BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB 2 LANDASAN TEORI 2.1. Citra Citra (image) sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik yang tidak dimiliki oleh data teks, yaitu citra kaya dengan informasi. Sebuah gambar dapat memberikan informasi yang lebih banyak daripada informasi tersebut disajikan dalam bentuk kata-kata (tekstual) (Munir, R. 2004). Satuan atau bagian terkecil dari suatu citra disebut piksel (pixel atau picture element) yang berarti elemen citra. Sebuah citra adalah kumpulan piksel-piksel yang disusun dalam larik dua-dimensi. Indeks baris dan kolom (x, y) dari sebuah piksel dinyatakan dalam bilangan bulat. Untuk menunjukkan lokasi suatu piksel, koordinat (0, 0) digunakan untuk posisi kiri atas dalam bidang citra, dan koordinat (m-1, n-1) digunakan untuk posisi kanan bawah dalam citra berukuran mxn piksel seperti pada Gambar 2.1. Untuk menunjukkan tingkat pencahayaan suatu piksel, seringkali digunakan bilangan bulat yang besarnya 8-bit, dengan lebar selang nilai 0 255, dimana 0 untuk warna hitam, 255 untuk warna putih dan tingkat abu-abu berada di antara nilainilai 0 dan 255 (Ahmad, U. 2005).

2 7 Gambar 2.1 Koordinat bidang citra Pengolahan citra Pengolahan citra adalah pemrosesan citra, menjadi citra yang kualitasnya lebih baik (Munir, R. 2004). Menurut Hermawati, F.A. (2013), tujuan pengolahan citra adalah: 1. Untuk memperbaiki kualitas citra (gambar) dilihat dari aspek radiometrik (peningkatan kontras, transformasi warna, restorasi citra) atau dari aspek geometrik (rotasi, translasi, skala, transformasi geometrik). 2. Melakukan proses penarikan informasi, deskripsi objek atau pengenalan objek terhadap pola yang terkandung di dalam citra. 3. Melakukan kompresi atau reduksi data untuk penyimpanan data, transmisi data, dan waktu proses data Segmentasi citra Segmentasi merupakan proses membagi suatu citra ke dalam komponen-komponen region atau objek (Hermawati, F.A. 2013). Menurut Zhou, et al. (2010), segmentasi citra secara umum dilakukan berdasarkan diferensiasi warna, sehingga citra tersebut akan melalui proses pengelompokan yang memungkinkan piksel-piksel dipisahkan sesuai dengan intensitas warna. Salah satu skema segmentasi adalah thresholding (atau binerisasi) dimana ambang batas ditentukan secara manual atau empiris. Sebagai contoh, citra warna dapat dibagi atau dikelompokkan sesuai dengan nilai intensitas dari

3 8 histogram. Namun, segmentasi ini terkadang dapat mengarah kepada hasil pengelompokan yang keliru jika piksel citra tersebar secara berantakan Citra biner Citra biner (binary image) adalah citra yang hanya mempunyai dua nilai derajat keabuan: hitam dan putih. Piksel-piksel objek bernilai 1 dan piksel-piksel latar belakang bernilai 0. Pada waktu menampilkan gambar, 0 adalah putih dan 1 adalah hitam. Jadi, pada citra biner, latar belakang berwarna putih sedangkan objek berwarna hitam (Munir, R. 2004). Berikut contoh citra biner pada Gambar 2.2. Gambar 2.2 Contoh citra teks biner (Kasar, T. 2007) Menurut Ahmad, U. (2005), citra biner hanya membutuhkan memori 1 bit untuk menyimpan data satu piksel sehingga algoritma untuk citra biner dapat berjalan lebih cepat dan prosesnya lebih murah dibandingkan dengan proses pada citra abu-abu. Sebagai perbandingan, citra abu-abu dengan intensitas 256 tingkat membutuhkan memori delapan kali lebih besar dibandingkan dengan memori yang dibutuhkan oleh citra biner untuk tingkat resolusi citra yang sama Pengenalan pola citra Pengenalan pola mengelompokkan data numerik dan simbolik (termasuk citra) secara otomatis oleh mesin (dalam hal ini komputer). Tujuan pengelompokan adalah untuk mengenali suatu objek di dalam citra. Manusia bisa mengenali objek yang dilihatnya karena otak manusia telah belajar mengklasifikasi objek-objek di alam sehingga mampu membedakan suatu objek dengan objek lainnya. Kemampuan sistem visual manusia inilah yang dicoba ditiru oleh mesin. Komputer menerima masukan berupa citra objek yang akan diidentifikasi, memproses citra tersebut, dan memberikan keluaran berupa

4 9 deskripsi objek di dalam citra (Munir, R. 2004). Ilustrasi pengenalan pola pada citra dapat dilihat pada Gambar 2.3. citra Pengenalan Pola deskripsi objek Gambar 2.3 Ilustrasi pengenalan pola Contoh pengenalan pola misalnya pada Gambar 2.4 adalah salah satu huruf kemasan makanan yang digunakan sebagai data masukan untuk mengenali karakter S. Dengan menggunakan algoritma pengenalan pola, diharapkan komputer dapat mengenali bahwa karakter tersebut adalah S. Gambar 2.4 Citra karakter S untuk pengenalan huruf 2.2. Binerisasi Otomatis Operasi binerisasi secara manual akan merepotkan dan menyebabkan penundaan, tidak dapat diterapkan untuk operasi real-time, di mana pengambilan citra melalui kamera dan operasi binerisasi serta operasi-operasi lainnya dilakukan secara berkesinambungan. Alternatif lainnya adalah dengan memberikan suatu nilai yang tetap dalam algoritma program. Untuk dapat memilih nilai batas atau nilai threshold yang tepat secara otomatis, pengetahuan tentang objek dalam pemandangan, pengetahuan tentang aplikasi dan pengetahuan tentang lingkungan harus digunakan di dalam algoritma program komputer yang dikembangkan.

