... BAB 2 LANDASAN TEORI. 2.1 Citra

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "... BAB 2 LANDASAN TEORI. 2.1 Citra"

Transkripsi

1 6 BAB 2 LANDASAN TEORI 2.1 Citra Citra atau image adalah suatu matriks dimana indeks baris dan kolomnya menyatakan suatu titik pada citra tersebut dan elemen matriksnya (yang disebut sebagai elemen gambar / pixel) menyatakan tingkat keabuan pada titik tersebut (Sutoyo & Mulyanto, 2009). Suatu citra dapat didefinisikan sebagai fungsi f(x, y) berukuran M baris dan N kolom, dengan x dan y adalah koordinat spasial dan amplitudo f di titik koordinat (x, y) dinamakan intensitas atau tingkat keabuan dari citra pada titik tersebut. Gambar 2.1 menunjukan posisi koordinat citra digital (Putra, 2010). Koordinat asal N 1 y M x Sebuah Pixel f(x, y) Gambar 2.1. Koordinat Citra Digital (Putra, 2010) Jenis-jenis Citra Digital Ada tiga jenis citra yang umum digunakan dalam pemrosesan citra, antara lain: 1. Citra Berwarna / Red, Green, Blue (RGB). Merupakan jenis citra yang menyajikan warna dalam bentuk komponen R (merah), G (hijau), B (biru). Setiap

2 7 komponen warna menggunakan delapan bit (nilainya berkisar antara 0 sampai dengan 255). (Kadir & Susanto, 2013). Contoh gambar citra RGB dapat dilihat pada Gambar 2.2. Gambar 2.2. Contoh gambar citra RGB 2. Citra Berskala Keabuan (Grayscale) merupakan citra digital yang hanya memiliki satu nilai kanal pada setiap pixelnya. Nilai tersebut digunakan untuk menunjukkan tingkat intensitas. Warna yang dimiliki adalah warna dari hitam, keabuan, dan putih. Tingkatan keabuan di sini merupakan warna abu dengan berbagai tingkatan dari hitam hingga mendekati putih. Citra Grayscale memiliki kedalaman warna 8 bit (256 kombinasi warna keabuan) (Putra, 2010). Dalam hal ini, intensitas berkisar antara 0 sampai dengan 255. Nilai 0 menyatakan hitam dan nilai 255 menyatakan putih (Kadir & Susanto, 2013) Contoh dari citra Grayscale dapat dilihat pada Gambar 2.3. Gambar 2.3. Contoh gambar citra Grayscale

3 8 3. Citra Biner. Citra dengan setiap piksel hanya dinyatakan dengan sebuah nilai dari dua kemungkinan (yaitu nilai 0 dan 1). Nilai 0 menyatakan hitam dan nilai 1 menyatakan putih (Kadir & Susanto, 2013). Contoh dari citra biner dapat dilihat pada Gambar 2.4. Gambar 2.4. Contoh gambar citra biner 2.3. Format File Citra Format file citra standar yang digunakan saat ini terdiri dari beberapa jenis. Formatformat ini sering digunakan dalam menyimpan citra pada sebuah file. Setiap format file citra memiliki karakteristik masing-masing (Putra, 2010) Citra Bitmap Citra bitmap menyimpan data kode citra secara digital dan lengkap (cara penyimpanannya per piksel). Citra bitmap dipresentasikan dalam bentuk matriks atau dipetakan dengan menggunakan bilangan biner atau sistem bilangan lain (Sutoyo & Mulyanto, 2009) Pengolahan Citra Pengolahan citra adalah proses pengolahan gambar untuk membuat kualitas yang lebih baik. Pengolahan ini biasanya dilakukan dengan menggunakan media elektronik seperti komputer. Pengolahan citra bertujuan memperbaiki kualitas gambar dilihat dari aspek radiometrik (peningkatan kontras, transformasi warna,

4 9 restorasi citra) dan dari aspek geometrik (rotasi, translasi, skala, transformasi geometrik), melakukan proses penarikan informasi atau deskripsi objek atau pengenalan objek yang terkandung pada citra dan melakukan kompresi atau reduksi data untuk tujuan penyimpanan data, transmisi data, dan waktu proses data. (Kadir & Susanto, 2013) 2.5. Segmentasi Citra Segmentasi citra merupakan proses yang ditujukan untuk mendapatkan objek-objek yang terkandung di dalam citra ke dalam beberapa daerah dengan setiap objek atau daerah memiliki kemiripan atribut. Segmentasi juga biasa dilakukan sebagai langkah awal untuk melaksanakan klasifikasi objek. Setelah segmentasi citra dilaksanakan, fitur yang terdapat pada objek diambil. Sebagai contoh, fitur objek dapat berupa perbandingan lebar dan panjang objek, warna rata-rata objek, maupun tekstur pada objek. (Kadir & Susanto, 2013) Representasi Bentuk Fitur suatu objek merupakan karakteristik yang melekat pada objek. Fitur bentuk merupakan suatu fitur yang diperoleh melalui bentuk objek dan dapat dinyatakan melalui kontur, area dan transformasi. Fitur bentuk biasa digunakan sebagai salah satu fitur pada kepentingan identifikasi objek. (Kadir, dkk., 2011) 2.7. Ekstraksi Fitur Bentuk menurut D.G. Kendall (Stegmann dan Gomez, 2002) adalah informasi geometris yang tetap ketika efek lokasi, skala, pemutaran dilakukan terhadap sebuah objek. Deskriptor adalah seperangkat parameter yang mewakili karakteristik tertentu objek, yang dapat digunakan untuk menyatakan fitur objek. Adapun fitur dinyatakan dengan susunan bilangan yang dapat dipakai untuk mengidentifikasi suatu objek. Fitur suatu objek mempunyai peran penting untuk berbagai aplikasi seperti pencarian citra, penyederhanaan bentuk, pengenalan dan klasifikasi objek.

