Algoritma Evolusi Evolution Strategies (ES)

Ukuran: px
Mulai penontonan dengan halaman:

Download "Algoritma Evolusi Evolution Strategies (ES)"

Transkripsi

1 Algoritma Evolusi Evolution Strategies (ES) Imam Cholissodin

2 Pokok Bahasan 1. Struktur Dasar Evolution Strategies (ES) 2. Siklus ES (µ, λ) 3. Siklus ES (µ/r + λ) 4. Studi Kasus ES (µ + λ) 5. ES untuk Representasi Permutasi 6. Tugas

3 Pengantar Teknik optimasi evolution strategies (ES) dicetuskan sejak awal tahun 1960-an dan kemudian dikembangkan lebih lanjut pada tahun 1970-an oleh Ingo Rechenberg, Hans-Paul Schwefel, dan rekan-rekannya di Technical University of Berlin (TUB) (Beyer & Schwefel 2002). Seperti halnya GAs, ES telah diaplikasikan dalam berbagai bidang, misalnya penjadwalan pemrosesan sinyal digital pada system multiprocessor (Greenwood, G W, Gupta & McSweeney 1994), pemrosesan citra dan computer vision (Louchet 2000), optimasi pelepasan airbag secara otomatis pada mobil (Ostertag, Nock & Kiencke 1995), dan penjadwalan tugas pada real-time distributed computing systems (Greenwood, G. W., Lang & Hurley 1995). ES juga cukup efektif dikombinasikan/dihibridisasi dengan algoritma lain seperti particle swarm optimization untuk penjadwalan staff (Nissen & Günther 2009).

4 Pengantar Ciri utama evolution strategies (ES) adalah penggunaan vektor bilangan pecahan (real-vector) sebagai representasi solusi. Berbeda dengan GAs yang menggunakan crossover sebagai operator reproduksi utama dan mutasi sebagai operator penunjang, ES lebih bertumpu pada operator mutasi. Mekanisme self-adaptation digunakan untuk mengontrol perubahan nilai parameter pencarian. GAs dan ES bisa digunakan untuk menyelesaikan permasalahan yang sama. Tetapi mana yang terbaik di antara kedua metode tersebut sangat tergantung pada permasalahan yang dihadapi.

5 Struktur Dasar ES Beberapa notasi digunakan oleh ES : o µ (miu) menyatakan ukuran populasi (sama seperti popsize pada GAs). o l (lambda) menyatakan banyaknya offspring yang dihasilkan pada proses reproduksi (sama seperti crossover rate dan mutation rate pada GAs). Beberapa penelitian menyarankan besarnya nilai l sebesar 7 µ. Apabila P(t) dan C(t) merupakan populasi (parents) dan offspring pada generasi ke-t, maka siklus ES dideskripsikan sebagai berikut: procedure EvolutionStrategies begin t = 0 inisialisasi P(t): generate µ individu while (bukan kondisi berhenti) do rekombinasi : produksi C(t) sebanyak mutasi C(t) seleksi P(t+1) dari P(t) dan C(t) t = t + 1 end while end l dari P(t)

6 Struktur Dasar ES Perhatikan bahwa siklus ES serupa dengan siklus algoritma genetika (GAs). Perbedaan nyata ES dan GAs adalah pada operator yang digunakan. Perbedaan lain, mutasi pada GAs digunakan untuk menghasilkan individu baru (offspring) sebagai tambahan dari offspring yang diproduksi oleh operator crossover. Pada ES, mutasi diterapkan pada offspring yang dihasilkan proses rekombinasi. Rekombinasi pada ES mirip dengan operator crossover pada GAs tapi bisa menggunakan lebih dari satu induk. Karena ES lebih mengandalkan mutasi, maka proses rekombinasi tidak selalu digunakan. Secara umum terdapat empat tipe proses dari ES, yaitu: o (µ, l) o (µ/r, l) o (µ + l) o (µ/r + l)

7 Struktur Dasar ES Karena ES lebih mengandalkan mutasi, maka proses rekombinasi tidak selalu digunakan. Secara umum terdapat empat tipe proses dari ES, yaitu: ES rekombinasi proses seleksi seleksi melibatkan (µ, l) - Elitism Offspring (µ/r, l) Elitism Offspring (µ + l) - Elitism Induk dan Offspring (µ/r + l) Elitism Induk dan Offspring ES(µ, l) tidak menggunakan rekombinasi dalam proses reproduksi. Seleksi menggunakan elitism selection hanya melibatkan individu dalam offspring, individu induk dalam populasi tidak dilibatkan. ES(µ/r, l) serupa dengan ES(µ, l) dengan tambahan melibatkan proses rekombinasi. ES(µ+l) tidak menggunakan rekombinasi dan proses seleksi menggunakan elitism selection melibatkan individu offspring dan induk.

8 Siklus ES (µ, λ) (Studi Kasus: Maksimasi Fungsi dengan Presisi Tertentu) akan digunakan untuk menjelaskan siklus ES secara detil 1. Representasi Chromosome o Seperti halnya untuk real-coded GA pada Pert. Ke-4, variabel keputusan (x 1 dan x 2 ) langsung menjadi gen string chromosome. chromosome x 1 x 2 f(x 1,x 2 ) P 1 1,4898 2, ,8206 P 2 8,4917 2, , P 10-4,5575 0, ,4324 o Parameter tambahan yang melekat pada setiap chromosome adalah s (sigma) yang menyatakan level mutasi. Nilai ini akan ikut berubah secara adaptif sepanjang generasi. Jika P adalah satu chromosome maka P=(x 1,x 2,s 1,s 2 ) dengan panjang string sebesar 4.

