GEMPA WILAYAH 4 DENGAN EFISIENSI BALOK Mochamad Solikin 1*, Agung Prabowo 2, dan Basuki 3 1,2,3 Program Studi Teknik Sipil, Fakultas Teknik, Universitas

Lebih terperinci

Bab IV TI T ANG G MENDUKU K NG G BE B BA B N LATERAL

Bab IV TI T ANG G MENDUKU K NG G BE B BA B N LATERAL Bab IV TIANG MENDUKUNG BEBAN LATERAL Tiang mendukung beban lateral Fondasi tiang dirancang untuk mendukung : 1. Beban vertikal 2. Beban horisontal atau lateral seperti : beban angin, tekanan tanah lateral,

Lebih terperinci