5 10 Binerisasi otomatis menganalisis distribusi nilai abu-abu di dalam citra untuk memilih nilai threshold yang paling mendekati. Kebanyakan metoda binerisasi otomatis menggunakan ukuran dan probabilitas distribusi intensitas dengan menghitung histogram intensitas dari citra (Ahmad, U. 2005) Dasar-dasar thresholding citra Thresholding dengan histogram adalah salah satu teknik yang populer untuk segmentasi citra monokrom (Gambar 2.5). Salah satu cara yang jelas untuk mengekstraksi objek dari latar belakang adalah untuk memilih ambang batas (threshold) T yang memisahkan histogram. Setiap titik (x, y) dengan ketentuan f(x, y) T (misal T = 124) disebut sebagai titik objek. Selain dari itu, titik ini disebut titik background. Dengan kata lain, citra yang telah melalui tahap pengambangan g(x, y) didefinisikan sebagai: g(x, y) = { 1 if f(x, y) T 0 if f(x, y) < T (Zhou, et al. 2010) (2.1) Keterangan : g(x, y) = Matriks nilai biner citra f(x, y) = Matriks nilai grayscale citra T = Nilai ambang batas (threshold) (a) (b) (c) (d) Gambar 2.5 Thresholding citra berdasarkan histogram (Zhou, et al. 2010) Global optimal thresholding Global thresholding hanya menggunakan satu nilai ambang pada atribut citra global yang dapat diestimasi berdasarkan statistik ataupun heuristik, kemudian mengklasifikasikan bagian piksel-piksel citra apakah termasuk ke dalam foreground atau background. Kelemahan utama dari metode global thresholding adalah metode

6 11 tersebut tidak dapat membedakan piksel-piksel yang memiliki tingkat keabuan yang sama namun termasuk ke dalam kelompok yang berbeda. Metode global optimal thresholding melibatkan iterasi melalui semua kemungkinan nilai ambang dan memilih nilai yang optimal untuk keseluruhan citra (Som, et al. 2011). Menurut Ahmad, U. (2005), langkah-langkah dalam menentukan nilai batas threshold secara global dengan metode iterasi adalah sebagai berikut: 1. Pilih nilai T awal untuk operasi threshold, dengan T merupakan nilai rata-rata dari intensitas citra keseluruhan. 2. Bagi citra menjadi dua daerah, R 1 dan R 2, menggunakan nilai T awal. 3. Hitung nilai rata-rata intensitas μ 1 dan μ 2 masing-masing daerah R 1 dan R Hitung nilai threshold yang baru dengan rumus T = µ 1+µ Ulangi langkah (2) sampai (4) hingga nilai-nilai μ 1 dan μ 2 tidak berubah lagi Adaptive local thresholding Dalam thresholding secara lokal, nilai-nilai ambang batas secara spasial bervariasi dan ditentukan berdasarkan konten lokal dari citra yang digunakan. Perbedaannya dengan metode global adalah thresholding lokal memiliki kinerja yang lebih baik terhadap noise ataupun kesalahan yang muncul akibat suatu informasi penting yang berdekatan dengan bagian citra teks atau objek citra (Som, et al. 2011). Pendekatan langsung dalam metode adaptif adalah dengan membagi citra menjadi beberapa bidang berukuran m m lalu memilih threshold T ij untuk bagian citra berdasarkan histogram dari bagian ke-ij (1 i, j m). Hasil akhir dari proses ini adalah gabungan dari daerah pada bagian-bagian citra tadi, yang sebenarnya berasal dari satu citra yang lebih besar (Ahmad, U. 2005). Gambar 2.6 menunjukkan perbedaan hasil implementasi thresholding pada citra bergradasi.

7 12 (a) (b) Gambar 2.6 Perbedaan global dengan adaptif thresholding (Zhou, et al. 2010) Menurut Hermawati, F.A. (2013), langkah-langkah dalam melakukan proses thresholding secara adaptif adalah sebagai berikut: 1. Ambil subcitra pertama berukuran m m. 2. Hitung variance dari subcitra tersebut setelah melakukan perhitungan mean. Rumus Mean Subcitra : mean = x = n i=1 x i n (2.2) Rumus Varians Subcitra : var = n i=1 (x i x ) 2 n 1 (2.3) 3. Jika var > 100, maka T = untuk melakukan global thresholding. 4. Jika var 100, maka T = max(subimg) min (subimg) 2 max(img) min (img) 2, kemudian gunakan nilai T, kemudian gunakan langsung nilai T untuk menentukan output citra biner. 5. Ulangi langkah (1) dengan subcitra selanjutnya sampai semua subcitra selesai diproses Optical Character Recognition (OCR) OCR adalah sebuah pendekatan yang menyediakan pengenalan karakter alfanumerik baik yang berupa tulisan tangan maupun computer text hanya dengan memindai citra

8 13 tersebut secara digital dan mengubahnya menjadi bentuk yang dapat di-scan melalui scanner, kemudian sistem OCR menafsirkan citra tadi dan mengubahnya menjadi data ASCII. Pengenalan karakter seperti ini juga populer disebut sebagai Optical Character Recognition (OCR). OCR merupakan salah satu bidang penelitian yang memiliki potensi besar di masa depan dimana kita ingin melacak dan mencari setiap informasi yang dipertukarkan. Masalah yang sering timbul terdapat pada tulisan tangan, hal ini dikarenakan ketidakpastian seperti variasi dalam model kaligrafi, kesamaan dalam teks tulisan dan variasi dalam gaya penulisan (Patel, U. 2013) Tahapan proses OCR Menurut Patel, U. (2013), tahapan-tahapan proses yang terjadi pada saat pengenalan suatu karakter teks adalah input data citra, pre-processing, segmentasi teks, normalisasi, ekstraksi fitur, klasifikasi dan post-processing seperti pada Gambar 2.7. Data Acquisition Pre-processing Segmentation Normalization Feature Extraction Classification Post-processing Gambar 2.7 Tahapan OCR (Patel, U. 2013) Tesseract OCR Tesseract menduduki peringkat salah satu dari tiga engine pada tahun 1995 yang akurasinya diuji oleh Universitas Nevada, Las Vegas. Tesseract mengalami kemajuan yang signifikan setelah kemudian diambil alih oleh Google. Tesseract merupakan salah satu OCR engine open source yang paling akurat dalam hal pendeteksian. Tesseract dapat diterapkan pada Linux, Windows dan Mac OSX. Selain itu, Tesseract juga dapat diimplementasikan pada perangkat yang lain, termasuk Android dan iphone. Ada