5 Fitur Tekstur Selain melibatkan fitur bentuk, tekstur banyak digunakan sebagai fitur untuk temu kembali citra. Hal ini disebabkan beberapa objek mempunyai pola-pola tertentu, yang bagi manusia mudah untuk dibedakan. Dalam praktik, tekstur digunakan untuk berbagai kepentingun. Umumnya, aplikasi tekstur dapat dibagi menjadi dua kategori. Pertama adalah untuk kepentingan segmentasi. Pada proses ini, tekstur dipakai untuk melakukan pemisahan antara satu objek dengan objek lain. Kedua adalah untuk klasifikasi tekstur sebagai klasifikasi objek. Tekstur adalah hubungan mutual antara nilai intensitas piksel-piksel yang bertetangga yang berulang di suatu area yang lebih luas daripada jarak hubungan tersebut (Tuceryan & Jain, 1998) Information Retrieval Definisi information retrieval (IR) adalah bagaimana menemukan suatu dokumen dari dokumen-dokumen tidak terstruktur yang memberikan informasi yang dibutuhkan dari koleksi dokumen yang sangat besar yang tersimpan dalam komputer. (Manning, 2008). Tujuan dari sistem IR ini adalah memenuhi kebutuhan informasi pengguna dengan mendapatkan semua dokumen yang relevan dengan kebutuhan pengguna dan pada waktu yang sama mendapatkan sedikit mungkin dokumen yang tak relevan (Pardede, 2013). Berdasarkan konten dokumen yang dicari, information retrieval terbagi atas 4 bagian, yaitu text retrieval, image retrieval, video retrieval dan audio retrieval Image Retrieval Image Retrieval adalah sistem pencarian informasi berbasis konten gambar ataupun berformat citra. Teknik image retrieval yang pertama, yaitu tekstual, merupakan teknik yang sangat sederhana, yaitu berdasarkan kata kunci yang diberikan untuk tiap citra. Permasalahan dengan teknik ini adalah lamanya waktu pencarian dan adanya ketergantungan terhadap manusia yang sangat tinggi untuk mendeskripsikan suatu citra. Hal ini menyebabkan terjadinya pendeskripsian yang tidak konsisten. Teknik

6 11 image retrieval yang kedua, berdasarkan isi, adalah teknik yang mengindekskan suatu citra berdasarkan isinya seperti warna, sisi, bentuk, tekstur, informasi spasial, features dan sebagainya. Teknik ini sering disebut dengan Content Based Image Retrieval (CBIR). (Utami, 2011) Content Based Image Retrieval (CBIR) Temu kembali citra atau istilah yang lebih spesifik lagi disebut content based image retrieval (CBIR), merupakan proses untuk mendapatkan sejumlah citra berdasarkan masukan satu citra. Istilah tersebut dikemukakan pertama kali oleh Kato pada tahun 1992 (Zhang, 2002). Image retrieval atau image querying adalah aplikasi pengolahan citra yang dapat membantu pengguna mengambil atau mencari dengan cepat suatu citra pada suatu database citra berdasarkan query atau permintaan pengguna. (Putra, 2010). Pada CBIR, ciri-ciri visual citra dalam basis data diekstraksi dan kemudian dideskripsikan sebagai vektor ciri multidimensional. Vektor yang diperoleh dari citra query akan dibandingkan kesamaannya dengan nilai vektor yang terdapat dalam basis data (Devireddy, 2009). Tahap awal dalam sistem pemanggilan citra berdasarkan konten adalah melakukan proses ekstraksi dan deskripsi pada citra dalam database sehingga menghasilkan vektor fitur. Setelah itu dilakukan proses ekstraksi dan deskripsi pada citra query yang dimasukkan oleh user Kemudian dilakukan Similarity Comparison antara citra query dengan citra dalam database. Jarak kesamaan antara citra query dengan citra dalam database akan diurutkan dan di tampilkan sebagai output (Long, et al. 2003). Gambar 2.5. Diagram Sistem Content Based Image Retrieval (Long, et al. 2003)

7 Algoritma Speeded-Up Robust Features (SURF) Algoritma SURF (Bay H., dkk, 2006) bertujuan untuk mendeteksi fitur lokal suatu citra dengan handal dan cepat. Algoritma ini sebagian terinspirasi oleh algoritma SIFT (Scale-invariant feature transform), terutama pada tahap scale space representation (Lowe DG, 1999). SURF merupakan sebuah algoritma yang cepat dan akurat untuk proses mendeteksi descriptor lokal pada citra. Descriptor adalah sebuah ciri-ciri dari suatu citra berdasarkan aturan tertentu dari suatu algoritma. Algoritma SURF dikembangkan oleh Herbert bay dkk pada tahun Secara umum, algoritma SURF terdiri dari 3 bagian utama yaitu : 1. Detector Interest Point / KeyPoint Image yang dimasukkan akan diubah menjadi integral image dengan persamaan : I i x (x, y) = i=0 j y I ( i, j ) (1) j=0 Setelah diperoleh integral image maka komputasi dilakukan dengan menggunakan persamaan Fast-Hessian Detector : H (X, σ) = [ L xx(x, σ) L xy (X, σ) L xy (X, σ) L yy (X, σ) ] (2) Di dalam algoritma SURF, digunakan turunan kedua Gaussian dalam pembuatan determinan dari Hessian sehingga diperoleh Hessian Matrix yang baru, hal ini dilakukan menggunakan persamaan : det (H approx ) = D xx D yy 0.9D 2 xy (3)

8 13 2. Pembuatan SURF Descriptor. Langkah selanjutnya adalah menghitung nilai dari semua interest/keypoint yang telah dilakukan pada tahap pertama. Metode Haar Wavelet digunakan pada tahap ini untuk memperoleh nilai dimenso dari vektor, menggunakan persamaan : V = ( d, d, d, d x y x y ) (4) 3. Setelah dipilih citra yang akan dicari, dan proses SURF detector & descriptor telah berhasil memperoleh fitur dari seluruh citra koleksi, maka dilakukan proses image matching / similiarity comparison. Dicari dan ditampilkan citra yang memiliki kemiripan fitur dengan citra yang dicari dengan cara melakukan perhitungan jarak antara dua citra Perhitungan Jarak Antara Dua Citra Jarak merupakan pendekatan yang umum dipakai untuk mewujudkan pencarian citra. Fungsinya adalah untuk menentukan kesamaan atau ketidaksamaan dua vektor fitur. Tingkat kesamaan dinyatakan dengan suatu skor atau ranking. Semakin kecil nilai ranking, semakin dekat kesamaan kedua vektor tersebut. Contoh metode untuk mengukur jarak antara dua citra adalah dengan Euclidean Distance. Untuk mempercepat proses, fitur untuk semua citra referensi dapat dihitung terlebih dahulu melalui suatu skrip dan kemudian disimpan di dalam suatu database. Dengan demikian, pembandingan fitur dilakukan secara langsung, tanpa perlu menyiapkan perolehan fitur Euclidean Distance Metode yang paling sering digunakan untuk menghitung kesamaan dua vektor salah satunya adalah Euclidean Distance.