9 Siklus ES (µ, λ) 2. Inisialisasi o Populasi inisial dibangkitkan secara random. Nilai x 1 dan x 2 dibangkitkan dalam rentang variabel ini (lihat Pert. Ke-3, Slide 24 ). Nilai s 1 dan s 2 dibangkitkan dalam rentang [0,1]. Misalkan ditentukan µ=4 maka akan dihasilkan populasi seperti contoh berikut: P(t) x 1 x 2 s 1 s 2 f(x 1,x 2 ) P1 1, , , , , P2 8, , , , , P3-1, , , , , P4 5, , , , ,

10 Siklus ES (µ, λ) 3. Reproduksi o Karena rekombinasi tidak digunakan maka hanya mutasi yang berperan menghasilkan offspring. Misalkan P=(x 1,x 2,s 1,s 2 ) adalah individu yang terpilih untuk melakukan mutasi, maka dihasilkan offspring P =(x 1,x 2,s 1,s 2 ) sebagai berikut: x = x + s N(0,1) o Rumusan diatas bisa didetailkan sebagai berikut: x 1 = x 1 + s 1 N(0,1) x 2 = x 2 + s 2 N(0,1) o N(0,1) merupakan bilangan acak yang mengikuti sebaran normal dengan rata-rata sebesar 0 dan standard deviasi sebesar 1. Pada program komputer, nilai N(0,1) bisa didapatkan dengan membangkitkan dua bilangan random r 1 dan r 2 pada interval [0,1]. Rumus yang digunakan adalah (Schwefel, 1995): N 0,1 2ln r1 sin 2 r 2 o Misalkan r 1 = 0,4749 dan r 2 = 0,3296 maka didapatkan N(0,1)= 1,0704

11 Siklus ES (µ, λ) 3. Reproduksi o Nilai s dinaikkan jika ada paling sedikit 20% hasil mutasi yang menghasilkan individu yang lebih baik dari induknya. Jika tidak maka nilai s diturunkan. Misalkan l=3 µ=12, maka setiap individu dalam populasi akan menghasilkan 3 offspring. Pada kasus ini, nilai s akan dinaikkan jika ada setidaknya 1 offspring yang lebih baik. o Contoh hasil mutasi diberikan sebagai berikut: C(t) Induk N1(0,1) N2(0,1) x 1 x 2 s 1 s 2 f(x 1,x 2 ) C1 P1 0,0098-0,8394 1, ,3298 0, , ,04952 C2 1,0334-0,6351 1, ,5159 0, , ,03814 C3-1,9967-1,8970 1, ,3664 0, , ,06928 C4 P2-0,0398 0,6565 8, ,1459 0, , ,40017 C5-0,7821-0,2305 8, ,3751 0, , ,82881 C6 1,3563 0,1430 9, ,6997 0, , ,00143 C7 P3-1,1466 1,3203-2,9908 2,3613 1, , ,01116 C8 1,1021-1,9381-0, ,7532 1, , ,00610 C9 0,7094-0,2813-1, ,5709 1, , ,30137 C10 P4 1,8635-0,2293 6, ,8511 0, , ,74543 C11 0,5542-1,2182 6, ,873 0, , ,29977 C12 1,4608-0,5120 6, ,5715 0, , ,40250 Perhatikan dari hasil mutasi ini; Nilai s dari offspring yang dihasilkan P 1, P 3, dan P 4 dinaikkan dengan rumusan s = s x 1,1. Nilai s dari offspring yang dihasilkan P 2 diturunkan dengan rumusan s = s x 0,9

12 Siklus ES (µ, λ) 4. Seleksi o Seleksi menggunakan elitism selection hanya melibatkan individu dalam offspring, individu induk dalam populasi tidak dilibatkan. Dari proses ini didapatkan populasi baru sebagai berikut: P(t+1) asal x1 x2 s 1 s 2 f(x1,x2) P1 C12 6, , , , , P2 C5 8, , , , , P3 C10 6, , , , , P4 C3 1, , , , ,

13 Siklus ES (µ/r + λ) Siklus ES dibahas lagi dengan melibatkan proses rekombinasi, dengan populasi inisial seperti pada Slide 9 (digunakan lagi). 1. Reproduksi: Rekombinasi dan Mutasi o Rekombinasi dilakukan untuk menghasilkan offspring sebanyak l dari sejumlah µ individu dalam populasi. o Setiap satu individu offspring dihasilkan dari beberapa induk. o Induk dipilih secara acak dari populasi. Metode rekombinasi paling sederhana adalah dengan menghitung rata-rata nilai elemen induk. Contoh proses rekombinasi diberikan sebagai berikut: Misalkan offspring didapatkan dari 2 induk. Jika P 1 dan P 3 terpilih maka akan didapatkan offspring C=(-0,17815, 1,90205, 0,57016, 0,70221). Misalkan offspring didapatkan dari 3 induk. Jika P 1, P 2 dan P 3 terpilih maka akan didapatkan offspring C=(2,71180, 2,12650, , 0,75782).

14 Siklus ES (µ/r + λ) 1. Reproduksi: Rekombinasi dan Mutasi o Pada studi kasus ini, misalkan l=6 dan offspring didapatkan dari 2 induk. Contoh hasil rekombinasi diberikan sebagai berikut P(t) x 1 x 2 s 1 s 2 f(x 1,x 2 ) P1 1, , , , , P2 8, , , , , P3-1, , , , , Dari Slide 9 P4 5, , , , , Hasil offspring (C i ), yaitu dengan menghitung rata-rata nilai elemen induk C(t) induk x 1 x 2 s 1 s 2 f(x 1,x 2 ) C1 P1 dan P3-0, , , , , C2 P2 dan P3 3, , , , , C3 P1 dan P4 3, , , , , C4 P2 dan P4 7, , , , , C5 P1 dan P3-0, , , , , Hasil Rekombi nasi C6 P3 dan P4 1, , , , ,

15 Siklus ES (µ/r + λ) 1. Reproduksi: Rekombinasi dan Mutasi o Pada studi kasus ini, misalkan l=6 dan offspring didapatkan dari 2 induk. Contoh hasil rekombinasi diberikan sebagai berikut P(t) x 1 x 2 s 1 s 2 f(x 1,x 2 ) P1 1, , , , , P2 8, , , , , P3-1, , , , , P4 5, , , , , Dari Slide 9 o Mutasi dilakukan dengan cara yang sama seperti slide sebelumnya. nilai s dinaikkan jika hasil mutasi lebih baik. Sebaliknya jika hasil mutasi lebih buruk maka nilai s diturunkan. Berikut ini contoh hasil mutasi: C (t) N1(0,1) N2(0,1) x 1 x 2 s 1 s 2 f(x 1,x 2 ) C7 0,1885 0,2747-0, , , , , C8-1,7947-0,1359 1, , , , , C9-0,5603-1,8657 3, , , , , C10 0,6189-0,4613 7, , , , , C11-0,1371-0,4201-0, , , , , C12 1,1125-0,2153 2, , , , , Hasil Mutasi