9 14 sekitar 149 bahasa yang didukung Tesseract yang berasal dari paket-paket. Tesseract adalah sistem deteksi berbasis teks dengan berbagai bahasa yang dapat kita manipulasi dan dapat juga dikembangkan engine tersebut dengan data pelatihan sendiri (Badla, S. 2014) Cara kerja Tesseract OCR Menurut Badla, S. (2014), hal yang penting dilakukan agar mendapatkan akurasi deteksi teks yang tepat adalah pada saat pre-processing. Gambar 2.8 Proses utama Tesseract OCR (Badla, S. 2014) Gambar 2.8 menunjukkan bahwa ada dua subsistem utama yang dikerjakan. Pertama adalah tahap pre-processing dan yang kedua adalah tahap Tesseract OCR. Tahap yang menjadi fokus adalah tahap pre-processing dimana sebelum melalui proses pengenalan, citra harus disederhanakan agar memudahkan pada saat tahap Tesseract. Proses waktu yang digunakan juga harus ditinjau pada saat tahap pre-processing agar tidak menambah running-time. Proses pengenalan karakter menggunakan data latih berupa kamus data karakter yang tersedia pada Tesseract. Setelah proses pre-processing, tahap selanjutnya akan dilakukan tahapan pengenalan karakter yang terdiri dari proses feature extraction, segmentasi, dan word recognition. Proses feature extraction dilakukan untuk mendapatkan outline karakter, sedangkan proses segmentasi melakukan pemotongan karakter pada teks. Pada proses word recognition, hasil segmentasi akan dicocokkan dengan data latih berdasarkan bahasa yang sesuai. Library Tesseract akan ditanamkan pada sistem aplikasi berbasis Android sehingga citra yang menjadi masukan akan diproses oleh library tersebut (Meganofa, N. 2015).

10 Penelitian yang Relevan Berikut beberapa penelitian yang relevan dengan algoritma Thresholding Adaptif dan Tesseract OCR: 1. Nugroho Meganofa (2015) dalam skripsi yang berjudul Aplikasi Pencari Info Obat dengan Masukan Citra Teks Kemasan Obat Berbasis Android Menggunakan Tesseract OCR Engine. Dapat disimpulkan bahwa aplikasi info obat mampu mengenali citra teks kemasan obat dengan tingkat akurasi terbaik mencapai 96.80% dari 70 citra teks kemasan obat yang diuji dengan jenis font Serif dan Sans Serif. Nilai usability aplikasi terhadap responden mendapat hasil sebesar 86.93%. 2. Eka Mala Sari Rochman (2011) dalam jurnal yang berjudul Algoritma Thresholding Adaptif untuk Binerisasi Citra Dokumen Berwarna. Dapat disimpulkan bahwa penelitian dilakukan dengan thresholding secara adaptif pada citra dokumen berwarna dengan mengekstraksi foreground dan melakukan binerisasi pada masing-masing foreground dengan ambang yang berbeda. Uji coba dilakukan terhadap 8 citra dokumen dan rata-rata tingkat pengenalan karakter sebesar 67.92%.

Oleh: Riza Prasetya Wicaksana

Oleh: Riza Prasetya Wicaksana Oleh: Riza Prasetya Wicaksana 2209 105 042 Pembimbing I : Dr. I Ketut Eddy Purnama, ST., MT. NIP. 196907301995121001 Pembimbing II : Muhtadin, ST., MT. NIP. 198106092009121003 Latar belakang Banyaknya

Lebih terperinci

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner

MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner MKB3383 TEKNIK PENGOLAHAN CITRA Pemrosesan Citra Biner Dosen Pengampu: Muhammad Zidny Naf an, M.Kom. Genap 2016/2017 Definisi Citra biner (binary image) adalah citra yang hanya mempunyai dua nilai derajat

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah BAB 3 METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian 3.1.1 Alat Penelitian a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah sebagai berikut: 1) Prosesor Intel (R) Atom (TM) CPU N550

Lebih terperinci

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON

SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON 30 BAB IV SISTEM REKOGNISI KARAKTER NUMERIK MENGGUNAKAN ALGORITMA PERCEPTRON 4.1 Gambaran Umum Sistem Diagram sederhana dari program yang dibangun dapat diilustrasikan dalam diagram konteks berikut. Gambar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengenalan Citra Citra adalah suatu representasi (gambaran), kemiripan atau imitasi dari suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan sistem pendeteksi orang tergeletak mulai dari : pembentukan citra digital, background subtraction, binerisasi, median filtering,

Lebih terperinci

BAB 2 LANDASAN TEORI. metode yang digunakan sebagai pengawasan kendaraan yang menggunakan pengenalan

BAB 2 LANDASAN TEORI. metode yang digunakan sebagai pengawasan kendaraan yang menggunakan pengenalan BAB 2 LANDASAN TEORI 2.1 Automatic Number Plate Recognition Automatic Number Plate Recognition atau yang disingkat dengan ANPR adalah metode yang digunakan sebagai pengawasan kendaraan yang menggunakan