9 14 Adapun persamaan metode ini adalah sebagai berikut : n d(a, B) = (H A j H B j ) 2 j= (5) Keterangan : A : Vektor A B : Vektor B d(a,b) : Jarak Euclidean antara vektor A dan vektor B. n : Jumlah elemen vektor j : Indeks elemen vektor H : Elemen vektor Efektifitas Information Retrieval System Lancaster (1980) menyatakan efektivitas dari suatu sistem temu kembali informasi adalah kemampuan dari sistem itu untuk memangil berbagai dokumen dari suatu basis data sesuai dengan permintaan pengguna. Ada dua parameter dasar yang digunakan dalam mengukur kemampuan suatu sistem temu kembali informasi yaitu rasio atau perbandingan dari perolehan (recall) dan ketepatan (precision). Ukuran efetivitas pencarian pada dokumen yang ditampilkan oleh sistem temu balik dapat ditentukan oleh precision dan recall. Precision adalah rasio jumlah dokumen relevan yang ditemukan dengan total jumlah yang ditemukan oleh aplikasi. Precision mengindikasikan kualitas himpunan jawaban, tetapi tidak memandang total jumlah dokumen yang relevan dalam kumpulan dokumen. Precision = {Relevan documents} {documents retrieved} (6) {documents retrieved} Recall = {Relevan documents} {documents retrieved} (7) {relevant documents}

10 15 Keterangan : Precision : Nilai Precision atau nilai ketepatan Recall : Nilai Recall atau nilai rasio perbandingan dari perolehan Relevan Documents : Jumlah dokumen yang relevan Documents Retrieved : Jumlah dokumen yang sesuai dan ditemukan kembali Penelitian Sebelumnya Tabel 2.1 Penelitian Sebelumnya Terkait CBIR dan SURF No Nama Judul Hasil Penelitian 1 Setiawan, A. E. Perbandingan Content Based Image Retrieval dengan fitur warna menggunakan metode Colour Histogram dan fitur tekstur menggunakan metode Grey Level Co- Occurrence matrices Proses temu kembali menggunakan fitur tekstur diekstraksi dengan metode Grey Level Co-Occurrence Matrices lebih cepat dibandingkan proses temu kembali menggunakan fitur warna yang diekstraksi dengan metode Colour Histogram Pengenalan gambar 2 Tania, K.D. menggunakan sebagian Pengenalan Gambar data gambar sebagai data query Menggunakan gambar dengan metode SURF Sebagian Data Gambar menghasilkan tingkat pengenalan 90%. 3 Ulum, M. F. Image yang bisa diuji coba pada Ekstraksi Titik - Titik algoritma SURF adalah image Fitur Pada Citra yang berformat grayscale Menggunakan sedangkan untuk Menggunakan image warna tidak bisa Speeded-Up Robust dilakukan. Dan dari beberapa Features (SURF) hasil uji coba ternyata setiap

11 16 4 Utami, A. S. Perancangan Perangkat Lunak Sistem Temu Balik Citra Menggunakan Jarak Histogram Dengan Model Warna YIQ rotasi image mempunya titik titik berbeda dengan image yang lainnya Jumlah piksel dalam citra berbeda-beda sesuai dengan ukuran citra, sehingga perlu proses normalisasi agar invarian terhadap ukuran citra. Hasil temu-balik diranking dan disimpan dalam indeks berdasarkan nilai jarak antar citra untuk mempercepat proses pencarian.

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Video Video adalah teknologi untuk menangkap, merekam, memproses, mentransmisikan dan menata ulang citra bergerak. Teknologi ini biasanya menggunakan film seluloid, sinyal elektronik,

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR...

LEMBAR PENGESAHAN TUGAS AKHIR... DAFTAR ISI HALAMAN SAMPUL... i HALAMAN JUDUL... ii PERNYATAAN... iii LEMBAR PENGESAHAN TUGAS AKHIR... iv BERITA ACARA TUGAS AKHIR... v KATA PENGANTAR... vi ABSTRAK... vii ABSTRACT... viii DAFTAR ISI...

Lebih terperinci

Model Citra (bag. 2)

Model Citra (bag. 2) Model Citra (bag. 2) Ade Sarah H., M. Kom Resolusi Resolusi terdiri dari 2 jenis yaitu: 1. Resolusi spasial 2. Resolusi kecemerlangan Resolusi spasial adalah ukuran halus atau kasarnya pembagian kisi-kisi

Lebih terperinci

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH

IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH IMPLEMENTASI METODE SPEED UP FEATURES DALAM MENDETEKSI WAJAH Fitri Afriani Lubis 1, Hery Sunandar 2, Guidio Leonarde Ginting 3, Lince Tomoria Sianturi 4 1 Mahasiswa Teknik Informatika, STMIK Budi Darma

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Seiring dengan perkembangan teknologi informasi dan semakin luasnya pemanfaatan teknologi komputer di berbagai bidang kehidupan, kebutuhan akan efisiensi pengelolaan

Lebih terperinci

2.Landasan Teori. 2.1 Konsep Pemetaan Gambar dan Pengambilan Data.

