BAB III TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III TINJAUAN PUSTAKA"

Transkripsi

1 14 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Pusat listrik tenaga gas dan uap (PLTGU) atau dikenal juga dengan Combine Cycle Power Plant (Pusat Listrik dengan Siklus Gabungan) ada merupakan gabungan antau PLTG dan PLTU. Gas panas keluar turbin gas yang suhunya relatif tinggi, (500 o C) digunakan untuk memnaskan air dan memproduksi uap yang kemudian digunakan untuk mendorong sudu-sudu turbin generator untuk menghasilkan listrik. Dengan demikian diperoleh effisien gabungan yang lebih tinggi dibandingkan effisiensi masing-masing PLTU maupun PLTG. Proses pemanasan air dan pembentukan uap terjadi di Heat Recovery Steam Generator (HRSG) yang berfungsi menggantikan boiler seperti pada PLTU. HRSG sebagai penukar kalor, akan memindahkan panas yang terkandung dalam gas bekas ke air dan uap. Karena sebagai penukar kalor, HRSG harus memiliki luasan yang besar untuk menangkap sebagian besar panas (Kurniawan, 2014). Untuk memenuhi tujuan tersebut, konstruksi HRSG terdiri dari pipa-pipa yang dilengkapi sirip diseluruh luasannya. Gambar 3.1 Susunan PLTGU (Sumber: Rahmat Kurniawan, 2014)

2 15 Didalam PLTGU terjadi dua siklus sekaligus. Siklus udara dan gas panas yang berlangsung di dalam turbin gas atau yang lebih dikenal dengan siklus Brayton. Gambar 3.2 Siklus Brayton dalam diagram p-v dan t-s. (Sumber: Sunarwo, 2015) Secara ideal prinsip kerja pada turbin gas mengikuti siklus Brayton. Dimana dapat diketahui dari diagram bahwa: 1 2 : Kompresi isentropis. 2 3 : Penambahan panas pada tekanan konstan. 3 4 : Ekspansi isentropis. 4 1 : Pembuangan panas pada tekanan tetap. Udara atmosfer dihisap masuk ke dalam kompresor dan dinaikkan tekanannya. Selanjutnya udara tersebut 95% mengalir ke dalam ruang bakar dan sisanya digunakan untuk mendinginkan sudu turbin. Kemudian di dalam ruang bakar (combustor), terjadi penambahan panas pada tekanan konstan. Udara yang masuk ke dalam combustor dibagi menjadi dua, 30% disebut sebagai udara primer yang digunakan untuk proses pembakaran dan sebagian lagi, 15% digunakan sebagai pencampur dan penurunan suhu nyala api. Sehingga nyala api tidak membakar sudu turbin. Disebabkan oleh pemanasan yang terjadi di ruang bakar, maka udara dari kompresor memulai atau berekspansi. Sehingga menghasilkan kecepatan yang tinggi dan mampu mendorong sudu turbin gas. Tenaga mekanik yang dihasilkan sebagian besar digunakan untuk memutar kompresor dan sisanya digunakan untuk menghasilkan listrik. Lalu gas panas keluar turbin dibuang kembang ke atmosfer (Sunarwo, 2015).

3 Prinsip Kerja PLTG Prinsip Kerja PLTG Sebagai mesin pembangkit, PLTG memerlukan alat pemutar awal (Starting Device) untuk menjalankannya. Starting Device dapat berupa mesin diesel, motor listrik, motorgenerator atau udara. Fungsi dari Starting Device adalah untuk memutar kompresor pada saat start up untuk menghasilkan udara bertekanan sebelum masuk ke ruang pembakaran (combustion chamber). Awalnya, udara dimasukkan ke fdalam kompressor untuk ditekan hingga temperatur dan tekanannya naik. Proses ini disebut dengan kompresi. Udara yang di hasilkan dari kompressor akan digunakan sebagai udara pembakaran dan juga untuk mendinginkan bagian-bagian turbin gas.setelah itu, udara dialirkan ke ruang bakar. Di dalam ruang bakar,udara bertekanan 13kg/cm2 ini dicampur dengan bahan bakar kemudian di bakar. Teknik mencampur bahan bakar dengan udara dalam ruang bakar sangat mempengaruhi efisiensi pembakaran. Pembakaran bahan bakar dalam ruang bakar menghasilkan gas bersuhu tinggi sampai kira-kira 1300 ᵒC dengan tekanan 13kg/cm2. Gas hasil pembakaran ini kemudian dialirkan menuju turbin untuk disemprotkan kepada sudusudu turbin sehingga energi (enthalpy) gas ini dikonversikan menjadi energi mekanik dalam turbin penggerak generator (dan kompresor udara) sehingga generator menghasilkan energy listrik Prinsip Kerja PLTGU Prinsip kerja PLTGU Di dalam sistem turbin gas, gas panas hasil pembakaran bahan bakar dialirkan untuk memutar turbin gas sehingga menghasilkan energi mekanik yang digunakan untuk memutar generator. Gas buang dari turbin gas yang masih mengandung energi panas tinggi dialirkan ke HRSG untuk memanaskan air sehingga dihasilkan uap. Setelah diserap panasnya gas buang di buang ke atmosfir dengan temperatur yang jauh lebih rendah. Uap dari HRSG dengan tekanan dan temperatur tertentu diarahkan untuk memutar turbin uap yang dikopel dengan generator sehingga dihasilkan energi listrik. Uap bekas keluar turbin uap didinginkan didalam kondensor sehingga menjadi air kembali. Air kondensat ini dipompakan sebagai air pengisi HRSG untuk dipanaskan lagi agar berubah menjadi uap dan demikian seterusnya.

4 Mekanisme Kerja Komponen Utama PLTG & PLTGU Komponen PLTG terdiri dari: a. Inlet air filter Inlet air filter adalah komponen yang memiliki fungsi untuk menyaring udara agar kotoran tidak ikut terbawa ke dalam kompressor turbin. Dalam sebuah proses pembakaran pasti diperlukan udara pembakaran dan bahan bakar. Inlet air filter merupakan pintu masuk pertama udara yang digunakan untuk proses pembakaran pada turbin gas. Spesifikasi pada IAF PLTGU Blok 2 adalah sebagai berikut: Jumlah elevasi : 5 Jumlah filter atau elevasi : 280 (140 jenis tirus dan 140 lurus) Pembersihan filter secara otomatis dan bekerja apabila perbedaan tekanan filter mencapai 63,5 mmh2o. Pada kondisi normal baik differential pressure IAF berada pada angka 20 mmh2o, saat differential pressure mencapai 102 mmh2o maka akan ada alarm High deifferential pressure. Filter house dihubungkan ke saluran udara masuk kompressor melalui inlet silencer sebagai peredam suara berupa dinding berlubang. Dalam IAF juga terdapat implosion door. Implosion door terdapat 8 buah dimasing-masing inlet housing. Gambar 3.3 Inlet Air Filter (Sumber: PLN Corporate University, 2014) b. Kompressor Kompressor merupakan suatu alat yang digunakan untuk mengkompresikan udara untuk keperluan pembakaran yang optimum di dalam ruang bakar gar menghasilkan gas hasil pembakaran yang tepat guna. Selain itu, kompressor juga memiliki