Lebih terperinci

Representasi Citra. Bertalya. Universitas Gunadarma

Representasi Citra. Bertalya. Universitas Gunadarma Representasi Citra Bertalya Universitas Gunadarma 2005 Pengertian Citra Digital Ada 2 citra, yakni : citra kontinu dan citra diskrit (citra digital) Citra kontinu diperoleh dari sistem optik yg menerima

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital didefinisikan sebagai fungsi f(x,y) dua dimensi, dimana x dan y adalah koordinat spasial dan f(x,y) adalah disebut dengan intensitas atau tingkat keabuan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Teori Citra Digital

BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Teori Citra Digital 4 BAB 2 TINJAUAN PUSTAKA 2.1 Dasar Teori Bab ini berisi tentang teori yang mendasari penelitian ini. Terdapat beberapa dasar teori yang digunakan dan akan diuraikan sebagai berikut. 2.1.1 Citra Digital

Lebih terperinci

... BAB 2 LANDASAN TEORI. 2.1 Citra

... BAB 2 LANDASAN TEORI. 2.1 Citra 6 BAB 2 LANDASAN TEORI 2.1 Citra Citra atau image adalah suatu matriks dimana indeks baris dan kolomnya menyatakan suatu titik pada citra tersebut dan elemen matriksnya (yang disebut sebagai elemen gambar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Citra menurut kamus Webster adalah suatu representasi atau gambaran, kemiripan, atau imitasi dari suatu objek atau benda, contohnya yaitu foto seseorang dari kamera yang

Lebih terperinci

BAB 1 PENDAHULUAN. teks digital yang dapat dikenali oleh komputer maupun teks non digital seperti

BAB 1 PENDAHULUAN. teks digital yang dapat dikenali oleh komputer maupun teks non digital seperti BAB 1 PENDAHULUAN 1.1 Latar Belakang Informasi teks merupakan salah satu komponen penting dalam kehidupan manusia dalam hal berkomunikasi. Informasi teks dapat diperoleh dalam bentuk teks digital yang

Lebih terperinci

Penggunaan Jaringan Syaraf Tiruanuntuk Membaca Karakter pada Formulir Nilai Mata Kuliah

Penggunaan Jaringan Syaraf Tiruanuntuk Membaca Karakter pada Formulir Nilai Mata Kuliah Vol. 14, No. 1, 61-68, Juli 2017 Penggunaan Jaringan Syaraf Tiruanuntuk Membaca Karakter pada Formulir Nilai Mata Kuliah La Surimi, Hendra, Diaraya Abstrak Jaringan syaraf tiruan (JST) telah banyak diaplikasikan

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

BAB II LANDASAN TEORI. Tanda Nomor Kendaraan Bermotor (disingkat TNKB) atau sering. disebut plat nomor atau nomor polisi (disingkat nopol) adalah plat

BAB II LANDASAN TEORI. Tanda Nomor Kendaraan Bermotor (disingkat TNKB) atau sering. disebut plat nomor atau nomor polisi (disingkat nopol) adalah plat BAB II LANDASAN TEORI 2.1. Tanda Nomor Kendaraan Bermotor Tanda Nomor Kendaraan Bermotor (disingkat TNKB) atau sering disebut plat nomor atau nomor polisi (disingkat nopol) adalah plat aluminium tanda

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Automatic Number Plate Recognition (ANPR) Berdasarkan penjelasan dari penelitian sebelumnya mengenai deteksi plat nomor, maka dapat disimpulkan bahwa pendeteksian ini sangat dibutuhkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra adalah kegiatan memanipulasi citra yang telah ada menjadi gambar lain dengan menggunakan suatu algoritma atau metode tertentu. Proses ini mempunyai

Lebih terperinci

Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB

Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB Dani Rohpandi 1), Asep Sugiharto 2),

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI Bab ini berisi analisis pengembangan program aplikasi pengenalan karakter mandarin, meliputi analisis kebutuhan sistem, gambaran umum program aplikasi yang

Lebih terperinci

Penentuan Stadium Kanker Payudara dengan Metode Canny dan Global Feature Diameter

Penentuan Stadium Kanker Payudara dengan Metode Canny dan Global Feature Diameter Penentuan Stadium Kanker Payudara dengan Metode Canny dan Global Feature Diameter Metha Riandini 1) DR. Ing. Farid Thalib 2) 1) Laboratorium Teknik Informatika, Fakultas Teknologi Industri, Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC

BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC BINERISASI CITRA DOKUMEN DENGAN FILTERISASI HOMOMORPHIC Naser Jawas STMIK STIKOM BALI naser.jawas@stikom-bali.ac.id Abstrak Binerisasi citra dokumen adalah sebuah langkah awal yang sangat penting dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya

BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya 5 BAB 2 LANDASAN TEORI 2.1 Citra Secara harfiah citra atau image adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Digital Istilah citra biasanya digunakan dalam bidang pengolahan citra yang berarti gambar. Suatu citra dapat didefinisikan sebagai fungsi dua dimensi, di mana dan adalah

Lebih terperinci

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD

SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD SEGMENTASI CITRA MEDIK MRI (MAGNETIC RESONANCE IMAGING) MENGGUNAKAN METODE REGION THRESHOLD Murinto, Resa Fitria Rahmawati Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad

Lebih terperinci

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y) dimana x dan y merupakan koordinat bidang datar, dan harga fungsi f disetiap

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Sistem Optik dan Proses Akuisisi Citra Digital 2 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 Bisa dilihat pada slide berikut. SISTEM OPTIK MANUSIA

Lebih terperinci

BAB 1 PENDAHULUAN. memindahkan data secara manual ke dalam komputer untuk dapat diolah lebih

BAB 1 PENDAHULUAN. memindahkan data secara manual ke dalam komputer untuk dapat diolah lebih BAB 1 PENDAHULUAN 1.1 Latar Belakang Teknologi yang terus berkembang membuat sistem komputerisasi bergerak dengan cepat, namun hal ini tidak seimbang dengan kemampuan manusia memindahkan data secara manual

Lebih terperinci

GRAFIK KOMPUTER DAN PENGOLAHAN CITRA. WAHYU PRATAMA, S.Kom., MMSI.

GRAFIK KOMPUTER DAN PENGOLAHAN CITRA. WAHYU PRATAMA, S.Kom., MMSI. GRAFIK KOMPUTER DAN PENGOLAHAN CITRA WAHYU PRATAMA, S.Kom., MMSI. PERTEMUAN 8 - GRAFKOM DAN PENGOLAHAN CITRA Konsep Dasar Pengolahan Citra Pengertian Citra Analog/Continue dan Digital. Elemen-elemen Citra

Lebih terperinci

Pengenalan Karakter Sintaktik menggunakan Algoritma Otsu dan Zhang-Suen

Pengenalan Karakter Sintaktik menggunakan Algoritma Otsu dan Zhang-Suen Pengenalan Karakter Sintaktik menggunakan Algoritma Otsu dan Zhang-Suen Yusfia Hafid Aristyagama (23214355) Electrical Engineering, Digital Media and Game Technology Institut Teknologi Bandung Bandung,

Lebih terperinci

SYSTEMIC Vol. 1, No. 1, Agustus 2015, PENGENALAN CATATAN PENJUALAN MENGGUNAKAN PENGENALAN ANGKA BERBASIS KORELASI.

SYSTEMIC Vol. 1, No. 1, Agustus 2015, PENGENALAN CATATAN PENJUALAN MENGGUNAKAN PENGENALAN ANGKA BERBASIS KORELASI. SYSTEMIC Vol. 1, No. 1, Agustus 2015, 14-19 PENGENALAN CATATAN PENJUALAN MENGGUNAKAN PENGENALAN ANGKA BERBASIS KORELASI Ahmad Yusuf 1) 1) Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Ampel

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 48 BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Sistem Sistem yang akan dibangun dalam penelitian ini adalah Implementasi Algoritma Template Matching dan Feature Extraction untuk Pengenalan Pola Angka Untuk

Lebih terperinci

Operasi-operasi Dasar Pengolahan Citra Digital

Operasi-operasi Dasar Pengolahan Citra Digital Operasi-operasi Dasar Pengolahan Citra Digital Pendahuluan Citra digital direpresentasikan dengan matriks. Operasi pada citra digital pada dasarnya adalah memanipulasi elemen- elemen matriks. Elemen matriks

Lebih terperinci

PENGKONVERSIAN IMAGE MENJADI TEKS UNTUK IDENTIFIKASI PLAT NOMOR KENDARAAN. Sudimanto

PENGKONVERSIAN IMAGE MENJADI TEKS UNTUK IDENTIFIKASI PLAT NOMOR KENDARAAN. Sudimanto Media Informatika Vol. 14 No.3 (2015) Abstrak PENGKONVERSIAN IMAGE MENJADI TEKS UNTUK IDENTIFIKASI PLAT NOMOR KENDARAAN Sudimanto Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI Jl. Ir. H. Juanda

Lebih terperinci

Peningkatan Kualitas Pada Citra Dengan Metode Point Operation

Peningkatan Kualitas Pada Citra Dengan Metode Point Operation Editor: Setyawan Widyarto, ISSN: 2477-5894 54 Peningkatan Kualitas Pada Citra Dengan Metode Point Operation Fahmi Rusdi Al Islami 1, Zaenal Mutaqin Subekti 2, Michael Sitorus 3, Danna Saputra 4 Program

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Meteran Air Meteran air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor, unit penghitung,

Lebih terperinci

IMPLEMENTASI ALGORITMA THRESHOLDING ADAPTIF DAN TESSERACT OCR UNTUK MENDETEKSI CITRA TEKS KEMASAN MAKANAN BERBASIS ANDROID SKRIPSI

IMPLEMENTASI ALGORITMA THRESHOLDING ADAPTIF DAN TESSERACT OCR UNTUK MENDETEKSI CITRA TEKS KEMASAN MAKANAN BERBASIS ANDROID SKRIPSI IMPLEMENTASI ALGORITMA THRESHOLDING ADAPTIF DAN TESSERACT OCR UNTUK MENDETEKSI CITRA TEKS KEMASAN MAKANAN BERBASIS ANDROID SKRIPSI RIZKY RIVANNI 121401072 PROGRAM STUDI S1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER

Lebih terperinci

SAMPLING DAN KUANTISASI

SAMPLING DAN KUANTISASI SAMPLING DAN KUANTISASI Budi Setiyono 1 3/14/2013 Citra Suatu citra adalah fungsi intensitas 2 dimensi f(x, y), dimana x dan y adalahkoordinat spasial dan f pada titik (x, y) merupakan tingkat kecerahan

Lebih terperinci

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara.