2.Landasan Teori. 2.1 Konsep Pemetaan Gambar dan Pengambilan Data. 6 2.Landasan Teori 2.1 Konsep Pemetaan Gambar dan Pengambilan Data. Informasi Multi Media pada database diproses untuk mengekstraksi fitur dan gambar.pada proses pengambilan, fitur dan juga atribut atribut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab landasan teori ini akan diuraikan mengenai teori-teori yang terkait dengan Content Based Image Retrieval, ekstraksi fitur, Operator Sobel, deteksi warna HSV, precision dan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Citra (image) sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik yang tidak dimiliki oleh

Lebih terperinci

Fourier Descriptor Based Image Alignment (FDBIA) (1)

Fourier Descriptor Based Image Alignment (FDBIA) (1) Fourier Descriptor Based Image Alignment (FDBIA) (1) Metode contour tracing digunakan untuk mengidentifikasikan boundary yang kemudian dideskripsikan secara berurutan pada FD. Pada aplikasi AOI variasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C-

BAB II TINJAUAN PUSTAKA. menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- 8 BAB II TINJAUAN PUSTAKA 2.1 Studi Pendahuluan Sebelumnya telah ada penelitian tentang sistem pengenalan wajah 2D menggunakan PCA, kemudian penelitian yang menggunakan algoritma Fuzzy C- Means dan jaringan

Lebih terperinci

ABSTRAK. Kata kunci : CBIR, GLCM, Histogram, Kuantisasi, Euclidean distance, Normalisasi. v Universitas Kristen Maranatha

ABSTRAK. Kata kunci : CBIR, GLCM, Histogram, Kuantisasi, Euclidean distance, Normalisasi. v Universitas Kristen Maranatha ABSTRAK Content-Based Image Retrieval (CBIR) adalah proses untuk mendapatkan suatu citra berdasarkan konten-konten tertentu, konten yang dimaksud dapat berupa tekstur, warna, bentuk. CBIR pada dasarnya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya, dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap titik merupakan

Lebih terperinci

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara.

Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Image Enhancement Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagai cara. Cara-cara yang bisa dilakukan misalnya dengan fungsi transformasi, operasi matematis,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Citra (image) atau yang secara umum disebut gambar merupakan representasi spasial dari suatu objek yang sebenarnya dalam bidang dua dimensi yang biasanya ditulis dalam

Lebih terperinci

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital

LANDASAN TEORI. 2.1 Citra Digital Pengertian Citra Digital LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra dapat didefinisikan sebagai sebuah fungsi dua dimensi, f(x,y) dimana x dan y merupakan koordinat bidang datar, dan harga fungsi f disetiap

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

Sistem perolehan citra berbasis isi Berdasarkan tekstur menggunakan metode Gray level co-occurrence matrix dan Euclidean distance

Sistem perolehan citra berbasis isi Berdasarkan tekstur menggunakan metode Gray level co-occurrence matrix dan Euclidean distance Vol 1, No 3 Desember 2010 ISSN 2088-2130 Sistem perolehan citra berbasis isi Berdasarkan tekstur menggunakan metode Gray level co-occurrence matrix dan Euclidean distance * Fitri Damayanti, ** Husni, ***

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Bab ini membahas landasan teori yang bersifat ilmiah untuk mendukung penulisan penelitian ini. Teori-teori yang dibahas mengenai pengertian citra, jenis-jenis citra digital, metode

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN Pada bab pendahuluan ini akan diuraikan penjelasan mengenai latar belakang penelitian, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian dan

Lebih terperinci

III METODOLOGI PENELITIAN

III METODOLOGI PENELITIAN 13 III METODOLOGI PENELITIAN 3.1 Kerangka Penelitian Penelitian dilakukan dalam lima tahapan utama, yaitu ekstraksi frame video, ekstraksi fitur SIFT dari seluruh frame, pembentukan kantong kata visual

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pendeteksi senyum pada skripsi ini, meliputi metode Viola Jones, konversi citra RGB ke grayscale,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Digital Citra digital dapat didefinisikan sebagai fungsi dua variabel, f(x,y), dimana x dan y adalah koordinat spasial dan nilai f(x,y) adalah intensitas citra pada koordinat

Lebih terperinci

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Nurul Fuad 1, Yuliana Melita 2 Magister Teknologi Informasi Institut Saint Terapan & Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 16 BAB II LANDASAN TEORI 2.1 Retrival Citra Saat ini telah terjadi peningkatan pesat dalam penggunaan gambar digital. Setiap hari pihak militer maupun sipil menghasilkan gambar digital dalam ukuran giga-byte.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Citra Digital Istilah citra biasanya digunakan dalam bidang pengolahan citra yang berarti gambar. Suatu citra dapat didefinisikan sebagai fungsi dua dimensi, di mana dan adalah

Lebih terperinci

Pertemuan 2 Representasi Citra

Pertemuan 2 Representasi Citra /29/23 FAKULTAS TEKNIK INFORMATIKA PENGOLAHAN CITRA DIGITAL ( DIGITAL IMAGE PROCESSING ) Pertemuan 2 Representasi Citra Representasi Citra citra Citra analog Citra digital Matrik dua dimensi yang terdiri

Lebih terperinci

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL

BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL BAB II TEORI DASAR PENGOLAHAN CITRA DIGITAL 2.1 Citra Secara harafiah, citra adalah representasi (gambaran), kemiripan, atau imitasi pada bidang dari suatu objek. Ditinjau dari sudut pandang matematis,

Lebih terperinci

BAB 3 PROSEDUR DAN METODOLOGI. perhitungan LSI dan juga interface yang akan dibuat oleh penulis.