16 Siklus ES (µ/r + λ) 2. Seleksi o Seleksi menggunakan elitism selection melibatkan individu dalam offspring dan individu induk dalam populasi. Dari proses ini didapatkan populasi baru sebagai berikut P(t+1) asal x1 x2 s 1 s 2 f(x1,x2) P1 P 2 8, , , , , P2 C 7-0, , , , , P3 C 8 1, , , , , P4 P 1 1, , , , ,

17 Siklus ES (µ + λ) : Optimasi Fungsi Berkendala Perhatikan permasalahan pada sebuah perusahaan yang akan memproduksi dua jenis lemari, sebut saja lemari A dan lemari B. Untuk memproduksi kedua lemari tersebut dibutuhkan tiga macam bahan baku, yaitu: kayu, aluminium, dan kaca. Kebutuhan detil tiga bahan baku tersebut (dalam unit tertentu) untuk tiap buah lemari ditampilkan pada tabel berikut: lemari kayu aluminium kaca A B Persedian bahan baku kayu, aluminium, dan kaca di gudang berturut-turut adalah 350, 200, dan 300. Jika keuntungan penjualan sebuah lemari A sebesar 400 dan B sebesar 500, berapakah banyaknya lemari A dan B harus diproduksi agar didapatkan keuntungan maksimum?

18 Siklus ES (µ + λ) : Optimasi Fungsi Kebutuhan detil tiga bahan baku: lemari kayu aluminium kaca A B Berkendala Untuk menyelesaikan permasalahan ini dibutuhkan model matematis yang disusun atas fungsi tujuan (objective functions) dan kendala (constraints). Fungsi tujuan merepresentasikan tujuan yang ingin dioptimalkan (maksimumkan atau minimumkan). Jika banyaknya lemari yang harus diproduksi dilambangkan dengan x 1 dan x 2, maka fungsi tujuan bisa dinyatakan sebagai: o Maksimumkan f(x 1,x 2 )=400x x 2 o Kendala ketersediaan bahan baku bisa dinyatakan sebagai berikut: kendala 1 : 10x x kendala 2 : 9x 1 + 8x kendala 3 : 12x x Persedian bahan baku kayu, aluminium, dan kaca di gudang berturut-turut adalah 350, 200, dan 300. Jika keuntungan penjualan sebuah lemari A sebesar 400 dan B sebesar 500, berapakah banyaknya lemari A dan B harus diproduksi agar didapatkan keuntungan maksimum?

19 Siklus ES (µ + λ) : Optimasi Fungsi Berkendala Berdasarkan dua aturan sebelumnya, maka bisa disusun fungsi fitness sebagai berikut: fitness(x 1,x 2 ) = f(x 1,x 2 ) M(c 1 + c 2 + c 3 ), dimana M: bil. positif yang cukup besar, misalnya 1000 c c c , jika 10x1 20x x1 20x 2 350, selainnya 0, jika 9x1 8x x1 8x 2 200, selainnya 0, jika 12x1 18x , selainnya 12x1 18x 2 Contoh perhitungan fitness: x1 x2 Round(x1) Round(x2) f(x1,x2) c1 c2 c3 fitness 21,9 0, ,2 15, ,3 11, ,1 13, Nilai x 1 dan x 2 merupakan bilangan pecahan (real). Karena permasalahan ini memerlukan solusi dalam bentuk bilangan bulat maka dalam perhitungan fitness nilai x 1 dan x 2 dibulatkan terlebih dahulu.

20 Siklus ES (µ + λ) : Optimasi Fungsi Berkendala 1. Inisialisasi o Populasi inisial dibangkitkan secara random. Nilai x 1 dan x 2 dibangkitkan sebagai bilangan pecahan (real) dalam rentang [0,50]. Misalkan ditentukan µ=4 maka akan dihasilkan populasi dengan contoh sebagai berikut: P(t) x1 x2 s 1 s 2 fitness P1 21,9 0,3 0, , P2 0,2 15,9 0, , P3 10,3 11,4 0, , P4 8,1 13,6 0, ,

21 Siklus ES (µ + λ) : Optimasi Fungsi Berkendala 2. Reproduksi o Karena rekombinasi tidak digunakan maka hanya mutasi yang berperan menghasilkan offspring. Pada studi kasus ini, misalkan l=2xµ=8 dan µ=4 maka dihasilkan offspring seperti contoh berikut: C(t) Induk N1(0,1) N2(0,1) x' 1 x' 2 s 1 s ' 2 fitness C1 P1 1,8023-1, ,3189 0,2636 0, , C2-0,7837 1, ,7179 0,3348 0, , C3 P2 0,6234-0,9298 0, ,8035 0, , C4-1,2394-0,3293-0, ,8658-1, , C5 P3 1,0383-2, ,1227 9,4826 0, , C6 1,9932 1, , ,5646 0, , C7 P4-0,4513-1,6313 7, ,3662 0, , C8-1,2093 2,0348 7, ,1390 0, , Perhatikan dari hasil mutasi ini, nilai s dari offspring yang dihasilkan P 2, P 3, dan P 5 dinaikkan dengan rumusan s = s x 1,1 karena paling tidak menghasilkan 1 anak yang lebih baik. Nilai s dari offspring yang dihasilkan P 1 diturunkan dengan rumusan s = s x 0,9.

22 Siklus ES (µ + λ) : Optimasi Fungsi Berkendala 3. Seleksi o Seleksi menggunakan elitism selection melibatkan individu dalam offspring dan individu induk dalam populasi. Dari proses ini didapatkan populasi baru sebagai berikut: P(t+1) asal x1 x2 s1 s2 fitness P1 C5 11,1227 9,4826 0, , P2 P1 21,9 0,3 0, , P3 C1 22,3189 0,2636 0, , P4 C2 21,7179 0,3348 0, ,

23 ES untuk Representasi Permutasi Seperti telah diuraikan pada awal slide, ciri utama ES adalah penggunaan vektor bilangan pecahan (real-vector) sebagai representasi. Pada perkembangannya, ES juga diadopsi untuk permasalahan kombinatorial yang menggunakan representasi permutasi. Cara paling mudah adalah dengan menggunakan struktur ES yang hanya menggunakan mutasi tanpa rekombinasi. Mekanisme self-adaptation juga tidak digunakan. Pendekatan ini pada hakekatnya menghasilkan siklus yang sama seperti GAs tanpa crossover. Adopsi mekanisme self-adaptation pada representasi permutasi bisa dilakukan dengan cara sederhana jika yang digunakan adalah reciprocal exchange mutation atau insertion mutation.

