Dosen Pembimbing: Rahmah Dara L., ST. MT.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Dosen Pembimbing: Rahmah Dara L., ST. MT."

Transkripsi

1 HEC-RAS Dosen Pembimbing: Rahmah Dara L., ST. MT. M. Rizqi Akbar Gigih Suryarawit Aditya Wibowo Nur Sholawatini M. Arief Rusdiono Amalia Mardhatillah A

2 Definisi HEC-RAS HEC-RAS merupakan kepanjangan dari Hydrologic Engineering Center-River Analysis System. HEC-RAS adalah salah satu program (software) yang diterbitkan oleh U.S. Army Corps of Engineers- Hydrologic Engineering Center (HEC) yang digunakan untuk melakukan perhitungan profil aliran sungai satu dimensi baik aliran tetap (steady flow) maupun aliran tak tetap (unsteady flow). Program ini didesain untuk mampu melakukan perhitungan hidrolika satu dimensi pada suatu sistem sungai alami maupun saluran buatan. Software ini memiliki kemampuan penggunaan perhitungan jenis aliran Steady Flow dan Unsteady Flow satu dimensi dan sedimen transport yang akan ditambahkan lebih lengkap pada versi berikutnya (beta verison). HEC-RAS juga memiliki kemampuan untuk melakukan simulasi perhitungan profil muka air pada struktur bangunan air, seperti jembatan, pintu, bendung, dan lain-lain. Cara Pengoperasian HEC-RAS Starting Hec Ras Setelah menginstall Hec Ras, biasanya ikon Hec Ras akan muncul di start menu, untuk mulai menggunakan Hec Ras, silahkan klik ikon Hec Ras tersebut..dan biasanya akan muncul tampilan awal seperti ini.

3 Untuk mulai pekerjaan Hec Ras (istilah di Hec Ras adalah Project), klik File, kemudian New Project, kemudian simpan Project dengan nama pada direktori atau folder yang diinginkan. Toolbar pada HEC-RAS Bekerja Dengan HEC-RAS Pada bagian ini akan diarahkan pengguna HEC-RAS menggunalan program HEC-RAS mulai dari menyeting nilai-nilai default sampai pada pembuatan geometri sungai 1. Pengaturan awal program Pada bagian ini pengguna dijelaskan untuk mengatur Default Project Folder, Default Project Parameters, dan Unit System. Default Project Folder

4 Opsi ini dipakai untuk mengatur folder default yang dipakai untuk menyimpan file project. Pilih menu Options Program Setup Defaults Project Folder. Folder penyimpanan dapat ditentukan, misal folder C:\Users\User\Documents\HEC Data. Contraction and Expansion Coefficients Nilai default koefisien persempitan (kontraksi) perlebaran (ekspansi) tampang saluran berturut-turut adalah o.1 dan 0.3. kedua nilai tersebut umumnya berlaku pada oerubahan tampang saluran secara gradual. Jika perubahan tampang salran pada kasus yang sedang dimodelkan pemakai sebgian besar adalah perubahan mendadak, maka nilai default kedua koefisien tersebut lebih baik diubah, misal koefisien kontraksi menjadi 0.3 dan koefisien ekspansi menjadi 0.8. untuk mengubah nilai default kedua koefisien ini, klik pada menu Options Default Parameters Expansion and Contraction Coef. Unit System Sistem satuan yang dipakai dalam HEC-RAS dapat mengikuti sistem Amerika (US Customary) atau sistem Internsional (SI). Default satuan adalah US Customary. Untuk emgubahnya, klik pada menu Options Unit System (US Customary/SI) System International (Metric System). Agar sistem satuan SI menjadi sistem satuan default setiap kali membuat project baru, klik Set as default for new projects. Memulai Project Baru Untuk membuat project baru, klik menu file pada toolbars dan pilih New Project. Pengguna akan diminta memilih drive dan path.

5 Lalu masukkan nama judul project dan file name. File name harus berekstensikan.prj dan pengguna tidak diperbolehkan menggantinya. Peniruan Geometri Saluran 1. Alur saluran a. Aktifkan layar editor data geometri dengan memilih menu Edit Geometric Data atau mengklik tombol Edit/Enter geometric data (ikon ke-3 dari kiri pada papan tombol atas). b. Klik tombol River Reach (ikon kiri-atas) dan buat skema saluran dengan cara mengklikkan titik-ttitik sepanjang alur saluran pada layar editor data geometri. Karena alur saluran adalah lurus, maka skema alur dapat dibuat cukup dengan dua titik ujung saluran. Alur saluran harus dibuat dari hulu ke hilir tidak boleh dibalik. Klik-kan kursor di sisi tengan atas layar editor geometri data untuk menandai ujung hulu saluran, kemudian klik dua kali di sisi tengah bawah editor untuk menandai ujung hilir saluran sekaligus mengakhiri pembuatan skema alur. c. Pada layar yang muncul, isikan... River sebagai nama River dan Hulu Hilir sebagai nama Reach. Klik tombol OK. d. Setelah langkah di atas, pada layar editor data geometri tampak sebuah denah alur saluran (... River ) yang memiliki satu ruas ( Hulu Hilir ). Anak anah menunjukkan arah aliran dari hulu ke hilir 2. Penamapang Melintang Saluran

6 a. Aktifkan layar editor tampang lintang dengan mengklik tombol Cross Section. b. Tuliskan data penampang melintang (cross section), ururt dari penampang di ujung hilir sampai ke ujung hulu. Untuk menuliskan data penampang melintang, pilih menu Options Add a new Cross Section, tuliskan nomor tampang lintang 0. Setiap tampang lintang diidentifikasikan sebagai River Sta yang diberi nomor urut, dimulai dari hilir dan bertambah besar ke arah hulu. Urutan nomor ini tidak boleh dibalik. c. Pada isian Description, isikan keterangan mengenai tampang lintang (River Sta), yaitu Batas hilir ruas Hulu Hilir Sta 0 m. d. Tuliskan koordinat titik-titik tampang lintang, urut dari titik paling kiri ke kanan; Station adalah jarak titik diukur dari kiri dan Elevation adalah elevasi titik. Untuk River Sta 0, data koordinat satuan panjang pada data geometri tampang lintang saluran adalah meter (karena projct ini memakai sistem satuan SI). e. Data selanjutnya adalah jarak tampang 0 ke tampang tetangga di sisi hilir (Downstream Reach Lenghts), yaitu jarak antar bantaran kiri (left overbank, LOB), jarak antar bantara kanan (right overbank, ROB). Karena tampang 0 merupakan tampang paling hilir, maka isian ini dapat dibiarkan kosong atau diisi dengan angka nol. f. Nilai koefisien kekasaran dasar, Manning s n Values, adalah 0.02 untuk semua bagian tampang: LOB, Channel, dan

7 ROB karena tampang lintang saluran merupakan tampang tunggal, bukan tampang majemuk. g. Isian selanjutnya, Main Channel Bank Stations, adalah titik batas antara LOB dan Channel serta Channel dan ROB; karena tampang merupakan tampang tunggal, maka seluruh tampang merupakan main channel, sehingga untuk isian ini diberi titik paling kiri, 0, untuk Left Bank dan titik paling kanan, 6, untuk Right Bank. h. Data Cont\Exp Coefficients dibiarkan sesuai dengan nilai default yang ada di dalam HEC-RAS, yaitu 0.1 untuk Contraction dan 0.3 untuk Expansion. i. Di bagian bawah, dapat diisikan catatan atau informasi tambahan berkenaan dengan tampang ini. j. Klik tombol Apply Data untuk menyimpan data ke dalam HEC-RAS. Di sisi kanan layar akan ditampilkan gambar tampang lintang. k. Karena seluruh ruas Grafika memiliki tampang yang sama, maka ruas tersebut cukup diwakili oleh data dua tampang di kedua ujung ruas. Grafika, pilih Options Copy Current Section dan isikan 1000 sebagai identifikasi/nomenklatur River Sta. l. Pada isian description, isikan keterangan mengenai tampang lintang (River Sta), yaitu Batas hulu ruas Hulu Hilir Sta 1000 m. m. Koordinat (Statin, Elevation) titik-titik tampang lintang pada River Sta ini adalah sebagai berikut; (0,3), (2,1), (4,1),

8 (6,3), ingat kemiringan dasar saluran adalah sehingga elevasi tampang lintang di River Sta 1000 ini adalah 1 m di atas elevasi tampang lintang di River Sta 0. n. Isikan jarak tampang River Sta 1000 ke tampang di sebelah hilirnya (Downstream Reach Lenghts) dengan angka 1000 (satuan panjang adalah meter), baik untuk LOB, Channel, maupun ROB. o. Isian Manning s n Values, Main Channel Bank Stations, serta Cont\Exp Coefficients tidak perlu diubah. p. Klik tombol Apply Data. Tampilan gambar tampang melintang akan berubah dan tidak semua tampang tampak pada gambar. Pilih menu Plot Options Full Plot untuk emnampilkan seluruh bentuk tampang. q. Pilih menu Exit Exit Cross Section Editor untuk kembali ke layar editor data geometri. Pada gambar alur saluran, sekarang tampak tambahan informasi keberadaan dua River Sta, yaitu 0 di ujung hilir dan 1000 di ujung hulu. r. Untuk menampakkan seluruh tampang lintang, perbesar layar dengan memilih menu View Set Schematic Plot Extent. Klik Set to Computed Extents, dan klik OK s. Apabila lar terlalu besar, aturlah ukuran layar sehingga River Sta 0 dan River Sta 1000 masing-masing berada di tepi atas dan bawah, pilih menu View Set Schematic Plot Extent dan klik Set to Current View. 3. Interpolasi Penampang Melintang Sakuran

9 Sebenarnya untuk menggunakan fitur ini tidak direkomendasikan ketika data yang digunakan lengkap. Fitur ini hanya mengandalkan interpolasi nilai data yang ada dengan sumber data yang kurang mencukupi. Berikut adalah langkah-langkah fitur interpolasi data: a. Pada layar editor data geometri pilih menu Tools XS Interpolation Within a Reach. b. Pada isian Maximum Distance between XS s, isikan angka 20, yang berarti jarak maximum antar tampang lintang adalah 20 m. c. Klik tombol Interpolate XS s. d. Klik tombol Close untuk kembali ke layar editor data geometri. e. Pada gambar alur saluran, tampak sejumlah River Sta baru. Nomor River Sta tersebut bertanda bintang (*) yang menandai bahwa River Sta tersebut adalah hasil interpolasi. Tiga River Sta memiliki format nomornomor River Sta yang lain, yaitu *, *), dan *. ini dapat diedit dengan mengaktifkan layar editor penampang melintang. i. Klik tombol Cross Section dan aktifkan River Sta *. ii. iii. Plilih menu Options Rename River Station. Ubah * menjadi 20.*. jangan lupa untuk memberikan simbol 8 di akhir nomor agar River Sta ini tetap sebagai River Sta hasil

10 interpolasi. Apabila simbol * dihilangkan, maka River Sta ini akan berubah menjadi seolah-olah tampang lintang yang diperoleh dari input data. Klik tombol OK. iv. Lakukan langkah yang sama untuk mengubah River Sta * menjadi 40.* dan River Sta * menjadi 80.* v. Kembali ke layar editor data geometri dengan memilih menu Exit Exit Cross Section Editor. 4. Penyimpanan Data geometri Data geometri saluran disimpan dengan memilih menu File Save Geometry Data. Isikan pada Title Penampang Sederhana sebagai judul data geometri tersebut. Pastikan bahwa pilihan folder tetap sesuai dengan folder filer Project, klik tombol OK. Pemakai dapat menutup layar editor data geometri dengan memilih menu File Exit Geometry Data Editor. File data geometri dinamai Latihan_Nama.g01 secara otomatis oleh HEC-RAS. Mengisi Geometri Data Langkah selanjutnya adalah membuat dan mengisi geometri data. Pembuatan geometri data adalah dengan cara klik tool bar Edit/Enter Geometric Data dari tampilan awal Hec Ras. Geometric Data memiliki tampilan seperti ini.

11 Setelah muncul tampilan Geometric Data, langkah selanjutnya adalah membuat lay out sungai dengan cara klik tool bar River Reach dari tampilan Geometric Data, kemudian bisa memulai dengan menggambar lay out sungai yang diinginkan, tidak lupa untuk memberi nama River dan Reach nya. Arah aliran saluran adalah sesuai dengan arah penggambaran, diusahakan jangan sampai terbalik, apabila menggambar lay out sungai dari kiri ke kanan, berarti bagian hulu ada di sebelah kiri, sedangkan bagian hilir adalah sebelah kanan. Setelah lay out sungai selesai dibuat kita bisa langsung memasukkan data potongan melintang (cross section) sungai dengan cara klik ikon Cross Section pada tampilan Geometric Data selanjutnya akan muncul tampilan seperti ini., sehingga

12 Untuk memasukkan data-data potongan melintang, bisa dengan cara meng-klik Option kemudian Add a New Cross Section..biasanya akan diminta untuk memasukkan nomor stationing (Sta) atau nomor patok. Untuk penomoran patok hanya diperbolehkan memasukkan angka, dimana angka terkecil adalah nomor patok (Sta) yang paling dekat dengan muara. Setelah mengisikan nomor patok, bisa langsung memasukkan data potongan melintang (biasanya didapatkan dari pengukuran topografi) pada bagian kiri tampilan Cross Section Data. Pada bagian kiri ampilan Cross Section Data terdapat dua buah kolom, yaitu station dan elevation. Yang dimaksud dengan station adalah jarak pias potongan melintang (sumbu X), sedangkan yang dimaksud dengan elevation adalah elevasi pias potongan melintang (sumbu Y). Selain data station dan elevation yang ada di bagian kiri tampilan Cross Section Data juga harus memasukkan Downstream Reach Length atau jarak antar potongan melintang yang kini sedang dibuat dengan potongan melintang dihilirnya, angka Manning, dan Main Channel Bank Station (sumbu X untuk tebing kiri dan tebing kanan), yang berada pada bagian tengah tampilan Cross Section Data. Pada Reach Length, kita harus memasukkan data berupa jarak pada LOB (Left Over Bank) atau tebing kiri, Channel atau bagian tengah, dan ROB (Right Over Bank). Angka Manning dimasukkan berdasarkan kekasaran material dinding

13 saluran, sedangkan data Bank Stationing dimasukkan berdasarkan tebing yang ada pada data potongan melintang. Selain data potongan melintang dimasukkan kita juga bisa memasukkan bangunan-bangunan yang ada di sungai. Bangunanbangunan yang ada di sungai bisa berupa bangunan melintang sungai / inline structure (bisa berupa pintu air / gate ataupun bending / weir), bangunan sejajar sungai / lateral structure (bisa berupa pintu air / gate ataupun bending / weir), tampungan air / storage area, dan juga pompa. Setelah semua geometri data selesai dimasukkan simpan hasilnya. Caranya seperti menyimpan file biasa, yaitu dengan klik File kemudian Save Geometric Data As. Memasukkan Data Aliran Langkah selanjutnya adalah memasukkan data aliran. Sebelum memasukkan data aliran, kita harus memastikan terlebih dahulu jenis aliran yang akan disimulasi. Disini ada 2 jenis aliran, yaitu aliran steady (aliran tunak), dan aliran unsteady (aliran tak tunak). Aliran Steady Jika akan menggunakan aliran aliran steady (parameter aliran yang tidak berubah terhadap waktu), klik ikon Enter/Edit Steady Flow Data yang ada di tampilan awal Hec Ras, sehingga selanjutnya akan muncul tampilan seperti berikut ini.

14 Setelah muncul tampilan steady flow data, masukkan debit puncak pada kolom PF, dan diasumsikan bahwa debit yang terjadi merupakan aliran yang konstan. Selain itu, kita juga harus memasukkan Boundary Condition dengan cara klik tool bar Reach Boundary Condition yang terletak di bagian atas tampilan Steady Flow Data. Pada Boundary Condition atau kondisi batas ini bisa dengan cara memasukkan data yang ada di hulu maupun dihilir sungai dengan cara meng-klik salah satu ikon Known W.S., Critical Depth, Normal Depth, dan Rating Curve. Tentu saja data yang dimasukkan haruslah sesuai dengan kondisi yang ada dan pada kondisi puncak. Apabila memilih Known W.S. berarti harus mengetahui muka air di hilir saluran, jika memilih Critical Depth harus bisa mengasumsikan bahwa di hilir saluran akan terjadi muka air kritis, sedangkan jika kita memilih Normal Depth, biasanya akan diminta untuk memasukkan kemiringan dasar saluran (slope), dan yang terakhir, jika memilih rating curve, harus sudah memiliki data elevasi vs debit, yang biasanya terdapat di bendung.

15 Aliran Unsteady Jika aliran yang kita miliki merupakan aliran unsteady (parameter aliran yang berubah terhadap waktu), berarti kita sebaiknya menganalisis aliran secara unsteady. Untuk memasukkan data aliran, tinggal klik ikon edit/enter Unsteady Flow Data ( muncul tampilan sebagai berikut. ) sehingga akan Pada tab Boundary Condition, dapat dilakukan dengan cara memasukkan data-data kondisi batas yang dimiliki, dimana itemnya hampir sama dengan kondisi batas pada aliran steady. Hanya saja, data yang dimasukkan di boundary condition pada aliran unsteady bukan hanya pada kondisi puncak saja, melainkan data aliran tiap waktu. Data yang dimasukkan bisa tiap detik, menit, jam, hari, bahkan bulan. Pada aliran unsteady, selain data boundary condition, harus memasukkan data initial condition juga. Data initial condition ini merupakan asumsi aliran pada jam ke-nol. Setelah data aliran telah

16 selesai dimasukkan, jangan lupa untuk menyimpan. Caranya sama, yaitu klik file, kemudian save flow data as. Running Simulasi Aliran Apabila semua data sudah dimasukkan, saatnya untuk running simulasi aliran. Simulasi aliran adalah proses menghitung dari semua data yang telah dimasukkan. Proses simulasi ini menyesuaikan jenis aliran yang tadi telah dipilih, apabila menggunakan aliran steady, berarti klik Perform A Steady Flow Simulation pada ikon yang bergambar orang berlari pada jalan yang mendatar, sedangkan jika kita menggunakan aliran unsteady, berarti klik Perform An Unsteady Flow Simulation pada ikon yang bergambar orang berlari pada jalan yang menanjak. Khusus untuk running aliran unsteady, diharuskan untuk meng-klik item-item pada Programs to Run, mengisi waktu atau tanggal simulasi pada Simulation Time Window, dan menyetting interval waktu perhitungan pada Computation Setting. Pada tampilan Flow Analysis, bisa memilih Geometry File dan Flow File yang akan dirunning, dan dapat menamai Plan sesuai keinginan masing-masing. Selanjutnya klik Compute, dan selesai Melihat Hasil Hasil Running dapat dilihat secara grafis maupun dengan tabel. Untuk grafis, dapat dilihat visual hasil runningnya dengan cara mengklik salah satu dari ikon. Dari ikonikon tersebut, kita bisa melihat potongan melintang saluran, potongan memanjang saluran, rating curve, penampakan 3D, dan hidrografnya. Sedangkan apabila menginginkan melihat hasil running

17 berupa tabel, kita dapat mengklik ikon View Summary Output Tables by Profile atau.

18 Cara pengoperasian HEC-RAS : Starting Hec-ras Mengisi geometri data Memasukkan data Aliran steady (aliran tunak) Aliran unsteady (aliran tak tunak) Running simulasi aliran Aliran steady Aliran unsteady (aliran tunak) (aliran tak tunak) Lihat hasil selesai

19 Data yang diperlukan dalam menganalisis penampang sungai : - Penampang memanjang sungai - Potongan melintang sungai - Data debit yang melalui sungai - Angka manning penampang sungai Soal dan Jawaban Sungai Serang merupakan salah satu sungai utama di Kabupaten Kulon Progo. Sebagai sungai utama, Sungai Serang memegang peranan yang penting, yaitu sebagai suplai air irigasi dan sebagai saluran drainase buangan air irigasi dan air hujan. Oleh karena itu, Sungai Serang berfungsi sebagai drainasi utama (main drainage) yang mengalirkan air buangan langsung menuju ke laut. Hampir setiap tahun, air Sungai Serang meluap ke daerah sekitar sungai yang mengakibatkan daerah pertanian, pemukiman, dan daerah wisata Glagah Indah tergenang, sehingga diperlukan penanggulangan pada DAS Serang. Salah atu analisis kajian banjir adalah dengan menggunakan software HEC-RAS (Hydrologic Engineering Center-River Analysis Sistem) dari US Army Corps of Engineering. Simulasi dengan program komputer HEC-RAS bertujuan untuk mengetahui profil memanjang Sungai Serang dan anak-anak

20 sungainya, elevasi muka air maksimum, serta kecepatan aliran. Selain itu, dengan program HEC-RAS kita juga dapat membuat modifikasi penampang sungai sebagai upaya penanganan banjir yang terjadi dengan menggunakan simulasi aliran unsteady. Kajian sistem jaringan Sungai Serang pernah dilakukan oleh Sogreah dalam Java Flood Control Project pada tahun Berdasarkan hasil analisis yang dilakukan oleh Sogreah, diindikasikan bahwa di bagian hilir Sungai Serang tepatnya di Bendung Pekikjamal akan terjadi banjir untuk debit diatas 600 m3/det untuk kala ulang 10 tahun. Hasil running tersebut diperkuat dengan adanya rekaman di pintu penangkap Bendung Pekikjamal. Metodologi Penelitian Pada saat persiapan simulasi, dilakukan pengumpulan data yang akan digunakan pada proses simulasi. 1. Data Geometri Sungai 2. Peta Jaringan Sungai Serang 3. Pasang Surut Muara

21 4. Hidrograf Banjir Pada proses simulasi: 1. Skematisasi 2. Memasukkan data aliran unsteady a. Kondisi Batas Eksternal 1) Flow Hydrograf 2) Stage Hydrograf, data stage hydrograf diambil dari grafik pasang surut semi diurnal tide. b. Kondisi Awal, berupa debit banjir pada saat t=0. 3. Eksekusi/Running Hasil Simulasi Sungai Serang dari gambar diatas dapat dilihat bahwa elevasi muka air semua stasioning di Sungai Serang melebihi tanggul sungai yang ada, hal tersebut menyebabkan banjir di Sungai Serang. Selain itu muka air di stasioning 6 (200 m dari hilir sungai) mengalami perubahan yang sangat drastis, karena

22 adanya perubahan penampang sungai yang sangat drastis. Kemungkinan pengambilan data dilakukan pada musim kemarau, sehingga pada saat itu terjadi penutupan muara sungai akibat sedimentasi. Akibatnya, pada daerah tersebut seakan-akan terjadi pembendungan dan mengakibatkan terjunan pada daerah tersebut. Alternatif Penanganan Banjir Penampang sungai yang diperbaiki adalah Lower Serang 1 dengan cara menyeragamkan ukuran penampang sungai sehingga memiliki lebar dasar saluran sebesar 70 m, kedalaman saluran 2 m, perbandingan kemiringan horisontal:vertikal dinding saluran sebesar 2:1, lebar bantaran dari ujung ke ujung sebesar 130 m, serta perbandingan kemiringan dinding tebing bantaran sebesar 4,5:1. Dasar saluran muara berada pada ketinggian 2 m kemudian secara linear naik hingga 0,35 m pada station 30. Ukuran tersebut diambil dengan pertimbangan bahwa luas penampang setelah perbaikan merupakan luas penampang rata-rata dari penampang sungai kondisi eksisting. Dari hasil simulasi alternatif penanganan, akan didapat muka air seperti pada gambar dibawah.

23 Berdasarkan gambar-gambar alternatif perbaikan sungai diatas, dapat dilihat bahwa setelah dilakukan perbaikan penampang saluran di Lower Serang 1, terjadi penurunan muka air baik untuk sungai utama

24 maupun anak-anak sungainya. Untuk beberapa titik stasioning, terutama di hilir tiap-tiap sungai, masih mengalami banjir. Hal tersebut terjadi karena di hilir sungai terdapat pertemuan anak sungai dengan sungai utama maupun sungai utama dengan laut, padahal dinding tebing sungainya tidak terlalu tinggi. Akan lebih baik jika dinding tebing di hilir sungai di buat lebih tinggi. Presentasi Hasil Hitungan Jenis presentasi hasil hitungan dalam fitur HEC-RAS ada beberapa macam yaitu presentai Cross Section, Long Section, Variabel, dan Tabel. Untuk presentasi tingkat lanjut dapat diubah sesuai data yang diinginkan. a. Pilih menu View Crosss Sections atau klik tombol View cross sections (ikon ke-14 dari kiri pada papan tombol) untuk menapilkan grafik penampang melintang. b. Pada layar Cross Section, pilih River Sta. yang akan ditampilkan dengan mengklik tombol anak panah ke bawah untuk berpindah ke river station hilir dan mengklik tombol anak panah ke atas untuk berpindah ke river station hulu c. Pemakai dapat memilih untuk tidak menapilkan tampang lintang hasil interpolasi. Ini dilakukan engan mematikan View Interpolated XS s pada menu Option. d. Pemakai dapat mengontrol tampilan layar tampilan Cross Section melalui berbagai pilihan yang ada pada menu Option, antara lain profil (PF1 atau PF2), variabel (muka air, kedalaman kritik, garis energi, dsb.), judl gambar, label, ukuran karakter, dsb. Pemakai disarankan untuk berlatih dan mencoba berbagai pilihan pada menu Option tersebut.

25 e. Grafik hasil hitungan dapat direkam ke dalam clipboard untuk disisipkan ke dalam program aplikasi prosesor dokumen, misal MSWord. Pilih menu File Copy Plot to Clipboard. Grafik disisipkan ke dalam dokumen MSWord melalui perintah Edit Paste. Presentasi Long Section a. Pilih menu View Water Surface Profiles atau klik tombol View cross sections (ikon ke -14 dari kiri pada papan tombol) untuk meampilkan grafik profil muka air di sepanjang alur (penampang memanjang). b. Pemakai dapat memilih profil yang ditampilkan, PF1 atau PF2 atau keduanya, dengan mengklik tombol Profiles dan mengaktifkan profile yang ingin ditampilkan. c. Kontrol terhadap tampilan grafik profil muka air dapat diatur melalui menu Options. Pemakai disarankan mencoba mengubahibah tampilan grafik dengan mengubah parameter tampilan sesuai pilihan yang ada pada menu Options tersebut. Presentasi Variabel a. Pilih menu View General Profile Plot atau mengklik tombol View General Profil Plot (ikon ke-15 dari kiri pada papan tombol). Tampilan yang muncul adalah grafik profil kecepatan aliran di sepanjang alur. b. Seperti tampilan grafik-grafik sebelumnya, pemakai dapat mengontrol tampilan grafik melalui pilihan-pilihan yang disediakan pada menu Options.

26 c. Pemakai dapat memilih profil yang ditampilkan, PF1 atau PF2 atau keduanya, dengan mengklik tombol Profiles dan mengaktifkan profile yang ingin ditampilkan. d. Selain profil kecepatan aliran, pemakai dapat menampilkan profil debit aliran, luas tampang aliran, dan berbagai parameter lain dengan memilihnya melalui menu Standard Plots. Presentasi Tabel a. Pilih menu View Detailed Output Tables atau mengklik tombol view detailed output at XS s, (ikon ke-4 dari kanan pada papan tombol). b. Pemakai dapat memilih profil maupun tampang lintang yang ditampilkan dengan mengklik tombol Profiles atau RS. c. Tabel dapat direkam ke dalam clipboard dengan memilih File Copy to Clipboard (Data and Headings), untuk kemudian dapat disisipkan ke dalam program aplikasi lain, misal ke dalam MSWord. d. Selain tabel hasil hitungan di sebuah tampang lintang, tabel hasil hitungan di seluruh alur (tampak panjang) saluran dapat pula ditampilkan dengan memilih menu View Profile Summary Table atau dengan mengklik tombol View summary output tables by profile. e. Pemakai dapat memilih satu dari beberaoa jenis tabel yang disediakan pada menu Std. Tables.

27 f. Pemakai dapat membuat tabel sendiri. Pilih menu Options Define Table umtuk menyusun butir-butir parameter aliran yang ingin ditampilkan dalam tabel. g. Pengaturan tampilan tabel seperti pemilihan profil, PF1, atau PF2, dapat dilakukan melalui menu Options Profiles. Perekaman tabel ke dalam clipboard juga dapat dilakukan, yaitu menu File Copy to Clipboard. Kesimpulan HEC-RAS merupakan program aplikasi untuk memodelkan aliran di sungai, River Analysis System (RAS), yang dibuat oleh Hydrogeologic Engineering Center (HEC) yang merupakan satu divisi di dalam Institute for WATER Resources (IWR), di bawah US Army Corps of Engineers (USACE). HEC-RAS merupakan model satu dimensil aliran permanen maupun tak permanen (steady and unsteady one-dimensional flow model). HEC-RAS versi terbaru saat ini, versi 4.1, beredar sejak Januari Dalam dunia teknik pengairan, aplikasi HEC-RAS sangat sering digunakan sehingga sudah sewajarmya lulusan teknik pengairan mengerti dan bisa menjalankan program HEC-RAS. Hal ini dikarenakan program ini memuat simulasi-simulasi aliran sederhana yang berada pada saluran yang telah didimensikan.

BAB V SIMULASI MODEL MATEMATIK

BAB V SIMULASI MODEL MATEMATIK BAB V SIMULASI MODEL MATEMATIK Dalam mempelajari perilaku hidraulika lairan, perlu dilakukan permode;lan yang menggambarkan kondisi sebuah saluran. Permodelan dapat dilakukan dengan menggunakan software

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi Penelitian Penelitian dilakukan di muara Sungai Cikapundung yang merupakan salah satu anak sungai yang berada di hulu Sungai Citarum. Wilayah ini terletak di Desa Dayeuhkolot,

Lebih terperinci

BAB V SIMULASI MODEL MATEMATIK

BAB V SIMULASI MODEL MATEMATIK BAB V SIMULASI MODEL MATEMATIK A. Pemodelan Hidrolika Saluran drainase primer di Jalan Sultan Syahrir disimulasikan dengan membuat permodelan untuk analisis hidrolika. Menggunakan software HEC-RAS versi

Lebih terperinci

BAB V SIMULASI MODEL MATEMATIK

BAB V SIMULASI MODEL MATEMATIK BAB V SIMULASI MODEL MATEMATIK Dalam mempelajari perilaku hidraulika aliran, perlu dilakukan permodelan yang mampu menggambarkan kondisi sebuah aliran. Permodelan dapat dilakukan dengan menggunakan HEC-RAS

Lebih terperinci

HEC-RAS Model Matematik Aliran Satu Dimensi (disadur dari buku Manual HEC-RAS)

HEC-RAS Model Matematik Aliran Satu Dimensi (disadur dari buku Manual HEC-RAS) HEC-RAS Model Matematik Aliran Satu Dimensi (disadur dari buku Manual HEC-RAS) 1 Pengantar HEC-RAS merupakan program terintegrasi untuk memodelkan aliran di sungai ataupun saluran yang lain. HEC-RAS, memiliki

Lebih terperinci

Gambar 4.1 Kotak Dialog Utama HEC-RAS 4.1

Gambar 4.1 Kotak Dialog Utama HEC-RAS 4.1 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisa Hidraulik dengan Menggunakan Pemodelan HEC-RAS Dalam mempelajari fenomena perilaku hidraulika aliran di dalam saluran/kali, diperlukan suatu simulasi/analisa

Lebih terperinci

SIMULASI ALIRAN 1-DIMENSI PAKET PROGRAM HIDRODINAMIKA HEC-RAS JENJANG LANJUT: JUNCTION AND INLINE STRUCTURES MODUL PELATIHAN DENGAN BANTUAN

SIMULASI ALIRAN 1-DIMENSI PAKET PROGRAM HIDRODINAMIKA HEC-RAS JENJANG LANJUT: JUNCTION AND INLINE STRUCTURES MODUL PELATIHAN DENGAN BANTUAN MODUL PELATIHAN SIMULASI ALIRAN 1-DIMENSI DENGAN BANTUAN PAKET PROGRAM HIDRODINAMIKA HEC-RAS JENJANG LANJUT: JUNCTION AND INLINE STRUCTURES ISTIARTO http://istiarto.staff.ugm.ac.id/ istiarto@ugm.ac.id

Lebih terperinci

BAB IV METODOLOGI PENELITIAN. A. Bagan Alir Penelitian

BAB IV METODOLOGI PENELITIAN. A. Bagan Alir Penelitian BAB IV METODOLOGI PENELITIAN A. Bagan Alir Penelitian Mulai Input Data Angka Manning Geometri Saluran Boundary Conditions : - Debit - Hulu = slope - Hilir = slope Ukuran Pilar Data Hasil Uji Laboratorium

Lebih terperinci

BAB VI ANALISIS HIDROLIKA PENAMPANG SUNGAI DENGAN SOFTWARE HEC-RAS

BAB VI ANALISIS HIDROLIKA PENAMPANG SUNGAI DENGAN SOFTWARE HEC-RAS VI-1 BAB VI ANALISIS HIDROLIKA PENAMPANG SUNGAI DENGAN SOFTWARE HEC-RAS 6.1. Tinjauan Umum Analisis hidrolika penampang sungai dihitung dengan menggunakan program HEC-RAS. Dengan analisis ini dapat diketahui

Lebih terperinci

UNIVERSITAS GADJAH MADA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL DAN LINGKUNGAN. Modul Pelatihan HEC-RAS

UNIVERSITAS GADJAH MADA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL DAN LINGKUNGAN. Modul Pelatihan HEC-RAS UNIVERSITAS GADJAH MADA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL DAN LINGKUNGAN Modul Pelatihan HEC-RAS Simulasi Aliran 1-Dimensi Permanen dan Tak-permanen Dr. Ir. Istiarto, M.Eng. Jalan Grafika No. 2, Kampus

Lebih terperinci

BAB IV METODOLOGI PENELITIAN

BAB IV METODOLOGI PENELITIAN BAB IV METODOLOGI PENELITIAN A. Studi Literatur Penelitian ini mengambil sumber dari jurnal jurnal serta beberapa tugas akhir tentang gerusan lokal yang digunakan untuk menunjang penelitian, baik pada

Lebih terperinci

SIMULASI ALIRAN 1-DIMENSI HEC-RAS BAHAN KULIAH DENGAN BANTUAN JENJANG DASAR SIMPLE GEOMETRY RIVER

SIMULASI ALIRAN 1-DIMENSI HEC-RAS BAHAN KULIAH DENGAN BANTUAN JENJANG DASAR SIMPLE GEOMETRY RIVER BAHAN KULIAH SIMULASI ALIRAN 1-DIMENSI DENGAN BANTUAN JENJANG DASAR SIMPLE GEOMETRY RIVER JENJANG LANJUT JUNCTION AND INLINE STRUCTURES LATERAL STRUCTURE, STORAGE AREA, AND PUMP STATIONS GATES DAM BREACH

Lebih terperinci

SIMULASI ALIRAN 1-DIMENSI PAKET PROGRAM HIDRODINAMIKA HEC-RAS JENJANG DASAR: SIMPLE GEOMETRY RIVER MODUL PELATIHAN DENGAN BANTUAN

SIMULASI ALIRAN 1-DIMENSI PAKET PROGRAM HIDRODINAMIKA HEC-RAS JENJANG DASAR: SIMPLE GEOMETRY RIVER MODUL PELATIHAN DENGAN BANTUAN MODUL PELATIHAN SIMULASI ALIRAN 1-DIMENSI DENGAN BANTUAN PAKET PROGRAM HIDRODINAMIKA HEC-RAS JENJANG DASAR: SIMPLE GEOMETRY RIVER ISTIARTO http://istiarto.staff.ugm.ac.id/ istiarto@ugm.ac.id @istiarto2

Lebih terperinci

Gambar 3. 1 Wilayah Sungai Cimanuk (Sumber : Laporan Akhir Supervisi Bendungan Jatigede)

Gambar 3. 1 Wilayah Sungai Cimanuk (Sumber : Laporan Akhir Supervisi Bendungan Jatigede) 45 BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Lokasi penelitian ini direncanakan di wilayah anak anak sungai Cimanuk, yang akan dianalisis potensi sedimentasi yang terjadi dan selanjutnya dipilih

Lebih terperinci

1 BAB VI ANALISIS HIDROLIKA

1 BAB VI ANALISIS HIDROLIKA BAB VI ANALISIS HIDROLIKA 6. Tinjauan Umum Analisa hidrolika bertujuan untuk mengetahui kemampuan penampang dalam menampung debit rencana. Sebagaimana telah dijelaskan dalam bab III, bahwa salah satu penyebab

Lebih terperinci

Nizar Achmad, S.T. M.Eng

Nizar Achmad, S.T. M.Eng Nizar Achmad, S.T. M.Eng Pendahuluan HEC RAS(Hidraulic Engineering Corps, River Analysis System) dikembangkan oleh Insinyur Militer Amerika Serikat (US Army Corps of Engineer) Digunakan internal Militer

Lebih terperinci

BAB IV METODOLOGI PENELITIAN A. Bagan Alir Rencana Penelitian

BAB IV METODOLOGI PENELITIAN A. Bagan Alir Rencana Penelitian BAB IV METODOLOGI PENELITIAN A. Bagan Alir Rencana Penelitian Mulai Input Data Angka Manning Geometri Saluran Ukuran Bentuk Pilar Data Hasil Uji Lapangan Diameter Sedimen Boundary Conditions - Debit -

Lebih terperinci

Gambar 3.1 Daerah Rendaman Kel. Andir Kec. Baleendah

Gambar 3.1 Daerah Rendaman Kel. Andir Kec. Baleendah 15 BAB III METODE PENELITIAN 1.1 Lokasi Penelitian Lokasi penelitian dilaksanakan di sepanjang daerah rendaman Sungai Cisangkuy di Kelurahan Andir Kecamatan Baleendah Kabupaten Bandung. (Sumber : Foto

Lebih terperinci

BAB III METODOLOGI Rumusan Masalah

BAB III METODOLOGI Rumusan Masalah BAB III METODOLOGI 3.1. Rumusan Masalah Rumusan Masalah merupakan peninjauan pada pokok permasalahan untuk menemukan sejauh mana pembahasan permasalahan tersebut dilakukan. Berdasarkan hasil analisa terhadap

Lebih terperinci

BAB III METODA ANALISIS

BAB III METODA ANALISIS BAB III METODA ANALISIS 3.1 Metodologi Penelitian Sungai Cirarab yang terletak di Kabupaten Tangerang memiliki panjang sungai sepanjang 20,9 kilometer. Sungai ini merupakan sungai tunggal (tidak mempunyai

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1 Studi Literatur Penelitian ini mengambil sumber dari jurnal jurnal dan segala referensi yang mendukung guna kebutuhan penelitian. Sumber yang diambil adalah sumber yang berkaitan

Lebih terperinci

BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA

BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA 5.1. TINJAUAN UMUM Analisis hidrolika bertujuan untuk mengetahui kemampuan penampang dalam menampung debit rencana. Sebagaimana telah dijelaskan dalam bab II,

Lebih terperinci

KAJIAN GENANGAN BANJIR SUNGAI MUKE DI KABUPATEN TIMOR TENGAH SELATAN PROVINSI NUSA TENGGARA TIMUR DAN UPAYA PENGENDALIANYA

KAJIAN GENANGAN BANJIR SUNGAI MUKE DI KABUPATEN TIMOR TENGAH SELATAN PROVINSI NUSA TENGGARA TIMUR DAN UPAYA PENGENDALIANYA Forum Teknik Sipil No. XVIII/2-Mei 2008 811 KAJIAN GENANGAN BANJIR SUNGAI MUKE DI KABUPATEN TIMOR TENGAH SELATAN PROVINSI NUSA TENGGARA TIMUR DAN UPAYA PENGENDALIANYA Priska G. Nahak 1), Istiarto 2), Bambang

Lebih terperinci

PEMODELAN ALIRAN 1D PADA BENDUNGAN TUGU MENGGUNAKAN SOFTWARE HEC-RAS

PEMODELAN ALIRAN 1D PADA BENDUNGAN TUGU MENGGUNAKAN SOFTWARE HEC-RAS TUGAS AKHIR (RC-14-1510) PEMODELAN ALIRAN 1D PADA BENDUNGAN TUGU MENGGUNAKAN SOFTWARE HEC-RAS SINTYA MAGHFIRA ISMAWATI NRP 3113 100 006 Dosen Pembimbing Dr. Techn. Umboro Lasminto, S.T.,M.Sc. JURUSAN TEKNIK

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN 35 BAB 3 METODE PENELITIAN 3.1. Persiapan Penelitian 3.1.1 Studi Pustaka Dalam melakukan studi pustaka tentang kasus Sudetan Wonosari ini diperoleh data awal yang merupakan data sekunder untuk keperluan

Lebih terperinci

BAB V ANALISIS HIDROLOGI DAN HIDROLIKA

BAB V ANALISIS HIDROLOGI DAN HIDROLIKA BAB V ANALISIS HIDROLOGI DAN HIDROLIKA A. Analisis Hidrologi 1. Curah Hujan Rencana Curah hujan adalah jumlah air yang jatuh di permukaan tanah datar selama periode tertentu yang diukur dengan satuan tinggi

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN digilib.uns.ac.id BAB 4 ANALISIS DAN PEMBAHASAN 4.1 Penyiapan Data Dalam menentukan profil muka aliran dan panjang arus balik air di saluran drainase Ngestiharjo dan Karangwuni, peneliti menggunakan metode

Lebih terperinci

PEMODELAN & PERENCANAAN DRAINASE

PEMODELAN & PERENCANAAN DRAINASE PEMODELAN & PERENCANAAN DRAINASE PEMODELAN & PERENCANAAN DRAINASE PEMODELAN ALIRAN PERMANEN FTSP-UG NURYANTO,ST.,MT. 1.1 BATAS KEDALAMAN ALIRAN DI UJUNG HILIR SALURAN Contoh situasi kedalaman aliran kritis

Lebih terperinci

KAJIAN KAPASITAS SUNGAI LOGAWA DALAM MENAMPUNG DEBIT BANJIR MENGGUNAKAN PROGRAM HEC RAS

KAJIAN KAPASITAS SUNGAI LOGAWA DALAM MENAMPUNG DEBIT BANJIR MENGGUNAKAN PROGRAM HEC RAS 88 JURNAL TEKNIK SIPIL, Volume III, No.. Juli 006: 88-9 KAJIAN KAPASITAS SUNGAI LOGAWA DALAM MENAMPUNG DEBIT BANJIR MENGGUNAKAN PROGRAM HEC RAS Suroso Jurusan Teknik Sipil Universitas Soedirman Purwokerto

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN PEMBAHASAN 4.1 Pengumpulan Data Penelitian Pengumpulan data penelitian dilakukan untuk menunjang analisis arus balik pada saluran drainase primer Gayam. Data yang dikumpulkan berupa

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi Penelitian Lokasi penelitian yaitu di Bendungan Jatigede yang dibangun pada Sungai Cimanuk sekitar 25 km di hulu Bendung Rentang di Dusun Jatigede Desa Cieunjing, Kec.

Lebih terperinci

ANALISIS DAN EVALUASI KAPASITAS PENAMPANG SUNGAI SAMPEAN BONDOWOSO DENGAN MENGGUNAKAN PROGRAM HEC-RAS 4.1

ANALISIS DAN EVALUASI KAPASITAS PENAMPANG SUNGAI SAMPEAN BONDOWOSO DENGAN MENGGUNAKAN PROGRAM HEC-RAS 4.1 ANALISIS DAN EVALUASI KAPASITAS PENAMPANG SUNGAI SAMPEAN BONDOWOSO DENGAN MENGGUNAKAN PROGRAM HEC-RAS.1 Agung Tejo Kusuma*, Nanang Saiful Rizal*, Taufan Abadi* *Jurusan Teknik Sipil, Fakultas Teknik, Universitas

Lebih terperinci

BAB III METODA ANALISIS. desa. Jumlah desa di setiap kecamatan berkisar antara 6 hingga 13 desa.

BAB III METODA ANALISIS. desa. Jumlah desa di setiap kecamatan berkisar antara 6 hingga 13 desa. BAB III METODA ANALISIS 3.1 Lokasi Penelitian Kabupaten Bekasi dengan luas 127.388 Ha terbagi menjadi 23 kecamatan dengan 187 desa. Jumlah desa di setiap kecamatan berkisar antara 6 hingga 13 desa. Sungai

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN A. Studi Literatur Sumber referensi yang digunakan dalam penyusunan penelitian ini berasal dari jurnal-jurnal yang berkaitan dengan topik penelitian. Jurnal-jurnal yang berkaitan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN A. Studi Literatur Sumber referensi yang digunakan dalam penyusunan penelitian ini berasal dari jurnal-jurnal yang berkaitan dengan topik penelitian. Jurnal-jurnal yang berkaitan

Lebih terperinci

dimana: Fr = bilangan Froude U = kecepatan aliran (m/dtk) g = percepatan gravitasi (m/dtk 2 ) h = kedalaman aliran (m) Nilai U diperoleh dengan rumus:

dimana: Fr = bilangan Froude U = kecepatan aliran (m/dtk) g = percepatan gravitasi (m/dtk 2 ) h = kedalaman aliran (m) Nilai U diperoleh dengan rumus: BAB III LANDASAN TEORI A. Perilaku Aliran Tipe aliran dapat dibedakan menggunakan bilangan Froude. Froude membedakan tipe aliran sebagai berikut: 1. Aliran kritis, merupakan aliran yang mengalami gangguan

Lebih terperinci

Laju Sedimentasi pada Tampungan Bendungan Tugu Trenggalek

Laju Sedimentasi pada Tampungan Bendungan Tugu Trenggalek D125 Laju Sedimentasi pada Tampungan Bendungan Tugu Trenggalek Faradilla Ayu Rizki Shiami, Umboro Lasminto, dan Wasis Wardoyo Departemen Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi

Lebih terperinci

GENANGAN BANJIR (HEC- GEORAS)

GENANGAN BANJIR (HEC- GEORAS) BIMBINGAN TEKNIS 2015 GENANGAN BANJIR (HEC- GEORAS) ISTIARTO http://istiarto.staff.ugm.ac.id/ istiarto@ugm.ac.id @istiarto2 NOVEMBER 2015 Pengantar i PENGANTAR Naskah ini disusun sebagai bahan paparan

Lebih terperinci

I. PENDAHULUAN. Hujan merupakan komponen masukan yang paling penting dalam proses

I. PENDAHULUAN. Hujan merupakan komponen masukan yang paling penting dalam proses I. PENDAHULUAN A. Latar Belakang Hujan merupakan komponen masukan yang paling penting dalam proses hidrologi, karena jumlah kedalaman hujan (raifall depth) akan dialihragamkan menjadi aliran, baik melalui

Lebih terperinci

BAB VI ANALISIS HIROLIKA DAN PERENCANAAN KONSTRUKSI

BAB VI ANALISIS HIROLIKA DAN PERENCANAAN KONSTRUKSI BAB VI ANALISIS HIROLIKA DAN PERENCANAAN KONSTRUKSI 6. Tinjauan Umum Dalam perencanaaan sistem pengendalian banjir, analisis yang perlu ditinjau adalah analisis hidrologi dan analisis hidrolika. Analisis

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN A. Studi Literatur Penelitian ini mengambil sumber dari jurnal-jurnal pendukung kebutuhan penelitian. Jurnal yang digunakan berkaitan dengan pengaruh gerusan lokal terhdadap perbedaan

Lebih terperinci

Perencanaan Sistem Drainase Kebon Agung Kota Surabaya, Jawa Timur

Perencanaan Sistem Drainase Kebon Agung Kota Surabaya, Jawa Timur JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) C-1 Perencanaan Sistem Drainase Kebon Agung Kota Surabaya, Jawa Timur Made Gita Pitaloka dan Umboro Lasminto Jurusan Teknik Sipil,

Lebih terperinci

BABV PERHITUNGAN. Data yang dimasukkan ke dalam HEC RAS adalah data topografi dan data

BABV PERHITUNGAN. Data yang dimasukkan ke dalam HEC RAS adalah data topografi dan data - ----------~--- BABV PERHTUNGAN 5.1 Perhitungan ( Operasional BEe RAS ) 5.1.1 nput Data Data yang dimasukkan ke dalam HEC RAS adalah data topografi dan data hidrologi dari sungai Kupang, sungai Pekalongan

Lebih terperinci

Perencanaan Penanggulangan Banjir Akibat Luapan Sungai Petung, Kota Pasuruan, Jawa Timur

Perencanaan Penanggulangan Banjir Akibat Luapan Sungai Petung, Kota Pasuruan, Jawa Timur JURNAL TEKNIK ITS Vol. 6, No. 2 (2017), 2720 (201928X Print) C82 Perencanaan Penanggulangan Banjir Akibat Luapan Sungai Petung, Kota Pasuruan, Jawa Timur Aninda Rahmaningtyas, Umboro Lasminto, Bambang

Lebih terperinci

Gambar 1.1 DAS Ciliwung

Gambar 1.1 DAS Ciliwung BAB 1 PENDAHULUAN PENDAHULUAN 1.1 Latar belakang Kali Ciliwung merupakan salah satu kali yang membelah Provinsi DKI Jakarta. Kali Ciliwung membentang dari selatan ke utara dengan hulunya berada di Kabupaten

Lebih terperinci

NORMALISASI SUNGAI RANTAUAN SEBAGAI ALTERNATIF PENANGGULANGAN BANJIR DI KECAMATAN JELIMPO KABUPATEN LANDAK

NORMALISASI SUNGAI RANTAUAN SEBAGAI ALTERNATIF PENANGGULANGAN BANJIR DI KECAMATAN JELIMPO KABUPATEN LANDAK NORMALISASI SUNGAI RANTAUAN SEBAGAI ALTERNATIF PENANGGULANGAN BANJIR DI KECAMATAN JELIMPO KABUPATEN LANDAK Martin 1) Fransiskus Higang 2)., Stefanus Barlian Soeryamassoeka 2) Abstrak Banjir yang terjadi

Lebih terperinci

KAJIAN PENGARUH PENGALIHAN ALIRAN DARI STADION UTAMA TERHADAP GENANGAN TERMINAL BANDAR RAYA PAYUNG SEKAKI

KAJIAN PENGARUH PENGALIHAN ALIRAN DARI STADION UTAMA TERHADAP GENANGAN TERMINAL BANDAR RAYA PAYUNG SEKAKI KAJIAN PENGARUH PENGALIHAN ALIRAN DARI STADION UTAMA TERHADAP GENANGAN TERMINAL BANDAR RAYA PAYUNG SEKAKI Oleh Benny Hamdi Rhoma Putra Fakultas Teknik Universitas Abdurrab, Pekanbaru, Indonesia Email :

Lebih terperinci

PERENCANAAN PENINGKATAN KAPASITAS FLOODWAY PELANGWOT SEDAYULAWAS SUNGAI BENGAWAN SOLO

PERENCANAAN PENINGKATAN KAPASITAS FLOODWAY PELANGWOT SEDAYULAWAS SUNGAI BENGAWAN SOLO JURNAL TEKNIK POMITS Vol. 1, No. 1, (13) 1-7 PERENCANAAN PENINGKATAN KAPASITAS FLOODWAY PELANGWOT SEDAYULAWAS SUNGAI BENGAWAN SOLO Bachtiar Riyanto, Dr. Techn. Umboro Lasminto, ST., M.Sc. Jurusan Teknik

Lebih terperinci

Aplikasi Software FLO-2D untuk Pembuatan Peta Genangan DAS Guring, Banjarmasin

Aplikasi Software FLO-2D untuk Pembuatan Peta Genangan DAS Guring, Banjarmasin JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) C-27 Aplikasi Software FLO-2D untuk Pembuatan Peta Genangan DAS Guring, Banjarmasin Devy Amalia dan Umboro Lasminto Jurusan Teknik

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Gerusan Gerusan merupakan penurunan dasar sungai karena erosi di bawah permukaan alami ataupun yang di asumsikan. Gerusan adalah proses semakin dalamnya dasar sungai karena interaksi

Lebih terperinci

KAJIAN KAPASITAS KALI (SUNGAI) WULAN DENGAN MENGGUNAKAN ALAT BANTU HEC-RAS 4.0

KAJIAN KAPASITAS KALI (SUNGAI) WULAN DENGAN MENGGUNAKAN ALAT BANTU HEC-RAS 4.0 TUGAS AKHIR KAJIAN KAPASITAS KALI (SUNGAI) WULAN DENGAN MENGGUNAKAN ALAT BANTU HEC-RAS 4.0 Diajukan Sebagai Syarat Untuk Menyelesaikan Pendidikan Tingkat Sarjana Strata 1 (S-1) Pada Jurusan Teknik Sipil

Lebih terperinci

ANALISIS POLA ALIRAN PERMUKAAN SUNGAI DENGKENG MENGGUNAKAN HYDROLOGIC ENGINEERING CENTER RIVER ANALYSIS SYSTEM (HEC-RAS)

ANALISIS POLA ALIRAN PERMUKAAN SUNGAI DENGKENG MENGGUNAKAN HYDROLOGIC ENGINEERING CENTER RIVER ANALYSIS SYSTEM (HEC-RAS) ANALISIS POLA ALIRAN PERMUKAAN SUNGAI DENGKENG MENGGUNAKAN HYDROLOGIC ENGINEERING CENTER RIVER ANALYSIS SYSTEM (HEC-RAS) Amiroh Lina Fauziyyah 1), Suyanto 2), Adi Yusuf Muttaqien, 3) 1) Mahasiswa Fakultas

Lebih terperinci

I-I Gambar 5.1. Tampak atas gerusan pada pilar persegi

I-I Gambar 5.1. Tampak atas gerusan pada pilar persegi BAB V HASIL DAN PEMBAHASAN Diketahui jika hasil simulasi pemodelan pada HEC-RAS memodelkan aliran dengan steady flow yang selanjutnya akan dilakukan analisa dengan gerusan pada pilar jembatan. Penelitian

Lebih terperinci

BAB III METODA ANALISIS. Wilayah Sungai Dodokan memiliki Daerah Aliran Sungai (DAS) Dodokan seluas

BAB III METODA ANALISIS. Wilayah Sungai Dodokan memiliki Daerah Aliran Sungai (DAS) Dodokan seluas BAB III METODA ANALISIS 3.1 Gambaran Umum Lokasi Penelitian Wilayah Sungai Dodokan memiliki Daerah Aliran Sungai (DAS) Dodokan seluas 273.657 km 2 dan memiliki sub DAS Dodokan seluas 36.288 km 2. Sungai

Lebih terperinci

ANALISIS KAPASITAS DRAINASE PRIMER PADA SUB- DAS SUGUTAMU DEPOK

ANALISIS KAPASITAS DRAINASE PRIMER PADA SUB- DAS SUGUTAMU DEPOK ANALISIS KAPASITAS DRAINASE PRIMER PADA SUB- DAS SUGUTAMU DEPOK Mona Nabilah 1 Budi Santosa 2 Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan Universitas Gunadarma, Depok 1 monanabilah@gmail.com,

Lebih terperinci

PERENCANAAN KONSTRUKSI

PERENCANAAN KONSTRUKSI 108 BAB V PERENCANAAN KONSTRUKSI 5.1. Tinjauan Umum Perencanaan irigasi tambak didasarkan atas kelayakan teknis di lokasi perencanaan. Selanjutnya perencanaan diarahkan pada efisiensi dan kemudahan operasional

Lebih terperinci

TUGAS AKHIR Perencanaan Pengendalian Banjir Kali Kemuning Kota Sampang

TUGAS AKHIR Perencanaan Pengendalian Banjir Kali Kemuning Kota Sampang TUGAS AKHIR Perencanaan Pengendalian Banjir Kali Kemuning Kota Sampang Disusun oleh : Agung Tri Cahyono NRP. 3107100014 Dosen Pembimbing : Ir. Bambang Sarwono, M.Sc JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

BAB I PENDAHULUAN. DKI Jakarta terletak di daerah dataran rendah di tepi pantai utara Pulau

BAB I PENDAHULUAN. DKI Jakarta terletak di daerah dataran rendah di tepi pantai utara Pulau 1 BAB I PENDAHULUAN 1.1. Latar Belakang DKI Jakarta terletak di daerah dataran rendah di tepi pantai utara Pulau Jawa, dilintasi oleh 13 sungai, sekitar 40% wilayah DKI berada di dataran banjir dan sebagian

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Bali merupakan daerah tujuan wisata utama yang memiliki berbagai potensi untuk menarik wisatawan. Salah satu daerah di antaranya adalah kawasan Denpasar Barat dan kawasan

Lebih terperinci

LATAR BELAKANG. Terletak di Kec. Rejoso, merupakan salah satu dari 4 sungai besar di Kabupaten Pasuruan

LATAR BELAKANG. Terletak di Kec. Rejoso, merupakan salah satu dari 4 sungai besar di Kabupaten Pasuruan PENDAHULUAN LATAR BELAKANG Terletak di Kec. Rejoso, merupakan salah satu dari 4 sungai besar di Kabupaten Pasuruan Fungsi : Irigasi, Drainase, Petani Tambak (pada hilir) Muara terpecah menjadi 2, di tengah

Lebih terperinci

DEBIT SUNGAI PROGO RUAS BANJARSARI KALIJOSO KABUPATEN MAGELANG

DEBIT SUNGAI PROGO RUAS BANJARSARI KALIJOSO KABUPATEN MAGELANG DEBIT SUNGAI PROGO RUAS BANJARSARI KALIJOSO KABUPATEN MAGELANG DWI SAT AGUS YUWONO Staff Pengajar Fakultas Teknik Universitas Tidar Magelang ABSTRACT Hydrology data are very important to determine discharge

Lebih terperinci

Hasil dan Analisis. Simulasi Banjir Akibat Dam Break

Hasil dan Analisis. Simulasi Banjir Akibat Dam Break Bab IV Hasil dan Analisis IV. Simulasi Banjir Akibat Dam Break IV.. Skenario Model yang dikembangkan dikalibrasikan dengan model yang ada pada jurnal Computation of The Isolated Building Test Case and

Lebih terperinci

PRAKIRAAN DEBIT BANJIR RENCANA DALAM ANALISIS KAPASITAS TAMPUNG BANJIR KANAL BARAT, PROVINSI DKI JAKARTA. Abstract

PRAKIRAAN DEBIT BANJIR RENCANA DALAM ANALISIS KAPASITAS TAMPUNG BANJIR KANAL BARAT, PROVINSI DKI JAKARTA. Abstract PRAKIRAAN DEBIT BANJIR RENCANA DALAM ANALISIS KAPASITAS TAMPUNG BANJIR KANAL BARAT, PROVINSI DKI JAKARTA Nurita Yuniastiti nuritayuniastiti@ymail.com Muh. Aris Marfai arismarfai@gadjahmada.edu Abstract

Lebih terperinci

Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan di Kabupaten Gresik

Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan di Kabupaten Gresik JURNAL TEKNIK POMITS Vol. 3, No., (1) ISSN: 337-3539 (31-971 Print) C-35 Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan di Kabupaten Gresik Gemma Galgani Tunjung Dewandaru, dan Umboro Lasminto

Lebih terperinci

PROFIL MUKA AIR DI HULU GROUNDSILL TIPE AMBANG LEBAR DAN OGEE. Water Surface Profile in Upstream of Groundsill with Type of Broad-crested and Ogee

PROFIL MUKA AIR DI HULU GROUNDSILL TIPE AMBANG LEBAR DAN OGEE. Water Surface Profile in Upstream of Groundsill with Type of Broad-crested and Ogee PROFIL MUKA AIR DI HULU GROUNDSILL TIPE AMBANG LEBAR DAN OGEE Water Surface Profile in Upstream of Groundsill with Type of Broad-crested and Ogee Wahyu Widiyanto Fakultas Sains dan Teknik Unsoed Purwokerto

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sungai adalah aliran air yang besar dan memanjang yang mengalir secara terus-menerus dari hulu (sumber) menuju hilir (muara). Dalam perkembangannya, sungai bukan hanya

Lebih terperinci

Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan Di Kabupaten Gresik

Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan Di Kabupaten Gresik JURNAL TEKNIK POMITS Vol. 1, No. 1, (1) 1-1 Studi Penanggulangan Banjir Kali Lamong Terhadap Genangan Di Kabupaten Gresik Gemma Galgani T. D., Umboro Lasminto Jurusan Teknik Sipil, Fakultas Teknik Sipil

Lebih terperinci

Kajian Kapasitas Sungai Sunter (Ruas Jalan Tol Jakarta Cikampek Sampai dengan Pertemuan Kanal Banjir Timur) Jakarta Timur

Kajian Kapasitas Sungai Sunter (Ruas Jalan Tol Jakarta Cikampek Sampai dengan Pertemuan Kanal Banjir Timur) Jakarta Timur Kajian Kapasitas Sungai Sunter (Ruas Jalan Tol Jakarta Cikampek Sampai dengan Pertemuan Kanal Banjir Timur) Jakarta Timur Aprilia Undipasari. 1,Ir. Dwi Priyantoro, MS. 2, Ir. M. Taufiq, MT. 2 1) Mahasiswa

Lebih terperinci

Evaluasi Pengendalian Banjir Sungai Jragung Kabupaten Demak

Evaluasi Pengendalian Banjir Sungai Jragung Kabupaten Demak Evaluasi Pengendalian Banjir Sungai Jragung Kabupaten Demak Ratna Ekawati ratna.034@gmail.com Prodi Jurusan Magister Teknik Sipil, Universitas Islam Sultan Agung Semarang Pembimbing 1 Prof. Dr.Ir.S. Imam

Lebih terperinci

PERENCANAAN PENGENDALIAN BANJIR KALI BANGILTAK DAN KALI WRATI DI KABUPATEN PASURUAN DENGAN NORMALISASI TUGAS AKHIR

PERENCANAAN PENGENDALIAN BANJIR KALI BANGILTAK DAN KALI WRATI DI KABUPATEN PASURUAN DENGAN NORMALISASI TUGAS AKHIR PERENCANAAN PENGENDALIAN BANJIR KALI BANGILTAK DAN KALI WRATI DI KABUPATEN PASURUAN DENGAN NORMALISASI TUGAS AKHIR PROGRAM STUDI TEKNIK SIPIL Oleh : MIRAWATI SEPTYANINGSIH 0753010037 PROGRAM STUDI TEKNIK

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS 4.1 Pengolahan Data Hidrologi 4.1.1 Data Curah Hujan Data curah hujan adalah data yang digunakan dalam merencanakan debit banjir. Data curah hujan dapat diambil melalui pengamatan

Lebih terperinci

STUDI HIDROLIS DENGAN MENGGUNAKAN HEC-RAS

STUDI HIDROLIS DENGAN MENGGUNAKAN HEC-RAS JURNAL TUGAS AKHIR STUDI HIDROLIS DENGAN MENGGUNAKAN HEC-RAS (Studi Kasus Sungai Muturi Teluk Bintuni Papua Barat) Oleh: ARIF RAHMAN ANDO D11110269 PROGRAM STUDI TEKNIK SIPIL JURUSAN TEKNIK SIPIL FAKULTAS

Lebih terperinci

Publikasi System Dynamics TUTORIAL POWERSIM. Oleh: Teten W. Avianto.

Publikasi System Dynamics TUTORIAL POWERSIM. Oleh: Teten W. Avianto. Publikasi System Dynamics TUTORIAL POWERSIM Oleh: Teten W. Avianto E-mail : info@lablink.or.id Http://www.lablink.or.id I. SOFTWARE UNTUK SIMULASI MODEL SYSTEM DYNAMICS Software yang didisain untuk membuat

Lebih terperinci

PENGARUH PASANG SURUT TERHADAP ENDAPAN PADA ALIRAN SUNGAI KAHAYAN DI PALANGKA RAYA

PENGARUH PASANG SURUT TERHADAP ENDAPAN PADA ALIRAN SUNGAI KAHAYAN DI PALANGKA RAYA PENGARUH PASANG SURUT TERHADAP ENDAPAN PADA ALIRAN SUNGAI KAHAYAN DI PALANGKA RAYA Rendro Rismae Riady, Hendra Cahyadi, Akhmad Bestari* DPK (dipekerjakan) di Fak. Teknik Universitas Muhammadiyah Palangkaraya

Lebih terperinci

ANALISIS ARUS BALIK AIR PADA SALURAN DRAINASE PRIMER NGESTIHARJO DAN KARANGWUNI KABUPATEN KULON PROGO DENGAN MENGGUNAKAN METODE TAHAPAN LANGSUNG

ANALISIS ARUS BALIK AIR PADA SALURAN DRAINASE PRIMER NGESTIHARJO DAN KARANGWUNI KABUPATEN KULON PROGO DENGAN MENGGUNAKAN METODE TAHAPAN LANGSUNG ANALISIS ARUS BALIK AIR PADA SALURAN DRAINASE PRIMER NGESTIHARJO DAN KARANGWUNI KABUPATEN KULON PROGO DENGAN MENGGUNAKAN METODE TAHAPAN LANGSUNG Chandra Wibisono 1), Adi Yusuf Muttaqien 2), Rintis Hadiani

Lebih terperinci

KAJIAN DEBIT RANCANGAN BANJIR DAN KAPASITAS PENAMPANG SUNGAI BAKI

KAJIAN DEBIT RANCANGAN BANJIR DAN KAPASITAS PENAMPANG SUNGAI BAKI KAJIAN DEBIT RANCANGAN BANJIR DAN KAPASITAS PENAMPANG SUNGAI BAKI Dony Azhari 1), Cahyono Ikhsan 2), Sobriyah 3) 1) Mahasiswa Program S1 Teknik Sipil Universitas Sebelas Maret 2)3) Pengajar Jurusan Teknik

Lebih terperinci

BAB III METODOLOGI. 3.2 Pengumpulan Data Pengumpulan data meliputi data primer maupun data sekunder Pengumpulan Data Primer

BAB III METODOLOGI. 3.2 Pengumpulan Data Pengumpulan data meliputi data primer maupun data sekunder Pengumpulan Data Primer BAB III METODOLOGI 3.1 Studi Pustaka dan Survey Lapangan Studi pustaka diperlukan sebelum atau bersamaan dengan survey lapangan dengan maksud ketika pengamat menemui kesulitan dilapangan, dapat mengacu

Lebih terperinci

Perbandingan Hasil Pemodelan Aliran Satu Dimensi Unsteady Flow dan Steady Flow pada Banjir Kota

Perbandingan Hasil Pemodelan Aliran Satu Dimensi Unsteady Flow dan Steady Flow pada Banjir Kota VOLUME 21, NO. 1, JULI 2015 Perbandingan Hasil Pemodelan Aliran Satu Dimensi Unsteady Flow dan Steady Flow pada Banjir Kota Andreas Tigor Oktaga Balai Besar Wilayah Sungai Pemali - Juana Jl. Brigjend Soediarto

Lebih terperinci

GENANGAN DI KABUPATEN SURABAYA

GENANGAN DI KABUPATEN SURABAYA PROYEK AKIHR TUGAS AKHIR ANALISA PENANGGULANGAN SISTEM DRAINASE BANJIR SALURAN KALI LAMONG KUPANG TERHADAP JAYA AKIBAT PEMBANGUNAN GENANGAN DI KABUPATEN APARTEMEN GRESIK PUNCAK BUKIT GOLF DI KOTA SURABAYA

Lebih terperinci

STUDI PERUBAHAN DASAR KALI PORONG AKIBAT SEDIMEN LUMPUR DI KABUPATEN SIDOARJO TUGAS AKHIR

STUDI PERUBAHAN DASAR KALI PORONG AKIBAT SEDIMEN LUMPUR DI KABUPATEN SIDOARJO TUGAS AKHIR STUDI PERUBAHAN DASAR KALI PORONG AKIBAT SEDIMEN LUMPUR DI KABUPATEN SIDOARJO TUGAS AKHIR Diajukan Oleh : RISANG RUKMANTORO 0753010039 PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana.

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana. BAB II PENDEKATAN PEMECAHAN MASALAH A. Intensitas Curah Hujan Menurut Joesron (1987: IV-4), Intensitas curah hujan adalah ketinggian curah hujan yang terjadi pada suatu kurun waktu. Analisa intensitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keterangan melalui kutipan teori dari pihak yang kompeten di bidang

BAB II TINJAUAN PUSTAKA. keterangan melalui kutipan teori dari pihak yang kompeten di bidang BAB II TINJAUAN PUSTAKA 2.1. Umum Dalam bab ini akan disajikan beberapa penjelasan terkait berbagai macam aspek yang nantinya dipakai sebagai acuan peneletian. Ditekankan pada hal yang berhubungan langsung

Lebih terperinci

PERENCANAAN DIMENSI HIDROLIS KALI PEPE SEBAGAI TRANSPORTASI WISATA AIR

PERENCANAAN DIMENSI HIDROLIS KALI PEPE SEBAGAI TRANSPORTASI WISATA AIR PERENCANAAN DIMENSI HIDROLIS KALI PEPE SEBAGAI TRANSPORTASI WISATA AIR TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Memperoleh Gelar Ahli Madya (A.Md.) pada Program Studi DIII Teknik Sipil Fakultas Teknik

Lebih terperinci

BAB 4 HASIL ANALISIS DAN PEMBAHASAN

BAB 4 HASIL ANALISIS DAN PEMBAHASAN digilib.uns.ac.id 4.1. Analisis Hidrologi BAB 4 HASIL ANALISIS DAN PEMBAHASAN 4.1.1. Data Curah Hujan Harian Maksimum Data curah hujan yang digunakan untuk analisis hidrologi DAS Gadangan adalah dari dua

Lebih terperinci

BAB VI HASIL DAN PEMBAHASAN

BAB VI HASIL DAN PEMBAHASAN Elevation (m) BAB VI HASIL DAN PEMBAHASAN Pada hasil penelitian yang berupa simulasi permodelan menggunakan software HEC-RAS 5.0.3 memodelkan aliran permanen (steady flow) yang akan dilakukan analisa gerusan

Lebih terperinci

PERENCANAAN NORMALISASI SUNGAI KEMUNING KABUPATEN SAMPANG PULAU MADURA TUGAS AKHIR

PERENCANAAN NORMALISASI SUNGAI KEMUNING KABUPATEN SAMPANG PULAU MADURA TUGAS AKHIR PERENCANAAN NORMALISASI SUNGAI KEMUNING KABUPATEN SAMPANG PULAU MADURA TUGAS AKHIR Oleh : ICHWAN FRENDI 0753010030 PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS PEMBANGUNAN

Lebih terperinci

BAB VII PENELUSURAN BANJIR (FLOOD ROUTING)

BAB VII PENELUSURAN BANJIR (FLOOD ROUTING) VII-1 BAB VII PENELUSURAN BANJIR (FLOOD ROUTING) 7.1. Penelusuran Banjir Melalui Saluran Pengelak Penelusuran banjir melalui pengelak bertujuan untuk mendapatkan elevasi bendung pengelak (cofferdam). Pada

Lebih terperinci

MODUL 2 PELATIHAN PROGRAM DHI MIKE MODUL HYDRODYNAMIC FLOW MODEL (HD) PROGRAM MAGISTER TEKNIK KELAUTAN FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN

MODUL 2 PELATIHAN PROGRAM DHI MIKE MODUL HYDRODYNAMIC FLOW MODEL (HD) PROGRAM MAGISTER TEKNIK KELAUTAN FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN MODUL 2 PELATIHAN PROGRAM DHI MIKE MODUL HYDRODYNAMIC FLOW MODEL (HD) PROGRAM MAGISTER TEKNIK KELAUTAN FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2013 1. PENDAHULUAN DHI Mike merupakan

Lebih terperinci

BAB V ANALISIS PERAMALAN GARIS PANTAI

BAB V ANALISIS PERAMALAN GARIS PANTAI 80 BAB V ANALISIS PERAMALAN GARIS PANTAI 5.1 Tinjauan Umum Bagian hilir muara Kali Silandak mengalami relokasi dan menjadi satu dengan Kali Jumbleng yang menyebabkan debit hilirnya menjadi lebih besar

Lebih terperinci

ANALISIS PENINGKATAN GENANGAN AKIBAT PEMBANGUNAN PLTA SALU URO, KABUPATEN LUWU UTARA SULAWESI SELATAN

ANALISIS PENINGKATAN GENANGAN AKIBAT PEMBANGUNAN PLTA SALU URO, KABUPATEN LUWU UTARA SULAWESI SELATAN ANALISIS PENINGKATAN GENANGAN AKIBAT PEMBANGUNAN PLTA SALU URO, KABUPATEN LUWU UTARA SULAWESI SELATAN Reski Rafidah* Alimuddin Hamzah dan Paharuddin Program Studi Geofisika, Jurusan Fisika, FMIPA, Universitas

Lebih terperinci

BAB IV PEMODELAN DAN ANALISIS

BAB IV PEMODELAN DAN ANALISIS BAB IV PEMODELAN DAN ANALISIS Pemodelan dilakukan dengan menggunakan kontur eksperimen yang sudah ada, artificial dan studi kasus Aceh. Skenario dan persamaan pengatur yang digunakan adalah: Eksperimental

Lebih terperinci

PERENCANAAN NORMALISASI KALI TUNTANG DI KABUPATEN DEMAK DAN KABUPATEN GROBOGAN

PERENCANAAN NORMALISASI KALI TUNTANG DI KABUPATEN DEMAK DAN KABUPATEN GROBOGAN LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN NORMALISASI KALI TUNTANG DI KABUPATEN DEMAK DAN KABUPATEN GROBOGAN Diajukan Untuk Memenuhi Persyaratan Program Strata 1 Pada Jurusan Sipil Fakultas Teknik Universitas

Lebih terperinci

Gambar 8.1. Halaman kerja program SWMM

Gambar 8.1. Halaman kerja program SWMM BAB VIII MODEL KOMPUTER / SWMM 8.1. Apa itu SWMM? Storm Water Management Model (SWMM) merupakan model simulasi hujanaliran (rainfall-runoff) yang digunakan untuk simulasi kuantitas maupun kualitas limpasan

Lebih terperinci

Analisis Drainasi di Saluran Cakung Lama Akibat Hujan Maksimum Tahun 2013 dan 2014

Analisis Drainasi di Saluran Cakung Lama Akibat Hujan Maksimum Tahun 2013 dan 2014 JURNAL ILMIAH SEMESTA TEKNIKA Vol. 17, No. 2, 91-97, Nov 214 91 Analisis Drainasi di Saluran Cakung Lama Akibat Hujan Maksimum Tahun 213 dan 214 (Micro Drainage Analysis in Cakung Lama River Due to The

Lebih terperinci

DAFTAR ISI. TUGAS AKHIR... i. LEMBAR PERSETUJUAN... ii. LEMBAR PENGESAHAN... iii. PERNYATAAN BEBAS PLAGIAT... iv. KATA PENGANTAR...

DAFTAR ISI. TUGAS AKHIR... i. LEMBAR PERSETUJUAN... ii. LEMBAR PENGESAHAN... iii. PERNYATAAN BEBAS PLAGIAT... iv. KATA PENGANTAR... DAFTAR ISI TUGAS AKHIR... i LEMBAR PERSETUJUAN... ii LEMBAR PENGESAHAN... iii PERNYATAAN BEBAS PLAGIAT... iv KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR GAMBAR... xi DAFTAR TABEL... xiii DAFTAR LAMPIRAN...

Lebih terperinci

sungai, seperti Gambar 2. Di dalam menu tersebut data koordinat potongan melintang sungai dari hasil pengukuran topografi dimasukkan melalui icon

sungai, seperti Gambar 2. Di dalam menu tersebut data koordinat potongan melintang sungai dari hasil pengukuran topografi dimasukkan melalui icon 74B dengan 73BLAMPIRAN 6 : Tahapan Simulasi Pemilihan Model Angkutan Sedimen Model HEC-RAS. 1. 958BMenu Utama 959BTampilan menu utama dalam program HECRAS seperti pada Gambar 1. 34BGambar 1 Menu Awal Program

Lebih terperinci

Ketika jendela Microsoft Word dibuka, maka secara otomatis akan disediakan 1 buah dokumen baru. Untuk menambahkan dokumen baru, caranya :

Ketika jendela Microsoft Word dibuka, maka secara otomatis akan disediakan 1 buah dokumen baru. Untuk menambahkan dokumen baru, caranya : BAB 2 A. Menggunakan Menu dan Ikon Standar Pengolahan dokumen meliputi : 1. Membuat Dokumen Baru Ketika jendela Microsoft Word dibuka, maka secara otomatis akan disediakan 1 buah dokumen baru. Untuk menambahkan

Lebih terperinci

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung.

III. METODE PENELITIAN. Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung. 39 III. METODE PENELITIAN A. Lokasi Penelitian Lokasi penelitian ini adalah di saluran Ramanuju Hilir, Kecamatan Kotabumi, Kabupaten Lampung Utara, Provinsi Lampung. PETA LOKASI PENELITIAN Gambar 7. Lokasi

Lebih terperinci

PENGARUH VARIASI DEBIT ALIRAN TERHADAP GERUSAN MAKSIMAL DI BANGUNAN JEMBATAN DENGAN MENGGUNAKAN PROGRAM HEC-RAS

PENGARUH VARIASI DEBIT ALIRAN TERHADAP GERUSAN MAKSIMAL DI BANGUNAN JEMBATAN DENGAN MENGGUNAKAN PROGRAM HEC-RAS PENGARUH VARIASI DEBIT ALIRAN TERHADAP GERUSAN MAKSIMAL DI BANGUNAN JEMBATAN DENGAN MENGGUNAKAN PROGRAM HEC-RAS Ichsanul Barokah 1, Didik Purwantoro 2 1,2 Jurusan Pendidikan Teknik Sipil dan Perencanaan

Lebih terperinci

KAJIAN RENCANA ANGGARAN BIAYA (RAB) UNTUK NORMALISASI SUNGAI MENDOL KECAMATAN KUALA KAMPAR KABUPATEN PELALAWAN

KAJIAN RENCANA ANGGARAN BIAYA (RAB) UNTUK NORMALISASI SUNGAI MENDOL KECAMATAN KUALA KAMPAR KABUPATEN PELALAWAN Kajian Rencana Anggaran Biaya (RAB) Untuk Normalisasi Sungai Mendol KAJIAN RENCANA ANGGARAN BIAYA (RAB) UNTUK NORMALISASI SUNGAI MENDOL KECAMATAN KUALA KAMPAR KABUPATEN PELALAWAN Nurdin 1, Imam Suprayogi

Lebih terperinci