BAB 3 PROSEDUR DAN METODOLOGI. perhitungan LSI dan juga interface yang akan dibuat oleh penulis. BAB 3 PROSEDUR DAN METODOLOGI Pada Bab ini, penulis akan membahas mengenai prosedur dan metodologi seperti perhitungan LSI dan juga interface yang akan dibuat oleh penulis. 3.1 Sistem CBIR Gambar 3.1 Sistem

Lebih terperinci

PERBANDINGAN METODE SURF DAN SIFT DALAM SISTEM IDENTIFIKASI TANDA TANGAN A COMPARISON OF SURF AND SIFT METHOD ON SIGNATURE IDENTIFICATION SYSTEM

PERBANDINGAN METODE SURF DAN SIFT DALAM SISTEM IDENTIFIKASI TANDA TANGAN A COMPARISON OF SURF AND SIFT METHOD ON SIGNATURE IDENTIFICATION SYSTEM Abstrak PERBANDINGAN METODE SURF DAN SIFT DALAM SISTEM IDENTIFIASI TANDA TANGAN A COMPARISON OF SURF AND SIFT METHOD ON SIGNATURE IDENTIFICATION SYSTEM Felix Pidha Hilman Prodi S1 Teknik Telekomunikasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra 2.1.1 Definisi Citra Secara harfiah, citra adalah gambar pada bidang dwimatra (dua dimensi). Jika dipandang dari sudut pandang matematis, citra merupakan hasil pemantulan

Lebih terperinci

PENCARIAN ISI CITRA MENGGUNAKAN METODE MINKOWSKI DISTANCE

PENCARIAN ISI CITRA MENGGUNAKAN METODE MINKOWSKI DISTANCE PENCARIAN ISI CITRA MENGGUNAKAN METODE MINKOWSKI DISTANCE Budi Hartono 1, Veronica Lusiana 2 Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Stikubank Semarang Jl Tri Lomba

Lebih terperinci

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness

GLOSARIUM Adaptive thresholding Peng-ambangan adaptif Additive noise Derau tambahan Algoritma Moore Array Binary image Citra biner Brightness 753 GLOSARIUM Adaptive thresholding (lihat Peng-ambangan adaptif). Additive noise (lihat Derau tambahan). Algoritma Moore : Algoritma untuk memperoleh kontur internal. Array. Suatu wadah yang dapat digunakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sel Darah Merah Sel yang paling banyak di dalam selaput darah adalah sel darah merah atau juga dikenal dengan eritrosit. Sel darah merah berbentuk cakram bikonkaf dengan diameter

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra merupakan salah satu komponen multimedia yang memegang peranan sangat penting sebagai bentuk informasi visual. Meskipun sebuah citra kaya akan informasi, namun sering

Lebih terperinci

II TINJAUAN PUSTAKA. * adalah operasi konvolusi x dan y, adalah fungsi yang merepresentasikan citra output,

II TINJAUAN PUSTAKA. * adalah operasi konvolusi x dan y, adalah fungsi yang merepresentasikan citra output, 5 II INJAUAN PUSAKA.1 Fitur Scale Invariant Feature ransform (SIF) Fitur lokal ditentukan berdasarkan pada kemunculan sebuah objek pada lokasi tertentu di dalam frame. Fitur yang dimaksudkan haruslah bersifat

Lebih terperinci

Bab III ANALISIS&PERANCANGAN

Bab III ANALISIS&PERANCANGAN 3.1 Analisis Masalah Bab III ANALISIS&PERANCANGAN Pada penelitian sebelumnya yaitu ANALISIS CBIR TERHADAP TEKSTUR CITRA BATIK BERDASARKAN KEMIRIPAN CIRI BENTUK DAN TEKSTUR (A.Harris Rangkuti, Harjoko Agus;

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas teori yang berkaitan dengan pemrosesan data untuk sistem pengenalan gender pada skripsi ini, meliputi cropping dan resizing ukuran citra, konversi citra

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Computer Vision Computer vision dapat diartikan sebagai suatu proses pengenalan objek-objek berdasarkan ciri khas dari sebuah gambar dan dapat juga digambarkan sebagai suatu deduksi

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan teknologi komputer dan internet semakin maju

BAB I PENDAHULUAN. Perkembangan teknologi komputer dan internet semakin maju BAB I PENDAHULUAN I.1 Latar Belakang Masalah Perkembangan teknologi komputer dan internet semakin maju menyebabkan data digital yang dihasilkan, disimpan, ditransmisikan, dianalisis, dan diakses menjadi

Lebih terperinci

APLIKASI CONTENT BASED IMAGE RETRIEVAL DENGAN FITUR WARNA DAN BENTUK

APLIKASI CONTENT BASED IMAGE RETRIEVAL DENGAN FITUR WARNA DAN BENTUK APLIKASI CONTENT BASED IMAGE RETRIEVAL DENGAN FITUR WARNA DAN BENTUK Arwin Halim 1, Hardy 2, Alvin Yufandi 3, Fiana 4 Program Studi Teknik Informatika, STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Citra menurut kamus Webster adalah suatu representasi atau gambaran, kemiripan, atau imitasi dari suatu objek atau benda, contohnya yaitu foto seseorang dari kamera yang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian ini merupakan penelitian di bidang pemrosesan citra. Bidang pemrosesan citra sendiri terdapat tiga tingkatan yaitu operasi pemrosesan citra tingkat rendah,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Pengertian Citra Digital Citra digital merupakan sebuah fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi f tersebut pada setiap

Lebih terperinci

BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat

BAB 3 PROSEDUR DAN METODOLOGI. menawarkan pencarian citra dengan menggunakan fitur low level yang terdapat BAB 3 PROSEDUR DAN METODOLOGI 3.1 Permasalahan CBIR ( Content Based Image Retrieval) akhir-akhir ini merupakan salah satu bidang riset yang sedang berkembang pesat (Carneiro, 2005, p1). CBIR ini menawarkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Secara umum, citra digital merupakan gambar 2 dimensi yang disusun oleh data digital dalam bentuk sebuah larik (array) yang berisi

Lebih terperinci

Pengolahan citra. Materi 3

Pengolahan citra. Materi 3 Pengolahan citra Materi 3 Citra biner, citra grayscale dan citra warna Citra warna berindeks Subject Elemen-elemen Citra Digital reflectance MODEL WARNA Citra Biner Citra Biner Banyaknya warna hanya 2

Lebih terperinci

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner

Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.9, No.2, Agustus 2015 ISSN: 0852-730X Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner Nur Nafi'iyah Prodi Teknik Informatika

Lebih terperinci

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA HASNAH(12110738) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja No. 338

