BAB 3 METODOLOGI PENELITIAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 METODOLOGI PENELITIAN"

Transkripsi

1 BAB 3 METODOLOGI PENELITIAN 3.1. Penentuan Masalah Penelitian Masalah masalah yang dihadapi oleh penggunaan identifikasi sidik jari berbasis komputer, yaitu sebagai berikut : 1. Salah satu masalah dalam hal identifikasi sidik jari adalah kualitas dari citra sidik jari yang kurang baik (Zorita, Garcia, Aguilar, Rodriguez, 2003). Kinerja dari suatu sistem pengenalan sidik jari dipengaruhi oleh kualitas citra sidik jari. Beberapa faktor yang menentukan kualitas citra sidik jari : kondisi kulit (misalnya kekeringan, basah, kotor, memar, luka, dll), kondisi sensor atau scanner (misalnya kotoran, noise, ukuran). Oleh karena itu, sangat penting untuk sistem pengenalan sidik jari menyesuaikan beberapa langkah dari sistem pengenalan sidik jari berdasarkan pada kualitas citra sidik jari. Sistem pengenalan sidik jari terkadang masih melakukan kesalahan yang mungkin dikarenakan oleh citra sidik jari ataupun dari metode yang digunakan. Tingkat keakuratan identifikasi sidik jari akan berbeda satu dengan yang lainnya dikarenakan perbedaan metode menurut forensic medecine. 2. Waktu proses dalam identifikasi sidik jari berbasis komputer cukup lama. Contohnya pada database FBI yang berisi sekitar 70 juta sidik jari, waktu proses dan pencarian dibutuhkan waktu sangat lama, sehingga dibutuhkan metode yang memakan waktu proses sedikit dan mengurangi kompleksitas komputasi (Prabahkar, Jain, 2003)

2 37 Sekarang ini banyak yang menggunakan identifikasi sidik jari, contohnya untuk absensi, pendataan di kepolisian, dan data penduduk, dll. Kepolisian bertugas untuk melakukan identifikasi sidik jari yang menempel pada benda di suatu kejadian, guna mengetahui identitas pemiliknya atau tersangka. Dalam proses identifikasi ini, petugas harus melakukan perbandingan citra sidik jari secara manual, dengan basis data citra sidik jari yang dimilikinya. Proses perbandingan sidik jari secara manual ini akan membutuhkan waktu yang relatif lama dibandingkan dengan mesin identifikasi yang lebih efisien dan efektif menurut Global info. Hal tersebut hanya baru pada kepolisian dalam proses identifikasi, data kependudukan yang jumlah penduduk yang sangat banyak seperti Indonesia. Identifikasi identitas seseorang yang jumlahnya sangat banyak sekali sangat tidak efisien dan memakan proses waktu yang lama.

3 Alur Penelitian Penulis menggunakan alur penelitian untuk mengatasi masalah masalah diatas yang digambarkan pada flowchart berikut : Gambar 3.1 Flowchart Penelitian Pada gambar flowchart dapat dilihat, penelitian dimulai dengan pengembangan perangkat lunak metode wavelet dan backpropagation. Dalam perangkat lunak ini digunakan bahasa pemrograman C# dan menggunakan library AForge.NET. Pengembangan perangkat lunak ini berdasarkan referensi Perancangan Program

4 39 Aplikasi Deteksi Iris Mata Dengan Transformasi Wavelet dan Backpropagation Untuk Keamanan Data Pribadi (Yanuar, 2010). Tahap selanjutnya adalah pengumpulan data penelitian. Data citra sidik jari merupakan populasi yang akan diuji. Citra sidik jari akan di training atau enroll pada perangkat lunak yang dikembangkan dan perangkat lunak verifinger, untuk analisis performance dan waktu proses kedua perangkat lunak tersebut. Data citra sidik jari yang akan digunakan didapatkan dari Biometric Ideal Test. Setelah perangkat lunak dengan metode wavelet dan backpropagation dikembangkan dan data telah dikumpulkan, maka tahap selanjutnya adalah training atau enroll dan identifikasi kedua perangkat lunak. Pada tahap training atau enroll, citra sidik jari dipelajari oleh kedua perangkat lunak. Pada tahap identifikasi, citra sidik jari dipilih dan diidentifikasi dengan citra yang sebelumnya dipelajari oleh kedua perangkat lunak pada tahap training atau enroll. Tahap selanjutnya adalah analisis hasil identifikasi kedua perangkat lunak dengan menggunakan False Match Rate (FMR) dan False Non Match Rate (FNMR) serta menghitung waktu proses. Pada perangkat metode wavelet dan backpropagation akan dilakukan penghitungan FMR dan FNMR serta waktu proses secara otomatisasi, sedangkan pada perangkat lunak verifinger akan dilakukan secara manual.

5 Pengumpulan Data Pada tahap ini, akan dikumpulkan sejumlah gambar sidik jari. Gambar sidik jari diambil dari Biometric Ideal Test. Terdapat 20,000 gambar sidik jari manusia dari 500 subyek yang telah diambil dengan menggunakan alat U Are U 4000 fingerprint sensor, tapi yang akan digunakan hanya 750 gambar sidik jari dikarenakan oleh keterbatasan pada proses training yang membutuhkan waktu yang lama jika data terlalu banyak dan keterbatasan pada komputer yang ada. Sidik jari diambil dari para relawan termasuk mahasiswa, pekerja, pelayan, dll. Setiap relawan diambil 40 sidik jari dari 8 jari (kiri dan kanan) yaitu jari jempol, jari telunjuk, jari tengah, dan jari manis. Setiap relawan diminta untuk merotasi jari mereka dengan berbagai tekanan untuk menghasilkan berbagai kelas image yang akan digunakan pada pendeteksian sidik jari. Dalam skripsi ini, akan diambil gambar sidik jari, di mana setiap orang diambil lima kali gambar sidik jarinya. Citra berukuran 328 x 356 dan merupakan file citra bertipe *.bmp. Contoh citra sidik jari dari Biometric Ideal Test dapat dilihat pada gambar 3.2. Gambar 3.2. Contoh sidik jari yang diambil dari Biometric Ideal Test

6 41 Setiap dari gambar sidik jari akan dipasangkan dengan data diri, sehingga pada nantinya akan terdapat 150 data diri orang. Data diri akan dibuat palsu (fake) untuk mencocokkan citra sidik jari dengan database. Data palsu mencakup nomor identitas, nama, umur, agama, tanggal lahir dan jenis kelamin. Data yang akan diisi hanya beberapa 50 data. Citra sidik jari yang akan digunakan sebagai input untuk perbandingan identifikasi perangkat lunak dengan menggunakan metode wavelet dengan verifinger sebanyak 750 citra sidik jari Perangkat Lunak Metode Wavelet dan Backpropagation Proses identifikasi sidik jari perangkat lunak dengan metode wavelet dan backpropagation, menggunakan transformasi wavelet untuk melakukan ekstraksi ciri dari citra sidik jari dan jaringan syaraf tiruan jenis backpropagation untuk melakukan identifikasi sidik jari. Pada subbab berikut proses proses pada perangkat lunak ini (untuk lebih jelasnya, source code dapat dilihat pada lampiran) Pemrosesan Citra Setelah sebuah citra digital sidik jari diperoleh, maka citra tersebut siap untuk digunakan pada tahap selanjutnya, yaitu pemrosesan citra. Tahap ini adalah tahap untuk memperbaiki mutu/kualitas dari suatu citra digital. Untuk memperbaiki mutu dari suatu citra, kita harus menghilangkan noise yang terdapat pada citra digital sidik jari. Proses

7 42 perbaikan kualitas citra yang dilakukan pada penelitian ini terbagi menjadi dua tahap yaitu: a. Thresholding Proses thresholding adalah proses untuk merubah citra grayscale/keabuan menjadi citra dengan dua warna yaitu hitam dan putih (biner). Setiap piksel pada citra akan diambil derajat keabuannya. Derajat keabuan dari sebuah citra dapat diperoleh dengan persamaan berikut: 3 S adalah nilai dari derajat keabuan sebuah piksel, sementara R, G, dan B secara berurutan adalah nilai dari warna merah, hijau dan biru. Pada citra keabuan, nilai dari layer R,G, dan B haruslah sama. Jika semuanya bernilai 0, maka warna yang dihasilkan adalah warna hitam, sementara jika semuanya bernilai 255, maka warna yang dihasilkan adalah warna putih, selain itu jika nilainya berada diantara 0 hingga 255 maka akan menghasilkan warna abu-abu sesuai dengan tingkat gradasinya.

8 43 Pseudocode untuk proses thresholding secara keseluruhan adalah sebagai berikut: Awal modul dari nilai y yang ke-0 hingga (lebar_gambar)-1 mulai dari nilai x yang ke-0 hingga (panjang_gambar)-1 mulai jika nilai piksel citra(x,y) lebih kecil dari nilai_ambang maka ubah nilai piksel citra(x,y) menjadi 0 selain itu ubah nilai piksel citra(x,y) menjadi 255 selesai selesai Akhir modul Proses thresholding ini akan membantu untuk mereduksi noise yang dimiliki oleh suatu citra. Nilai piksel yang lebih tinggi dari nilai ambang, akan secara otomatis diputihkan, sehingga sebagian noise akan terhapus. b. Penapisan/Filtering Penapisan atau filtering adalah sebuah proses untuk menentukan nilai dari suatu piksel dengan cara melakukan perhitungan dari nilai intensitas piksel-piksel disekeliling piksel tersebut. Pada penelitian ini, digunakan dua jenis penapisan yaitu: Tapis lolos rendah (Low pass Filter). Filter ini mempunyai tujuan untuk mempertegas bagian dengan frekuensi rendah pada suatu citra. Ia akan

9 44 melakukan pemerataan tingkat keabuan, sehingga membuat citra terlihat agar kabur kontrasnya. Namun demikian tapis lolos rendah dapat mengurangi sebagian efek noise yang ada pada sebuah citra. Ia akan mengurangi berbagai gangguan yang berbentuk garis tajam. Filter ini umumnya berbentuk matriks mask n x n, di mana n umumnya bernilai tiga atau lima. P adalah piksel pada citra yang akan di-filter, sementara C adalah titik tengah dari mask, yang akan diganti nilainya dan K adalah konstanta. Nilai dari konstanta adalah, jadi untuk mask ukuran 3x3, nilai konstantanya adalah 1/9. Adapun pseudocode dari mask 3x3 adalah: Awal modul luas = panjang_gambar*lebar_gambar; dari nilai y yang ke-0 hingga (lebar_gambar)-1 mulai dari nilai x yang ke-0 hingga (panjang_gambar)-1 mulai nilai_piksel(x,y) = nilai_piksel(x-1,y-1)*1/9 + nilai_piksel(x,y-1)*1/9+nilai_piksel(x+1,y-1)*1/9 + nilai_piksel(x-1,y)*1/9 + nilai_piksel(x,y)*1/9 + nilai_piksel(x+1,y)*1/9 + nilai_piksel(x-1,y+1)*1/9 + nilai_piksel(x,y+1)*1/9 + nilai_piksel(x+1,y+1)*1/9 selesai selesai Akhir modul

10 45 Tapis lolos tinggi (High pass Filter). Filter ini mempunyai karakter yang berlawanan dengan Low pass Filter. Ia bersifat memperkuat piksel-piksel dengan frekuensi yang tinggi. Penggunaan filter ini akan membuat garis batas antar obyek menjadi lebih tajam. Untuk menerapkan filter ini pada suatu citra, kita membutuhkan sebuah mask yang sama seperti pada bagian tapis lolos rendah, yaitu matriks mask 3x3. Perbedaannya hanya terletak pada nilai koefisiennya, yaitu K=-1/4. Pseudocode dari high pass filter adalah sebagai berikut: Awal modul luas = panjang_gambar*lebar_gambar; dari nilai y yang ke-0 hingga (lebar_gambar)-1 mulai dari nilai x yang ke-0 hingga (panjang_gambar)-1 mulai nilai_piksel(x,y) = nilai_piksel(x-1,y-1)*(-1/4) + nilai_piksel(x,y-1)*(-1/4) + nilai_piksel(x+1,y-1)*(-1/4) + nilai_piksel(x-1,y)*(-1/4) + nilai_piksel(x,y)*(-1/4) + nilai_piksel(x+1,y)*(-1/4) + nilai_piksel(x-1,y+1)*(-1/4) + nilai_piksel(x,y+1)*(-1/4) + nilai_piksel(x+1,y+1)*(-1/4) selesai selesai Akhir modul

11 Ekstraksi ciri Tahap ini bertujuan untuk melakukan ekstraksi ciri dengan metode dekomposisi Wavelet Haar. Setelah suatu citra melewati tahap pengolahan citra, maka citra tersebut siap untuk diekstrak cirinya. Pada penelitian ini, input pertama pada tahap ekstraksi ciri berukuran 128 x 128 piksel. Kita perlu menghitung level maksimum dari dekomposisi Wavelet yang mungkin dilakukan, dengan menggunakan rumusan yang telah diuraikan pada bagian sebelumnya. Pada penelitian ini, panjang datanya adalah 128, panjang filternya adalah dua, sehingga level maksimum dari dekomposisi Wavelet setelah dihitung dengan menggunakan rumusan adalah tujuh. Penelitian ini menggunakan level dekomposisi lima. Pada dekomposisi level pertama, citra dengan ukuran 128 x 128 piksel, akan menjadi citra dengan empat sub bidang pada ukuran yang lebih rendah yaitu 64 x 64 piksel. Keempat sub bidang ini akan membawa informasi yang berbeda, yaitu informasi aproksimasi, vertikal, horizontal, dan diagonal. Dekomposisi level kedua akan menghasilkan citra dengan ukuran 32 x 32 piksel, dekomposisi level ketiga akan menghasilkan citra dengan ukuran 16 x 16 piksel, dekomposisi level keempat menghasilkan citra dengan ukuran 8 x 8 piksel, dan dekomposisi level kelima menghasilkan citra dengan ukuran 4 x 4. Pada tahap selanjutnya. Adapun algoritma dari dekomposisi Wavelet ini adalah sebgai berikut: a. Tahap 1 : Input citra diubah menjadi empat bagian citra baru dengan ukuran 2 2.

12 47 b. Tahap 2 : Tes kondisi berhenti, jika ukuran dari citra aproksimasi adalah 1 x 1 piksel atau telah mencapai level dekomposisi yang diinginkan, maka proses berhenti, jika tidak, ulangi tahap pertama dengan menggunakan citra aproksimasi sebagai input citra. Pada penelitian ini, hasil dari proses ekstraksi ciri pada citra berukuran 128 x 128 piksel ini adalah citra aproksimasi dengan ukuran 4 x 4 piksel. Kemudian setiap piksel ini akan diambil nilainya, dan dijadikan input layer dari jaringan syaraf tiruan. Total input yang dihasilkan adalah 16 sel Proses training dan testing Setelah semua data hasil dari ekstraksi citra didapat. Maka semua nilai akan dilatih dengan menggunakan jaringan syaraf tiruan backpropagation. Akan berlangsung dua langkah dalam backpropagation yaitu feedforward dan backward. Feedforward akan melakukan perhitungan dari matriks input dan matriks bobot, sedangkan backward akan memperbaiki matriks bobot. Jaringan syaraf tiruan ini dibangun dengan input sebanyak 16 buah, dan output sebanyak 8 buah. Selain itu, jaringan syaraf tiruan ini juga menggunakan satu lapisan tersembunyi dan jumlahnya adalah 10 buah. Jaringan syaraf tiruan akan menggunakan hidden layer dengan rumusan: Hidden Layer = (2/3 * Input Layer) + Output Layer

13 48 Fungsi aktivasi yang digunakan pada program ini adalah fungsi sigmoid. Pada proses training ini, jumlah epoch atau perulangan maksimum ditentukan sebanyak kali. Identifikasi akan melakukan proses testing dengan mencocokkan input gambar dengan hasil training. Dari input yang dimasukkan, akan diperoleh nilai output yang akan dicocokkan dengan basis data sidik jari. Setelah itu, input tersebut akan dikalikan dengan matriks bobot yang telah ditentukan pada tahap training. Perkalian antara matriks input dan matriks bobot, akan menghasilkan nilai output yang telah ditentukan pada tahap training. Output yang diperoleh ini akan menjadi primary key pada basis data, sehingga setiap output akan menunjuk satu identitas, yaitu pemilik dari sidik jari tersebut. Pada perangkat lunak ini akan ditambahkan juga penghitungan error rate. Error Rate akan menampilkan False Non-Match Rate dan False Match Rate dari kumpulan data yang ada, prosesnya adalah dari data yang ada 5 citra sidik jari perorang akan diambil 3 data citra untuk di training, data training tersebut akan di matching dengan seluruh data yang ada. Jika terjadi penerimaan identifikasi yang salah maka akan tertulis False Match dan jika suatu citra tidak dapat teridentifikasi maka terjadi False Non Match. Data False Match dan False Non Match akan dimasukkan ke dalam file bertipe.*csv, yang dapat dibuka pada Microsoft Excel ataupun notepad. Dari data Error Rate diketahui jumlah error yang terjadi pada pendeteksian sidik jari. Pada gambar 3.3 menjelaskan flowchart dari proses perangkat lunak pendeteksian sidik jari dengan metode wavelet dan backpropagation.

14 Gambar 3.3. Flowchart Perangkat Lunak Metode Wavelet dan Backpropagation 49

15 Perangkat Lunak Verifinger Perangkat lunak verifinger yang akan digunakan untuk perbandingan menggunakan bahasa C#, perangkat lunak verifinger ini diberikan source code untuk pengembangan lebih lanjut, tetapi hanya komputer yang diberikan license dari verifinger yang dapat menjalankan program tersebut. Perangkat lunak ini menggunakan framework dari neurotec. Algoritma verifinger mengikuti skema identifikasi sidik jari yang diterima secara umum, yaitu dengan pendekatan minutiae dan juga dengan algoritma lain untuk meningkatkan kinerja dan keandalan sistem. Berikut beberapa penjelasan dari perangkat lunak verifinger : 1. Keandalan yang tinggi untuk deformasi sidik jari. 2. Toleransi terhadap sidik jari, rotasi, dan deformasi 3. Identifikasi yang cepat dengan menggunakan pre-sorted database entries 4. Kemampuan identifikasi (verification or identification) 5. Penentuan kualitas gambar (hanya kualitas terbaik yang disimpan ke dalam database). 6. Adaptive image filtration (menghilangkan noises, ridge yang rusak untuk ekstraksi minutiae yang baik) 7. Fitur mode generalisasi (mode pendaftaran sidik jari dari satu set sidik jari yang sama).

16 Proses Perbandingan Performance dan Waktu Proses Perbandingan perangkat lunak metode wavelet dan perangkat lunak verifinger akan menggunakan performance measure dan penghitungan time process. Dengan menggunakan komputer yang sama, kedua perangkat lunak akan dilakukan proses identifikasi sebanyak 750 citra sidik jari dari 450 citra sidik jari yang di training atau enroll, semua citra sidik jari diambil dari biometric ideal test seperti telah dijelaskan sebelumnya pada bagian pengumpulan data. Performance measure dilakukan dengan cara identifikasi seluruh citra yang dimasukkan dibandingkan dengan data training perangkat lunak metode wavelet ataupun hasil dari enrollment perangkat lunak verifinger. Citra data yang di training ataupun di enroll berjumlah 450 data. Hasil dari identifikasi kedua akan menghasilkan false match dan false non match. Dari hasil tersebut akan didapatkan tingkat keakuratan dari hasil identifikasi sidik jari kedua perangkat lunak. Selain data false match dan false non match tersebut didapatkan juga waktu proses dari identifikasi citra sidik jari kedua perangkat lunak. Perbandingan perangkat lunak berasal dari hasil tingkat keakuratan dan waktu proses identifikasi citra sidik jari tersebut.

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM BAB 3 ANALISIS DAN PERANCANGAN PROGRAM Program aplikasi ini dirancang dengan menggunakan perangkat lunak Microsoft Visual C# 2008 Express Edition. Proses perancangan menggunakan pendekatan Object Oriented

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI BAB 3 ANALISIS DAN PERANCANGAN PROGRAM APLIKASI Bab ini berisi analisis pengembangan program aplikasi pengenalan karakter mandarin, meliputi analisis kebutuhan sistem, gambaran umum program aplikasi yang

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN SISTEM. suatu negara yang memiliki tingkat kriminalitas cukup tinggi. Hal inilah yang

BAB 3 ANALISIS DAN PERANCANGAN SISTEM. suatu negara yang memiliki tingkat kriminalitas cukup tinggi. Hal inilah yang 38 BAB 3 ANALISIS DAN PERANCANGAN SISTEM Kriminalitas adalah suatu hal yang sering terjadi di dunia ini. Indonesia termasuk suatu negara yang memiliki tingkat kriminalitas cukup tinggi. Hal inilah yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Computer Vision Computer vision dapat diartikan sebagai suatu proses pengenalan objek-objek berdasarkan ciri khas dari sebuah gambar dan dapat juga digambarkan sebagai suatu deduksi

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1. Evaluasi Pada penelitian ini, algoritma untuk identifikasi sidik jari tersusun dari 3 tahapan proses yakni tahap preprocessing fingerprint image, minutiae extraction, dan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, manusia selalu memanfaatkan teknologi untuk melakukan kegiatannya. Ini dikarenakan teknologi membuat tugas manusia menjadi lebih ringan

Lebih terperinci

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK PEMANFAATAAN BIOMETRIKA WAJAH PADA SISTEM PRESENSI MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Program Studi Matematika FMIPA Universitas Negeri Semarang Abstrak. Saat ini, banyak sekali alternatif dalam

Lebih terperinci

IMPLEMENTASI DAN EVALUASI

IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI Pada bab ini dibahas mengenai implementasi serta evaluasi terhadap metode transformasi wavelet dalam sistem pengenalan sidik jari yang dirancang. Untuk mempermudah evaluasi,

Lebih terperinci

BAB 3 ANALISA DAN PERANCANGAN

BAB 3 ANALISA DAN PERANCANGAN BAB 3 ANALISA DAN PERANCANGAN 3.1 Analisa Tahap sebelum perancangan berhubungan dengan proses penglihatan awal. Tujuan utama dari prapemrosesan adalah untuk menggembangkan gambaran yang berguna dari bentuk

Lebih terperinci

BAB 3 METODOLOGI. 3.1 Kerangka Pikir

BAB 3 METODOLOGI. 3.1 Kerangka Pikir BAB 3 METODOLOGI 3.1 Kerangka Pikir Pengenalan sidik jari merupakan salah satu metode yang diterapkan pada teknologi yang digunakan manusia seperti pada mesin absensi, alat pengamanan pada brankas dan

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Permainan catur cina, yang dikenal sebagai xiang qi dalam bahasa mandarin, merupakan sebuah permainan catur traditional yang memiliki jumlah 32 biji catur. Setiap

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi perangkat lunak dewasa ini tidak terlepas dari berkembangnya studi mengenai kecerdasan buatan. Ada dua hal yang termasuk dari kecerdasan buatan

Lebih terperinci

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM

BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM BAB 3 PERANCANGAN DAN PEMBUATAN SISTEM Dalam bab ini akan dibahas mengenai perancangan dan pembuatan sistem aplikasi yang digunakan sebagai user interface untuk menangkap citra ikan, mengolahnya dan menampilkan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Waktu yang digunakan dalam penelitian ini yaitu dalam kurun waktu enam bulan terhitung mulai februari 2012 sampai juli 2012. Tempat yang digunakan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 35 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Implementasi GUI GUI diimplementasikan sesuai dengan program pengolah citra dan klasifikasi pada tahap sebelumya. GUI bertujuan untuk memudahkan pengguna mengidentifikasi

Lebih terperinci

PERANCANGAN SISTEM PENGENALAN DAN PENYORTIRAN KARTU POS BERDASARKAN KODE POS DENGAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK

PERANCANGAN SISTEM PENGENALAN DAN PENYORTIRAN KARTU POS BERDASARKAN KODE POS DENGAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK PERANCANGAN SISTEM PENGENALAN DAN PENYORTIRAN KARTU POS BERDASARKAN KODE POS DENGAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK OLEH ARIF MIFTAHU5R ROHMAN (2200 100 032) Pembimbing: Dr. Ir Djoko Purwanto, M.Eng,

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM

BAB III ANALISIS DAN PERANCANGAN SISTEM BAB III ANALISIS DAN PERANCANGAN SISTEM Pada bab ini akan dijelaskan mengenai kebutuhan-kebutuhan yang digunakan dalam membuat program ini. Setelah semua kebutuhan selesai di analisa, maka penulis akan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Citra Citra (image) sebagai salah satu komponen multimedia memegang peranan sangat penting sebagai bentuk informasi visual. Citra mempunyai karakteristik yang tidak dimiliki oleh

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 19 BAB III METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Kerangka pemikiran untuk penelitian ini seperti pada Gambar 9. Penelitian dibagi dalam empat tahapan yaitu persiapan penelitian, proses pengolahan

Lebih terperinci

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m.

BAB III METODE PENELITIAN. dan bahan, agar mendapatkan hasil yang baik dan terstruktur. Processor Intel Core i3-350m. BAB III METODE PENELITIAN 3.1 Alat dan Bahan Untuk menunjang penelitian yang akan dilakukan, maka diperlukan alat dan bahan, agar mendapatkan hasil yang baik dan terstruktur. 3.1.1 Alat Penelitian Adapun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengenalan Pola Pengenalan pola adalah suatu ilmu untuk mengklasifikasikan atau menggambarkan sesuatu berdasarkan pengukuran kuantitatif fitur (ciri) atau sifat utama dari suatu

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN 32 BAB III ANALISIS DAN PERANCANGAN Pada bab ini akan dibahas tentang analisis sistem melalui pendekatan secara terstruktur dan perancangan yang akan dibangun dengan tujuan menghasilkan model atau representasi

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN SISTEM

BAB 3 ANALISIS DAN PERANCANGAN SISTEM BAB 3 ANALISIS DAN PERANCANGAN SISTEM Bab ini akan membahas tentang analisis dan perancangan dalam aplikasi identifikasi diagnosis penyakit retinoblastoma. Tahap pertama yaitu analisis data yang digunakan,

Lebih terperinci

KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION. Dhita Azzahra Pancorowati

KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION. Dhita Azzahra Pancorowati KLASIFIKASI POLA HURUF VOKAL DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION Dhita Azzahra Pancorowati 1110100053 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini mengambil tempat di Universitas Muhammadiyah Yogyakarta yang berlokasi di Jl. Lingkar Selatan, Kasihan, Bantul, Daerah Istimewa

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN

BAB IV IMPLEMENTASI DAN PENGUJIAN 68 BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini membahas tentang program yang telah dianalisis dan dirancang atau realisasi program yang telah dibuat. Pada bab ini juga akan dilakukan pengujian program. 4.1

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pada saat ini penggunaan citra digital semakin meningkat karena kelebihan-kelebihan yang dimiliki oleh citra digital tersebut, di antaranya adalah kemudahan dalam mendapatkan

Lebih terperinci

Pengembangan Aplikasi Presensi Sidik Jari dengan menggunakan Alihragam Wavelet dan Jarak Euclidean di Dinas Pendidikan Kabupaten Wonogiri

Pengembangan Aplikasi Presensi Sidik Jari dengan menggunakan Alihragam Wavelet dan Jarak Euclidean di Dinas Pendidikan Kabupaten Wonogiri Makalah Pengembangan Aplikasi Presensi Sidik Jari dengan menggunakan Alihragam Wavelet dan Jarak Euclidean di Dinas Pendidikan Kabupaten Wonogiri disusun oleh : RANDI GUSTAMA PUTRA PROGRAM STUDI TEKNIK

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN SISTEM PROGRAM APLIKASI HANDS RECOGNIZER

BAB 3 ANALISIS DAN PERANCANGAN SISTEM PROGRAM APLIKASI HANDS RECOGNIZER BAB 3 ANALISIS DAN PERANCANGAN SISTEM PROGRAM APLIKASI HANDS RECOGNIZER Dalam analisis dan perancangan sistem program aplikasi ini, disajikan mengenai analisis kebutuhan sistem yang digunakan, diagram

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Jaringan Saraf Tiruan Jaringan saraf tiruan adalah paradigma pengolahan informasi yang terinspirasi oleh sistem saraf secara biologis, seperti proses informasi pada otak manusia.

Lebih terperinci

Analisis dan Perancangan Transformasi Wavelet. Untuk Jaringan Syaraf Tiruan pada. Pengenalan Sidik Jari

Analisis dan Perancangan Transformasi Wavelet. Untuk Jaringan Syaraf Tiruan pada. Pengenalan Sidik Jari UNIVERSITAS BINA NUSANTARA Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Genap 2005 / 2006 Analisis dan Perancangan Transformasi Wavelet Untuk Jaringan Syaraf Tiruan pada Pengenalan Sidik

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. untuk pengguna interface, membutuhkan perangkat keras dan perangkat lunak.

BAB 3 PERANCANGAN SISTEM. untuk pengguna interface, membutuhkan perangkat keras dan perangkat lunak. 29 BAB 3 PERANCANGAN SISTEM 3.1 Gambaran Umum Sistem Pada dasarnya untuk pembuatan aplikasi ini, yakni aplikasi pengenalan suara untuk pengguna interface, membutuhkan perangkat keras dan perangkat lunak.

Lebih terperinci

PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PENGENALAN POLA SIDIK JARI BERBASIS TRANSFORMASI WAVELET DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION 1 Andrian Rakhmatsyah 2 Sayful Hakam 3 Adiwijaya 12 Departemen Teknik Informatika Sekolah Tinggi Teknologi

Lebih terperinci

SISTEM PENGENALAN WAJAH MENGGUNAKAN NEURO-WAVELET

SISTEM PENGENALAN WAJAH MENGGUNAKAN NEURO-WAVELET SISTEM PENGENALAN WAJAH MENGGUNAKAN NEURO-WAVELET Benni Agung Nugroho, Irna Wijayanti dan Agus Widayanti Jurusan Teknik Informatika, Politeknik Kediri e-mail : benni.nugroho@gmail.com Abstrak Sistem pengenalan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Implementasi antar muka dalam tugas akhir ini terdiri dari form halaman

BAB IV HASIL DAN PEMBAHASAN. Implementasi antar muka dalam tugas akhir ini terdiri dari form halaman BAB IV HASIL DAN PEMBAHASAN 4.1 Implementasi Antar Muka Implementasi antar muka dalam tugas akhir ini terdiri dari form halaman judul perangkat lunak, form pelatihan jaringan saraf tiruan, form pengujian

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Citra Citra menurut kamus Webster adalah suatu representasi atau gambaran, kemiripan, atau imitasi dari suatu objek atau benda, contohnya yaitu foto seseorang dari kamera yang

Lebih terperinci

BAB I PERSYARATAN PRODUK

BAB I PERSYARATAN PRODUK BAB I PERSYARATAN PRODUK I.1 Pendahuluan Pada Bab I ini, penulis akan membahas gambaran sistem yang akan dibuat secara garis besar. Pembahasan mencakup tujuan, ruang lingkup kerja, fungsi secara umum,

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 18 METODOLOGI PENELITIAN Kerangka Penelitian Sistem pengenalan roda kendaraan pada penelitian ini tampak pada Gambar 10, secara garis besar dapat dibagi menjadi dua tahapan utama yaitu, tahapan pelatihan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Tahapan yang dilakukan dalam penelitian ini disajikan pada Gambar 14, terdiri dari tahap identifikasi masalah, pengumpulan dan praproses data, pemodelan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya

Lebih terperinci

BAB 3 IMPLEMENTASI SISTEM

BAB 3 IMPLEMENTASI SISTEM BAB 3 IMPLEMENTASI SISTEM Bab ini akan membahas mengenai proses implementasi dari metode pendeteksian paranodus yang digunakan dalam penelitian ini. Bab ini terbagai menjadi empat bagian, bagian 3.1 menjelaskan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Klasifikasi sidik jari merupakan bagian penting dalam sistem pengidentifikasian individu. Pemanfaatan identifikasi sidik jari sudah semakin luas sebagai bagian dari

Lebih terperinci

ANALISIS DAN PEMBUATAN SISTEM PENGENALAN SIDIK JARI BERBASIS KOMPUTER DI POLDA METRO JAYA

ANALISIS DAN PEMBUATAN SISTEM PENGENALAN SIDIK JARI BERBASIS KOMPUTER DI POLDA METRO JAYA ANALISIS DAN PEMBUATAN SISTEM PENGENALAN SIDIK JARI BERBASIS KOMPUTER DI POLDA METRO JAYA Wikaria Gazali; Alexander Agung Santoso Gunawan Mathematics & Statistics Department, School of Computer Science,

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM

BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM BAB III PERANCANGAN DAN IMPLEMENTASI SISTEM Pada bab ini akan dijelaskan mengenai tahapan dan algoritma yang akan digunakan pada sistem pengenalan wajah. Bagian yang menjadi titik berat dari tugas akhir

Lebih terperinci

Pengenalan Citra Sidikjari Menggunakan Minutiae Dan Propagasi Balik

Pengenalan Citra Sidikjari Menggunakan Minutiae Dan Propagasi Balik Pengenalan Citra Sidikjari Menggunakan Minutiae Dan Propagasi Balik Sri Heranurweni 1 1) Jurusan Teknik Elektro, Universitas Semarang email : heranur@yahoo.com Abstrak : Teknik identifikasi konvensional

Lebih terperinci

Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan

Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan JURNAL TEKNIK POMITS 1-7 1 Klasifikasi Pola Huruf Vokal dengan Menggunakan Jaringan Saraf Tiruan Dhita Azzahra Pancorowati, M. Arief Bustomi Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi penelitian adalah sekumpulan peraturan, kegiatan, dan prosedur yang digunakan oleh pelaku suatu disiplin ilmu. Metodologi berisi tahapan-tahapan yang dilakukan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Pengumpulan dan Praproses Data Kegiatan pertama dalam penelitian tahap ini adalah melakukan pengumpulan data untuk bahan penelitian. Penelitian ini menggunakan data sekunder

Lebih terperinci

BAB 2 LANDASAN TEORI. Landasan teori ini secara umum berisi dua hal penting, yaitu kerangka teori dan pola

BAB 2 LANDASAN TEORI. Landasan teori ini secara umum berisi dua hal penting, yaitu kerangka teori dan pola 7 BAB 2 LANDASAN TEORI Landasan teori ini secara umum berisi dua hal penting, yaitu kerangka teori dan pola pikir dari penulis. Sebagai kerangka teori, penulis menyajikan sejumlah teori yang relevan dengan

Lebih terperinci

IDENTIFIKASI SIDIK JARI DENGAN DATA BERSKALA BESAR MENGGUNAKAN METODE HYBRID MINUTIAE DAN FILTER GABOR. Oleh : Siswo Santoso

IDENTIFIKASI SIDIK JARI DENGAN DATA BERSKALA BESAR MENGGUNAKAN METODE HYBRID MINUTIAE DAN FILTER GABOR. Oleh : Siswo Santoso IDENTIFIKASI SIDIK JARI DENGAN DATA BERSKALA BESAR MENGGUNAKAN METODE HYBRID MINUTIAE DAN FILTER GABOR Oleh : Siswo Santoso Pendahuluan Latar Belakang Angka kelahiran lebih besar dari angka kematian sehingga

Lebih terperinci

HASIL DAN PEMBAHASAN. Generalisasi =

HASIL DAN PEMBAHASAN. Generalisasi = 6 Kelas Target Sidik jari individu 5 0000100000 Sidik jari individu 6 0000010000 Sidik jari individu 7 0000001000 Sidik jari individu 8 0000000100 Sidik jari individu 9 0000000010 Sidik jari individu 10

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. fold Cross Validation, metode Convolutional neural network dari deep learning

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. fold Cross Validation, metode Convolutional neural network dari deep learning BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Prinsip Kerja Program P rinsip kerja program yaitu dengan melakukan pra pengolahan citra terhadap foto fisik dari permukaan buah manggis agar ukuran seluruh data

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Universitas Sumatera Utara

BAB 1 PENDAHULUAN 1.1 Latar Belakang Universitas Sumatera Utara BAB 1 PENDAHULUAN Pada bab ini dijelaskan tentang latar belakang penelitian dibuat, rumusan masalah, batasan masalah yang akan dibahas, tujuan penelitian, manfaat penelitian, metodologi penelitian yang

Lebih terperinci

PENGENALAN POLA SIDIK JARI

PENGENALAN POLA SIDIK JARI TUGAS SISTEM PENDUKUNG KEPUTUSAN PENGENALAN POLA SIDIK JARI Disusun oleh : FAHMIATI NPM : 08.57201.000502 PROGRAM STUDI STRATA SATU (S1) SISTEM INFORMASI FAKULTAS ILMU KOMPUTER UNIVERSITAS DARWAN ALI SAMPIT

Lebih terperinci

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus

BAB II DASAR TEORI. 2.1 Meter Air. Gambar 2.1 Meter Air. Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus BAB II DASAR TEORI 2.1 Meter Air Gambar 2.1 Meter Air Meter air merupakan alat untuk mengukur banyaknya aliran air secara terus menerus melalui sistem kerja peralatan yang dilengkapi dengan unit sensor,

Lebih terperinci

Pengolahan Citra INTERACTIVE BROADCASTING. Yusuf Elmande., S.Si., M.Kom. Modul ke: Fakultas Ilmu Komunikasi. Program Studi Penyiaran

Pengolahan Citra INTERACTIVE BROADCASTING. Yusuf Elmande., S.Si., M.Kom. Modul ke: Fakultas Ilmu Komunikasi. Program Studi Penyiaran INTERACTIVE BROADCASTING Modul ke: Pengolahan Citra Fakultas Ilmu Komunikasi Yusuf Elmande., S.Si., M.Kom Program Studi Penyiaran www.mercubuana.ac.id Pendahuluan Istilah citra digital sangat populer pada

Lebih terperinci

UNIVERSITAS BINA NUSANTARA. Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Genap tahun 2004/2005

UNIVERSITAS BINA NUSANTARA. Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Genap tahun 2004/2005 UNIVERSITAS BINA NUSANTARA Jurusan Teknik Informatika Skripsi Sarjana Komputer Semester Genap tahun 2004/2005 PENGENALAN CITRA WAJAH DENGAN MENGGUNAKAN TRANS FORMAS I WAVELET DIS KRIT D AN JARINGAN S ARAF

Lebih terperinci

BAB III METODE PENELITIAN. ada beberapa cara yang telah dilakukan, antara lain : akan digunakan untuk melakukan pengolahan citra.

BAB III METODE PENELITIAN. ada beberapa cara yang telah dilakukan, antara lain : akan digunakan untuk melakukan pengolahan citra. BAB III METODE PENELITIAN Untuk pengumpulan data yang diperlukan dalam melaksanakan tugas akhir, ada beberapa cara yang telah dilakukan, antara lain : 1. Studi Kepustakaan Studi kepustakaan berupa pencarian

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. implementasi dari program aplikasi yang dibuat. Penulis akan menguraikan

BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. implementasi dari program aplikasi yang dibuat. Penulis akan menguraikan BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM Dari hasil perancangan yang dilakukan oleh penulis, pada bab ini disajikan implementasi dari program aplikasi yang dibuat. Penulis akan menguraikan spesifikasi sistem

Lebih terperinci

IMPLEMENTASI PENGOLAHAN CITRA UNTUK MENGHITUNG RESISTANSI RESISTOR MENGGUNAKAN METODE BACK PROPAGATION

IMPLEMENTASI PENGOLAHAN CITRA UNTUK MENGHITUNG RESISTANSI RESISTOR MENGGUNAKAN METODE BACK PROPAGATION IMPLEMENTASI PENGOLAHAN CITRA UNTUK MENGHITUNG RESISTANSI RESISTOR MENGGUNAKAN METODE BACK PROPAGATION Abdi Haqqi An Nazilli 1, Deddy Kusbianto Purwoko Aji 2, Ulla Delfana Rosiani 3 1,2 Teknik Informatika,

Lebih terperinci

DOKUMENTASI ULANG NASKAH BRAILLE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

DOKUMENTASI ULANG NASKAH BRAILLE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK DOKUMENTASI ULANG NASKAH BRAILLE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Chairisni Lubis 1, Yoestinus 2 1 Fakultas Teknologi Informasi, Universitas Tarumanagara-Jakarta, Chairisni.fti.untar@gmail.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Sel Darah Merah Sel darah merah atau eritrositmemiliki fungsi yang sangat penting bagi kelangsungan hidup manusia. Sel darah merah mengandung hemoglobin yang berfungsi untuk

Lebih terperinci

BAB III METODE PENELITIAN. Desain penelitian untuk pengenalan nama objek dua dimensi pada citra

BAB III METODE PENELITIAN. Desain penelitian untuk pengenalan nama objek dua dimensi pada citra BAB III METODE PENELITIAN 3.1 Desain Penelitian Desain penelitian untuk pengenalan nama objek dua dimensi pada citra adalah sebagai berikut. Gambar 3.1 Desain Penelitian 34 35 Penjelasan dari skema gambar

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

TINJAUAN PUSTAKA ,...(1)

TINJAUAN PUSTAKA ,...(1) 3 TINJAUAN PUSTAKA Dalam bab ini akan dibahas teori-teori yang mendasari penelitian ini. Dimulai dari teori dan konsep citra digital, deteksi pola lingkaran dengan Circle Hough Transform (CHT), ekstrasi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Alat yang digunakan dalam penelitian ini adalah: b. Memori : 8192 MB. c. Sistem Model : Lenovo G40-45

BAB III METODOLOGI PENELITIAN. Alat yang digunakan dalam penelitian ini adalah: b. Memori : 8192 MB. c. Sistem Model : Lenovo G40-45 20 BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian 3.1.1 Alat Alat yang digunakan dalam penelitian ini adalah: a. Hardware a. Prosesor : AMD A8-6410 APU (4 CPUs), ~2.0 GHz b. Memori : 8192

Lebih terperinci

Konvolusi. Esther Wibowo Erick Kurniawan

Konvolusi. Esther Wibowo Erick Kurniawan Konvolusi Esther Wibowo esther.visual@gmail.com Erick Kurniawan erick.kurniawan@gmail.com Filter / Penapis Digunakan untuk proses pengolahan citra: Perbaikan kualitas citra (image enhancement) Penghilangan

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1 1. BAB I PENDAHULUAN Latar Belakang Iris mata merupakan salah satu organ internal yang dapat di lihat dari luar. Selaput ini berbentuk cincin yang mengelilingi pupil dan memberikan pola warna pada mata

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah

BAB 3 METODOLOGI PENELITIAN. a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah BAB 3 METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian 3.1.1 Alat Penelitian a. Spesifikasi komputer yang digunakan dalam penelitian ini adalah sebagai berikut: 1) Prosesor Intel (R) Atom (TM) CPU N550

Lebih terperinci

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan

BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra

Lebih terperinci

1.2 Rumusan Masalah Berdasarkan latar belakang yang telah dibuat diatas, rumusan masalah yang dapat diambil adalah :

1.2 Rumusan Masalah Berdasarkan latar belakang yang telah dibuat diatas, rumusan masalah yang dapat diambil adalah : BAB I PENDAHULUAN 1.1 Latar Belakang Tanda tangan adalah sebuah bentuk khusus dari tulisan tangan yang mengandung karakter khusus dan bentuk-bentuk tambahan yang sering digunakan sebagai bukti vertifikasi

Lebih terperinci

Implementasi Pengenalan Tanda Tangan dengan Menggunakan Metode Backpropagation TUGAS AKHIR

Implementasi Pengenalan Tanda Tangan dengan Menggunakan Metode Backpropagation TUGAS AKHIR Implementasi Pengenalan Tanda Tangan dengan Menggunakan Metode Backpropagation TUGAS AKHIR Diajukan Oleh : RENDRA FEBRIANTO 0634015068 JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Implementasi 4.1.1 Spesifikasi Sistem Adapun spesifikasi komputer yang digunakan pada aplikasi penelitian pengenalan ekspresi wajah ini seperti pada tabel Tabel 4.1 Spesifikasi

Lebih terperinci

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses 8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari- hari seringkali ditemukan uang palsu pada berbagai transaksi ekonomi. Tingginya tingkat uang kertas palsu yang beredar di kalangan masyarakat

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Model sistem presensi biometri sidik jari yang dikembangkan secara garis

BAB III METODOLOGI PENELITIAN. Model sistem presensi biometri sidik jari yang dikembangkan secara garis BAB III METODOLOGI PENELITIAN 3.1 Disain Penelitian Model sistem presensi biometri sidik jari yang dikembangkan secara garis besar terdiri atas bagian input, bagian proses, dan bagian output seperti gambar

Lebih terperinci

Mahasiswa: Muhimmatul Khoiro Dosen Pembimbing: M. Arief Bustomi, S.Si, M.Si.

Mahasiswa: Muhimmatul Khoiro Dosen Pembimbing: M. Arief Bustomi, S.Si, M.Si. Mahasiswa: Muhimmatul Khoiro 1110100049 Dosen Pembimbing: M. Arief Bustomi, S.Si, M.Si. Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2014 Diagnosa

Lebih terperinci

BAB III PENGOLAHAN DATA

BAB III PENGOLAHAN DATA BAB III PENGOLAHAN DATA Pengolahan data pada penelitian ini meliputi tahapan pengambilan data, penentuan titik tengah area yang akan menjadi sampel, pengambilan sampel, penentuan ukuran window subcitra

Lebih terperinci

Citra. Prapengolahan. Ekstraksi Ciri BAB 2 LANDASAN TEORI

Citra. Prapengolahan. Ekstraksi Ciri BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai pengenalan pola, pengolahan citra,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. manusia dengan menggunakan metode Gabor Filter dan Algoritma

BAB III METODOLOGI PENELITIAN. manusia dengan menggunakan metode Gabor Filter dan Algoritma BAB III METODOLOGI PENELITIAN 3.1 Desain Penelitian Berikut merupakan desain penelitian yang akan digunakan pada proses rancang bangun aplikasi sistem pengenalan pola fraktur tengkorak manusia dengan menggunakan

Lebih terperinci

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer.

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Melihat perkembangan teknologi sekarang ini, penggunaan komputer sudah hampir menjadi sebuah bagian dari kehidupan harian kita. Semakin banyak muncul peralatan-peralatan

Lebih terperinci

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL

PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL PENGHITUNG JUMLAH MOBIL MENGGUNAKAN PENGOLAHAN CITRA DIGITAL DENGAN INPUT VIDEO DIGITAL Mawaddah Aynurrohmah, Andi Sunyoto STMIK AMIKOM Yogyakarta email : andi@amikom.ac.id Abstraksi Perkembangan teknologi

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi

BAB III ANALISIS DAN PERANCANGAN SISTEM. Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1 Model Pengembangan Dalam pengerjaan tugas akhir ini memiliki tujuan untuk mengektraksi fitur yang terdapat pada karakter citra digital menggunakan metode diagonal

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Pada saat ini, penyimpanan informasi pada media digital sudah banyak dilakukan oleh orang. Dimulai dengan menyimpan sebuah file atau gabungan beberapa file yang disimpan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN Bab ini menjelaskan tentang latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metode penelitian, dan sistematika penulisan dalam penelitian ini.

Lebih terperinci

Karakteristik Spesifikasi

Karakteristik Spesifikasi Sinyal yang masuk difilter ke dalam sinyal frekuensi rendah (low-pass filter) dan sinyal frekuensi tinggi (high-pass filter) Lakukan downsampling pada kedua sinyal tersebut Low-pass frekuensi hasil downsampling

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Penelitian BAB III METODOLOGI PENELITIAN 3.1.1 Alat Alat yang digunakan dalam penelitian ini adalah: a. Hardware a. Prosesor : Intel Core i5-3230m CPU @ 2.60GHz b. Memori : 4.00 GB c.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Rancangan Penelitian Pengerjaan tugas akhir ini ditunjukkan dalam bentuk blok diagram pada gambar 3.1. Blok diagram ini menggambarkan proses dari sampel citra hingga output

Lebih terperinci

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi, LAMPIRAN 15 Lampiran 1 Algoritme Jaringan Syaraf Tiruan Propagasi Balik Standar Langkah 0: Inisialisasi bobot (bobot awal dengan nilai random yang paling kecil). Langkah 1: Menentukan maksimum epoch, target

Lebih terperinci

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA

PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA PENERAPAN METODE SOBEL DAN GAUSSIAN DALAM MENDETEKSI TEPI DAN MEMPERBAIKI KUALITAS CITRA HASNAH(12110738) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan Jl. Sisingamangaraja No. 338

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT

PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT Mikrotiga, Vol, No. Mei 0 ISSN : 0 PENGENALAN SIDIK JARI MENGGUNAKAN JARINGAN SYARAF TIRUAN BERBASIS SCALED CONJUGATE GRADIENT Suci Dwijayanti *, Puspa Kurniasari Jurusan Teknik Elektro Universitas Sriwijaya,

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK APLIKASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI VOLUME PEMAKAIAN AIR BERSIH DI KOTA PONTIANAK [1] Meishytah Eka Aprilianti, [2] Dedi Triyanto, [3] Ilhamsyah [1] [2] [3] Jurusan Sistem Komputer, Fakultas

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI

PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI PENGENALAN WAJAH DENGAN METODE ADJACENT PIXEL INTENSITY DIFFERENCE QUANTIZATION TERMODIFIKASI Nama Mahasiswa : Yuliono NRP : 1206 100 720 Jurusan : Matematika Dosen Pembimbing : Drs. Soetrisno, M.IKomp

Lebih terperinci

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital

Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital Nurul Fuad 1, Yuliana Melita 2 Magister Teknologi Informasi Institut Saint Terapan & Teknologi

Lebih terperinci

BAB III METODE PENELITIAN. melacak badan manusia. Dimana hasil dari deteksi atau melacak manusia itu akan

BAB III METODE PENELITIAN. melacak badan manusia. Dimana hasil dari deteksi atau melacak manusia itu akan BAB III METODE PENELITIAN 3.1. Model Pengembangan Tujuan dari tugas akhir ini adalah untuk membuat sebuah aplikasi untuk mengatur kontras pada gambar secara otomatis. Dan dapat meningkatkan kualitas citra

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pemalsuan identitas sering kali menjadi permasalahan utama dalam keamanan data, karena itulah muncul teknik-teknik pengamanan data seperti penggunaan

Lebih terperinci

PENGENALAN TANDA TANGAN DENGAN MENGGUNAKAN NEURAL NETWORK DAN PEMROSESAN AWAL THINNING ZHANG SUEN

PENGENALAN TANDA TANGAN DENGAN MENGGUNAKAN NEURAL NETWORK DAN PEMROSESAN AWAL THINNING ZHANG SUEN PENGENALAN TANDA TANGAN DENGAN MENGGUNAKAN NEURAL NETWORK DAN PEMROSESAN AWAL THINNING ZHANG SUEN Chairisni Lubis 1) Yuliana Soegianto 2) 1) Fakultas Teknologi Informasi Universitas Tarumanagara Jl. S.Parman

Lebih terperinci