24 ES untuk Representasi Permutasi Pada kasus ini, nilai s menyatakan berapa kali proses exchange atau insertion dilakukan untuk menghasilkan satu anak. Misalkan diberikan contoh dua induk dalam tabel berikut: P(t) permutasi s P1 [ ] 1,3452 P2 [ ] 2,0728 Misalkan reciprocal exchange mutation digunakan dan l=3µ. induk proses offspring tukar posisi 1 dan 3 C1 = [ ] P1 = [ ] tukar posisi 2 dan 5 C2 = [ ] tukar posisi 4 dan 5 C3 = [ ] P2 = [ ] tukar posisi 2 dan 4 tukar posisi 1 dan 5 tukar posisi 1 dan 4 tukar posisi 3 dan 4 tukar posisi 3 dan 4 tukar posisi 2 dan 4 C4 = [ ] C5 = [ ] C6 = [ ] Berdasarkan nilai s yang dibulatkan, offspring dari P 1 dihasilkan melalui proses sekali pertukaran dan offspring dari P 2 dihasilkan melalui dua kali pertukaran. Contoh offspring yang dihasilkan ditampilkan dalam tabel disamping.

25 Tugas Kelompok 1. Jelaskan ciri utama evolution strategies! 2. Jelaskan perbedaan utama ES dengan GAs? 3. Misalkan terdapat himpunan individu dalam populasi dengan µ=4 dan l=6 sebagai berikut: individu fitness P1 10 P2 9 P3 7 P4 5 Terdapat juga himpunan offspring sebagai berikut: individu fitness C1 11 C2 9 C3 8 C4 7 C5 6 C6 4 Tentukan himpunan individu yang lolos ke generasi selanjutnya pada ES(µ, l)!

26 Tugas Kelompok 4. Kerjakan ulang Soal no. 3 untuk ES(µ+l)! 5. Perhatikan fungsi berikut: f x x x sin 2x x sin 4x, 0 x 10, 0 x 10 1, Cari nilai minimum dari fungsi ini dengan menggunakan ES (µ/r+l). Gunakan nilai µ=4 dan l=8. Lakukan interasi sampai 3 putaran. 6. Untuk permasalahan pada Slide ke-17 Studi Kasus ES (µ + l): Optimasi Fungsi Berkendala, selesaikan dengan menggunakan ES (µ/r, l). Gunakan nilai µ=4 dan l=8. Lakukan interasi sampai 3 putaran. 7. Selesaikan persoalan transportasi pada Pert. Ke-6 Slide ke-21 dengan menggunakan ES (µ,l). Gunakan nilai µ=4 dan l=8. Lakukan interasi sampai 3 putaran.

27 Terimakasih Imam Cholissodin

Algoritma Evolusi Dasar-Dasar Algoritma Genetika

Algoritma Evolusi Dasar-Dasar Algoritma Genetika Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi

Lebih terperinci

Algoritma Evolusi Real-Coded GA (RCGA)

Algoritma Evolusi Real-Coded GA (RCGA) Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.

Lebih terperinci

Lingkup Metode Optimasi

Lingkup Metode Optimasi Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic

Lebih terperinci

Optimasi Komposisi Pakan Kambing Boer Menggunakan Algoritme Evolution Strategies

Optimasi Komposisi Pakan Kambing Boer Menggunakan Algoritme Evolution Strategies Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 10, Oktober 2018, hlm. 3796-3801 http://j-ptiik.ub.ac.id Optimasi Komposisi Pakan Kambing Boer Menggunakan Algoritme

Lebih terperinci

Penerapan algoritma evolution strategies untuk optimasi distribusi barang dua tahap

Penerapan algoritma evolution strategies untuk optimasi distribusi barang dua tahap Penerapan algoritma evolution strategies untuk optimasi distribusi barang dua tahap Candra Bella Vista 1, Wayan Firdaus Mahmudy 2 Program Studi Informatika / Ilmu Komputer Fakultas Ilmu Komputer Universitas

Lebih terperinci

Pencarian Rute Terpendek pada Jalur Perlombaan Robot Pemadam Api dengan Algoritma Evolution Strategies

Pencarian Rute Terpendek pada Jalur Perlombaan Robot Pemadam Api dengan Algoritma Evolution Strategies Pencarian Rute Terpendek pada Jalur Perlombaan Robot Pemadam Api dengan Algoritma Evolution Strategies Benny Ermawan Mahasiswa Program Studi Teknik Informatika, FT UMRAH Hendra Kurniawan, S.Kom., M.Sc.Eng

Lebih terperinci

PENCARIAN RUTE OPTIMUM DENGAN EVOLUTION STRATEGIES

PENCARIAN RUTE OPTIMUM DENGAN EVOLUTION STRATEGIES PENCARIAN RUTE OPTIMUM DENGAN EVOLUTION STRATEGIES Diah Arum Endarwati 1,Wayan Firdaus Mahmudy, Dian Eka Ratnawati Program Studi Informatika/ Ilmu Komputer, Program Teknologi Informasi dan Ilmu Komputer

Lebih terperinci

OPTIMASI MODEL FUZZY AHP DENGAN MENGGUNAKAN ALGORITMA EVOLUTION STRATEGIES

OPTIMASI MODEL FUZZY AHP DENGAN MENGGUNAKAN ALGORITMA EVOLUTION STRATEGIES OPTIMASI MODEL FUZZY AHP DENGAN MENGGUNAKAN ALGORITMA EVOLUTION STRATEGIES (STUDI KASUS: PEMILIHAN CALON PENERIMA BEASISWA PTIIK UNIVERSITAS BRAWIJAYA) Anis Maulida Dyah Ayu Putri 1, Wayan Firdaus Mahmudy

Lebih terperinci

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.

Lebih terperinci

Optimasi Penataan Barang pada Proses Distribusi Menggunakan Algoritme Evolution Strategies

Optimasi Penataan Barang pada Proses Distribusi Menggunakan Algoritme Evolution Strategies Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 5, Mei 2018, hlm. 1874-1882 http://j-ptiik.ub.ac.id Optimasi Penataan Barang pada Proses Distribusi Menggunakan Algoritme

Lebih terperinci

Penjadwalan Dinas Pegawai Menggunakan Algoritma Evolution Strategies pada PT. Kereta Api Indonesia (KAI) DAOP 7 Stasiun Besar Kediri

Penjadwalan Dinas Pegawai Menggunakan Algoritma Evolution Strategies pada PT. Kereta Api Indonesia (KAI) DAOP 7 Stasiun Besar Kediri Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 8, Agustus 2018, hlm. 2473-2479 http://j-ptiik.ub.ac.id Penjadwalan Dinas Pegawai Menggunakan Algoritma Evolution

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK MEMAKSIMALKAN LABA PRODUKSI JILBAB

PENERAPAN ALGORITMA GENETIKA UNTUK MEMAKSIMALKAN LABA PRODUKSI JILBAB Journal of Environmental Engineering & Sustainable Technology Vol. 02 No. 01, July 2015, Pages 06-11 JEEST http://jeest.ub.ac.id PENERAPAN ALGORITMA GENETIKA UNTUK MEMAKSIMALKAN LABA PRODUKSI JILBAB Samaher

Lebih terperinci

Penerapan Evolution Strategies untuk Optimasi Travelling Salesman Problem With Time Windows pada Sistem Rekomendasi Wisata Malang Raya

Penerapan Evolution Strategies untuk Optimasi Travelling Salesman Problem With Time Windows pada Sistem Rekomendasi Wisata Malang Raya Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 7, Juli 2018, hlm. 2487-2493 http://j-ptiik.ub.ac.id Penerapan Evolution Strategies untuk Optimasi Travelling Salesman

Lebih terperinci

IMPLEMENTASI ALGORITMA EVOLUTION STRATEGIES UNTUK OPTIMASI KOMPOSISI PAKAN TERNAK SAPI POTONG

IMPLEMENTASI ALGORITMA EVOLUTION STRATEGIES UNTUK OPTIMASI KOMPOSISI PAKAN TERNAK SAPI POTONG IMPLEMENTASI ALGORITMA EVOLUTION STRATEGIES UNTUK OPTIMASI KOMPOSISI PAKAN TERNAK SAPI POTONG Himyatul Milah 1), Wayan Firdaus Mahmudy 2), Mahasiswa Program Studi Informatika / Ilmu Komputer Universitas

Lebih terperinci

Modul Matakuliah Algoritma Evolusi oleh

Modul Matakuliah Algoritma Evolusi oleh Modul Matakuliah Algoritma Evolusi oleh Wayan Firdaus Mahmudy Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya September 2013 Kata Pengantar Buku ini disusun untuk mengisi kelangkaan

Lebih terperinci

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing Wayan Firdaus Mahmudy, (wayanfm@ub.ac.id) Program Studi Ilmu Komputer, Universitas

Lebih terperinci

ERWIEN TJIPTA WIJAYA, ST.,M.KOM

ERWIEN TJIPTA WIJAYA, ST.,M.KOM ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk

Lebih terperinci

Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag.

Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag. Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag. 12/11/2009 1 Ditemukan oleh Holland pada tahun 1975. Didasari oleh fenomena evolusi darwin. 4 kondisi yg mempengaruhi

Lebih terperinci

OPTIMASI TEBAR BENIH DAN PAKAN PADA SUATU KOLAM MENGGUNAKAN ALGORITMA EVOLUTION STRATEGIES

OPTIMASI TEBAR BENIH DAN PAKAN PADA SUATU KOLAM MENGGUNAKAN ALGORITMA EVOLUTION STRATEGIES OPTIMASI TEBAR BENIH DAN PAKAN PADA SUATU KOLAM MENGGUNAKAN ALGORITMA EVOLUTION STRATEGIES Robby Kurniawan Mahasiswa Program Studi Teknik Informatika, FT UMRAH Nerfita Nikentari, ST., M.Cs Dosen Program

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC)

PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC) PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC) Yayun Hardianti 1, Purwanto 2 Universitas Negeri Malang E-mail: yayunimoet@gmail.com ABSTRAK:

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover

Lebih terperinci

Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN

Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia andiesiahaan@gmail.com

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga

Lebih terperinci

Algoritma Evolusi Topik Lanjut Pada GA

Algoritma Evolusi Topik Lanjut Pada GA Algoritma Evolusi Topik Lanjut Pada GA Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Hybrid Genetic Algorithms (HGAs) 2. Parallel Genetic Algorithms (PGAs) 3. Nilai Parameter Adaptif 4.

Lebih terperinci

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar najirah_stmikh@yahoo.com Abstrak

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi

BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang

BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah

Lebih terperinci

Genetic Algorithme. Perbedaan GA

Genetic Algorithme. Perbedaan GA Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari

Lebih terperinci

OPTIMASI DISTRIBUSI PUPUK MENGGUNAKAN EVOLUTION STRATEGIES

OPTIMASI DISTRIBUSI PUPUK MENGGUNAKAN EVOLUTION STRATEGIES Journal of Environmental Engineering & Sustainable Technology Vol. 02 No. 02, November 2015, Pages 89-96 JEEST http://jeest.ub.ac.id OPTIMASI DISTRIBUSI PUPUK MENGGUNAKAN EVOLUTION STRATEGIES Fauziatul

Lebih terperinci

DASAR-DASAR Algoritma Evolusi

DASAR-DASAR Algoritma Evolusi Modul Kuliah Semester Ganjil 2015-2016 DASAR-DASAR Algoritma Evolusi Wayan Firdaus Mahmudy Program Teknologi Informasi dan Ilmu Komputer (PTIIK) Universitas Brawijaya Kata Pengantar Algoritma evolusi

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika 6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi

Lebih terperinci

Algoritma Evolusi Genetic Programming (GP) Dan Evolutionary Programming (EP)

Algoritma Evolusi Genetic Programming (GP) Dan Evolutionary Programming (EP) Algoritma Evolusi Genetic Programming (GP) Dan Evolutionary Programming (EP) Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Genetic Programming (GP) 2. Siklus Genetic Programming 3. Evolutionary

Lebih terperinci

Algoritma Evolusi Optimasi Masalah Kombinatorial

Algoritma Evolusi Optimasi Masalah Kombinatorial Algoritma Evolusi Optimasi Masalah Kombinatorial Imam Cholissodin imam.cholissodin@gmail.com Pokok Bahasan 1. Travelling Salesman Problem (TSP) 2. Flow-Shop Scheduling Problem (FSP) 3. Two-Stage Assembly

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN BIAYA MINIMAL DISTRIBUSI BARANG TIGA TAHAP PT. SEMEN TONASA

PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN BIAYA MINIMAL DISTRIBUSI BARANG TIGA TAHAP PT. SEMEN TONASA PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN BIAYA MINIMAL DISTRIBUSI BARANG TIGA TAHAP PT. SEMEN TONASA Andi Baharuddin 1, Aidawayati Rangkuti 2, Armin Lawi 3 Program Studi Matematika, Jurusan Matematika,

Lebih terperinci

Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika Pada PT Kereta Api Indonesia (KAI) Daerah Operasi 7 Stasiun Besar Kediri

Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika Pada PT Kereta Api Indonesia (KAI) Daerah Operasi 7 Stasiun Besar Kediri Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 11, November 2018, hlm. 4371-4376 http://j-ptiik.ub.ac.id Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika

Lebih terperinci

T I N J A U A N P U S T A K A Algoritma Genetika [5]

T I N J A U A N P U S T A K A Algoritma Genetika [5] Algoritma Genetika [5] Fitness adalah nilai yang menyatakan baik-tidaknya suatu jalur penyelesaian dalam permasalahan TSP,sehingga dijadikan nilai acuan dalam mencari jalur penyelesaian optimal dalam algoritma

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.

Lebih terperinci

ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR

ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 265 274. ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Abdul Azis, Bayu Prihandono, Ilhamsyah INTISARI Optimasi

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.

Lebih terperinci

OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK

OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani

Lebih terperinci

PREDIKSI TIME SERIES TINGKAT INFLASI INDONESIA MENGGUNAKAN EVOLUTION STRATEGIES

PREDIKSI TIME SERIES TINGKAT INFLASI INDONESIA MENGGUNAKAN EVOLUTION STRATEGIES PREDIKSI TIME SERIES TINGKAT INFLASI INDONESIA MENGGUNAKAN EVOLUTION STRATEGIES Universitas Telkom Jl.Telekomunikasi No. 1, Terusan Buah Batu, Bandung ritaris@telkomuniversity.ac.id Abstrak Prediksi tingkat

Lebih terperinci

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,

Lebih terperinci

BAB III PENERAPAN ALGORITMA MEMETIKA DAN GRASP DALAM MENYELESAIKAN PFSP

BAB III PENERAPAN ALGORITMA MEMETIKA DAN GRASP DALAM MENYELESAIKAN PFSP BAB III PENERAPAN ALGORITMA MEMETIKA DAN GRASP DALAM MENYELESAIKAN PFSP Prosedur AM dan GRASP dalam menyelesaikan PFSP dapat digambarkan oleh flowchart berikut: NEH GRASP SOLUSI NEH SOLUSI ELIT MEMETIKA

Lebih terperinci

Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika

Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, (wayanfm@ub.ac.id) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan

Lebih terperinci

BAB II LANDASAN TEORI. digunakan sebagai pedoman perawatan adalah sebuah panduan sebagaimana

BAB II LANDASAN TEORI. digunakan sebagai pedoman perawatan adalah sebuah panduan sebagaimana BAB II LANDASAN TEORI 2. Konsep Perawatan Pesawat Fokker F27 Buku Pedoman Perawatan yang diberikan oleh pabrik yang akan digunakan sebagai pedoman perawatan adalah sebuah panduan sebagaimana layaknya sebuah

Lebih terperinci

Denny Hermawanto

Denny Hermawanto Algoritma Genetika dan Contoh Aplikasinya Denny Hermawanto d_3_nny@yahoo.com http://dennyhermawanto.webhop.org Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan

Lebih terperinci

Penentuan Portofolio Saham Optimal Menggunakan Algoritma Genetika

Penentuan Portofolio Saham Optimal Menggunakan Algoritma Genetika Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 1, Januari 2017, hlm. 63-68 http://j-ptiik.ub.ac.id Penentuan Portofolio Saham Optimal Menggunakan Algoritma Genetika

Lebih terperinci

PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi

PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM

Lebih terperinci

Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika

Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika Priza Pandunata, Rachmad Agung Bagaskoro, Agung Ilham

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma

Lebih terperinci

Optimasi Penjadwalan Mata Pelajaran Menggunakan Algoritme Genetika (Studi Kasus: SMK Negeri 2 Kediri)

Optimasi Penjadwalan Mata Pelajaran Menggunakan Algoritme Genetika (Studi Kasus: SMK Negeri 2 Kediri) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 10, Oktober 2017, hlm. 1066-1072 http://j-ptiik.ub.ac.id Optimasi Penjadwalan Mata Pelajaran Menggunakan Algoritme

Lebih terperinci

BAB III. Metode Penelitian

BAB III. Metode Penelitian BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan

Lebih terperinci

OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA

OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA andra Aditya 1), Wayan Firdaus Mahmudy 2) 1) Program Studi Teknik Informatika, Fakultas Ilmu Komputer Malang Jl. Veteran, Malang 65145, Indonesia

Lebih terperinci

BAB III PEMBAHASAN. Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan

BAB III PEMBAHASAN. Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan BAB III PEMBAHASAN Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan Algoritma Genetika dan Metode Nearest Neighbour pada pendistribusian roti di CV. Jogja Transport. 3.1 Model Matetematika

Lebih terperinci

2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks

2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks 4 2 TINJAUAN PUSTAKA 2.1 Peringkasan Teks Peringkasan teks adalah proses pemampatan teks sumber ke dalam versi lebih pendek namun tetap mempertahankan informasi yang terkandung didalamnya (Barzilay & Elhadad

Lebih terperinci

OPTIMASI PENATAAN SILINDER DALAM KONTAINER DENGAN ALGORITMA GENETIKA

OPTIMASI PENATAAN SILINDER DALAM KONTAINER DENGAN ALGORITMA GENETIKA OPTIMASI PENATAAN SILINDER DALAM KONTAINER DENGAN ALGORITMA GENETIKA Novita Wulan Sari 1, Yuliana Setyowati 2, S.Kom, M.Kom, Ira Prasetyaningrum 2, S. Si, M.T 1 Mahasiswa, 2 Dosen Pembimbing Politeknik

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) Mohamad Subchan STMIK Muhammadiyah Banten e-mail: moh.subhan@gmail.com ABSTRAK: Permasalahan pencarian rute terpendek dapat

Lebih terperinci

Tugas Mata Kuliah E-Bisnis REVIEW TESIS

Tugas Mata Kuliah E-Bisnis REVIEW TESIS Tugas Mata Kuliah E-Bisnis REVIEW TESIS Desain Algoritma Genetika Untuk Optimasi Penjadwalan Produksi Meuble Kayu Studi Kasus Pada PT. Sinar Bakti Utama (oleh Fransiska Sidharta dibawah bimbingan Prof.Kudang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai optimisasi, pengertian penjadwalan,

Lebih terperinci

Bab II Konsep Algoritma Genetik

Bab II Konsep Algoritma Genetik Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK PERMASALAHAN OPTIMASI DISTRIBUSI BARANG DUA TAHAP

PENERAPAN ALGORITMA GENETIKA UNTUK PERMASALAHAN OPTIMASI DISTRIBUSI BARANG DUA TAHAP PENERAPAN ALGORITMA GENETIKA UNTUK PERMASALAHAN OPTIMASI DISTRIBUSI BARANG DUA TAHAP Riska Sulistiyorini ), Wayan Firdaus Mahmudy ), Program Studi Teknik Informatika Program Teknologi Informasi dan Ilmu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika

BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilaksanakan

Lebih terperinci

Prediksi Jumlah Pengangguran Terbuka di Indonesia menggunakan Metode Genetic-Based Backpropagation

Prediksi Jumlah Pengangguran Terbuka di Indonesia menggunakan Metode Genetic-Based Backpropagation Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 4, April 2017, hlm. 341-351 http://j-ptiik.ub.ac.id Prediksi Jumlah Pengangguran Terbuka di Indonesia menggunakan

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG

IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG Adnan Buyung Nasution 1 1,2 Sistem Infomasi, Tehnik dan Ilmu Komputer, Universitas Potensi Utama 3 Universitas

Lebih terperinci

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10: BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN BATASAN FUNGSI KENGGOTAAN FUZZY TSUKAMOTO PADA KASUS PERAMALAN PERMINTAAN BARANG

PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN BATASAN FUNGSI KENGGOTAAN FUZZY TSUKAMOTO PADA KASUS PERAMALAN PERMINTAAN BARANG Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 3, No. 3, September 2016, hlm. 169-173 PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN BATASAN FUNGSI KENGGOTAAN FUZZY TSUKAMOTO PADA KASUS PERAMALAN

Lebih terperinci

BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana :

BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : BAB II LANDASAN TEORI 2.1 Defenisi Graph Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : V(G) adalah sebuah himpunan terhingga yang tidak kosong ( non empty finite set) yang elemennya disebut

Lebih terperinci

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017.

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017. BAB III PEMBAHASAN Data yang digunakan dalam bab ini diasumsikan sebagai data perkiraan harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017. Dengan demikian dapat disusun model Fuzzy

Lebih terperinci

V. MENENTUKAN NILAI MINIMUM DARI SEBUAH FUNGSI OBJEKTIVE DGN MENGGUNAKAN ALGORITMA GENETIKA (GA)

V. MENENTUKAN NILAI MINIMUM DARI SEBUAH FUNGSI OBJEKTIVE DGN MENGGUNAKAN ALGORITMA GENETIKA (GA) V. MENENTUKAN NILAI MINIMUM DARI SEBUAH FUNGSI OBJEKTIVE DGN MENGGUNAKAN ALGORITMA GENETIKA (GA) 5.1 Pendahuluan Algoritma genetika baru-baru ini telah menjadi subjek yang sangat menarik dan relatif berkembang

Lebih terperinci

Penerapan Algoritme Genetika Untuk Penjadwalan Latihan Reguler Pemain Brass Marching Band (Studi Kasus: Ekalavya Suara Brawijaya)

Penerapan Algoritme Genetika Untuk Penjadwalan Latihan Reguler Pemain Brass Marching Band (Studi Kasus: Ekalavya Suara Brawijaya) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 9, September 2018, hlm. 2950-2956 http://j-ptiik.ub.ac.id Penerapan Algoritme Genetika Untuk Penjadwalan Latihan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Khowarizmi. Algoritma didasarkan pada prinsiup-prinsip Matematika, yang

BAB II TINJAUAN PUSTAKA. Khowarizmi. Algoritma didasarkan pada prinsiup-prinsip Matematika, yang BAB II TINJAUAN PUSTAKA A. ALGORITMA Algoritma adalah metode langkah demi langkah pemecahan dari suatu masalah. Kata algoritma berasal dari matematikawan Arab ke sembilan, Al- Khowarizmi. Algoritma didasarkan

Lebih terperinci

Optimalisasi Pengantaran Barang dalam Perdagangan Online Menggunakan Algoritma Genetika

Optimalisasi Pengantaran Barang dalam Perdagangan Online Menggunakan Algoritma Genetika Optimalisasi Pengantaran Barang dalam Perdagangan Online Menggunakan Algoritma Genetika Rozak Arief Pratama 1, Esmeralda C. Djamal, Agus Komarudin Jurusan Informatika, Fakultas MIPA Universitas Jenderal

Lebih terperinci

Optimasi Pembagian Barang Alat Tulis Kantor Menggunakan Algoritme Genetika

Optimasi Pembagian Barang Alat Tulis Kantor Menggunakan Algoritme Genetika Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: -X Vol., No., Maret, hlm. - http://j-ptiik.ub.ac.id Optimasi Pembagian Barang Alat Tulis Kantor Menggunakan Algoritme Genetika Ardiansyah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.

Lebih terperinci

DAFTAR ISI. Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii

DAFTAR ISI. Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii DAFTAR ISI Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii Faiz Rafdh Ch SISTEM INFORMASI ZAKAT BERBASIS WEB MENGGUNAKAN PHP DAN MYSQL PADA RUMAH ZAKATINDONESIA 1-7 Abdul Jamil Syamsul Bachtiar

Lebih terperinci

Optimasi Penjadwalan Mata Pelajaran Pada Kurikulum 2013 Dengan Algoritme Genetika (Studi Kasus: SMA Negeri 3 Surakarta)

Optimasi Penjadwalan Mata Pelajaran Pada Kurikulum 2013 Dengan Algoritme Genetika (Studi Kasus: SMA Negeri 3 Surakarta) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 12, Desember 2017, hlm. 1535-1542 http://j-ptiik.ub.ac.id Optimasi Penjadwalan Mata Pelajaran Pada Kurikulum 2013

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai

Lebih terperinci

BAB I PENDAHULUAN. telah diadopsi untuk mengurangi getaran pada gedung-gedung tinggi dan struktur

BAB I PENDAHULUAN. telah diadopsi untuk mengurangi getaran pada gedung-gedung tinggi dan struktur BAB I PENDAHULUAN 1.1 Latar Belakang Tuned mass damper (TMD) telah banyak digunakan untuk mengendalikan getaran dalam sistem teknik mesin. Dalam beberapa tahun terakhir teori TMD telah diadopsi untuk mengurangi

Lebih terperinci

Analisis Operator Crossover pada Permasalahan Permainan Puzzle

Analisis Operator Crossover pada Permasalahan Permainan Puzzle Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang

Lebih terperinci

BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply

BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply BAB II KAJIAN TEORI Berikut diberikan beberapa teori pendukung untuk pembahasan selanjutnya. 2.1. Distribusi Menurut Chopra dan Meindl (2010:86), distribusi adalah suatu kegiatan untuk memindahkan barang

Lebih terperinci

ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning

ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma

Lebih terperinci

OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM

OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM Poetri Lestari Lokapitasari Belluano poe3.setiawan@gmail.com Universitas Muslim Indonesia Abstrak Non Dominated Sorting pada

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan

Lebih terperinci

ABSTRAK. Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam

Lebih terperinci

PENJADWALAN KAPAL PENYEBERANGAN MENGGUNAKAN ALGORITMA GENETIKA

PENJADWALAN KAPAL PENYEBERANGAN MENGGUNAKAN ALGORITMA GENETIKA Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 3, No. 1, Maret 2016, hlm. 48-55 PENJADWALAN KAPAL PENYEBERANGAN MENGGUNAKAN ALGORITMA GENETIKA Ria Febriyana 1, Wayan Firdaus Mahmudy 2 Program

Lebih terperinci

BAB III. Solusi Optimal Permasalahan Penjadwalan Perkuliahan Menggunakan Algoritma Fuzzy Evolusi

BAB III. Solusi Optimal Permasalahan Penjadwalan Perkuliahan Menggunakan Algoritma Fuzzy Evolusi BAB III Solusi Optimal Permasalahan Penjadwalan Perkuliahan Menggunakan Algoritma Fuzzy Evolusi Pada bab ini dijelaskan mengenai penerapan dari algoritma fuzzy evolusi pada permasalahan penjadwalan perkuliahan.

Lebih terperinci

OPTIMASI MULTI-OBJECTIVE UNTUK DISTRIBUSI BEBAN KERJA PEGAWAI MENGGUNAKAN NSGA-II AHMAD KHAIDIR TELEMATIKA CIO - TEKNIK ELEKTRO - ITS

OPTIMASI MULTI-OBJECTIVE UNTUK DISTRIBUSI BEBAN KERJA PEGAWAI MENGGUNAKAN NSGA-II AHMAD KHAIDIR TELEMATIKA CIO - TEKNIK ELEKTRO - ITS OPTIMASI MULTI-OBJECTIVE UNTUK DISTRIBUSI BEBAN KERJA PEGAWAI MENGGUNAKAN NSGA-II AHMAD KHAIDIR 2210206725 TELEMATIKA CIO - TEKNIK ELEKTRO - ITS LATAR BELAKANG Perbaikan kinerja aparatur pemerintah Optimasi

Lebih terperinci

APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN

APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN Hari Purnomo, Sri Kusumadewi Teknik Industri, Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyakarta ha_purnomo@fti.uii.ac.id,

Lebih terperinci

OPTIMASI JALUR TRANSPORTASI PRODUK HOUSING CLUTCH DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA PADA PT. SUZUKI INDOMOBIL MOTOR PLANT CAKUNG

OPTIMASI JALUR TRANSPORTASI PRODUK HOUSING CLUTCH DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA PADA PT. SUZUKI INDOMOBIL MOTOR PLANT CAKUNG OPTIMASI JALUR TRANSPORTASI PRODUK HOUSING CLUTCH DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA PADA PT. SUZUKI INDOMOBIL MOTOR PLANT CAKUNG Disusun Oleh : Nama : Mochammad Brananta Arya Lasmono NPM : 34412653

Lebih terperinci

PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN

PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA PELAJARAN DI SMAN 1 CIWIDEY Rismayanti 1, Tati Harihayati 2 Teknik Informatika Universitas Komputer

Lebih terperinci

Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem

Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Haris Sriwindono Program Studi Ilmu Komputer Universitas Sanata Dharma Paingan, Maguwoharjo, Depok Sleman Yogyakarta, Telp. 0274-883037 haris@staff.usd.ac.id

Lebih terperinci

Optimasi Multiple Travelling Salesman Problem Pada Pendistribusian Air Minum Menggunakan Algoritme Genetika (Studi Kasus: UD.

Optimasi Multiple Travelling Salesman Problem Pada Pendistribusian Air Minum Menggunakan Algoritme Genetika (Studi Kasus: UD. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 9, Juni 2017, hlm. 849-858 http://j-ptiik.ub.ac.id Optimasi Multiple Travelling Salesman Problem Pada Pendistribusian

Lebih terperinci