Lebih terperinci

PENGOLAHAN CITRA DIGITAL

PENGOLAHAN CITRA DIGITAL PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama mahas@ukdw.ac.id Sistem Optik dan Proses Akuisisi Citra Digital 2 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 Bisa dilihat pada slide berikut. SISTEM OPTIK MANUSIA

Lebih terperinci

TEKNIK PENGOLAHAN CITRA MENGGUNAKAN METODE KECERAHAN CITRA KONTRAS DAN PENAJAMAN CITRA DALAM MENGHASILKAN KUALITAS GAMBAR

TEKNIK PENGOLAHAN CITRA MENGGUNAKAN METODE KECERAHAN CITRA KONTRAS DAN PENAJAMAN CITRA DALAM MENGHASILKAN KUALITAS GAMBAR TEKNIK PENGOLAHAN CITRA MENGGUNAKAN METODE KECERAHAN CITRA KONTRAS DAN PENAJAMAN CITRA DALAM MENGHASILKAN KUALITAS GAMBAR Zulkifli Dosen Tetap Fakultas Ilmu Komputer Universitas Almuslim Email : Zulladasicupak@gmail.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi dari suatu objek. Citra sebagai keluaran suatu system perekaman data dapat bersifat optik berupa foto,

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis Penggunaan citra yang semakin meningkat menimbulkan kebutuhan retrival citra yang juga semakin meningkat. Diperlukan suatu metode retrival citra yang efektif

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Citra Citra adalah suatu representasi (gambaran), kemiripan, atau imitasi suatu objek. Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optik berupa

Lebih terperinci

SISTEM TEMU BALIK CITRA BERBASIS ISI CITRA MENGGUNAKAN FITUR WARNA DAN JARAK HISTOGRAM

SISTEM TEMU BALIK CITRA BERBASIS ISI CITRA MENGGUNAKAN FITUR WARNA DAN JARAK HISTOGRAM SISTEM TEMU BALIK CITRA BERBASIS ISI CITRA MENGGUNAKAN FITUR WARNA DAN JARAK HISTOGRAM Phie Chyan 1, Sean Coonery Sumarta 2 Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Atma

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengolahan Citra Pengolahan Citra Digital adalah teknologi menerapkan sejumlah algoritma komputer untuk memproses gambar digital. Hasil dari proses ini dapat berupa gambar atau

Lebih terperinci

BAB II CITRA DIGITAL

BAB II CITRA DIGITAL BAB II CITRA DIGITAL DEFINISI CITRA Citra adalah suatu representasi(gambaran),kemiripan,atau imitasi dari suatu objek. DEFINISI CITRA ANALOG Citra analog adalahcitra yang bersifat kontinu,seperti gambar

Lebih terperinci

Ekstraksi Keyframe dengan Entropy Differences untuk Temu Kembali Konten Video berbasis Speeded-Up Robust Feature

Ekstraksi Keyframe dengan Entropy Differences untuk Temu Kembali Konten Video berbasis Speeded-Up Robust Feature Ekstraksi Keyframe dengan Entropy Differences untuk Temu Kembali Konten Video berbasis Speeded-Up Robust Feature M Misbachul Huda Institut Teknologi Sepuluh Nopember (ITS) Surabaya misbachul.h@gmail.com

Lebih terperinci

PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL

PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL Makalah Nomor: KNSI-472 PENCARIAN CITRA BERDASARKAN BENTUK DASAR TEPI OBJEK DAN KONTEN HISTOGRAM WARNA LOKAL Barep Wicaksono 1, Suryarini Widodo 2 1,2 Teknik Informatika, Universitas Gunadarma 1,2 Jl.

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 4.1 Pengembangan Sistem Pengenalan Wajah 2D 30 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Pengembangan Sistem Pengenalan Wajah 2D Penelitian ini mengembangkan model sistem pengenalan wajah dua dimensi pada citra wajah yang telah disiapkan dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan

Lebih terperinci

IMPLEMENTASI CONTENT BASED VIDEO RETRIEVAL MENGGUNAKAN SPEEDED-UP ROBUST FEATURES(SURF) SKRIPSI EVI P. MARPAUNG

IMPLEMENTASI CONTENT BASED VIDEO RETRIEVAL MENGGUNAKAN SPEEDED-UP ROBUST FEATURES(SURF) SKRIPSI EVI P. MARPAUNG IMPLEMENTASI CONTENT BASED VIDEO RETRIEVAL MENGGUNAKAN SPEEDED-UP ROBUST FEATURES(SURF) SKRIPSI EVI P. MARPAUNG 131401107 PROGRAM STUDI S1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka tentang identifikasi iris mata ataupun identifikasi citra digital sudah pernah dilakukan sebelumnya, berikut merupakan tabel perbandingan terhadap

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang ENDHULUN Dalam ilmu biologi dan kehutanan, diketahui terdapat banyak enis daun dengan karakteristik (ciri) yang berbeda-beda. Hal tersebut menyebabkan sulitnya untuk melakukan pengenalan

Lebih terperinci

Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature

Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Pengenalan Bahasa Isyarat Tangan Menggunakan Metode PCA dan Haar-Like Feature Dosen Pembimbing : 1) Prof.Dr.Ir. Mauridhi Hery Purnomo M.Eng. 2) Dr. I Ketut Eddy Purnama ST., MT. Oleh : ATIK MARDIYANI (2207100529)

Lebih terperinci

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo

Citra Digital. Petrus Paryono Erick Kurniawan Esther Wibowo Citra Digital Petrus Paryono Erick Kurniawan erick.kurniawan@gmail.com Esther Wibowo esther.visual@gmail.com Studi Tentang Pencitraan Raster dan Pixel Citra Digital tersusun dalam bentuk raster (grid atau

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisis Sistem yang Sedang Berjalan Proses analisa sistem merupakan langkah kedua pada pengembangan sistem. Analisa sistem dilakukan untuk memahami

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian adalah sekumpulan peraturan, kegiatan, dan prosedur yang digunakan oleh pelaku suatu disiplin ilmu. Metodologi berisi tahapan-tahapan yang dilakukan

Lebih terperinci

PENDETEKSIAN RAMBU LALU LINTAS DENGAN ALGORITMA SPEEDED UP ROBUST FEATURES (SURF)

PENDETEKSIAN RAMBU LALU LINTAS DENGAN ALGORITMA SPEEDED UP ROBUST FEATURES (SURF) PENDETEKSIAN RAMBU LALU LINTAS DENGAN ALGORITMA SPEEDED UP ROBUST FEATURES (SURF) Alexander A S Gunawan, Pascal Gerardus A, Wikaria Gazali Mathematics & Statistics Department, School of Computer Science,

Lebih terperinci

1. BAB I PENDAHULUAN

1. BAB I PENDAHULUAN 1. BAB I PENDAHULUAN 1.1 Latar Belakang Dalam beberapa tahun terakhir, perkembangan teknologi pengolahan citra semakin pesat. Salah satu bidang pengolahan citra tersebut adalah bidang identifikasi citra

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR...