5 18 perananyang sangat penting dalam pendinginan pada turbin (sudu - sudu turbin). Pada kompressor udara luar yang memiliki tekanan sekitar 1 atm dengan temperatur lingkungan dipaksakan memasuki ruang bakar sehingga setelah melewati kompressor temperatur dan tekanan udara menjadi naik dengan mengecilkan volume. Kompressor dihubungkan satu sumbu dengan turbin dan generator yang berputar sekitar 3000 rpm. Gambar 3.4 Kompressor Aksial (Sumber: PLN Corporate University, 2014) Ruang bakar (combustion chamber) Combustor adalah alat untuk menghasilkan pembakaran pada turbin. Combustion chamber adalah ruangan tempat terjadinya proses pembakaran. Pada turbin tipe M 701 F terdapat 20 combustion chamber (liner) yang dipasang melingkari compressor discharge. Gambar 3.5 Combustion Chumber (Sumber: PLN Corporate University, 2014) c. Turbin Gas Turbin adalah bagian untuk membangkitkan kerja mekanis poros. Tenaga potensial ( potensial energy) yang terkandung dalam gas panas dirubah menjadi tenaga kinetis (

6 19 kinetic energy) untuk mendapatkan tenaga mekanis yang berupa putaran poros. Gas dari combustion chamber mengalir melalui transition piece menuju ke sudu tetap turbin tingkat pertama. Spesifikasi turbin gas pada PT PJB UP Muara Karang Blok 2 Pabrik pembuat : Mitsubishi Heavy Industries, Ltd. Tipe : M701F3 Daya pada terminal generator : KW Kecepatan : 3000 rpm d. Generator Generator berfungsi untuk membangkitkan tenaga listrik. Generator memiliki rotor dan stator dengan adanya perpotongan medan gaya magnet pada saat rotor generator diputar, maka dihasilkanlah listrik. Spesifikasi Generator pada PT. PJB UP Muara Karang Blok 2 Pabrik pembuat : Mitsubishi Heavy Indutries, Ltd Kapasitas : kva Kecepatan : 3000 rpm Tegangan : KV Komponen PLTGU terdiri dari: a. HRSG Berfungsi untuk memanaskan air dengan menggunakan panas gas buang dari turbin gas sehingga dihasilkan uap dengan tekanan dan temperatur tertentu yang konstan. HRSG merupakan penghubung antara PLTG (siklus Brayton) dengan PLTU (siklus Rankine). Gas buang dari turbin gas yang temperaturnya masih tinggi (sekitar 550 ᵒC) dialirkan masuk ke HRSG untuk memanaskan air didalam pipa-pipa pemanas, kemudian gas buang ini dibuang ke atmosfir melalui cerobong dengan temperatur yang sudah rendah.

7 20 Gambar 3.6 HRSG (Sumber: Power Generation, 2016) b. Turbin uap Turbin uap adalah penggerak mula (prime mover) yang mengubah energi panas dalam uap menjadi energi mekanis berupa putaran poros turbin. Selanjutnya poros turbin dikopel dengan mekanisme yang digerakkan, misalnya dengan poros generator untuk menghasilkan energi listrik. Selain sebagai penggerak generator listrik, turbin uap dapat juga digunakan untuk memutar pompa, transportasi dan sebagainya. Uap untuk memutar turbin dapat diperoleh dari uap panas bumi, boiler berbahan bakar fosil, boiler nuklir atau panas buangan (waste heat) PLTG. Spesifikasi steam turbine (turbin uap) pada PT. PJB UP Muara Karang Blok 2 Pabrik pembuat : Mitsubishi Heavy Industries, Ltd. Kapasitas : KW Kecepatan : 3000 rpm

8 21 Gambar 3.7 Turbin Uap pada PT PJB UP Muara Karang Blok 2 c. Pompa Air Pengisi (feed water pump) Gambar 3.8 LP Feed Water Pump Fungsi pompa air pengisi adalah untuk menciptakan tekanan pada air pengisi dan mengalirkannya ke boiler HRSG. Jenis pompa yang digunakan adalah pompa sentrifugal, dengan tekanan stabil pada aliran yang berubah naik turun. Pompa air pengisi digerakkan oleh motor listrik melalui kopling hidrolik pengatur putaran (variable speed hydraulic coupling). d. Kondensor Kondensor adalah peralatan untuk merubah uap menjadi air. Proses perubahan nya dilakukan dengan cara mengalirkan uap kedalam suatu ruangan yang berisi pipa- pipa (tubes). Uap mengalir diluar pipa-pipa sedangkan air sebagai pendingin mengalir didalam pipa-pipa. Kondensor seperti ini disebut surface (tubes) condenser. Sebagai pendingin digunakan air sungai atau air laut. Proses perubahan uap menjadi air terjadi pada tekanan dan temperatur jenuh, dalam hal ini kondensor berada pada kondisi vakum. Karena temperatur air pendingin sama dengan temperatur udara luar, maka temperatur air kondensatnya maksimum mendekati temperatur udara luar. Apabila

9 22 laju perpindahan panas terganggu, maka akan berpengaruh terhadap tekanan dan temperatur. Spesifikasi Kondensor di PT. PJB UP Muara Karang Blok 2: Pabrik pembuat : Mitsubishi Heavy Industries, Ltd Tipe : Surface Cooling Vaccum : mmhg Luas permukaan pendingin : m2 Diameter tube : mm Jumlah tube : 6800 Material tube : Titanium Temp masuk air pendingin : 30.4 C Kapasitas : m3/h Temp uap jenuh : 40 C Gambar 3.9 Kondensor

10 23 e. Deaerator Gambar 3.10 Daerator (Sumber: PLN Corporate University, 2014) Deaerator berfungsi untuk menghilangkan oksigen dan gas yang terlarut dari air pengisi. Jenis yang digunakan adalah jenis semprot (spray type). Deaerasi awal (predeaeration) dilakukan dengan alat penyemprotan (spraying device). Pada setiap kondisi operasi, penyemprot menjamin pemanasan air kondensat hingga suhu jenuh (saturation) dan permukaan yang cukup luas untuk perpindahan masa. Karena secara praktis, kelarutan oksigen didalam air pada suhu jenuh adalah nol, sehingga oksigen yang terbawa dalam tetesan air akan terlepas dan berada bersama uap disekelilingnya. Karena uap mengkondensasi pada air, maka konsentrasi oksigen di daerah sekitar penyemprot menjadi naik sehingga memungkinkan membuang (vent out) sejumlah uap yang konsentrasi oksigennya relatif tinggi Pemeliharaan (Maintenance) Berdasarkan apa yang dijelaskan oleh (Zetra, 2014) bahwa pemeliharaan dapat dibedakan menjadi 3 yaitu: a. Preventive Maintenance Pemeliharaan pencegahan (preventive maintenance) adalah inspeksi periodic untuk mendeteksi kondisi yang mungkin menyebabkan produksi berhenti atau berkurangnya fungsi mesin dikombinasikan dengan pemeliharaan untuk menghilangkan, mengendalikan, kondisi tersebut dan mengembalikan mesin ke kondisi semula atau dengan kata lain deteksi dan penanganan diri kondisi abnormal mesin sebelum kondisi tersebut menyebabkan cacat atau kerugian. Ruang lingkup pekerjaan preventive

11 24 termasuk: inspeksi, perbaikan kecil, pelumasan dan penyetelan, sehingga peralatan atau mesin-mesin selama beroperasi terhindar dari kerusakan. b. Predictive Maintenance Predictive maintenane merupakan suatu kegiatan pemeliharaan yang dalam melakukannya dengan cara prediksi, dalam hal ini merupakan evaluasi dari perawatan berkala. Pendeteksian ini dapat dievaluasi dari indikator-indikator yang terpasang pada suatu alat dan juga dapat melakukan pengecekan vibrasi dan alignment untuk menambah data dan tindakan perbaikan selanjutnya. c. Corrective Maintenance Corrective maintenance merupakan suatu kegiatan pemeliharaan yang telah direncanakan yang didasarkan pada kelayakan waktu operasi yang telah ditentukan pada buku petunjuk alat tersebut. Pemeliharaan ini meliputi pemeriksaan, perbaikan dan penggantian terhadap setiap bagian-bagian alat yang tidak layak pakai lagi, baik karena rusak ataupun batas maksimum penggunaan yang telah ditentukan. d. Breakdown Maintenance Breakdown maintenance merupakan suatu kegiatan perbaikan yang dilakukan tanpa adanya rencana terlebih dahulu. Dimana kerusakan terjadi secara mendadak pada alat/mesin yang sedang beroperasi, sehingga mengharuskan perbaikan secara menyeluruh ataupun menggantinya Aplikasi Maintenance di Blok 2 PT. PJB UP Muara Karang Seperti kaidah maintenance yang sudah dijelaskan sebelumnya. PT PJB UP Muara Karang sebagai perusahaan pemasok listrik yang mengoperasikan perlatan yang berjalan 24 jam tentu memerlukan pemeliharaan yang baik. Berikut penerapan maintenance pada PT PJB UP Muara Karang Blok 2 HAR (Unit Pemeliharaan) Mesin. a. Preventive Maintenance Untuk menjaga kehandalan pada setiap peralatan yang beroperasi dan mencegah kerusakan perlu dilakulakn preventive maintenance. Penerapan preventive maintenance dapat dilihat dari PM check patrol yang dilakukan pada pagi dan sore hari.

12 25 Gambar 3.11 Preventive Maintenance pengecekan TCA di GT b. Corrective Maintenance Pemeliharaan ini meliputi pemeriksaan, perbaikan dan penggantian terhadap setiap bagian-bagian alat yang tidak layak pakai lagi, baik karena rusak ataupun batas maksimum penggunaan yang telah ditentukan. Gambar 3.12 Pembongkaran Sea Water Booster Pump Gambar 3.13 Pergantian Bearing Sea Water Booster Pump

13 SISTEM HEAT RECOVERY STEAM GENERATOR Sistem HRSG terdiri dari 2 tipe yakni tipe vertikal dan horisontal dan memiliki dua jenis sistem yakni tipe forced dan tipe natural. Perbedaan kedua tipe tersebut adalah ada atau tidaknya pompa yang mengalirkan air kedalam tubing. Pada PLTGU Blok 2 Menggunakan tipe vertikal dengan jenis aliran natural. Sistem kerja dari HRSG dimulai dengan air dari kondensat yang dipompakan oleh pompa kondensat menuju deaerator. Dari deaerator air dialirkan oleh dua pompa yakni pompa LP feedwater pump dan HP feedwater pump. LP feedwater pump memompakan air dengan tekanan discharge 22 kg/cm2 pada temperatur 109 menuju LP Drum. Air dari LP drum dialirkan menuju header dan masuk ke LP evaporator untuk diuapkan. Air yang masuk LP evaporator akan didorong masuk riser dan kembali menuju LP drum untuk diseparasi antara uap dan air. Air yang masih cair akan disirkulasikan menuju LP evaporator lagi, sedangkan uap air pada temperatur 152 akan dialirkan menuju LP superheater. Di LP superheater uap air dipanaskan lagi menjadi bertekanan 4.1 kg/cm2 pada temperatur 215. Kemudian uap air dialirkan menuju LP steam Header untuk memenuhi kebutuhan peralatan bantu maupun peralatan utama (turbin uap) pada tekanan 3,8 kg/cm2 dan pada temperatur 206 HP feedwater line sedikit memiliki perbedaan dengan LP feedwater line. Air yang berasal dari deaerator dipompakan oleh HP feedwater pump tidak menuju HP drum melainkan menuju HP economizer 1 pada tekanan 152 kg/cm2 dan temperatur 111 degc. Sebelum memasuki line HP economizer 1 sebagian air dari HP Feedwater pump diekstraksi sebagian untuk pendingin uap sebelum masuk ke HP superheater 2. Air yang dari HP economizer 1 dialirkan menuju HP economizer 2 sebelum dialirkan menuju HP drum pada tekanan kg/cm2 dan temperatur 280. Dari HP Drum air dialirkan menuju header dan masuk ke HP evaporator. Uap yang sudah terbentuk pada HP evaporator akan didorong oleh air dari header menuju riser untuk kembali ke HP drum. Dalam HP drum akan dilakukan separasi antara air yang masih berbentuk cair dengan uap. Air yang masih cair akan kembali mengalir menuju header dan masuk HP evaporator, sedangkan uap akan terdorong dan mengalir menuju