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Image Enhancement Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sel Darah Merah Sel yang paling banyak di dalam selaput darah adalah sel darah merah atau juga dikenal dengan eritrosit. Sel darah merah berbentuk cakram bikonkaf dengan diameter

Lebih terperinci

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini

Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Program Aplikasi Komputer Pengenalan Angka Dengan Pose Jari Tangan Sebagai Media Pembelajaran Interaktif Anak Usia Dini Wawan Kurniawan Jurusan PMIPA, FKIP Universitas Jambi wwnkurnia79@gmail.com Abstrak

Lebih terperinci

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016

Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016 MKB3383 - Teknik Pengolahan Citra Pengolahan Citra Digital Muhammad Zidny Naf an, M.Kom. Gasal 2015/2016 CITRA Citra (image) = gambar pada bidang 2 dimensi. Citra (ditinjau dari sudut pandang matematis)

Lebih terperinci

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.9, No.2, Agustus 2015 ISSN: 0852-730X Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Nur Nafi'iyah Prodi Teknik Informatika

Lebih terperinci

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA

COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Seminar Nasional Teknologi Terapan SNTT 2013 (26/10/2013) COMPUTER VISION UNTUK PENGHITUNGAN JARAK OBYEK TERHADAP KAMERA Isnan Nur Rifai *1 Budi Sumanto *2 Program Diploma Elektronika & Instrumentasi Sekolah

Lebih terperinci

BAB 3 IMPLEMENTASI SISTEM

BAB 3 IMPLEMENTASI SISTEM BAB 3 IMPLEMENTASI SISTEM Bab ini akan membahas mengenai proses implementasi dari metode pendeteksian paranodus yang digunakan dalam penelitian ini. Bab ini terbagai menjadi empat bagian, bagian 3.1 menjelaskan

Lebih terperinci

DETEKSI DAN SEGMENTASI OTOMATIS DERET PADA CITRA METERAN AIR

DETEKSI DAN SEGMENTASI OTOMATIS DERET PADA CITRA METERAN AIR DETEKSI DAN SEGMENTASI OTOMATIS DERET PADA CITRA METERAN AIR Naser Jawas STIKOM Bali Jl. Raya Puputan, No.86, Renon, Denpasar, Bali Email: naser.jawas@gmail.com ABSTRAK Meter air adalah sebuah alat yang

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Citra Secara harafiah, citra adalah representasi (gambaran), kemiripan, atau imitasi pada bidang dari suatu objek. Ditinjau dari sudut pandang matematis,

Lebih terperinci

Model Citra (bag. 2)

Model Citra (bag. 2) Model Citra (bag. 2) Ade Sarah H., M. Kom Resolusi Resolusi terdiri dari 2 jenis yaitu: 1. Resolusi spasial 2. Resolusi kecemerlangan Resolusi spasial adalah ukuran halus atau kasarnya pembagian kisi-kisi

Lebih terperinci

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Nurul Fuad 1, Yuliana Melita 2 Magister Teknologi Informasi Institut Saint Terapan & Teknologi

Lebih terperinci

BAB 2 LANDASAN TEORI. Teknologi pengenalan teks merupakan teknologi yang mampu mengenali teks

BAB 2 LANDASAN TEORI. Teknologi pengenalan teks merupakan teknologi yang mampu mengenali teks BAB 2 LANDASAN TEORI 2.1 Pengenalan Teks Teknologi pengenalan teks merupakan teknologi yang mampu mengenali teks pada citra digital dan mengalihkannya pada dokumen digital. Aplikasi dari teknologi pengenalan

Lebih terperinci

Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang

Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang 17 BAB II REKOGNISI KARAKTER NUMERIK 2.1 Gambaran Singkat Rekognisi Karakter Optik Rekognisi karakter optik merupakan salah satu aplikasi pengenalan pola yang dirancang untuk menerjemahkan teks baik berupa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Berikut adalah beberapa definisi dari citra, antara lain: rupa; gambar; gambaran (Kamus Besar Bahasa Indonesia). Sebuah fungsi dua dimensi, f(x, y), di mana x dan y adalah

Lebih terperinci

Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Produk Menggunakan Webcam

Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Produk Menggunakan Webcam Perancangan Sistem Identifikasi Barcode Untuk Deteksi ID Menggunakan Webcam Albert Haryadi [1], Andrizal,MT [2], Derisma,MT [3] [1] Jurusan Sistem Komputer Fakultas Teknologi Informasi Universitas Andalas,

Lebih terperinci

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus BAB II DASAR TEORI 2.1 Meter Air Gambar 2.1 Meter Air Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor,

Lebih terperinci

SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM)

SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM) SYSTEM IDENTIFIKASI GANGGUAN STROKE ISKEMIK MENGGUNAKAN METODE OTSU DAN FUZZY C-MEAN (FCM) Jani Kusanti Program Studi Teknik Informatika, Fakultas Teknik Elektro dan Informatika Universitas Surakarta (UNSA),

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB 3 ANALISA DAN PERANCANGAN

BAB 3 ANALISA DAN PERANCANGAN 44 BAB 3 ANALISA DAN PERANCANGAN 3.1 Analisa Analisa yang dilakukan terdiri dari : a. Analisa terhadap permasalahan yang ada. b. Analisa pemecahan masalah. 3.1.1 Analisa Permasalahan Pengenalan uang kertas

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1. Penentuan Masalah Penelitian Masalah masalah yang dihadapi oleh penggunaan identifikasi sidik jari berbasis komputer, yaitu sebagai berikut : 1. Salah satu masalah dalam

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

BAB II DASAR TEORI. CV Dokumentasi CV berisi pengolahan citra, analisis struktur citra, motion dan tracking, pengenalan pola, dan kalibrasi kamera.

BAB II DASAR TEORI. CV Dokumentasi CV berisi pengolahan citra, analisis struktur citra, motion dan tracking, pengenalan pola, dan kalibrasi kamera. BAB II DASAR TEORI Pada bab ini akan dibahas teori yang berkaitan dengan skripsi ini, meliputi pustaka OpenCV, citra, yaitu citra grayscale dan citra berwarna, pengolahan citra meliputi image enhancement

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA 2.1. Image Preprocessing Masalah umum pada tahap awal proses preprocessing OCR adalah menyesuaikan orientasi area teks. Baris teks seharusnya sejajar dengan batas gambar. Pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Sebagai tinjauan pustaka, berikut beberapa contoh penelitian telapak kaki yang sudah dilakukan oleh para peneliti yang dapat digunakan sebagai