LEMBAR PENGESAHAN TUGAS AKHIR... DAFTAR ISI HALAMAN SAMPUL... i HALAMAN JUDUL... ii PERNYATAAN... iii LEMBAR PENGESAHAN TUGAS AKHIR... iv BERITA ACARA TUGAS AKHIR... v KATA PENGANTAR... vi ABSTRAK... viii ABSTRACT... ix DAFTAR ISI...

Lebih terperinci

BAB I PENDAHULUAN. menggunakan digital watermarking. Watermarking bekerja dengan menyisipkan

BAB I PENDAHULUAN. menggunakan digital watermarking. Watermarking bekerja dengan menyisipkan BAB I PENDAHULUAN 1. Latar Belakang Perkembangan teknologi digital serta internet yang cukup pesat telah memberi kemudahan dalam mengakses dan mendistribusikan berbagai informasi dalam format digital,

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah BAB 3 METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian 3.1.1 Alat Penelitian a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah sebagai berikut: 1) Prosesor Intel (R) Atom (TM) CPU N550

Lebih terperinci

DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI

DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI DETEKSI NOMINAL MATA UANG DENGAN JARAK EUCLIDEAN DAN KOEFISIEN KORELASI Marina Gracecia1, ShintaEstriWahyuningrum2 Program Studi Teknik Informatika Universitas Katolik Soegijapranata 1 esthergracecia@gmail.com,

Lebih terperinci

FERY ANDRIYANTO

FERY ANDRIYANTO SISTEM ANALISA IMAGE PROCESSING UNTUK MENCARI KEMIRIPAN PADA TEKSTUR WARNA KULIT MANUSIA MENGGUNAKAN HISTOGRAM WARNA SKRIPSI Oleh : FERY ANDRIYANTO 0734010123 JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Digital Citra adalah suatu representasi, kemiripan atau imitasi dari suatu objek atau benda, misal: foto seseorang mewakili entitas dirinya sendiri di depan kamera. Sedangkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Sebagai tinjauan pustaka, berikut beberapa contoh penelitian telapak kaki yang sudah dilakukan oleh para peneliti yang dapat digunakan sebagai

Lebih terperinci

BAB II Tinjauan Pustaka

BAB II Tinjauan Pustaka 23 BAB II Tinjauan Pustaka II.1. Pengolahan Citra Digital Citra yang diperoleh dari lingkungan masih terdiri dari warna yang sangat komplek sehingga masih diperlukan proses lebih lanjut agar image tersebut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengolahan Citra Pengolahan citra adalah kegiatan memanipulasi citra yang telah ada menjadi gambar lain dengan menggunakan suatu algoritma atau metode tertentu. Proses ini mempunyai

Lebih terperinci

Analisis dan Implementasi Contet Based Image Retrieval Menggunakan Metode ORB

Analisis dan Implementasi Contet Based Image Retrieval Menggunakan Metode ORB ISSN : 2355-9365 e-proceeding of Engineering : Vol.2, No.1 April 2015 Page 1153 Analisis dan Implementasi Contet Based Retrieval Menggunakan Metode ORB Muhammad Mirza 1, Tjokorda Agung Budi W 2, Siti Sa

Lebih terperinci

BAB III PROSEDUR DAN METODOLOGI. Pada bab ini kita akan melihat masalah apa yang masih menjadi kendala

BAB III PROSEDUR DAN METODOLOGI. Pada bab ini kita akan melihat masalah apa yang masih menjadi kendala 52 BAB III PROSEDUR DAN METODOLOGI 3.1 ANALISA MASALAH Pada bab ini kita akan melihat masalah apa yang masih menjadi kendala melakukan proses retrival citra dan bagaimana solusi untuk memecahkan masalah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Citra Digital 2.1.1 Pengertian Citra Digital Citra digital didefinisikan sebagai matriks berukuran N baris dan M kolom di mana elemen dari matriks merupakan suatu nilai yang menyatakan

Lebih terperinci

KONSEP DASAR PENGOLAHAN CITRA

KONSEP DASAR PENGOLAHAN CITRA KONSEP DASAR PENGOLAHAN CITRA Copyright @ 2007 by Emy 2 1 Kompetensi Mampu membangun struktur data untuk merepresentasikan citra di dalam memori computer Mampu melakukan manipulasi citra dengan menggunakan

Lebih terperinci

PERANCANGAN APLIKASI PENGURANGAN NOISE PADA CITRA DIGITAL MENGGUNAKAN METODE FILTER GAUSSIAN

PERANCANGAN APLIKASI PENGURANGAN NOISE PADA CITRA DIGITAL MENGGUNAKAN METODE FILTER GAUSSIAN PERANCANGAN APLIKASI PENGURANGAN NOISE PADA CITRA DIGITAL MENGGUNAKAN METODE FILTER GAUSSIAN Warsiti Mahasiswi Program Studi Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Sp. Limun

Lebih terperinci

PERANCANGAN DAN SIMULASI IMAGE RETREIVAL MENGGUNAKAN METODE COLOR HISTOGRAM, GREY LEVEL CO-OCCURRENCE MATRIX DAN KNN (Design and Simulation of Image Retreival Using Color Histogram, Grey Level Co-Occurrence

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1. Steganografi Steganografi adalah mekanisme penanaman atau penyisipan pesan (m) kedalam sebuah cover objek (c) menggunakan kunci (k) untuk berbagi rahasia kepada orang lain,

Lebih terperinci

DAFTAR ISI. BAB II... Error! Bookmark not defined.