14 27 superheater header pada temperatur 274 dan masuk ke HP superheater 1. Dari HP superheater 1 uap air yang memiliki temperatur 420 akan mengalir melalui desuperheater untuk sedikit menurunkan temperatur menjadi 410 sebelum masuk ke HP supeheater 2. Uap keluaran dari HP superheater 2 merupakan uap kering yang bertekanan 582kg/cm2 pada temperatur 491 yang disalurkan ke HP Steam header. Kelebihan uap baik dari LP line maupun HP Line akan dibuang menuju blowdown tank. Selain kelebihan uap dari LP dan HP steam line, masing masing drum baik LP drum maupun HP drum memliki line pembuangan menuju blowdown tank untuk menjaga level air pada masing masing drum. Selain menjaga level air maupun menyalurkan kelebihan uap line line yang menuju blowdown tank juga berfungsi untuk draining apabila ditemukan kondisi air sudah tidak layak (Ghouzi, 2016). Gambar 3.14 Skema HRSG PT PJB UP Muara Karang Blok 2 (Sumber: Ghouzi, 2016) Safety Valve Sebuah Safety Valve (katup pengaman) adalah mekanisme katup untuk melepas suatu fluida secara otomatis dari HRSG, bejana tekanan, atau sistem lain ketika tekanan atau temperatur melebihi batas yang telah ditetapkan. Katup ini dirancang untuk membuka

15 28 apabila tekanan yang telah ditentukan (set pressure) tercapai dan menutup pada tekanan yang lebih rendah. Apabila tekanan pada sistem naik, permukaan katup akan terdorong ke atas oleh tekanan fluida di dalam bejana, sehinga area permukaan katup akan terbuka lebih lebar dan fluida di dalam bejana akan mengalir ke luar. Gambar 3.15 Bagian Safety Valve (Sumber: Bidang Perbengkelan Pokja Pemeliharaan, 2011). Setelah katup membuka, uap mengalir melalui celah (A) dan (B) yang kemudian akan meningkatkan tekanan pada chamber (C) dan (D). Uap kemudian akan keuar melalui pembukaan guide ring (E) dan valve body (F). Begitu tekanan fluida turun, efek reaksi juga turun dan katup bergerak ke bawah (menutup) karena tekanan pegas lebih besar dari tekanan fluida. Penutupan katup ini dibantu oleh tekanan fluida pada chamber (C) dan (D) sehingga katup dapat menutup dengan cepat. Lokasi safety valve di HRSG biasanya terdapat pada drum yang menampung air dan uap dalam jumlah besar. Ini adalah komponen paling tebal dalam sistem, dan komponen yang paling membutuhkan perlindungan terhadap tekanan meningkat di atas batas. Biasanya ada 1-6 safety valve yang tersedia di drum tergantung pada kapasitas. Seluruh bejana tekan yang didesign berdasarkan ASME maupun SNI harus dilengkapi dengan SV apapun jenisnya, asalkan sesuai dan menjadi tanggung jawab

16 29 pemakai, untuk memastikan SV tersebut telah terpasang dengan benar sebelum peralatan tersebut dioperasikan Komponen Valve.Secara umum kontruksi dari valve terdiri dari: Gambar 3.16 Komponen Valve (Sumber: Bidang Perbengkelan Pokja Pemeliharaan, 2011). Body, merupakan bagian utama dari katup. Biasanya terbuat dari besi tuang, baja campuran atau kuningan (brass). Sambungan ke pipa dapat dengan flens (dibaut) atau dilas. Spindle, berupa batang yang dihubungkan dengan disk spindle merupakan bagian katup yang dapat digerakan, terbuat dari baja stainless steel atau kuningan. Bridge atau bonet, merupakan penyangga/pemegang spindle. Staffing box atau gland packing, adalah perapat poros (spindle terhadap bodi) untuk mencegah kebocoran fluida melalui spindle. Bagian ini terbuat dari asbestos dan dilengkapi dengan gland follower (penekan packing). Handwheel, bagian katup untuk menggerakan/memutar spindle dan merubah posisi pembukaan katup. Berbentuk lingkaran atau batang.

17 30 Spade disk atau gate, adalah bagian utama katup yang dikaitkan pada spindle dan berfungsi untuk membuka, menutup atau mengatur aliran fluida. Pada sebagian katup, komponen ini diperkeras agar lebih tahan terhadap aliran fluida yang lewat Jenis Safety Valve a. Low Lift Safety Valve Safety valve yang disknya naik secara otomatis, oleh sebab itu actual discharge area ditentukan dari posisi disk. b. Full Lift Safety Valve Safety valve yang disknya naik secara otomatis, tetapi actual discharge area tidak ditentukan oleh posisi disk, tetapi ditentukan oleh flow yang melalui valve. c. Full Bore Safety Valve Jenis safety valve yang areanya diukur langsung pada body seat, saat valve disk naik. Ini disebabkan tonjolan pada bore. d. Relief Valve Valve actuatornya adalah Up Stream static Pressure jadi berlaku bukaan valve berbanding lurus dengan bertambahnya tekanan pada vessel. Relief valve adalah suatu alat pelepas tekanan yang bekerja secara otomatis yang diakibatkan oleh tekanan static pada valve. Relief valve biasanya digunakan untuk service cairan dan tidak umum digunakan untuk service steam gas atau peralatan yang memenuhi variable back pressure. Relief valve tidak pernah menggunakan lever/lifting gear. Karakteristiknya ialah bahwa seat pada valve membuka secara proporsional sesuai dengan kenaikan tekanan diatas set pressure. e. Safety Relief Valve Adalah suatu alat pelepas tekanan yang bekerja secara otomatis yang diakibatkan oleh static pada valve. Safety relief valve dapat digunakan sebagai safety valve ataupun sebagai relief valve, berfungsi sebagai safety valve bila digunakan pada gas/vapour dan berfungsi sebagai relief valve bila digunakan pada liquid service. Safety relief valve terbagi atas 2 jenis, yaitu : Jenis conventional

18 31 Gambar 3.17 Safety Relief Valve (Sumber: Bidang Perbengkelan Pokja Pemeliharaan. 2011). Safety relief valve yang dipengaruhi oleh back pressure dan dapat dilengkapi oleh back pressure dan dapat dilengkapi oleh lever/lifting gear ataupun tidak. Jenis conventional ini tidak dapat digunakan pada peralatan yang mempunyai variable back pressure. Jenis balanced Gambar 3.18 Balanced Safety Relief Valve (Sumber: Bidang Perbengkelan Pokja Pemeliharaan, 2011). Balanced/bellow safety relief valve, yaitu safety relief valve yang tidak dipengaruhi oleh back pressure. Jenis balanced ini cocok digunakan pada service yang mempunyai constant ataupun variabel back pressure seperti pada discharge pump dan peralatan dengan service yang korosif. f. Pressure Relief Valve Pressure Relief Valve ialah istilah umum untuk menyebutkan relief valve, safety valve, maupun safety relief valve.

19 Kerusakan pada Safety Relief Valve Berdasarkan penjelasan (Ucak, 2011) valve yang terpasang sering mengalami gangguan atau kegagalan dalam beroperasi, dan pada umumnya kerusakan yang terjadi berupa kebocoran (leak). Beberapa faktor yang menjadi penyebab kerusakan pada valve yaitu: a. Korosi Korosi adalah jenis penyebab yang paling banyak menyebabkan katup pengaman tidak berfungsi dengan baik. Korosi dapat menyebabkan pitting pada bagian dari katup pengaman bahkan dapat menyebabkan bagian-bagian tersebut patah. b. Perubahan Permukaan Seat Bagian seat pada valve harus benar-benar presisi, sedikit saja terjadi perubahan atau kerusakan dapat mengakibatkan terjadinya kebocoran pada valve. Beberapa penyebab kerusakan pada permukaan seat adalah: Korosi Terdapatnya material asing, seperti kotoran kerak las, hammering yang terjadi saat overpressure Kelalaian penanganan saat katup pengaman terpasang akibat misalignment dari bagian katup. c. Pegas pada Valve Patah Patah pada bagian pegas (spring) hampir pasti disebabkan oleh karena korosi, yaitu: General corrosion Stress corrosion d. Setting yang tidak tepat Setting yang tidak tepat pada umumnya disebabkan oleh kelalaian personil pada saat testing maupun perbaikan. Kurang mengertinya personil tersebut didalam melakukan setting antara lain dengan mengubah set pressure melebihi toleransi. Setting yang melebihibatas toleransi dapat menyebabkan seat pegas menjadi abnormal dan dapat menyebabkan stress corrosion cracking pada spring akibat tekanan yang berlebihan. e. Plugging dan Sticking Plugging dan Sticking merupakan penyumbatan pada saluran inlet atau outlet dari katup pengaman yang diakibatkan f. Material valve yang tidak sesuai

20 33 Material yang tidak sesuai, bisa menyebabkan katup tidak berfungsi dengan baik. Dikarenakan faktor operasi yang sangat fluktuatif, sering sekali terjadi kenaikan tekanan meskipun belum sampai pada batasan tekanan katup pengaman, tetapi katup pengaman tersebut sudah mulai simmer. Oleh karena itu misalignment terjadi pada valve, sehingga valve mengalami kebocoran pada tekanan operasi. g. Nameplate yang tidak sesuai Salah pemasangan bisa terjadi diakibatkan namelate valve yang tidak sesuai. h. Penanganan yang tidak hati-hati Katup pengaman adalah komponen dengan tingkat presisi yang tinggi, penanganan yang tidak hati-hati dapat menyebabkan katup pengaman tersebut tidak berfungsi sebagaimana mestinya. Penanganan yang tidak hati-hati dapat terjadi pada saat perjalanan, pemasangan atau saat maintenance. Proses packing yang kurang rapat dalam perjalanan menyebabkan kotorankotoran dari luar dapat masuk kedalam valve. Proses packing yang kurang kuat pun dapat menyebabkan perubahan pada bagian dalam katup pengaman karena valve terbentur. Re-setting yang melebihi batas toleransi, salah penanganan pada saat lapping, salah penggantian suku cadang juga dapat menyebabkan katup rusak saat dilakukan proses maintenance. i. Selisih setting pressure dengan tekanan kerja Selisih setting pressure dengan tekanan kerja harus cukup, sehingga sistem perapat (gland) tetap normal. Selisih antara setting pressure dengan tekanan kerja yang kecil, dapat menyebabkan terjadinya kebocoran uap yang menyebabkan terjadinya erosi.

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous Pendahuluan PLTG adalah pembangkit listrik yang menggunakan tenaga yang dihasilkan oleh hasil pembakaran bahan bakar dan udara bertekanan tinggi.

Lebih terperinci

BAB III TINJAUAN PUSTAKA 1.1 PEMBANGKIT LISTRIK TENAGA GAS DAN UAP (PLTGU)

BAB III TINJAUAN PUSTAKA 1.1 PEMBANGKIT LISTRIK TENAGA GAS DAN UAP (PLTGU) 12 BAB III TINJAUAN PUSTAKA 1.1 PEMBANGKIT LISTRIK TENAGA GAS DAN UAP (PLTGU) PLTGU adalah gabungan antara PLTG dengan PLTU, dimana panas dari gas buang dari PLTG digunakan untuk menghasilkan uap yang

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

BAB III TEORI DASAR KONDENSOR

BAB III TEORI DASAR KONDENSOR BAB III TEORI DASAR KONDENSOR 3.1. Kondensor PT. Krakatau Daya Listrik merupakan salah satu anak perusahaan dari PT. Krakatau Steel yang berfungsi sebagai penyuplai aliran listrik bagi PT. Krakatau Steel

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai STEAM TURBINE POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai PENDAHULUAN Asal kata turbin: turbinis (bahasa Latin) : vortex, whirling Claude Burdin, 1828, dalam kompetisi teknik tentang sumber daya air

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB II TEORI DASAR. Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu % sebagai pendingin, antara lain

BAB II TEORI DASAR. Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu % sebagai pendingin, antara lain BAB II TEORI DASAR 2.1 PLTG (Open Cycle) Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu tinggi hasil pembakaran campuran bahan bakar dengan udara tekan. Udara tekan dihasilkan

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

Pengoperasian pltu. Simple, Inspiring, Performing,

Pengoperasian pltu. Simple, Inspiring, Performing, Pengoperasian pltu PERSIAPAN COLD START PLTU 1. SISTEM AUXILIARY STEAM (UAP BANTU) FUNGSI : a. Menyuplai uap ke sistem bahan bakar minyak pada igniter untuk mengabutkan bahan bakar minyak (Atomizing sistem).

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Turbin Gas Turbin gas adalah turbin dengan gas hasil pembakaran bahan bakar di ruang bakarnya dengan temperatur tinggi sebagai fluida kerjanya. Sebenarnya turbin gas

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 34 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 ALUR PROSES Alur proses biasa digunakan untuk sebagai acuan dari tindakan dari mulai menganalisa, perencanaan dan tindakan pada produksi. Pada proses dibawah ini

Lebih terperinci

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin :

BOILER FEED PUMP. b. Pompa air pengisi yang menggunakan turbin yaitu : - Tenaga turbin : BOILER FEED PUMP A. PENGERTIAN BOILER FEED PUMP Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara

Lebih terperinci

SESSION 3 GAS-TURBINE POWER PLANT

SESSION 3 GAS-TURBINE POWER PLANT SESSION 3 GAS-TURBINE POWER PLANT Outline 1. Dasar Teori Turbin Gas 2. Proses PLTG dan PLTGU 3. Klasifikasi Turbin Gas 4. Komponen PLTG 5. Kelebihan dan Kekurangan 1. Dasar Teori Turbin Gas Turbin gas

Lebih terperinci

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT KONVERSI ENERGI PANAS BUMI HASBULLAH, MT TEKNIK ELEKTRO FPTK UPI, 2009 POTENSI ENERGI PANAS BUMI Indonesia dilewati 20% panjang dari sabuk api "ring of fire 50.000 MW potensi panas bumi dunia, 27.000 MW

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem kerja PLTU Sistem PLTU merupakan sistem pembangkit energi listrik yang memiliki empat komponen utama, yaitu : ketel, turbin, kondensor dan pompa. Ketel berfungsi sebagai

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik).

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik). BAB I PENDAHULUAN 1.1 LATAR BELAKANG Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam

Lebih terperinci

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger Pengertian Turbocharger Turbocharger merupakan sebuah peralatan, untuk menambah jumlah udara yang masuk kedalam slinder dengan memanfaatkan energi gas buang. Turbocharger merupakan perlatan untuk mengubah

Lebih terperinci

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP :

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP : STUDI PENENTUAN KAPASITAS MOTOR LISTRIK UNTUK PENDINGIN DAN PENGGERAK POMPA AIR HIGH PRESSURE PENGISI BOILER UNTUK MELAYANI KEBUTUHAN AIR PADA PLTGU BLOK III (PLTG 3x112 MW & PLTU 189 MW) UNIT PEMBANGKITAN

Lebih terperinci

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan Kata Pengantar Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) PEMBANGKIT LISTRIK TENAGA GAS (PLTG) A. Pengertian PLTG (Pembangkit listrik tenaga gas) merupakan pembangkit listrik yang memanfaatkan gas untuk memutar turbin dan generator. Turbin dan generator adalah

Lebih terperinci

MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS

MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS 1 MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS 2 DEFINISI PLTG Pembangkit Listrik Tenaga Gas (PLTG) merupakan sebuah pembangkit energi listrik yang menggunakan peralatan/mesin turbin gas sebagai penggerak generatornya.

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Di Susun Oleh: 1. VENDRO HARI SANDI 2013110057 2. YOFANDI AGUNG YULIO 2013110052 3. RANDA MARDEL YUSRA 2013110061 4. RAHMAT SURYADI 2013110063 5. SYAFLIWANUR

Lebih terperinci

SESSION 12 POWER PLANT OPERATION

SESSION 12 POWER PLANT OPERATION SESSION 12 POWER PLANT OPERATION OUTLINE 1. Perencanaan Operasi Pembangkit 2. Manajemen Operasi Pembangkit 3. Tanggung Jawab Operator 4. Proses Operasi Pembangkit 1. PERENCANAAN OPERASI PEMBANGKIT Perkiraan

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 25 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 SEA WATER BOOSTER PUMP Sea Water Booster Pump adalah suatu pompa sentrifugal yang berfungsi untuk menambah tekanan air laut yang berasal dari Circulating Water

Lebih terperinci

Turbin Uap BOILER. 1 4 konderser

Turbin Uap BOILER. 1 4 konderser Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan dalam instalasi pembangkit daya jauh

Lebih terperinci

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR Jamaludin, Iwan Kurniawan Program Studi Teknik mesin, Fakultas

Lebih terperinci

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU)

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU) MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU) Oleh IRHAS MUFTI FIRDAUS 321 11 030 YULIA REZKY SAFITRI 321 11 078 HARDIANA 321 11 046 MUH SYIFAI PIRMAN 321 11

Lebih terperinci

BAB I PENDAHULUAN. BAB I Pendahuluan

BAB I PENDAHULUAN. BAB I Pendahuluan BAB I PENDAHULUAN 1.1 LATAR BELAKANG PLTU adalah suatu pembangkit listrik dimana energi listrik dihasilkan oleh generator yang diputar oleh turbin uap yang memanfaatkan tekanan uap hasil dari penguapan

Lebih terperinci

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-137 Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure Ryan Hidayat dan Bambang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI Dosen Pembimbing : Ir. Joko Sarsetiyanto, MT Program Studi Diploma III Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya Oleh

Lebih terperinci

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dunia industri dewasa ini mengalami perkembangan pesat. Perkembangan itu ditandai dengan berkembangnya ilmu dan teknologi yang akhirnya akan mengakibatkan

Lebih terperinci

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU Bambang Setyoko * ) Abstracts Heat Recovery Steam Generator ( HRSG ) is a construction in combine cycle with gas turbine and

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING)

PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING) PERALATAN INDUSTRI KIMIA (MATERIAL HANDLING) Kimia Industri (TIN 4206) PERALATAN INDUSTRI KIMIA YANG DIBAHAS : I Material Handling II Size Reduction III Storage IV Reaktor V Crystallization VI Heat treatment

Lebih terperinci

BAB II DASAR TEORI 2012

BAB II DASAR TEORI 2012 BAB II DASAR TEORI 2.1 Pengertian Sistem Brine Sistem Brine adalah salah satu sistem refrigerasi kompresi uap sederhana dengan proses pendinginan tidak langsung. Dalam proses ini koil tidak langsung mengambil

Lebih terperinci

TURBOCHARGER BEBERAPA CARA UNTUK MENAMBAH TENAGA

TURBOCHARGER BEBERAPA CARA UNTUK MENAMBAH TENAGA TURBOCHARGER URAIAN Dalam merancang suatu mesin, harus diperhatikan keseimbangan antara besarnya tenaga dengan ukuran berat mesin, salah satu caranya adalah melengkapi mesin dengan turbocharger yang memungkinkan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

LAPORAN PRAKTIKUM TEKNOLOGI MOTOR DIESEL PERAWATAN MESIN DIESEL 1 SILINDER

LAPORAN PRAKTIKUM TEKNOLOGI MOTOR DIESEL PERAWATAN MESIN DIESEL 1 SILINDER LAPORAN PRAKTIKUM TEKNOLOGI MOTOR DIESEL PERAWATAN MESIN DIESEL 1 SILINDER Di susun oleh : Cahya Hurip B.W 11504244016 Pendidikan Teknik Otomotif Fakultas Teknik Universitas Negeri Yogyakarta 2012 Dasar

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU

Steam Power Plant. Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU Steam Power Plant Siklus Uap Proses Pada PLTU Komponen PLTU Kelebihan dan Kekurangan PLTU Siklus dasar yang digunakan pada Steam Power Plant adalah siklus Rankine, dengan komponen utama boiler, turbin

Lebih terperinci

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI Motor penggerak mula adalah suatu alat yang merubah tenaga primer menjadi tenaga sekunder, yang tidak diwujudkan dalam bentuk aslinya, tetapi diwujudkan dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Motor Bakar Torak Salah satu jenis penggerak mula yang banyak dipakai adalah mesin kalor, yaitu mesin yang menggunakan energi termal untuk melakukan kerja mekanik atau mengubah

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68 EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 61-68 ANALISA HEAT RATE PADA TURBIN UAP BERDASARKAN PERFORMANCE TEST PLTU TANJUNG JATI B UNIT 3 Sunarwo, Supriyo Program Studi Teknik Konversi

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA

PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA TUGAS AKHIR PERENCANAAN MOTOR BAKAR DIESEL PENGGERAK POMPA Disusun : JOKO BROTO WALUYO NIM : D.200.92.0069 NIRM : 04.6.106.03030.50130 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

PLTU (PEMBANGKIT LISTRIK TENAGA UAP) PLTU (PEMBANGKIT LISTRIK TENAGA UAP) I. PENDAHULUAN Pusat pembangkit listrik tenaga uap pada saat ini masih menjadi pilihan dalam konversi tenaga dengan skala besar dari bahan bakar konvensional menjadi

Lebih terperinci

PRESENTASI P3 SKRIPSI PENENTUAN PARAMETER TURBIN GAS UNTUK PENAMBAHAN HEAT RECOVERY STEAM GENERATOR DAN PENINGKATAN PERFORMA PADA BLOK 2 PLTGU GRATI

PRESENTASI P3 SKRIPSI PENENTUAN PARAMETER TURBIN GAS UNTUK PENAMBAHAN HEAT RECOVERY STEAM GENERATOR DAN PENINGKATAN PERFORMA PADA BLOK 2 PLTGU GRATI PRESENTASI P3 SKRIPSI PENENTUAN PARAMETER TURBIN GAS UNTUK PENAMBAHAN HEAT RECOVERY STEAM GENERATOR DAN PENINGKATAN PERFORMA PADA BLOK 2 PLTGU GRATI Nama : Afrian Syaiibrahim Kholilulloh NRP : 42 09 100

Lebih terperinci

ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN

ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN ANALISA PERFORMANSI TURBIN UAP KAPASITAS 60 MW DI PLTU PEMBANGKITAN LISTRIK SEKTOR BELAWAN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan Diploma

Lebih terperinci

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses BAB I PENDAHULUAN 1.1. Latar Belakang Pada Pembangkit Listrik Tenaga Uap, untuk menghasilkan uap dibutuhkan air yang dipanaskan secara bertahap melalui beberapa heater sebelum masuk ke boiler untuk dipanaskan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang

BAB 1 PENDAHULUAN 1.1. Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Pabrik Kelapa Sawit (PKS) merupakan sebuah unit produksi yang memelukan sumber energi yang besar untuk menggerakkan mesin-mesin serta peralatan lain yang memerlukan

Lebih terperinci

BAB III LOW PRESSURE DRAIN PUMP

BAB III LOW PRESSURE DRAIN PUMP BAB III LOW PRESSURE DRAIN PUMP 3.1 Pengaruh LP drain pump terhadap effisiensi thermal Low Pressure drain pump (LP drain pump) merupakan jenis pompa sentrifugal yang digunakan untuk memindahkan fluida

Lebih terperinci

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara

BAB II TINJAUAN PUSTAKA. suatu pembangkit daya uap. Siklus Rankine berbeda dengan siklus-siklus udara BAB II TINJAUAN PUSTAKA Analisa Termodinamika Siklus Rankine adalah siklus teoritis yang mendasari siklus kerja dari suatu pembangkit daya uap Siklus Rankine berbeda dengan siklus-siklus udara ditinjau

Lebih terperinci

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik Makalah Seminar Kerja Praktek SIMULASI PLC SEDERHANA SEBAGAI RESPRESENTASI KONTROL POMPA HIDROLIK PADA HIGH PRESSURE BYPASS TURBINE SYSTEM Fatimah Avtur Alifia (L2F008036) Jurusan Teknik Elektro Fakultas

Lebih terperinci

PEMBIDANGAN PRAJABATAN S1 D3 INDONESIA POWER PENGOPERASIAN PLTGU

PEMBIDANGAN PRAJABATAN S1 D3 INDONESIA POWER PENGOPERASIAN PLTGU PEMBIDANGAN PRAJABATAN S1 D3 INDONESIA POWER PENGOPERASIAN PLTGU Edisi I Tahun 2014 PEMBIDANGAN PRAJABATAN S1 - ENJINER PEMBANGKITAN THERMAL (A.1.4.2.78.2) TUJUAN PEMBELAJARAN : Setelah mengikuti pelatihan

Lebih terperinci

Analisa Performa Turbin Gas Frame 6B Akibat Pemakaian Filter Udara BAB II DASAR TEORI. pembangkit gas ataupun menghasilkan daya poros.

Analisa Performa Turbin Gas Frame 6B Akibat Pemakaian Filter Udara BAB II DASAR TEORI. pembangkit gas ataupun menghasilkan daya poros. BAB II DASAR TEORI 2. 1 Sejarah turbin gas Turbin gas adalah motor bakar yang terdiri dari tiga komponen utama, yaitu : kompresor, ruang bakar, dan turbin. Sistem dapat berfungsi sebagai pembangkit gas

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

TUGAS MATAKULIAH SISTEM PEMBANGKIT TENAGA UAP TURBIN UAP : 1. ADE SURYAN YULIANTO (G1C012003) 2. SEPRIANSYAH (G1C01100)

TUGAS MATAKULIAH SISTEM PEMBANGKIT TENAGA UAP TURBIN UAP : 1. ADE SURYAN YULIANTO (G1C012003) 2. SEPRIANSYAH (G1C01100) TUGAS MATAKULIAH SISTEM PEMBANGKIT TENAGA UAP TURBIN UAP NAMA : 1. ADE SURYAN YULIANTO (G1C012003) 2. SEPRIANSYAH (G1C01100) PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS BENGKULU 2015 TURBIN

Lebih terperinci

SKRIPSI / TUGAS AKHIR

SKRIPSI / TUGAS AKHIR SKRIPSI / TUGAS AKHIR ANALISIS PEMANFAATAN GAS BUANG DARI TURBIN UAP PLTGU 143 MW UNTUK PROSES DESALINASI ALBERT BATISTA TARIGAN (20406065) JURUSAN TEKNIK MESIN PENDAHULUAN Desalinasi adalah proses pemisahan

Lebih terperinci

Session 11 Steam Turbine Protection

Session 11 Steam Turbine Protection Session 11 Steam Turbine Protection Pendahuluan Kesalahan dan kondisi tidak normal pada turbin dapat menyebabkan kerusakan pada plant ataupun komponen lain dari pembangkit. Dibutuhkan sistem pengaman untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa merupakan peralatan mekanik yang digunakan untuk memindahkan fluida berupa zat cair dari suatu tempat ke tempat yang diinginkan. Pompa beroperasi membuat perbedaan tekanan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Mesin Pendingin Untuk pertama kali siklus refrigerasi dikembangkan oleh N.L.S. Carnot pada tahun 1824. Sebelumnya pada tahun 1823, Cagniard de la Tour (Perancis),

Lebih terperinci

TES TERTULIS. 1. Terkait Undang-Undang RI No 30 Tahun 2009 tentang Ketenagalistrikan Bab XI Pasal 2 apa kepanjangan dari K2 dan berikut tujuannya?

TES TERTULIS. 1. Terkait Undang-Undang RI No 30 Tahun 2009 tentang Ketenagalistrikan Bab XI Pasal 2 apa kepanjangan dari K2 dan berikut tujuannya? TES TERTULIS KODE UNIT : KTL.PO.20.111.02 JUDUL UNIT : Mengoperasikan Peralatan Air Condensate (1) NAMA : JABATAN : UNIT KERJA : TANDA TANGAN : Tes tertulis ini berkaitan dengan ilmu pengetahuan dan pemahaman

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah B. Rumusan Masalah C. Tujuan

BAB I PENDAHULUAN A. Latar Belakang Masalah B. Rumusan Masalah C. Tujuan BAB I PENDAHULUAN A. Latar Belakang Masalah Di era globalisasi sekarang ini perubahan terjadi di berbagai bidang antara lain bidang politik, ekonomi, sosial, budaya, stranspotasi, telekomunikasi termasuk

Lebih terperinci

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52 EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52 KINERJA MULTISTAGE HP/IP FEED WATER PUMP PADA HRSG DI SEKTOR PEMBANGKITAN PLTGU CILEGON F Gatot Sumarno, Suwarti Program Studi Teknik Konversi

Lebih terperinci

BAB II DASAR TEORI. 2.1 Cooling Tunnel

BAB II DASAR TEORI. 2.1 Cooling Tunnel BAB II DASAR TEORI 2.1 Cooling Tunnel Cooling Tunnel atau terowongan pendingin merupakan sistem refrigerasi yang banyak digunakan di industri, baik industri pengolahan makanan, minuman dan farmasi. Cooling

Lebih terperinci

BAB II PEMBAHASAN A. Pengertian Refrigerant Refrigeran adalah zat yang mengalir dalam mesin pendingin (refrigerasi) atau mesin pengkondisian udara

BAB II PEMBAHASAN A. Pengertian Refrigerant Refrigeran adalah zat yang mengalir dalam mesin pendingin (refrigerasi) atau mesin pengkondisian udara BAB II PEMBAHASAN A. Pengertian Refrigerant Refrigeran adalah zat yang mengalir dalam mesin pendingin (refrigerasi) atau mesin pengkondisian udara (AC). Zat ini berfungsi untuk menyerap panas dari benda/media

Lebih terperinci

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur Nur Rima Samarotul Janah, Harsono Hadi dan Nur Laila Hamidah Departemen Teknik Fisika,

Lebih terperinci

Analisa Termoekonomi Pada Sistem Kombinasi Turbin Gas Uap PLTGU PT PJB Unit Pembangkitan Gresik

Analisa Termoekonomi Pada Sistem Kombinasi Turbin Gas Uap PLTGU PT PJB Unit Pembangkitan Gresik JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 Analisa Termoekonomi Pada Sistem Kombinasi Turbin Gas Uap PLTGU PT PJB Unit Pembangkitan Gresik Ika Shanti B, Gunawan Nugroho, Sarwono Teknik Fisika, Fakultas

Lebih terperinci

BAB III LANDASAN TEORI. Gas buang dari turbin gas dengan suhu yang tinggi dialirkan ke HRSG (Heat Recovery Steam

BAB III LANDASAN TEORI. Gas buang dari turbin gas dengan suhu yang tinggi dialirkan ke HRSG (Heat Recovery Steam BAB III LANDASAN TEORI 1.1 Pengertian Umum PLTGU PLTGU merupakan gabungan dari PLTG dan PLTU yang siklus gasnya menjadi satu. Gas buang dari turbin gas dengan suhu yang tinggi dialirkan ke HRSG (Heat Recovery

Lebih terperinci

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT Anwar Ilmar Ramadhan 1,*, Ery Diniardi 1, Hasan Basri 2, Dhian Trisnadi Setyawan 1 1 Jurusan

Lebih terperinci

PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW

PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW PERANCANGAN ULANG HEAT RECOVERY STEAM GENERATOR DENGAN SISTEM DUAL PRESSURE MELALUI PEMANFAATAN GAS BUANG SEBUAH TURBIN GAS BERDAYA 160 MW F. Burlian (1), A. Ghafara (2) (1,2) Jurusan Teknik Mesin, Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pandangan Umum Turbin uap termasuk mesin pembangkit tenaga dimana hasil konversi energinya dimanfaatkan mesin lain untuk menghasilkan daya. Di dalam turbin terjadi perubahan dari

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem Refrigerasi Freezer Freezer merupakan salah satu mesin pendingin yang digunakan untuk penyimpanan suatu produk yang bertujuan untuk mendapatkan produk dengan kualitas yang

Lebih terperinci

KERJA PRAKTEK BAB III PEMBAHASAN. 3. Sistem Kerja Dan Pemeliharaan Governor Pada Pesawat Dakota

KERJA PRAKTEK BAB III PEMBAHASAN. 3. Sistem Kerja Dan Pemeliharaan Governor Pada Pesawat Dakota BAB III PEMBAHASAN 3. Sistem Kerja Dan Pemeliharaan Governor Pada Pesawat Dakota 3.1 Dasar Pengertian Governor Governor adalah suatu benda atau alat penggerak mekanik variable propeller pada pesawat untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Boiler Longchuan Boiler Longchuan adalah boiler jenis thermal yang dihasilkan dari air, dengan sirkulasi untuk menyalurkan panasnya ke mesin-mesin produksi. Boiler Longchuan mempunyai

Lebih terperinci

Sistem Hidrolik. Trainer Agri Group Tier-2

Sistem Hidrolik. Trainer Agri Group Tier-2 Sistem Hidrolik No HP : 082183802878 Tujuan Training Peserta dapat : Mengerti komponen utama dari sistem hidrolik Menguji system hidrolik Melakukan perawatan pada sistem hidrolik Hidrolik hydro = air &

Lebih terperinci

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Skema Oraganic Rankine Cycle Pada penelitian ini sistem Organic Rankine Cycle secara umum dibutuhkan sebuah alat uji sistem ORC yang terdiri dari pompa, boiler, turbin dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Pandangan Umum Tentang Turbin Uap Sebagai Pembangkit Tenaga Turbin uap termasuk mesin pembangkit tenaga dimana hasil konversi energinya dimanfaatkan mesin lain untuk menghasilkan

Lebih terperinci

Gambar 2.2 Flow Diagram PLTP Kamojang

Gambar 2.2 Flow Diagram PLTP Kamojang BAB II GAMBARAN UMUM PLTP UBP KAMOJANG 2.1 Definisi PLTP Pembangkit Listrik Tenaga Geothermal ( Panas Bumi ) yang kita sebut dengan PLTP adalah sebuah instalasi yang merubah energi panas menjadi energi

Lebih terperinci