Lebih terperinci

PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL. Abstrak

PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL. Abstrak PENDETEKSI DAN VERIFIKASI TANDA TANGAN MENGGUNAKAN METODE IMAGE DOMAIN SPASIAL Annisa Hayatunnufus [1], Andrizal,MT [2], Dodon Yendri,M.Kom [3] Jurusan Sistem Komputer Fakultas Teknologi Informasi Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra (image) atau yang secara umum disebut gambar merupakan representasi spasial dari suatu objek yang sebenarnya dalam bidang dua dimensi yang biasanya ditulis dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. dilakukan oleh para peneliti, berbagai metode baik ekstraksi fitur maupun metode

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. dilakukan oleh para peneliti, berbagai metode baik ekstraksi fitur maupun metode BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2. Penelitian Terdahulu Beberapa penelitian mengenai pengenalan tulisan tangan telah banyak dilakukan oleh para peneliti, berbagai metode baik ekstraksi fitur

Lebih terperinci

BAB I PENDAHULUAN. teknologi pengolahan citra (image processing) telah banyak dipakai di berbagai

BAB I PENDAHULUAN. teknologi pengolahan citra (image processing) telah banyak dipakai di berbagai BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Citra (image) adalah bidang dalam dwimatra (dua dimensi) (Munir, 2004). Sebagai salah satu komponen multimedia, citra memegang peranan sangat penting sebagai

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi

BAB III ANALISIS DAN PERANCANGAN SISTEM. Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1 Model Pengembangan Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi fitur yang terdapat pada karakter citra digital menggunakan metode diagonal

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini dibahas teori yang digunakan sebagai landasan pengerjaan pengenalan kata berdasarkan tulisan tangan huruf Korea (hangūl) menggunakan jaringan saraf tiruan propagasi balik.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan membahas landasan teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teknik-teknik yang dibahas mengenai pengenalan pola, prapengolahan citra,

Lebih terperinci

PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION

PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION Jurnal Komputer dan Informatika (KOMPUTA) 29 PERBANDINGAN ALGORITMA TEMPLATE MATCHING DAN FEATURE EXTRACTION PADA OPTICAL CHARACTER RECOGNITION Raden Sofian Bahri 1, Irfan Maliki 2 1,2 Program Studi Teknik

Lebih terperinci

Pembentukan Citra. Bab Model Citra

Pembentukan Citra. Bab Model Citra Bab 2 Pembentukan Citra C itra ada dua macam: citra kontinu dan citra diskrit. Citra kontinu dihasilkan dari sistem optik yang menerima sinyal analog, misalnya mata manusia dan kamera analog. Citra diskrit

Lebih terperinci

pbab 4 IMPLEMENTASI DAN EVALUASI PROGRAM APLIKASI uji coba terhadap program aplikasi pengenalan plat nomor kendaraan roda empat ini,

pbab 4 IMPLEMENTASI DAN EVALUASI PROGRAM APLIKASI uji coba terhadap program aplikasi pengenalan plat nomor kendaraan roda empat ini, pbab 4 IMPLEMENTASI DAN EVALUASI PROGRAM APLIKASI Bab ini berisi penjelasan tentang implementasi sistem meliputi kebutuhan perangkat lunak dan perangkat keras yang digunakan untuk melakukan perancangan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Digital Citra digital adalah citra yang dapat diolah oleh komputer (Sutoyo & Mulyanto, 2009). Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat

BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat BAB 3 PROSEDUR DAN METODOLOGI 3.1 Permasalahan CBIR ( Content Based Image Retrieval) akhir-akhir ini merupakan salah satu bidang riset yang sedang berkembang pesat (Carneiro, 2005, p1). CBIR ini menawarkan

Lebih terperinci

KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS

KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS Ikhwan Ruslianto KLASIFIKASI TELUR AYAM DAN TELUR BURUNG PUYUH MENGGUNAKAN METODE CONNECTED COMPONENT ANALYSIS IKHWAN RUSLIANTO Program Studi Teknik Informatika Sekolah Tinggi Manajemen Informatika dan

Lebih terperinci

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness 753 GLOSARIUM Adaptive thresholding (lihat Peng-ambangan adaptif). Additive noise (lihat Derau tambahan). Algoritma Moore : Algoritma untuk memperoleh kontur internal. Array. Suatu wadah yang dapat digunakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Citra atau gambar adalah sebuah fungsi dua dimensi, f(x,y), dimana x dan y koordinat bidang datar dan f di setiap pasangan koordinat disebut intensitas atau level keabuan

Lebih terperinci

BAB 1 PENDAHULUAN. dengan proses pengolahan citra digital (digital image processing), dimana data berupa

BAB 1 PENDAHULUAN. dengan proses pengolahan citra digital (digital image processing), dimana data berupa BAB 1 PENDAHULUAN 1.1 Latar Belakang Pada awalnya, komputer hanya dapat digunakan untuk melakukan pemrosesan terhadap data numerik. Tetapi pada sekarang ini, komputer telah membawa banyak perubahan dan

Lebih terperinci

BAB 2 TINJAUAN TEORETIS

BAB 2 TINJAUAN TEORETIS BAB 2 TINJAUAN TEORETIS 2. Citra Digital Menurut kamus Webster, citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda. Citra digital adalah representasi dari citra dua dimensi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Penelitian ini menggunakan jenis penelitian eksperimen, dengan tahapan penelitian sebagai berikut: 3.1 Pengumpulan Data Tahap ini merupakan langkah awal dari penelitian. Dataset

Lebih terperinci

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom

Pengantar Pengolahan Citra. Ade Sarah H., M. Kom Pengantar Pengolahan Citra Ade Sarah H., M. Kom Pendahuluan Data atau Informasi terdiri dari: teks, gambar, audio, dan video. Citra = gambar adalah salah satu komponen multimedia yang memegang peranan

Lebih terperinci

MILIK UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang Permasalahan

MILIK UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Thinning atau penipisan citra adalah suatu operasi untuk mereduksi citra biner dalam suatu objek menjadi rangka (skeleton) yang menghampiri sumbu objek.

Lebih terperinci

PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL

PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL Pelita Informatika Budi Darma, Volume : IV, Nomor:, Agustus 23 ISSN : 23-9425 PENERAPAN METODE MOST SIGNIFICANT BIT UNTUK PENYISIPAN PESAN TEKS PADA CITRA DIGITAL Harry Suhartanto Manalu (9259) Mahasiswa

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI Pada bab ini akan dibahas mengenai teori pendukung dan penelitian sebelumnya yang berhubungan dengan metode ekstraksi fitur, serta metode klasifikasi Support Vector Machine dalam

Lebih terperinci

Pengenalan Plat Nomor Kendaraan Secara Otomatis Untuk Pelanggaran Lalu Lintas

Pengenalan Plat Nomor Kendaraan Secara Otomatis Untuk Pelanggaran Lalu Lintas Pengenalan Plat Nomor Kendaraan Secara Otomatis Untuk Pelanggaran Lalu Lintas. Riza Prasetya Wicaksana Teknik Komputer dan Telematika Jurusan Teknik Elektro Insitut Teknologi Sepuluh Nopember Suarabaya

Lebih terperinci

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL

DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL DETEKSI GERAK BANYAK OBJEK MENGGUNAKAN BACKGROUND SUBSTRACTION DAN DETEKSI TEPI SOBEL Muhammad Affandes* 1, Afdi Ramadani 2 1,2 Teknik Informatika UIN Sultan Syarif Kasim Riau Kontak Person : Muhammad

Lebih terperinci

BAB I PENDAHULUAN. kesuksesan dan mulai dikenal luas, menggantikan kepopuleran disk operating

BAB I PENDAHULUAN. kesuksesan dan mulai dikenal luas, menggantikan kepopuleran disk operating 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sejak berkembangnya IBM-PC dan sistem operasi MS-DOS mendapatkan kesuksesan dan mulai dikenal luas, menggantikan kepopuleran disk operating system CP/M-80 yang telah

Lebih terperinci

Pengolahan Citra : Konsep Dasar

Pengolahan Citra : Konsep Dasar Pengolahan Citra Konsep Dasar Universitas Gunadarma 2006 Pengolahan Citra Konsep Dasar 1/14 Definisi dan Tujuan Pengolahan Citra Pengolahan Citra / Image Processing Proses memperbaiki kualitas citra agar

Lebih terperinci

OTOMASI TAGIHAN LISTRIK DENGAN CITRA DIGITAL. Abstrak

OTOMASI TAGIHAN LISTRIK DENGAN CITRA DIGITAL. Abstrak OTOMASI TAGIHAN LISTRIK DENGAN CITRA DIGITAL Titik Rahmawati Program Studi Manajemen Informatika STMIK Jenderal Achmad Yani Yogyakarta rahmawati.titik@gmail.com Abstrak Perusahaan listrik negara (PLN)

Lebih terperinci

BAB 4 HASIL DAN ANALISA

BAB 4 HASIL DAN ANALISA BAB 4 HASIL DAN ANALISA 4. Analisa Hasil Pengukuran Profil Permukaan Penelitian dilakukan terhadap (sepuluh) sampel uji berdiameter mm, panjang mm dan daerah yang dibubut sepanjang 5 mm. Parameter pemesinan

Lebih terperinci

Fitur Matriks Populasi Piksel Untuk Membedakan Frame-frame Dalam Deteksi Gerakan

Fitur Matriks Populasi Piksel Untuk Membedakan Frame-frame Dalam Deteksi Gerakan Fitur Matriks Populasi Piksel Untuk Membedakan Frame-frame Dalam Deteksi Gerakan Teady Matius Surya Mulyana tmulyana@bundamulia.ac.id, teadymatius@yahoo.com Teknik Informatika Universitas Bunda Mulia Abstrak

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM BAB 3 ANALISIS DAN PERANCANGAN PROGRAM Program aplikasi ini dirancang dengan menggunakan perangkat lunak Microsoft Visual C# 2008 Express Edition. Proses perancangan menggunakan pendekatan Object Oriented

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Sistem Dalam proses pembuatan suatu sistem mutlak dilakukan analisis terhadap sistem yang akan dibangun, analisis yang dilakukan untuk membangun aplikasi perbandingan

Lebih terperinci

PERANCANGAN PENGENALAN PLAT NOMOR MELALUI CITRA DIGITAL DENGAN OPENCV

PERANCANGAN PENGENALAN PLAT NOMOR MELALUI CITRA DIGITAL DENGAN OPENCV PERANCANGAN PENGENALAN PLAT NOMOR MELALUI CITRA DIGITAL DENGAN OPENCV Abdillah Komarudin 1401139432 Program Studi Sistem Komputer, Universitas Bina Nusantara, abdee_dillah@yahoo.com Ahmad Teguh Satria

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Dalam penelitian penerapan metode Jaringan Syaraf Tiruan Learning Vector

BAB III METODOLOGI PENELITIAN. Dalam penelitian penerapan metode Jaringan Syaraf Tiruan Learning Vector BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Dalam penelitian penerapan metode Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ) untuk pengenalan wajahterdiri dari empat metodologi penelitian,

Lebih terperinci

BAB III PERANCANGAN SISTEM. Pada dewasa sekarang ini sangat banyak terdapat sistem dimana sistem tersebut

BAB III PERANCANGAN SISTEM. Pada dewasa sekarang ini sangat banyak terdapat sistem dimana sistem tersebut BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Pada dewasa sekarang ini sangat banyak terdapat sistem dimana sistem tersebut sudah terintegrasi dengan komputer, dengan terintegrasinya sistem tersebut

Lebih terperinci