DAFTAR ISI. BAB II... Error! Bookmark not defined. DAFTAR ISI SKRIPSI... Error! Bookmark not defined. HALAMAN PERSETUJUAN SKRIPSI... Error! Bookmark not defined. PENGESAHAN DEWAN PENGUJI... Error! Bookmark not defined. PERNYATAAN KEASLIAN TUGAS AKHIR...

Lebih terperinci

Gambar 2 Prinsip pencarian: (a) struktur dan area-area pencarian, (b) jumlah dari garis-garis sampling (Sumber: (Kirchgeβner et al. 2002).

Gambar 2 Prinsip pencarian: (a) struktur dan area-area pencarian, (b) jumlah dari garis-garis sampling (Sumber: (Kirchgeβner et al. 2002). 6 kebanyakan informasi tentang suatu garis tepi objek akan berada pada frekuensi rendah dari transformasi Fourier diskret (Petković & Krapac 2002). Pada penerapan ekstraksi venasi daun, inisialisasi parameter

Lebih terperinci

1BAB I. 2PENDAHULUAN

1BAB I. 2PENDAHULUAN 1BAB I. 2PENDAHULUAN 2.1. Latar Belakang Pelacak objek (object tracking) pada saat ini merupakan penelitian yang menarik dalam bidang computer vision. Pelacak objek merupakan langkah awal dari berbagai

Lebih terperinci

PEMANFAATAN PENGOLAHAN CITRA DIGITAL DALAM MENENTUKAN KEMATANGAN BUAH KAKAO MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI

PEMANFAATAN PENGOLAHAN CITRA DIGITAL DALAM MENENTUKAN KEMATANGAN BUAH KAKAO MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI Artikel Skripsi PEMANFAATAN PENGOLAHAN CITRA DIGITAL DALAM MENENTUKAN KEMATANGAN BUAH KAKAO MENGGUNAKAN METODE EUCLIDEAN DISTANCE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana

Lebih terperinci

UJI COBA PERBEDAAN INTENSITAS PIKSEL TIAP PENGAMBILAN GAMBAR. Abstrak

UJI COBA PERBEDAAN INTENSITAS PIKSEL TIAP PENGAMBILAN GAMBAR. Abstrak UJI COBA PERBEDAAN INTENSITAS PIKSEL TIAP PENGAMBILAN GAMBAR Teady Matius Surya Mulyana tmulyana@bundamulia.ac.id, teadymatius@yahoo.com Teknik Informatika Universitas Bunda Mulia Abstrak Kebutuhan binarisasi

Lebih terperinci

BAB II DASAR TEORI. CV Dokumentasi CV berisi pengolahan citra, analisis struktur citra, motion dan tracking, pengenalan pola, dan kalibrasi kamera.

BAB II DASAR TEORI. CV Dokumentasi CV berisi pengolahan citra, analisis struktur citra, motion dan tracking, pengenalan pola, dan kalibrasi kamera. BAB II DASAR TEORI Pada bab ini akan dibahas teori yang berkaitan dengan skripsi ini, meliputi pustaka OpenCV, citra, yaitu citra grayscale dan citra berwarna, pengolahan citra meliputi image enhancement

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Menginterprestasi sebuah citra untuk memperoleh diskripsi tentang citra tersebut melalui beberapa proses antara lain preprocessing, segmentasi citra, analisis

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1 1. BAB I PENDAHULUAN Latar Belakang Iris mata merupakan salah satu organ internal yang dapat di lihat dari luar. Selaput ini berbentuk cincin yang mengelilingi pupil dan memberikan pola warna pada mata

Lebih terperinci

Gambar 1.1 Tahapan Penelitian

Gambar 1.1 Tahapan Penelitian BAB 1 PENDAHULUAN Latar Belakang Masalah Content Based Image Retrieval (CBIR) atau dikenal sebagai query dengan konten image dan pengambilan informasi visual berbasis konten merupakan penerapan teknik

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Penelitian mengenai pengenalan wajah termotivasi oleh banyaknya aplikasi praktis yang diperlukan dalam identifikasi wajah. Pengenalan wajah sebagai salah satu dari teknologi

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk identitas citra adalah nama file, tanggal pengambilan,

BAB I PENDAHULUAN. digunakan untuk identitas citra adalah nama file, tanggal pengambilan, BAB I PENDAHULUAN 1.1 LATAR BELAKANG Seiring berkembangnya teknologi, makin banyak pulalah hasil-hasil citra digital di berbagai aspek. Citra tersebut bisa merupakan hasil digitalisasi foto-foto analog,

Lebih terperinci

BAB I PENDAHULUAN 1. Latar Belakang

BAB I PENDAHULUAN 1. Latar Belakang BAB I PENDAHULUAN 1. Latar Belakang Dalam proses pemetaan secara fotogrametris, salah satu hal yang harus diatasi adalah masalah restitusi dua foto udara yang saling pertampalan sedemikian rupa sehingga

Lebih terperinci

SISTEM TEMU KEMBALI CITRA UNTUK E- COMMERCE MENGGUNAKAN PROSEDUR PENCARIAN DUA FASE DENGAN FITUR HISTOGRAM MULTI TEKSTON

SISTEM TEMU KEMBALI CITRA UNTUK E- COMMERCE MENGGUNAKAN PROSEDUR PENCARIAN DUA FASE DENGAN FITUR HISTOGRAM MULTI TEKSTON SISTEM TEMU KEMBALI CITRA UNTUK E- COMMERCE MENGGUNAKAN PROSEDUR PENCARIAN DUA FASE DENGAN FITUR HISTOGRAM MULTI TEKSTON Nurissaidah Ulinnuha 1), Halimatus Sa dyah 2) Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM)

KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM) KOMPRESI CITRA BERWARNA DENGAN ALGORITMA ENHANCED SELF ORGANIZING MAP (ENHANCED SOM) Bambang Trianggono *, Agus Zainal Arifin * Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci