I.PENDAHULUAN I.1 Latar Belakang 1.2 Tujuan Penelitian II. TINJAUAN PUSTAKA 2.1 Kelembaban Tanah

Ukuran: px
Mulai penontonan dengan halaman:

Download "I.PENDAHULUAN I.1 Latar Belakang 1.2 Tujuan Penelitian II. TINJAUAN PUSTAKA 2.1 Kelembaban Tanah"

Transkripsi

1 I.PENDAHULUAN I.1 Latar Belakang Kelembaban tanah pada suatu lahan sangat dipengaruhi oleh besarnya tingkat kadar air di dalam tanah. Kadar air tanah adalah banyaknya kandungan air yang tertahan di dalam tanah. Kelembaban tanah merupakan salah satu faktor utama dalam menentukan tingkat kekeringan dari suatu lahan. Semakin tinggi tingkat kelembaban tanah pada suatu lahan maka akan semakin kecil peluang terjadinya kekeringan pada lahan tersebut. Pemantauan karakteristik distribusi spasial dan temporal dari kelembaban tanah sangatlah penting. Hal ini karena secara fakta kelembaban tanah dapat mengendalikan pertumbuhan tanaman, daur hidrologi tanah, dan kemampuan tanah dalam menahan erosi (Sanli et al., 2008). Kelembaban tanah dapat diidentifikasi dengan beberapa metode, antara lain: metode Gravimetrik, metode microwave radiometer, dan metode wind scatterometer. Dewasa ini dengan semakin berkembangnya teknologi penginderaan jauh, identifikasi kelembaban tanah dapat pula dilakukan melalui teknik pengideraan jauh (inderaja). Kelebihan dalam penggunaan teknik inderaja ini adalah dapat mencakup wilayah identifikasi yang lebih luas dan sebaran kelembaban tanahnya dapat mencerminkan karakteristik permukaan yang ada. Penggunaan citra satelit jenis SAR (Synthetic Aperture Radar) yang memiliki gelombang mikro (microwave) sangat efektif dalam menentukan tingkat karakteristik permukaan karena terbebas dari pengaruh tutupan awan. SAR merupakan jenis inderaja gelombang mikro yang sensitif terhadap kadar air tanah karena memiliki nilai konstanta dielektrik yang sangat berhubungan dengan nilai kandungan air (Sonobe et al., 2008). Konstanta dielektrik untuk air paling sedikit sepuluh kali besarnya dibandingkan dengan konstanta dielektrik tanah kering, oleh karena itu adanya air pada beberapa sentimeter di lapisan atas tanah dapat dideteksi dengan citra SAR (Lillesand and Kiefer, 2000). Besarnya perbedaan antara konstanta dielektrik air dengan tanah kering pada frekuensi gelombang mikro merupakan faktor utama dalam pendugaan kelembaban tanah (Wang, 1980). Kesulitan utama dalam memperoleh informasi kelembaban tanah menggunakan citra SAR dikarenakan adanya pengaruh kekasaran permukaan dan penutupan vegetasi. Jenis-jenis citra SAR yang dapat digunakan untuk mengidentifikasi kelembaban tanah, antara lain adalah ERS Envisat, Radarsat, ERS SAR, PALSAR ALOS. Pada penelitian ini, penentuan atau pendugaan kelembaban tanah dilakukan dengan menggunakan citra PALSAR ALOS. Sensor PALSAR bekerja pada gelombang L- band (23.6 cm) dengan frequensi 1.27 GHz serta memiliki multipolarisasi. Sensor L-band sangat sensitif terhadap kekasaran permukaan sehingga hasil kelembaban tanah memiliki nilai yang tidak pasti. Menurut Dubois (1995), ratio koefisien hamburan balik σ hh /σ vv meningkat dengan meningkatnya kekasaran permukaan dan meningkatnya kelembaban tanah. 1.2 Tujuan Penelitian Penelitian ini bertujuan untuk mempelajari karakteristik dan mengidentifikasi tingkat kelembaban tanah pada beberapa penutupan lahan daerah Kabupaten Bekasi dan sekitarnya menggunakan citra satelit PALSAR ALOS. II. TINJAUAN PUSTAKA 2.1 Kelembaban Tanah Kelembaban tanah dipengaruhi oleh besarnya kandungan air dalam tanah. Kelembaban tanah merupakan salah satu parameter yang digunakan sebagai indikasi tingkat kekeringan. Menurut Asdak (1995) kelembaban tanah umumnya terbentuk melalui tiga proses : a. Kelembaban higroskopis adalah kelembaban yang terjadi karena air terikat pada lapisan tipis butir-buitr tanah. Air terikat ini tidak dapat bergerak dan oleh karenanya tidak dapat dimanfaatkan oleh tanaman. b. Kelembaban kapiler adalah kelembaban tanah yang terjadi oleh adanya gaya tarik-menarik antara butir-butir tanah. Air yang dihasilkan dapat dimanfaatkan oleh tanaman. c. Kelembaban gravitasi adalah kelembaban yang terjadi sebagai akibat adanya gaya tarik bumi, yaitu air dalam posisi peralihan menuju ke pori-pori tanah yang lebih besar. Banyak faktor yang mempengaruhi nilai kelembaban tanah. Hal tersebut dijelaskan Yang dan Tian (1991) melalui rumus kandungan air dalam tanah, sebagai berikut : 1

2 W t = P + I E R + D + G...(1) Dengan: W t P I E R D G = kandungan air pada zona akar (cm) = presipitasi (cm) = irigasi (cm) = evapotranspirasi (cm) = runoff (cm) = air tanah yang hilang (cm) = recharge air tanah (cm) Persamaan tersebut menggambarkan bahwa kelembaban tanah dipengaruhi oleh kondisi cuaca (seperti presipitasi, suhu udara, dan kecepatan angin) dalam memberikan masukan dan menghilangkan kandungan air yang ada. Presipitasi sebagai masukan merupakan sumber air dalam meningkatkan kelembaban tanah. Selain presipitasi, masukan air juga berasal dari hilangnya air tanah pada lapisan dibawahnya hasil dari evaporasi. Pada tanah yang gundul, evaporasi ini dipengaruhi oleh jenis tanah, difusivitas air tanah, suhu permukaan tanah, flux pemanasan tanah, dan albedo radiasi netto. Sedangkan evaporasi tanah di bawah tajuk tanaman, dipengaruhi oleh radiasi netto yang mencapai permukaan tanah (setelah melewati tajuk), kadar air tanah, dan sifat-sifat tanah. Selain masukan dari presipitasi, kelembaban tanah juga dipengaruhi oleh hilangnya air yang terkandung dalam tanah. Hilangnya air ini disebabkan oleh evapotranpirasi dan juga masuknya air ke dalam lapisan tanah di bawahnya (baik infiltrasi maupun perkolasi). Hilangnya air ini menyebabkan kelembaban tanah menurun. Menurut Hanson (1991) dalam Hadiyanto (2007), sebagai bagian dari siklus hidrologi, evapotranspirasi merupakan komponen penting dalam sistem neraca air. Evapotranspirasi merupakan jumlah air yang menguap akibat proses penguapan (evaporasi) dari permukaan air yang terbuka, permukaan tanah basah, lipatan salju, lapisan tanah, dan transpirasi yaitu air yang menguap dari vegetasi. Unsur iklim yang paling dominan terhadap evapotranspirasi adalah radiasi matahari dan kecepatan angin. 2.2 Faktor-Faktor yang Mempengaruhi Kelembaban Tanah Neraca Air Air merupakan kebutuhan yang sangat esensial bagi kelangsungan kehidupan. Masukan air terbesar ke bumi berasal dari presipitasi. Pada suatu areal pertanian penyedian air tanaman berasal dari presipitasi (P) dan irigasi (I), sedangkan kehilangan air dapat berupa drainase (D), limpasan permukaan (runoff, Ro), evaporasi (E) dan transpirasi (T). Sedangkan air disimpan sebagai cadangan dalam tanah ( S). Keseluruhan masukan (input) dan keluaran (output) air ini dapat dirumuskan sebagai neraca air, yaitu : P + I = D + Ro + E + T + S.. (2) Semua unsur dinyatakan dalam satuan yang sama, misalnya mm hari -1 atau m 3 ha -1 hari -1. Salah satu faktor yang mengakibatkan hilangnya air pada permukaan yaitu evapotranspirasi. Kehilangan air melalui evaporasi mempunyai akibat terhadap fisiologi tanaman secara tidak langsung, seperti mempercepat penurunan kadar air pada lapisan atas dan memodifikasi iklim mikro di sekitar tanaman (Tanner, 1981) Suhu Permukaan Tanah Suhu pemukaan merupakan suhu bagian terluar dari suatu objek yang dihasilkan dari suatu tanggapan terhadap berbagai fluks energi yang melalui permukaan. Kelembaban tanah memiliki hubungan yang erat dengan suhu permukaan tanah. Tingginya suhu permukaan tanah akan meningkatkan laju evaporasi. Hilangnya air karena evaporasi menyebabkan berkurangnya kandungan air dalam tanah Kapasitas Panas Jumlah panas pada suatu benda tergantung dari seberapa besar kapasitas panasnya. Semakin besar kapasitas panas pada suatu benda maka akan semakin besar jumlah panas yang dibutuhkan oleh benda tersebut. Berdasarkan Tabel 1, nilai kapasitas panas pada lahan basah lebih besar dibandingkan dengan lahan kering dan konduktifitas bahang pada lahan basah lebih besar dibandingkan dengan lahan kering. Sifat fisik molekulmolekul air yang tidak teratur menyebabkan molekul air mudah tertarik oleh ion-ion elektrostatik. Semakin banyaknya gaya tarik magnet yang tercipta oleh ion-ion elektrostatik maka akan meningkatnya medan listrik pada daerah tersebut. Tingginya medan listrik akan meningkatkan konduktifitas bahang. Berdasarkan pernyataan tersebut, tingginya kandungan air pada suatu lahan akan meningkatkan medan listrik pada area tersebut sehingga konduktifitas bahang akan semakin tinggi. 2

3 Tabel 1 Perbedaan panas pada objek yang berbeda (Sumber : Geiger et al., 1961) Benda Lahan basah Lahan kering Tanah liat basah Massa jenis (g m -3 ) Panas jenis (J g -1 o C -1 ) Kapasitas panas (J m -3 oc -1 ) Konduktivitas bahang (W m -1 oc -1 ) Difusivitas bahang (cm 2 sec -1 ) 8 x x x x x x x x10-4 3x x x x x x10-2 6x x x x x x x x x x10-4 Tanah liat kering x x x x x10 15 x10-4 Pasir basah x x x x x10 Pasir kering Batu 12 x x x x x x x x x x x x x x x x x10-4 Besi 7.9x x x x10-4 Beton 2.2x x x x x10-4 Air tenang 1x x x x x10 Udara tenang 1x x x x x x x10-2 x x Radiasi Radiasi yang dipancarkan oleh suatu permukaan berbanding lurus dengan pangkat empat suhu mutlak permukaan tersebut (hukum Stefan Boltzman). Energi radiasi gelombang panjang yang dipancarkan permukaan bumi sebagian diserap atmosfer dan sisanya akan keluar dari sistem atmosfer bumi. Energi radiasi yang datang ke bumi adalah 1368 Mw -2. Radiasi yang diteruskan ke permukaan bumi sekitar 50% dari radiasi yang datang ke bumi. Radiasi yang tinggi akan meningkatkan suhu udara. Besarnya nilai evapotranspirasi cenderung mengikuti pola suhu udara maksimum selama bulan-bulan musim panas dan suhu udara minimum selama musim dingin. Fluktuasi nilai evapotransiprasi selama musim panas sangat tergantung pada nilai kelembaban udara pada awal musim kering dan panjang musim keringnya. Selama musim panas penguapan dari permukaan air terbuka akan meningkat, sedangkan transpirasi oleh tanaman pada umumnya menurun. Sebaliknya pada musim dingin penguapan dari permukaan air terbuka akan berkurang namun transpirasi meningkat. Berdasarkan pernyataan tersebut, tingginya radiasi akan meningkatkan evapotranspirasi sehingga kelembaban tanah semakin berkurang Pengaruh Jenis Tanah Terhadap kelembaban tanah Kecepatan laju infiltrasi maupun perkolasi air dan evaporasi pada tanah tergantung kepada sifat kelulusan lapisan tanah atau lapisan batuan yang akan dilaluinya. Sifat kelulusan lapisan batuan adalah daya lapisan batuan untuk menyerap dan ditembus air atau tingkat kekedapan terhadap air, disebut dengan permeabilitas. Tanah dengan tekstur liat atau debu memiliki permeabilitas lebih 3

4 tinggi dibandingkan dengan tanah bertekstur pasir. Ukuran-ukuran yang digunakan untuk mengetahui permeabilitas suatu lapisan tanah dan batuan adalah porositas dan koefisien permeabilitas (Seyhan, 1990). Porositas adalah persentase volume ruang-ruang kosong antara partikel-partikel batuan yang membentuk lapisan. Sedangkan, koefisien permeabilitas adalah kuantifikasi kecepatan aliran air tanah selama melintasi pori-pori (celah, retakan, dan rekahan) batuan dalam satuan waktu. Namun porositas yang lebih besar tidak selalu disertai oleh permeabilitas yang lebih baik (Sosrodarsono & Takeda, 1993). Sebagai contoh adalah lempung. Porositas lapisan batuan yang tersusun atas lempung sangat besar, tetapi permeabilitasnya kecil karena ukuran ruang-ruang porinya sangat kecil. Pada Tabel 2 dan 3 terdapat nilai porositas dan koefisien permeabilitas berdasarkan tipe-tipe tanah. Tabel 2 kisaran-kisaran porositas beberapa batuan (Sumber: Todd (1959) dalam Seyhan (1990)) No Batuan Porositas (%) 1 Liat Debu Pasir campuran medium hingga kasar Pasir yang seragam Pasir campuran halus hingga médium Kerikil Kerikil dan pasir Batu pasir Serpihan Batuan kapur Batuan granit 1-5 Tabel 3 Harga perkiraan koefisien permeabilitas bahan-bahan granular penyusun lapisan tanah (Sumber: Damm (1966) dalam Seyhan (1990)) Tipe tanah Ukuran partikel Koefisien efektif (mm) permeabilitas Debu Pasir sangat halus Pasir halus Pasir kasar Kerikil dan pasir > Kerikil Pendugaan nilai Evapotranspirasi Terdapat beberapa metode untuk menghitung nilai evapotranspirasi, diantaranya yaitu melalui metode panci klas A, model-model empiris, dan model evapotranspirasi pertanaman Panci Klas A Cara yang paling sederhana untuk menduga evapotranspirasi potensial (ETp) adalah dengan menggunakan panci klas A : ETp = Kp Eo..(3) Eo = Evaporasi panci klas A (mm) Kp = koefisien panci, berkisar Pendugaan Evapotranspirasi dengan Rumus-Rumus Empirik Model Penman (1948) Model Penman (1948) dalam Handoko (1995) ini menggunakan dua komponen yaitu radiasi dan aerodinamik. Penman menggunakan nilai albedo α = 0.25 untuk permukaan vegetasi (ETp) dan α = 0.05 untuk permukaan air (Eo). Berikut adalah model pendugaan menurut Penman : ETp = { Q n + γ f(u) (e s - e a )}/{ λ ( + γ)}..(4) = gradien tekanan uap air jenuh terhadap suhu udara (Pa K -1 ) Q n = radiasi netto (MJ m -2 ) γ = konstanta psikrometer (66.1 Pa k -1 ) f(u) = fungsi aerodinamik (MJ m -2 Pa -1 ) (es ea) = defisit tekanan uap air atau vpd (Pa) λ = panas spesifik untuk penguapan (2.454 MJ kg -1 ) Model ini mengalami beberapa modifikasi yang sebagian besar didasarkan pada neraca energi, dan dikoreksi dengan beberapa faktor untuk menghitung pengaruh termal (radiasi) dan aerodinamik. Sampai saat ini, modelmodel tersebut terus mengalami modifikasi dan perbaikan. Nilai-nilai peubah dalam persamaan diatas dapat diukur langsung ataupun diduga seperti yang dijelaskan oleh Meyer et al. (1987) dalam Handoko (1995). Gradien tekanan uap air jenuh terhadap suhu udara dapat diduga berdasarkan : = 0.1 e { /(T )} x { 5304 /(T ) 2 }...(5) 4

5 T = (Tmax + Tmin)/2, Tmax dan Tmin adalah nilai maksimum dan minimum suhu harian ( o C). Fungsi aerodinamik (MJ m -2 Pa -1 ) didekati dari : F(u) = u... (6) u adalah kecepatan angin ketinggian 2 m (km hari-1). harian pada Model Penman-Monteith (1964) Persamaan yang dikembangkan Monteith (1964) dalam Handoko (1995) merupakan modifikasi persamaan Penman. Dalam persamaan ini secara eksplisit dimasukkan faktor tahanan aerodinamik (r a ) dan tahanan kanopi (r c ). Persamaan tersebut adalah seperti berikut : ETp = {( Q n + ρ w c p (e s e a ) / r a ) / (( + γ) λ + r c / r a )}λ.. (7) c p adalah panas jenis udara pada tekanan tetap dan ρ w adalah kerapatan udara lembab. Persamaan Penman-Monteith ini lebih menekankan kegunaannya pada skala penelitian karena membutuhkan lebih banyak parameter tajuk tanaman yang memerlukan pengukuran tersendiri Model Makkink (1957) dan Priestly Taylor (1972) Model Makking (1957) dan Priestly Taylor (1972) dalam Handoko (1995) hanya menyederhanakan bentuk model persamaan Penman, sehingga hanya didasarkan pada komponen radiasi dan suatu konstantata yang mewakili nilai iklim dan sifat tumbuhan suatu wilayah. Persamaan yang digunakan : Model makkink : ETp = k1( /( +γ) Qs λ...(8) Model Priestly-Taylor : ETp = k2 ( / ( + γ) Qn / λ.. (9) Nilai k 1 dan k 2 untuk beberapa jenis tanaman adalah : untuk kedelai nilai k 1 antara dengan rata-rata k 1 = 0.75 (Sakuratani, 1987). Nilai rata-rata untuk semua tanaman adalah k 1 = 1.26 (Priestly-Taylor, 1972). Khusus untuk kedelai, nilai k 2 antara (Sakuratani, 1987) dan untuk jagung k 2 = 1.35 (Rosenthal et al dalam Handoko (1995)) Evapotranspirasi Tanaman Istilah evapotranspirasi tanaman (ETc) umumnya digunakan untuk perencanaan irigasi. Nilai ETc selalu berubah-ubah menurut umur dan fase perkembangan tanaman. Perubahan tersebut berkaitan dengan luas penutupan tajuk tanaman sebagai bidang penguapan. ETc bukan merupakan kehilangan air aktual melalui evapotranspirasi (ETa) karena ETc tidak memperhitungkan pengaruhpengaruh seperti fluktuasi kadar air tanah dan kejadian presipitasi yang mempengaruhi laju evaporasi tanah. ETc dianggap merupakan kebutuhan air optimum dalam perencanaan irigasi tanaman yang didekati dari : ETc = Kc ETo.(10) Kc = koefisien tanaman yang tergantung umur dan fase perkembangan tanaman ETo = Evapotarnspirasi aktual (mm) 2.4 Estimasi Kelembaban Tanah Perhitungan Kelembaban Tanah di Lapangan ( Metode Gravimetrik ) Kelembaban tanah dapat dinyatakan dalam jumlah air (% massa dan % volume) atau dalam energi potensialnya (water potential) dalam satuan bar, atm, atau Pa. Kelembaban tanah yang dinyatakan dalam % massa (gravimetrik) selalu berdasarkan massa kering massa tanah yang telah dikeringkan dalam oven (105 o C) selama 24 jam. Kadar air tanah berdasarkan % massa (gravimetrik) : Өm = {Mw/Ms}100%...(11) Kadar air tanah berdasarkan % volume (volumetrik ) : Өv = {Vw/Vt} 100% = {Vw/(Vw + Va + Vs)}100%...(12) Ms = massa tanah kering (g) Mw = massa air (g) Vt = volume total (cm 3 ) Vs = volume padatan tanah kering (cm 3 ) Va = volume udara (cm 3 ) Vw = volume air (cm 3 ) Pengukuran kadar air tanah secara gravimetrik dan volumetrik dapat dilakukan dengan mengambil contoh tanah dari lapang kemudian dilakukan penimbangan dan pengeringan dengan oven. Pengukuran secara volumetrik, volume air dihitung berdasarkan massa air yang terukur dengan menganggap kerapatan air sebesar 1 g cm -3. Sedangankan, volume tanah total sama dengan volume ring sampler yang digunakan untuk mengambil contoh tanah tersebut. 5

6 Tabel 4 Spesifikasi beberapa satelit SAR (Sumber : Moran. M. S. et al., 2004 yang telah dimodifikasi) Spesifikasi Satelit SAR RADARSAT ERS SAR ERS ENVISAT ASAR ALOS PALSAR Besar sudut ( ) Panjang gelombang (cm) SAR band C C C L Polarisasi HH VV HH, VV, VH, HV HH, VV, HH, HV, VV, VH Resolusi (m) Pengulangan (hari) Estimasi Kelembaban Tanah dengan Sistem Satelit SAR Satelit yang memiliki resolusi tinggi yang dapat memberikan informasi tentang pengelolaan batas DAS (Daerah Aliran Sungai) saat ini hanya dapat ditemui pada satelit yang memiliki sensor gelombang mikro aktif. Bentuk pencitraan gelombang mikro aktif terdapat pada sistem satelit SAR (Synthetic Aperture Radar). Prinsip dasar dari pencitraan SAR adalah pemancaran energi gelombang elektromagnetik (EM yang selanjutnya disebut sebagai sinar radar atau energi radar) ke permukaan bumi, dan merekam energi balik dari bumi ke radar melalui pencatatan kuantitas energi balik dan waktu tunda dari energi balik yang sampai ke radar (relatif terhadap waktu transmisinya). Energi pantulan ini disebut hamburan balik (backscatter) radar. Menurut Ulaby et al. (1982) terdapat beberapa alasan untuk menggunakan gelombang mikro sebagai sumber energi untuk pencitraan data SAR. Alasan utama dan sangat penting adalah bahwa kemampuan gelombang mikro untuk menembus awan, hujan, dan gelombang mikro aktif dapat memberikan energinya sendiri dan tidak tergantung pada cahaya matahari. Pengaruh hujan terhadap atenuasi (pemadaman) sinyal terjadi jika panjang gelombang lebih kecil dari 2 cm. Saat ini, ada beberapa sistem satelit SAR dengan frequensi yang dapat digunakan untuk mendeteksi kadar air tanah, diantaranya seperti pada Tabel 4. Sistem SAR menyediakan resolusi dengan cakupan liputan m sampai piksel yang memiliki lebar liputan km yang merupakan syarat untuk aplikasi skala batas DAS Model-Model Empiris Model Oh Pengembangan model empiris ini dilakukan oleh Y. Oh, K. Sarabandi, dan F. T. Ulaby di Universitas Michigan tahun Pengukuran radar digunakan dalam pengembangan model ini yaitu dengan menggunakan operasi scatterometer (LCX POLARSCAT) pada tiga frekuensi (1.5, 4.5, 9.5 GHz) dalam mode full polarimetrik dengan sudut yang terbentuk antara 10 o sampai 70 o. Berdasarkan hasil pengukuran scatterometer dan pengukuran tanah tersebut, dihasilkan sebuah model empiris yang menyatakan fungsi untuk rasio hamburan balik antara HH dengan VV (co-polarised) dan hamburan balik silang (cross-polarised) antara HV dan VV sebagai berikut: p = σ o HH σ o = 1 2θ VV π q = σ o HV σ o VV 1 3Γ o. e ks 2 (13) = 0.23 Γ o 1 e ks...(14) p dan q menunjukkan rasio hamburan balik antara HH dengan VV (co-polarised) dan hamburan balik silang (cross polarized). θ adalah sudut yang terbentuk, ks adalah besar RMS yang dinormalisasi terhadap panjang gelombang, dan Γ o koefisien reflektifitas Fresnel pada nadir (jika θ = 0). Berdasarkan rasio hamburan balik co-polarised dan crosspolarised tersebut, maka nilai Γ o dapat diduga dengan persamaan berikut : 2θ π 1 Γ o 1 q 0.23 Γ o + p 1 (15) Pendugaan nilai Γ o juga dapat menggunakan pendekatan teknik iterasi Newton, yaitu : x n = a xn b x n 1 +c 2 xn 1 ln a 1 b x 3 n 1 b a 2..(16) xn 1 3 x = 1 2θ, a = o Γ π, b = q, c = p

7 Selanjutnya, nilai Γ o digunakan untuk menduga konstanta dielektrik ( ε ) dengan persamaan : ε = 1 + Γo 1 Γ... (17) o nilai Γ o digunakan kembali untuk menduga nilai ks (kekasaran permukaan) berdasarkan persamaan : ks = ln 2θ π p+1 1 3Γ o..(18) Model Dubois Inversi algoritma empiris model Dubois et al. (1995) lebih sederhana dibandingkan dengan inversi algoritma empiris model Oh et al. (1992). Nilai konstanta dielektrik maupun kekasaran permukaan dapat diketahui dari model yang menggunakan hamburan balik antara HH dan VV (co-polarised) dan sudut yang terbentuk. Nilai konstanta dielektrik dapat diduga dengan persamaan : log10 (σo HH ) ε σo cos 1.82 θsin 0.93 θλ 0.15 = VV tan θ...(19) ε = konstanta dielektrik σ o = koefisien hamburan balik (db) θ = sudut yang terbentuk ( o ) λ = panjang gelombang (23.6 cm) Selanjutnya, nilai konstanta dielektrik dapat pula digunakan untuk menduga nilai kekasaran permukaan : o ks = σ HH sin 2.57 θ 1.4 cos 1.07 θ ε tan θ λ 0.5 (20) ks = kekasaran permukaan ε = konstanta dielektrik σ o = koefisien hamburan balik (db) θ = sudut yang terbentuk ( o ) λ = panjang gelombang (23.6 cm) Algoritma ini cukup baik digunakan untuk area yang bervegetasi jarang pada frekuensi rendah. Rasio σ VH / σ VV baik untuk digunakan dalam mengindikasikan area bervegetasi dengan nilai rasio σ VH / σ VV < - 11 db. Inversi algoritma tersebut tidak memperhitungkan penutupan kanopi pada suatu area. Sangat penting untuk ditekankan bahwa pada model Dubois et, al. (1995) kondisi penutupan oleh kanopi yang memiliki permukaan yang kasar (ks> 3) dapat menyebabkan kekeliruan dalam menginterpretasikan kelembaban permukaan. Nilai konstanta dielektrik (ε ) yang telah diestimasi dapat dimasukan ke dalam persamaan polinomial Top et al. (1980) untuk mengkonversi nilai dielektrik konstanta ke dalam nilai kadar air tanah (m v ) : m v = ε ε ε 3....(21) m v = kadar air tanah (%) ε = konstanta dielektrik 2.5 Sifat Konstanta Dielektrik Kompleks Fenomena dielektrika yang diteliti pertama kali oleh M. Faraday adalah fenomena yang terjadi akibat material non-konduktor terpengaruhi oleh medan elektrik. Parameter utama yang menggambarkan perilaku material non-konduktor dalam sebuah medan elektrik disebut konstanta dielektrik kompleks. Konstanta dielektrik ini bergantung pada banyak faktor parameter seperti frequensi, suhu, salinitas, dan kandungan ferromagnetik. Pada teori gelombang elektromagnetik, komponen nyata dari konstanta dielektrik kompleks digambarkan sebagai gelombang yang di refraktif atau reflektif antara dua media yang berbeda (Hukum Snellius). Indeks refraktif merupakan sebuah fungsi dari sudut yang terbentuk dan kecepatan dari gelombang yang ditransmisikan. Indeks refraktif ini memiliki hubungan dengan sudut refraktif dan kecepatan dari perambatan pada lapisan perbatas gelombang. Indeks refraktif didefinisikan sebagai akar kuadrat dari konstanta dielektrik kompleks berdasarkan ketebalan media jika dalam ruang hampa atau udara. Konstanta dielektrik kompleks diukur dari respon medium terhadap gelombang elektromagnetik. Respon ini terdiri dari 2 bagian yaitu real dan imaginer (Stratton 1941, Von Hippel 1954), dimana persamaan konstanta dielektrik kompleks : ε = ε jε. (22) ε adalah permitifitas dari material dan ε adalah faktor kehilangan dielektrik dari material dan menggambarkan feasibilitas dari sebuah medium terhadap adsorbsi gelombang dan terhadap perpindahan energi ke dalam bentuk lain. Umumnya untuk permukaan natural ε << ε. Konstanta dielektrik media natural umumnya antara 1 sampai 6, dan meningkat dengan meningkatnya kadar air. Air bebas 7

8 mempunyai nilai dielektrik diatas media natural sampai 81 dan menunjukkan frequensi yang rendah (Ulaby, 1986). Hal ini menunjukkan tingkat sensitifitas gelombang mikro terhadap kandungan air pada benda yang diamati. Sensitifitas ini juga dipengaruhi oleh perputaran molekul-molekul, pembekuan, dan kerapatan partikel tanah yang dapat mengurangi konstanta dielektrik kompleks (ε) terhadap air. Perilaku konstanta dielektrik kompleks (ε) dalam media homogen seperti pada air murni dan es penting diketahui. Frekuensi konstanta dielektrik pada air murni berdasarkan persamaan Debye (1929) dalam Von Hippel (1954) : ε w = ε w + ε w 0 ε w 1+j2πf τ w... (23) ε w0 adalah konstanta dielektrik statis dari air murni dan ε w adalah tinggi limit frekuensi (atau optikal) dari ε w. τ w adalah waktu jeda dari kadar air murni dalam menit dan f adalah frekuensi elektromagnetik dalam Hz. Pada keadaan tanah kering, nilai konstanta dielektrik yang nyata memiliki variasi pada kisaran nilai 2-4, sedangkan nilai konstanta dielektrik imaginer dibawah 0.05 (Ulaby, 1986). Nilai konstanta dielektrik kompleks meningkat dengan semakin tingginya pergerakan molekul-molekul air karena gaya matriks yang bekerja pada molekul-molekul air. 2.6 Hubungan Konstanta Dielektrik dengan Kelembaban Tanah Banyak model-model empiris maupun teoritis yang menjelaskan hubungan konstanta dielektrik dengan kelembaban tanah. hubungan tersebut telah banyak dituangkan dalam persamaan-persamaan polinomial yang bergantung pada volumetrik kandungan air tanah dan persentase pasir dan liat yang terisi di dalam tanah. Persamaan-persamaan tersebut beracuan pada jenis klasifikasi tanah berdasarkan USGS (United State Classification System). Tetapi, persamaanpersamaan polinomial tersebut tidak dapat secara langsung diterapkan pada tipe-tipe tanah Asia karena memiliki sistem klasifikasi tanah yang berbeda dengan US. Untuk menghilangkan ketergantungan pada parameter-parameter yang sesuai, Dobson et al. (1985) mengembangkan sebuah model fisik tanah yang bergantung hanya pada pengukuran karakteristik tanah dan tidak memerlukan parameter-parameter yang sesuai untuk mendapatkan data pengukuran eksperimen yang baik. Model tersebut berdasarkan pada dua parameter yaitu fraksi air terkekang dan fraksi air bebas menurut ukuran distribusi pori-pori dari ukuran distribusi partikel. Menurut Top et al. (1980), De Loor (1982), Shivola (1989), dan Stacheder (1996) pada permitivitas campuran dielektrik menunjukkan bahwa untuk frequensi 1 sampai 10 GHz pada indeks refraktif volumetrik bahan kering dan air bebas merupakan pendekatan yang cukup baik untuk kebanyakan tipe-tipe tanah. Berdasarkan kesimpulan-kesimpulan tersebut, dibangun hubungan polinomial oleh Top et al. (1980) yang digunakan untuk mengkonversi volumetric soil water (mv) ke bagian nyata dari konstanta dielektrik ε. Pengukuran dan penilaian bagian imaginer ε dari konstanta dielektrik kompleks tidak dipertimbangkan dalam studi ini karena hal itu memberikan pengaruh yang hampir tak berarti pada jumlah total ε. 2.7 Satelit ALOS ALOS (Advanced Land Observation Satellite) adalah satelit penginderaan jauh (inderaja) Jepang yang diutamakan untuk pengamatan daratan dengan menggunakan teknologi terdepan. Satelit ALOS diprogramkan untuk meneruskan dan meningkatkan fungsi satelit JERS-1 (Japanese Earth Resources Satellite-1) dan setelit ADEOS (Advanced Earth Observing satellite). Satelit ALOS adalah satelit pengamatan bumi terbesar yang pernah dibangun di Jepang. Panjangnya satelit ALOS lebih-kurang 9 meter, lebarnya 28 m, dan massanya 4000 kg. Satelit inderaja ALOS telah berhasil diluncurkan pada tanggal 24 Januari 2006 dengan pesawat peluncur roket H-IIA, dari lokasi peluncuran Tanegashima Space Center di Jepang bagian selatan (NASDA, 2006). Gambar 1 Satelit ALOS (Sumber : 8

9 Satelit ALOS mempunyai 5 misi utama, yaitu : a. Untuk memperlengkapi peta-peta Jepang dan Negara-negara lain yang termasuk wilayah Asia- Pasifik ( Kartografi ). b. Untuk melakukan pengamatan regional dalam rangka pengembangan berkesinambungan (pengamatan regional ). c. Untuk melakukan pemantauan bencana alam seluruh dunia (pemantauan bencana alam ). d. Untuk mmelakukan penelitian sumbar daya alam ( penelitian sumber daya alam ), dan e. Untuk mengembangkan teknologi satelit pengamatan bumi masa depan ( pengembangan teknologi ) (NASDA, 2004 ; JAXA, 2004 ). Satelit ALOS bergerak pada orbit sinkron matahari pada ketinggian 691,65 km pada equator, inklinasi 98, 16 derajat. Periode (siklus) pengulangaan orbit adalah 46 hari, dengan suatu potensi kemampuan pengulangan 2 hari untuk sensor pandangan sisi (side-looking). Satelit dirancang untuk dapat tetap beroperasi pada orbitnya di dalam kurun waktu 3-5 tahun. Satelit tersebut melintas ekuator pada pukul waktu lokal pada posisi satelit arah kutub selatan atau mode menurun (descending mode) dan pukul pada posisi satelit arah kutub utara atau mode menaik (ascending mode). Satelit ALOS dilengkapi tiga sensor inderaja dengan kemampuan pandangan sisi. Tiga sensor inderaja tersebut terdiri dari dua sensor optik yaitu sensor PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping) dan sensor AVNIR-2 (advanced Visible and Nera Infrared Radiometer type-2), dan sebuah sensor gelombang mikro (radar) yaitu PALSAR (Phased Array Type L-band Synthetic Aperture Radar ) (NASDA, 2004b). Sensorsensor pengamatan pada satelit ALOS dilengkapi dengan subsistem pendukung misi, yaitu : a. subsistem pengontrol orbit dan kedudukan satelit. b. Subsistem penentu kedududkan satelit dan posisi secara otomatis. c. Subsistem penanganan data misi. 2.8 Sensor AVNIR-2 dan Karakteristik Datanya AVNIR-2 adalah suatu sensor yang dirancang untuk meneruskan dan meningkatkan sensor VNIR/OPS pada satelit JERS-1 dan AVNIR pada satelit ADEOS. Satelit JERS-1 adalah satelit Jepang untuk pengamatan daratan, banyak data yang tersedia di EOC Jepang untuk pengguna. AVNIR/ADEOS adalah sensor optik dengan 4 kanal spectral, mempunyai resolusi spasial 16 m untuk pengamatan daratan dan zona-zona garis pantai. Sensor AVNIR-2 merupakan peningkatan dari sensor AVNIR/ADEOS. Bagian utama yang dimodifikasi adalah detektor dan elektroniknya. Sensor AVNIR-2 melakukan scanning dengan metode push broom dengan 1 buah CCD untuk masing-masing kanal spectral. Kemampuan elektroniknya dan dan detektor CCD pada AVNIR/ADEOS (mempunyai 5000 piksel setiap CCD), ditingkatkan menjadi 7000 piksel setiap CCD pada AVNIR-2/ALOS. Berdasarkan modifikasi ini, maka akan dihasilkan peningkatan resolusi spasial dari 16 m pada AVNIR/ADEOS menjadi 10 m dengan lebar liputan satuan citra sebesar 70 km pada AVNIR-2/ALOS. Gambar 2 Sensor AVNIR-2 (Sumber : http: // Modifikasi yang lain adalah pada kemampuan pointing AVNIR-2 yaitu dengan suatu kemampuan pandangan menyilang jejak satelit pada +44 o sampai -44 o (+/- 44 o ) dari nadir. Kemampuan pandangan sisi dan kemampuan pointing dari sensor AVNIR-2 ini merealisasikan pengamatan yang dilakukan berulang kali yaitu setiap 48 jam (2 hari) pada daerah dengan garis lintang bumi yang lebih tinggi. Berdasarkan kemampuan pointing AVNIR-2 juga dapat pula diperoleh daerah pengamatan yang lebih lebar sampai dengan 1500 km (lebar pointing maksimum dari AVNIR-2). Kemampuan ini efektif untuk pengamatan global (Osawa, 2005). 9

10 Tabel 5. Karakteristik teknis sensor dan data citra AVNIR-2 (sumber : Sitanggang, 2008) PARAMETER KARAKTERISTIK TEKNIS Jumlah kanal spectral 4 Metode scanning Push broom dengan 1 CCD untuk masingmasing kanal Panjang gelombang Kanal 1 : µm Kanal 2 : µm Kanal 3 : µm Kanal 4 : µm FOV 5.8 o IFOV µ rad Lebar liputan satuan citra 70 km (pada nadir) Resolusi spasial 10 m (pada nadir) S/N >200 MTF@ Frekuensi Nyquist Kanal 1 s.d. 3 : >0.25 Kanal 4 : >0.20 Jumlah detector Sudut pengarahan titik (pointing angle) Kuantisasi 7000/kanal spectral (+/-44 o ) dari nadir 8 bit Berdasarkan kemampuan tersebut, tujuan utama dari AVNIR-2 untuk pemantauan bencana alam dan pemetaan penutupan lahan di dalam pemantauan lingkungan regional dapat direalisasikan dan pengamatan daerahdaerah bencana alam dalam waktu pengulangan 2 hari dapat dilakukan. Kemampuan pandangan sisi dari sensorsensor ALOS juga memungkinkan observasi AVNIR-2 secara serentak dengan PALSAR, hal ini merupakan suatu sifat unik yang diharapkan dapat memberikan kontribusi aplikasi fusi data optik (AVNIR-2) dan gelombang mikro (PALSAR ). 2.9 Sensor PALSAR dan Karakteristik Datanya PALSAR adalah suatu sensor gelombang mikro aktif pada L-band (frekuensi-pusat 1270 MHz/23,6 cm) untuk pengamatan siang dan malam hari, bebas awan dan cuaca. Sensor PALSAR merupakan peningkatan dari SAR/JERS-1 (polarisasi HH, sudut off nadir 35 o, beroperasi pada L-band), dikembangkan oleh JAXA bekerja sama dengan JAROS (Japan Resources Observation Systems Oganization). Antenna PALSAR terdiri dari 4 segmen dengan ukuran total 8.9 m bila disebarkan. Sensor PALSAR mempunyai suatu kemampuan off-nadir yang variable antara 10 o sampai 51 o (sudut datang 8 o -60 o ) dengan menggunakan teknik phased array aktif dengan 80 modul untuk mentransmisikan / penerimaan. PALSAR adalah suatu instrument yang secara penuh merupakan polarimetrik, bekerja dengan salah satu dari mode, yaitu : a. Polarisasi tunggal (HH atau VV) b. Polarisasi rangkap 2 (HH+HV atau VV+VH) c. Polarimetrik penuh Polarisasi diubah dalam setiap pulsa dari sinyal transmisi dan sinyal polarisasi ganda diterima secara simultan. Operasi dibatasi dalam sudut dating yang lebih rendah untuk mencapai hasil guna yang lebih baik. Pada (terjadi pada kondisi kecepatan data 240 Mbps. mode polarisasi, lebar liputan satuan citra adalah 30 km dengan resolusi spasial 30 m Gambar 3 Sensor PALSAR (Sumber : 10

11 Tabel 6 Karakteristik teknis sensor dan data citra PALSAR (Sumber : Sitanggang, 2008) Mode operasi Fine beam single pol- (fbs) Fine beam dual pol- (fbd) Scansar Polarimetrik Chirp Bandwidth 28 MHz 14 MHz 14 MHz, 28 MHz 14 MHz Polarisasi HH, VV HH+HV, VV+VH HH, VV HH+VV+HV+VH Sudut datang 8 o -60 o 8 o -60 o 18 o -43 o 8 o -30 o Resolusi spasial 7-44 m m 100 m (multi look) m Range Lebar liputan satuan citra km km km km Panjang bit 5 bit 5 bit 5 bit 3/5 bit Kecepatan data 240 Mbps 240 Mbps 120 Mbps, 240 Mbps 240 Mbps Akurasi radiometrik Titik tengah kisaran spektrum Citra (scene) : 1 db/ orbit : 1.5 db L-band (1270 MHz) Tabel 7 Mode Observasi Default PALSAR (Sumber : Sitanggang, 2008) Polarisasi Sudut Off-Nadir (Lebar Liputan Satuan Citra, Resolusi) HH 34.3 o (70 km, 10 m) VV 43.4 o (70 km, 10 m) HH + VV 34.3 o (70 km, 20 m) HH + HV 43.4 o (70 km, 20 m) HH + HV + VH + VV 21.5 o (30 km, 30 m) ScanSAR 5- Beam mode (350 km, 100 m) PALSAR secara teknik dapat dioperasikan dalam 132 mode yang berbeda. Akan tetapi, dari titik pandang aplikasi, sejumlah besar dari kombinasi mode potensial menjadi agak kontra-produktif. tujuh mode operasi telah diidentifikasi sebagai default modes yang ditujukan pada Tabel 9 Untuk meminimalkan konflik-konflik dari mode yang demikian, Pemilihan default mode dibuat sebagai suatu kompromi kriteria ilmiah, aspek-aspek programatik, dan pembatasan-pembatasan operasional satelit menjadi pertimbangan. Kecepatan perekaman data 240 Mbps dalam mode tunggal, mode rangkap dua (dual), dan mode polarimetrik penuh. Oleh karenanya diperlukan aliran data dari satelit ke stasiun bumi (down-linking) melalui DRTS. Akan tetapi, mode scansar beroperasi pada 120 Mbps, yang memungkinkan aliran data secara langsung dari satelit ke berbagai stasiun bumi local (di dalam jaringan stasiun bumi ALOS). Data PALSAR dapat digunakan untuk bermacam aplikasi seperti pembuatan citra DEM, interferometri dari pergerakan lahan, biomassa hutan, pemantauan kebakaran hutan, pertanian, pemantauan polusi minyak, pemantauan banjir, kelembaban tanah, dan pemantauan kapal ( NASDA, 2005 ). III. METODOLOGI 3. 1 Waktu dan Tempat Penelitian ini dilaksanakan mulai bulan Februari 2009 hingga September 2009 dilaksanakan di Laboratorium meteorologi dan kualitas udara serta di Lembaga Penerbangan dan Antariksa (LAPAN) Pekayon Jakarta Timur. 3.2 Bahan dan Alat Data yang digunakan adalah data citra PALSAR ALOS level 1.1 pada tanggal 11 April 2007 pukul 15: 34: 59 WIB dan data citra AVNIR-2 tanggal 5 Oktober 2007 diperoleh dari Pusbangja (Pusat Pengembangan Pemanfaatan dan Teknologi Penginderaan Jauh) LAPAN, Pekayon, Jakarta. Alat yang digunakan adalah perangkat lunak (software) Polsar pro versi 4.0, Envi versi 4.3, Er Mapper versi 7.0, Adobe Photoshop CS3 dan Microsoft office Metode Penelitian Pengolahan Awal Data Citra PALSAR ALOS Data citra PALSAR ALOS yang digunakan merupakan citra wilayah Kabupaten Bekasi dan sekitarnya yang diambil pada tanggal 11 april Data citra 11

IDENTIFIKASI KELEMBABAN TANAH DENGAN PEMANFAATAN GELOMBANG MIKRO SENSOR PALSAR SATELIT ALOS

IDENTIFIKASI KELEMBABAN TANAH DENGAN PEMANFAATAN GELOMBANG MIKRO SENSOR PALSAR SATELIT ALOS IDENTIFIKASI KELEMBABAN TANAH DENGAN PEMANFAATAN GELOMBANG MIKRO SENSOR PALSAR SATELIT ALOS (Studi Kasus Kabupaten Bekasi dan Sekitarnya ) Ahmad Efi Ramdani DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan tehnik dan seni untuk memperoleh informasi tentang suatu objek, wilayah atau fenomena dengan menganalisa data yang diperoleh

Lebih terperinci

Phased Array Type L-Band Synthetic Aperture Radar (PALSAR)

Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) LAMPIRAN 51 Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) Sensor PALSAR merupakan pengembangan dari sensor SAR yang dibawa oleh satelit pendahulunya, JERS-1. Sensor PALSAR adalah suatu sensor

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu negara yang memiliki hutan tropis terbesar di dunia, dengan kondisi iklim basa yang peluang tutupan awannya sepanjang tahun cukup tinggi.

Lebih terperinci

I. PENDAHULUAN 1.1 Latar Belakang

I. PENDAHULUAN 1.1 Latar Belakang 1 I. PENDAHULUAN 1.1 Latar Belakang Posisi Indonesia berada di daerah tropis mengakibatkan hampir sepanjang tahun selalu diliputi awan. Kondisi ini mempengaruhi kemampuan citra optik untuk menghasilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Evapotranspirasi Potensial Standard (ETo)

BAB II TINJAUAN PUSTAKA. 2.1 Evapotranspirasi Potensial Standard (ETo) xviii BAB II TINJAUAN PUSTAKA 2.1 Evapotranspirasi Potensial Standard (ETo) Evapotranspirasi adalah jumlah air total yang dikembalikan lagi ke atmosfer dari permukaan tanah, badan air, dan vegetasi oleh

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang 1 I PENDAHULUAN 1.1 Latar Belakang Luas kawasan hutan Indonesia berdasarkan Surat Keputusan Menteri Kehutanan tentang penunjukan kawasan hutan dan perairan provinsi adalah 133.300.543,98 ha (Kementerian

Lebih terperinci

IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Geografis Kabupaten Bekasi dan Sekitarnya

IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Geografis Kabupaten Bekasi dan Sekitarnya IV. HASIL DAN PEMBAHASAN 4.1 Kondisi Geografis Kabupaten Bekasi dan Sekitarnya Gambar 4 Keadaan geografis daerah Kabupaten Bekasi dan sekitarnya tahun 29 (sumber : // http: www. googlemaps. com) Kajian

Lebih terperinci

Evapotranspirasi. 1. Batasan Evapotranspirasi 2. Konsep Evapotranspirasi Potensial 3. Perhitungan atau Pendugaan Evapotranspirasi

Evapotranspirasi. 1. Batasan Evapotranspirasi 2. Konsep Evapotranspirasi Potensial 3. Perhitungan atau Pendugaan Evapotranspirasi Evapotranspirasi 1. Batasan Evapotranspirasi 2. Konsep Evapotranspirasi Potensial 3. Perhitungan atau Pendugaan Evapotranspirasi Departemen Geofisika dan Meteotologi, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat 4 II. TINJAUAN PUSTAKA A. Jagung Jagung merupakan tanaman yang dapat hidup di daerah yang beriklim sedang sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat membutuhkan sinar matahari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Penginderaan Jauh Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang suatu objek, daerah, atau fenomena melalui analisis data yang diperoleh dengan

Lebih terperinci

q Tujuan dari kegiatan ini diperolehnya peta penggunaan lahan yang up-to date Alat dan Bahan :

q Tujuan dari kegiatan ini diperolehnya peta penggunaan lahan yang up-to date Alat dan Bahan : MAKSUD DAN TUJUAN q Maksud dari kegiatan ini adalah memperoleh informasi yang upto date dari citra satelit untuk mendapatkan peta penggunaan lahan sedetail mungkin sebagai salah satu paramater dalam analisis

Lebih terperinci

BAB II DASAR TEORI. 2.1 DEM (Digital elevation Model) Definisi DEM

BAB II DASAR TEORI. 2.1 DEM (Digital elevation Model) Definisi DEM BAB II DASAR TEORI 2.1 DEM (Digital elevation Model) 2.1.1 Definisi DEM Digital Elevation Model (DEM) merupakan bentuk penyajian ketinggian permukaan bumi secara digital. Dilihat dari distribusi titik

Lebih terperinci

TINJAUAN PUSTAKA Analisis Kebutuhan Air Irigasi Kebutuhan Air untuk Pengolahan Tanah

TINJAUAN PUSTAKA Analisis Kebutuhan Air Irigasi Kebutuhan Air untuk Pengolahan Tanah II. TINJAUAN PUSTAKA 2.1. Analisis Kebutuhan Air Irigasi Kebutuhan air tanaman adalah banyaknya air yang dibutuhkan tanaman untuk membentuk jaringan tanaman, diuapkan, perkolasi dan pengolahan tanah. Kebutuhan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Pemantauan Padi dengan SAR Polarisasi Tunggal Pada awal perkembangannya, sensor SAR hanya menyediakan satu pilihan polarisasi saja. Masalah daya di satelit, kapasitas pengiriman

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan suatu teknik pengukuran atau perolehan informasi dari beberapa sifat obyek atau fenomena dengan menggunakan alat perekam yang secara

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.. Variasi NDVI Citra AVNIR- Citra AVNIR- yang digunakan pada penelitian ini diakuisisi pada tanggal Desember 008 dan 0 Juni 009. Pada citra AVNIR- yang diakuisisi tanggal Desember

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang II. TINJAUAN PUSTAKA 2.1. Citra Satelit Landsat

I. PENDAHULUAN 1.1. Latar Belakang II. TINJAUAN PUSTAKA 2.1. Citra Satelit Landsat I. PENDAHULUAN 1.1. Latar Belakang Pertumbuhan penduduk merupakan faktor utama yang mempengaruhi perkembangan pemukiman dan kebutuhan prasarana dan sarana. Peningkatan jumlah penduduk yang disertai dengan

Lebih terperinci

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut :

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : NDVI=(band4 band3)/(band4+band3).18 Nilai-nilai indeks vegetasi di deteksi oleh instrument pada

Lebih terperinci

1. PENDAHULUAN 2. TINJAUAN PUSTAKA

1. PENDAHULUAN 2. TINJAUAN PUSTAKA 1. PENDAHULUAN 1. 1 Latar Belakang Suhu permukaan merupakan salah satu parameter yang utama dalam seluruh interaksi antara permukaan darat dengan atmosfer. Suhu permukaan darat merupakan contoh fenomena

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA . II. TINJAUAN PUSTAKA 2.1 Penginderaan Jauh Penginderaan jauh merupakan ilmu dan seni untuk memperoleh informasi tentang objek, daerah atau gejala dengan jalan menganalisis data yang diperoleh dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi penginderaan jauh (remote sensing) dikenal sebagai teknologi yang memiliki manfaat yang luas. Pemanfaatan yang tepat dari teknologi ini berpotensi meningkatkan

Lebih terperinci

SENSOR DAN PLATFORM. Kuliah ketiga ICD

SENSOR DAN PLATFORM. Kuliah ketiga ICD SENSOR DAN PLATFORM Kuliah ketiga ICD SENSOR Sensor adalah : alat perekam obyek bumi. Dipasang pada wahana (platform) Bertugas untuk merekam radiasi elektromagnetik yang merupakan hasil interaksi antara

Lebih terperinci

PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA

PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA PERANAN CITRA SATELIT ALOS UNTUK BERBAGAI APLIKASI TEKNIK GEODESI DAN GEOMATIKA DI INDONESIA Atriyon Julzarika Alumni Teknik Geodesi dan Geomatika, FT-Universitas Gadjah Mada, Angkatan 2003 Lembaga Penerbangan

Lebih terperinci

Gambar 1.1 Siklus Hidrologi (Kurkura, 2011)

Gambar 1.1 Siklus Hidrologi (Kurkura, 2011) BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan yang mutlak bagi setiap makhluk hidup di permukaan bumi. Seiring dengan pertambahan penduduk kebutuhan air pun meningkat. Namun, sekarang

Lebih terperinci

HUBUNGAN TANAH - AIR - TANAMAN

HUBUNGAN TANAH - AIR - TANAMAN MINGGU 2 HUBUNGAN TANAH - AIR - TANAMAN Irigasi dan Drainasi Widianto (2012) TUJUAN PEMBELAJARAN 1. Memahami sifat dan karakteristik tanah untuk menyediakan air bagi tanaman 2. Memahami proses-proses aliran

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Perbandingan Evapotranspirasi Tanaman Acuan Persyaratan air tanaman bervariasi selama masa pertumbuhan tanaman, terutama variasi tanaman dan iklim yang terkait dalam metode

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Perancangan dan Realisasi Antena Mikrostrip Polarisasi Sirkular dengan Catuan Proxmity Coupled

BAB I PENDAHULUAN 1.1 Latar Belakang Perancangan dan Realisasi Antena Mikrostrip Polarisasi Sirkular dengan Catuan Proxmity Coupled BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi penginderaan jauh (remote sensing) dikenal sebagai teknologi yang memiliki manfaat yang luas. Pemanfaatan yang tepat dari teknologi ini berpotensi meningkatkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Perubahan Rasio Hutan Sebelum membahas hasil simulasi model REMO, dilakukan analisis perubahan rasio hutan pada masing-masing simulasi yang dibuat. Dalam model

Lebih terperinci

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA)

HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA) HIDROMETEOROLOGI TATAP MUKA KEEMPAT (RADIASI SURYA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1.PANCARAN RADIASI SURYA Meskipun hanya sebagian kecil dari radiasi yang dipancarkan

Lebih terperinci

Lampiran 1. Karakteristik satelit MODIS.

Lampiran 1. Karakteristik satelit MODIS. LAMPIRAN Lampiran 1. Karakteristik satelit MODIS. Pada tanggal 18 Desember 1999, NASA (National Aeronautica and Space Administration) meluncurkan Earth Observing System (EOS) Terra satellite untuk mengamati,

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Hasil sensus jumlah penduduk di Indonesia, dengan luas wilayah kurang lebih 1.904.569 km 2 menunjukkan adanya peningkatan jumlah penduduk, dari tahun 2010 jumlah penduduknya

Lebih terperinci

17/02/2013. Matriks Tanah Pori 2 Tanah. Irigasi dan Drainasi TUJUAN PEMBELAJARAN TANAH DAN AIR 1. KOMPONEN TANAH 2. PROFIL TANAH.

17/02/2013. Matriks Tanah Pori 2 Tanah. Irigasi dan Drainasi TUJUAN PEMBELAJARAN TANAH DAN AIR 1. KOMPONEN TANAH 2. PROFIL TANAH. MINGGU 2 HUBUNGAN TANAH-AIR-TANAMAN Irigasi dan Drainasi Widianto (2013) Lab. Fisika Tanah FPUB TUJUAN PEMBELAJARAN 1. Memahami sifat dan karakteristik tanah untuk menyediakan air bagi tanaman 2. Memahami

Lebih terperinci

TINJAUAN PUSTAKA. Neraca Air

TINJAUAN PUSTAKA. Neraca Air TINJAUAN PUSTAKA Neraca Air Neraca air adalah model hubungan kuantitatif antara jumlah air yang tersedia di atas dan di dalam tanah dengan jumlah curah hujan yang jatuh pada luasan dan kurun waktu tertentu.

Lebih terperinci

1. Tekanan Udara 2. Radiasi Surya 3. Lama Penyinaran 4. Suhu Udara 5. Kelembaban Udara 6. Curah Hujan 7. Angin 8. Evapotranspirasi Potensial

1. Tekanan Udara 2. Radiasi Surya 3. Lama Penyinaran 4. Suhu Udara 5. Kelembaban Udara 6. Curah Hujan 7. Angin 8. Evapotranspirasi Potensial Unsur-unsur Iklim 1. Tekanan Udara 2. Radiasi Surya 3. Lama Penyinaran - 4. Suhu Udara 5. Kelembaban Udara 6. Curah Hujan 7. Angin 8. Evapotranspirasi Potensial Puncak Atmosfer ( 100 km ) Tekanan Udara

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. DEM ( Digital Elevation Model

II. TINJAUAN PUSTAKA 2.1. DEM ( Digital Elevation Model 15 II. TINJAUAN PUSTAKA 2.1. DEM (Digital Elevation Model) Digital Elevation Model (DEM) merupakan bentuk 3 dimensi dari permukaan bumi yang memberikan data berbagai morfologi permukaan bumi, seperti kemiringan

Lebih terperinci

PENDAHULUAN Latar Belakang Tujuan Penelitian METODE Waktu dan Tempat Penelitian

PENDAHULUAN Latar Belakang Tujuan Penelitian METODE Waktu dan Tempat Penelitian PENDAHULUAN Latar Belakang Kejadian kebakaran wilayah di Indonesia sudah menjadi peristiwa tahunan, khususnya di Pulau Sumatera dan Kalimantan. Pada tahun 2013 kebakaran di Pulau Sumatera semakin meningkat

Lebih terperinci

1 BAB I PENDAHULUAN. 1.1 Latar Belakang

1 BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Pemanfaatan penggunaan lahan akhir-akhir ini semakin mengalami peningkatan. Kecenderungan peningkatan penggunaan lahan dalam sektor permukiman dan industri mengakibatkan

Lebih terperinci

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997

Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997 LAMPIRAN Lampiran 1. Peta klasifikasi penutup lahan Kodya Bogor tahun 1997 17 Lampiran 2. Peta klasifikasi penutup lahan Kodya Bogor tahun 2006 18 Lampiran 3. Peta sebaran suhu permukaan Kodya Bogor tahun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Suhu Permukaan Suhu permukaan dapat diartikan sebagai suhu terluar suatu obyek. Untuk suatu tanah terbuka, suhu permukaan adalah suhu pada lapisan terluar permukaan tanah. Sedangkan

Lebih terperinci

Legenda: Sungai Jalan Blok sawah PT. Sang Hyang Seri Kabupaten Subang

Legenda: Sungai Jalan Blok sawah PT. Sang Hyang Seri Kabupaten Subang 17 III. METODOLOGI 3.1. Waktu dan Tempat Penelitian Penelitian ini dimulai pada bulan Oktober 2010 dan berakhir pada bulan Juni 2011. Wilayah penelitian berlokasi di Kabupaten Subang, Jawa Barat (Gambar

Lebih terperinci

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR

DAFTAR ISI. Halaman HALAMAN JUDUL HALAMAN PENGESAHAN PERNYATAAN BEBAS PLAGIASI DEDIKASI KATA PENGANTAR DAFTAR ISI Halaman HALAMAN JUDUL i HALAMAN PENGESAHAN ii PERNYATAAN BEBAS PLAGIASI iii MOTTO iv DEDIKASI v KATA PENGANTAR vi DAFTAR ISI viii DAFTAR TABEL xi DAFTAR GAMBAR xii DAFTAR LAMPIRAN xiv DAFTAR

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Pendugaan Parameter Input 4.1.1. Pendugaan Albedo Albedo merupakan rasio antara radiasi gelombang pendek yang dipantulkan dengan radiasi gelombang pendek yang datang. Namun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penginderaan Jauh (Remote Sensing) Penginderaan jauh (remote sensing) merupakan ilmu dan seni pengukuran untuk mendapatkan informasi dan pada suatu obyek atau fenomena, dengan

Lebih terperinci

JURUSAN TEKNIK & MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN

JURUSAN TEKNIK & MANAJEMEN INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN UNIVERSITAS PADJADJARAN Kompetensi dasar Mahasiswa mampu melakukan analisis evapotranspirasi pengertian dan manfaat faktor 2 yang mempengaruhi evapotranspirasi pengukuran evapotranspirasi pendugaan evapotranspirasi JURUSAN TEKNIK

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Perubahan Penggunaan Lahan Pengertian lahan berbeda dengan tanah, namun dalam kenyataan sering terjadi kekeliruan dalam memberikan batasan pada kedua istilah tersebut. Tanah

Lebih terperinci

BAB V ANALISIS DAN PEMBAHASAN. 5.1 Analisis Hasil Pengolahan Band VNIR dan SWIR

BAB V ANALISIS DAN PEMBAHASAN. 5.1 Analisis Hasil Pengolahan Band VNIR dan SWIR BAB V ANALISIS DAN PEMBAHASAN 5.1 Analisis Hasil Pengolahan Band VNIR dan SWIR Hasil pengolahan dari nilai piksel band VNIR dan SWIR yang dibahas pada bab ini yaitu citra albedo, NDVI dan emisivitas. Ketiganya

Lebih terperinci

ULANGAN HARIAN PENGINDERAAN JAUH

ULANGAN HARIAN PENGINDERAAN JAUH ULANGAN HARIAN PENGINDERAAN JAUH 01. Teknologi yang terkait dengan pengamatan permukaan bumi dalam jangkauan yang sangat luas untuk mendapatkan informasi tentang objek dipermukaan bumi tanpa bersentuhan

Lebih terperinci

SISTEM PENGINDERAAN JAUH SATELIT ALOS DAN ANALISIS PEMANFAATAN DATA

SISTEM PENGINDERAAN JAUH SATELIT ALOS DAN ANALISIS PEMANFAATAN DATA SISTEM PENGINDERAAN JAUH SATELIT ALOS DAN ANALISIS PEMANFAATAN DATA Gokmaria Sitanggang Peneliti Pusat Pengembangan Pemanfaatan dan Teknologi Penginderaan Jauh, LAPAN ABSTRACT The ALOS (Advanced Land Observing

Lebih terperinci

BAB I PENDAHULUAN Perumusan Masalah

BAB I PENDAHULUAN Perumusan Masalah 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pertumbuhan jumlah penduduk yang cukup tinggi di dunia khususnya Indonesia memiliki banyak dampak. Dampak yang paling mudah dijumpai adalah kekurangan lahan. Hal

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan Curah hujan adalah volume air yang jatuh pada suatu areal tertentu (Arsyad, 2010). Menurut Tjasyono (2004), curah hujan yaitu jumlah air hujan yang turun pada

Lebih terperinci

GEOGRAFI. Sesi PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK. a. Sistem Termal

GEOGRAFI. Sesi PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK. a. Sistem Termal GEOGRAFI KELAS XII IPS - KURIKULUM GABUNGAN 09 Sesi NGAN PENGINDERAAN JAUH : 2 A. PENGINDERAAN JAUH NONFOTOGRAFIK Menggunakan sensor nonkamera atau sensor elektronik. Terdiri dari inderaja sistem termal,

Lebih terperinci

Bab 4. AIR TANAH. Foto : Kurniatun Hairiah

Bab 4. AIR TANAH. Foto : Kurniatun Hairiah Bab 4. AIR TANAH Foto : Kurniatun Hairiah Apa yang dipelajari? Kapilaritas dan Air Tanah Konsep Enerji Air Tanah Kadar Air dan Potensial Air Mengukur Kadar dan Potensial Air Macam-macam aliran air di dalam

Lebih terperinci

PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH KOTA PADANG ABSTRACT

PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH KOTA PADANG ABSTRACT Eksakta Vol. 18 No. 1, April 2017 http://eksakta.ppj.unp.ac.id E-ISSN : 2549-7464 P-ISSN : 1411-3724 PENGOLAHAN CITRA SATELIT ALOS PALSAR MENGGUNAKAN METODE POLARIMETRI UNTUK KLASIFIKASI LAHAN WILAYAH

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN HASIL

BAB IV PENGOLAHAN DATA DAN HASIL BAB IV PENGOLAHAN DATA DAN HASIL 4.1 Pengolahan Awal Citra ASTER Citra ASTER diolah menggunakan perangkat lunak ER Mapper 6.4 dan Arc GIS 9.2. Beberapa tahapan awal yang dilakukan yaitu konversi citra.

Lebih terperinci

ISTILAH DI NEGARA LAIN

ISTILAH DI NEGARA LAIN Geografi PENGERTIAN Ilmu atau seni untuk memperoleh informasi tentang obyek, daerah atau gejala dengan jalan menganalisis data yang diperoleh dengan menggunakan alat tanpa kontak langsung terhadap obyek

Lebih terperinci

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu

PEMANASAN BUMI BAB. Suhu dan Perpindahan Panas. Skala Suhu BAB 2 PEMANASAN BUMI S alah satu kemampuan bahasa pemrograman adalah untuk melakukan kontrol struktur perulangan. Hal ini disebabkan di dalam komputasi numerik, proses perulangan sering digunakan terutama

Lebih terperinci

HIDROSFER I. Tujuan Pembelajaran

HIDROSFER I. Tujuan Pembelajaran KTSP & K-13 Kelas X Geografi HIDROSFER I Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut. 1. Memahami pengertian hidrosfer dan siklus hidrologi.

Lebih terperinci

penginderaan jauh remote sensing penginderaan jauh penginderaan jauh (passive remote sensing) (active remote sensing).

penginderaan jauh remote sensing penginderaan jauh penginderaan jauh (passive remote sensing) (active remote sensing). Istilah penginderaan jauh merupakan terjemahan dari remote sensing yang telah dikenal di Amerika Serikat sekitar akhir tahun 1950-an. Menurut Manual of Remote Sensing (American Society of Photogrammetry

Lebih terperinci

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002) BAB III METODA 3.1 Penginderaan Jauh Pertanian Pada penginderaan jauh pertanian, total intensitas yang diterima sensor radar (radar backscattering) merupakan energi elektromagnetik yang terpantul dari

Lebih terperinci

Karakteristik Air. Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017

Karakteristik Air. Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017 Karakteristik Air Siti Yuliawati Dosen Fakultas Perikanan Universitas Dharmawangsa Medan 25 September 2017 Fakta Tentang Air Air menutupi sekitar 70% permukaan bumi dengan volume sekitar 1.368 juta km

Lebih terperinci

ANALISA DAERAH POTENSI BANJIR DI PULAU SUMATERA, JAWA DAN KALIMANTAN MENGGUNAKAN CITRA AVHRR/NOAA-16

ANALISA DAERAH POTENSI BANJIR DI PULAU SUMATERA, JAWA DAN KALIMANTAN MENGGUNAKAN CITRA AVHRR/NOAA-16 ANALISA DAERAH POTENSI BANJIR DI PULAU SUMATERA, JAWA DAN KALIMANTAN MENGGUNAKAN CITRA AVHRR/NOAA-16 Any Zubaidah 1, Suwarsono 1, dan Rina Purwaningsih 1 1 Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

Lebih terperinci

θ t = θ t-1 + P t - (ETa t + Ro t ) (6) sehingga diperoleh (persamaan 7). ETa t + Ro t = θ t-1 - θ t + P t. (7)

θ t = θ t-1 + P t - (ETa t + Ro t ) (6) sehingga diperoleh (persamaan 7). ETa t + Ro t = θ t-1 - θ t + P t. (7) 7 Persamaan-persamaan tersebut kemudian dikonversi menjadi persamaan volumetrik (Persamaan 5) yang digunakan untuk mendapatkan nilai kadar air tanah dalam % volume. 3.3.5 Pengukuran Curah Hujan dan Tinggi

Lebih terperinci

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F

PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI. Oleh : FIRDAUS NURHAYATI F PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN MODEL TANGKI Oleh : FIRDAUS NURHAYATI F14104021 2008 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 1 PENDUGAAN PARAMETER UPTAKE ROOT MENGGUNAKAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di II. TINJAUAN PUSTAKA A. Embung Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di Daerah Pengaliran Sungai (DPS) yang berada di bagian hulu. Konstruksi embung pada umumnya merupakan

Lebih terperinci

Daur Siklus Dan Tahapan Proses Siklus Hidrologi

Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Dan Tahapan Proses Siklus Hidrologi Daur Siklus Hidrologi Siklus hidrologi adalah perputaran air dengan perubahan berbagai bentuk dan kembali pada bentuk awal. Hal ini menunjukkan bahwa volume

Lebih terperinci

I. PENDAHULUAN. jagung adalah kedelai. Kedelai juga merupakan tanaman palawija yang memiliki

I. PENDAHULUAN. jagung adalah kedelai. Kedelai juga merupakan tanaman palawija yang memiliki I. PENDAHULUAN 1.1 Latar Belakang Satu dari komoditas tanaman pangan yang penting di Indonesia selain padi dan jagung adalah kedelai. Kedelai juga merupakan tanaman palawija yang memiliki arti penting

Lebih terperinci

Spektrum Gelombang. Penginderaan Elektromagnetik. Gelombang Mikro - Pasif. Pengantar Synthetic Aperture Radar

Spektrum Gelombang. Penginderaan Elektromagnetik. Gelombang Mikro - Pasif. Pengantar Synthetic Aperture Radar Spektrum Gelombang Pengantar Synthetic Aperture Radar Bambang H. Trisasongko Department of Soil Science and Land Resources, Bogor Agricultural University. Bogor 16680. Indonesia. Email: trisasongko@live.it

Lebih terperinci

BAB IV PEMBAHASAN DAN HASIL

BAB IV PEMBAHASAN DAN HASIL BAB IV PEMBAHASAN DAN HASIL 4.1. Analisis Curah Hujan 4.1.1. Ketersediaan Data Curah Hujan Untuk mendapatkan hasil yang memiliki akurasi tinggi, dibutuhkan ketersediaan data yang secara kuantitas dan kualitas

Lebih terperinci

LAPAN sejak tahun delapan puluhan telah banyak

LAPAN sejak tahun delapan puluhan telah banyak KAJIAN AWAL KEBUTUHAN TEKNOLOGI SATELIT PENGINDERAAN JAUH UNTUK MENDUKUNG PROGRAM REDD DI INDONESIA Oleh : Dony Kushardono dan Ayom Widipaminto LAPAN sejak tahun delapan puluhan telah banyak menyampaikan

Lebih terperinci

TEORI MAXWELL Maxwell Maxwell Tahun 1864

TEORI MAXWELL Maxwell Maxwell Tahun 1864 TEORI MAXWELL TEORI MAXWELL Maxwell adalah salah seorang ilmuwan fisika yang berjasa dalam kemajuan ilmu pengetahuan serta teknologi yang berhubungan dengan gelombang. Maxwell berhasil mempersatukan penemuanpenumuan

Lebih terperinci

BAHAN AJAR : PERHITUNGAN KEBUTUHAN TANAMAN

BAHAN AJAR : PERHITUNGAN KEBUTUHAN TANAMAN BAHAN AJAR : PERHITUNGAN KEBUTUHAN TANAMAN Tujuan Pembelajaran Khusus Setelah mengikuti diklat ini peseta diharapkan mampu Menjelaskan tentang kebutuhan air tanaman A. Deskripsi Singkat Kebutuhan air tanaman

Lebih terperinci

RADIASI MATAHARI DAN TEMPERATUR

RADIASI MATAHARI DAN TEMPERATUR RADIASI MATAHARI DAN TEMPERATUR Gerakan Bumi Rotasi, perputaran bumi pada porosnya Menghasilkan perubahan waktu, siang dan malam Revolusi, gerakan bumi mengelilingi matahari Kecepatan 18,5 mil/dt Waktu:

Lebih terperinci

KAJIAN PEMANFAATAN DATA ALOSPALSARDALAM PEMETAAN KELEMBABAN TANAH (THE STUDY OF ALOS PALSAR DATA APPLICATION FOR SOIL MOISTURE ESTIMATION)

KAJIAN PEMANFAATAN DATA ALOSPALSARDALAM PEMETAAN KELEMBABAN TANAH (THE STUDY OF ALOS PALSAR DATA APPLICATION FOR SOIL MOISTURE ESTIMATION) Jurnal Penginderaan Jauh Vol. 9 No. 2 Desember 2012 : 102-113 KAJIAN PEMANFAATAN DATA ALOSPALSARDALAM PEMETAAN KELEMBABAN TANAH (THE STUDY OF ALOS PALSAR DATA APPLICATION FOR SOIL MOISTURE ESTIMATION)

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1. Latar Belakang Kesetimbangan radiasi pada vegetasi hutan adalah ρ + τ + α = 1, di mana α adalah proporsi kerapatan fluks radiasi matahari yang diabsorbsi oleh unit indeks luas daun,

Lebih terperinci

Hidrometeorologi. Pertemuan ke I

Hidrometeorologi. Pertemuan ke I Hidrometeorologi Pertemuan ke I Pengertian Pengertian HIDROMETEOROLOGI Adalah ilmu yang mempelajari hubungan antara unsur unsur meteorologi dengan siklus hidrologi, tekanannya pada hubungan timbal balik

Lebih terperinci

BAB III DATA DAN METODOLOGI

BAB III DATA DAN METODOLOGI BAB III DATA DAN METODOLOGI 3.1 Data Dalam tugas akhir ini data yang di gunakan yaitu data meteorologi dan data citra satelit ASTER. Wilayah penelitian tugas akhir ini adalah daerah Bandung dan sekitarnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Kebakaran Hutan BAB II TINJAUAN PUSTAKA 2.1.1 Definisi dan Tipe Kebakaran Hutan dan Lahan Kebakaran hutan adalah sebuah kejadian terbakarnya bahan bakar di hutan oleh api dan terjadi secara luas tidak

Lebih terperinci

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air.

BAB I SIKLUS HIDROLOGI. Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. BAB I SIKLUS HIDROLOGI A. Pendahuluan Ceritakan proses terjadinya hujan! Dalam bab ini akan dipelajari, pengertian dasar hidrologi, siklus hidrologi, sirkulasi air dan neraca air. Tujuan yang ingin dicapai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Hidrologi Siklus hidrologi menunjukkan gerakan air di permukaan bumi. Selama berlangsungnya Siklus hidrologi, yaitu perjalanan air dari permukaan laut ke atmosfer kemudian ke

Lebih terperinci

Gambar 11. Citra ALOS AVNIR-2 dengan Citra Komposit RGB 321

Gambar 11. Citra ALOS AVNIR-2 dengan Citra Komposit RGB 321 V. HASIL DAN PEMBAHASAN 5.1. Analisis Spektral Citra yang digunakan pada penelitian ini adalah Citra ALOS AVNIR-2 yang diakuisisi pada tanggal 30 Juni 2009 seperti yang tampak pada Gambar 11. Untuk dapat

Lebih terperinci

1. BAB I PENDAHULUAN PENDAHULUAN

1. BAB I PENDAHULUAN PENDAHULUAN 1. BAB I PENDAHULUAN PENDAHULUAN 1.1. Latar Belakang Peta menggambarkan data spasial (keruangan) yang merupakan data yang berkenaan dengan lokasi atau atribut dari suatu objek atau fenomena di permukaan

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Elektromagnetik Teori gelombang elektromagnetik pertama kali dikemukakan oleh James Clerk Maxwell (83 879). Hipotesis yang dikemukakan oleh Maxwell, mengacu pada tiga aturan dasar listrik-magnet

Lebih terperinci

BKM IV. HASIL DAN PEMBAHASAN Parameter dan Kurva Infiltrasi

BKM IV. HASIL DAN PEMBAHASAN Parameter dan Kurva Infiltrasi % liat = [ H,( T 68),] BKM % debu = 1 % liat % pasir 1% Semua analisis sifat fisik tanah dibutuhkan untuk mengetahui karakteristik tanah dalam mempengaruhi infiltrasi. 3. 3... pf pf ialah logaritma dari

Lebih terperinci

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan

PENDAHULUAN. Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan PENDAHULUAN Latar Belakang Air di dunia 97,2% berupa lautan dan 2,8% terdiri dari lembaran es dan gletser (2,15%), air artesis (0,62%) dan air lainnya (0,03%). Air lainnya ini meliputi danau air tawar

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Berkurangnya jumlah curah hujan di bawah normal pada suatu periode atau biasa disebut dengan kekeringan meteorologis merupakan indikasi pertama yang selanjutnya mulai

Lebih terperinci

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA I. PENDAHULUAN 1.1 Latar Belakang Sinar matahari yang sampai di bumi merupakan sumber utama energi yang menimbulkan segala macam kegiatan atmosfer seperti hujan, angin, siklon tropis, musim panas, musim

Lebih terperinci

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993).

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993). batas topografi yang berarti ditetapkan berdasarkan aliran air permukaan. Batas ini tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER)

HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT HIDROMETEOROLOGI Tatap Muka Ketiga (ATMOSFER) 1. Pengertian Atmosfer Planet bumi dapat dibagi menjadi 4 bagian : (lithosfer) Bagian padat

Lebih terperinci

Latihan Soal UAS Fisika Panas dan Gelombang

Latihan Soal UAS Fisika Panas dan Gelombang Latihan Soal UAS Fisika Panas dan Gelombang 1. Grafik antara tekanan gas y yang massanya tertentu pada volume tetap sebagai fungsi dari suhu mutlak x adalah... a. d. b. e. c. Menurut Hukum Gay Lussac menyatakan

Lebih terperinci

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA)

HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) HIDROMETEOROLOGI Tatap Muka Kelima (SUHU UDARA) Dosen : DR. ERY SUHARTANTO, ST. MT. JADFAN SIDQI FIDARI, ST., MT 1. Perbedaan Suhu dan Panas Panas umumnya diukur dalam satuan joule (J) atau dalam satuan

Lebih terperinci

BAB III GROUND PENETRATING RADAR

BAB III GROUND PENETRATING RADAR BAB III GROUND PENETRATING RADAR 3.1. Gelombang Elektromagnetik Gelombang elektromagnetik adalah gelombang yang terdiri dari medan elektrik (electric field) dan medan magnetik (magnetic field) yang dapat

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Pembuatan algoritma empiris klorofil-a Tabel 8, Tabel 9, dan Tabel 10 dibawah ini adalah percobaan pembuatan algoritma empiris dibuat dari data stasiun nomor ganjil, sedangkan

Lebih terperinci

I. PENDAHULUAN 1.1. Latar Belakang

I. PENDAHULUAN 1.1. Latar Belakang 1 I. PENDAHULUAN 1.1. Latar Belakang Di Indonesia seringkali terjadi bencana alam yang sering mendatangkan kerugian bagi masyarakat. Fenomena bencana alam dapat terjadi akibat ulah manusia maupun oleh

Lebih terperinci

Universitas Gadjah Mada

Universitas Gadjah Mada II. DAUR HIDROLOGI A. Siklus Air di Bumi Air merupakan sumberdaya alam yang sangat melimpah yang tersebar di berbagai belahan bumi. Di bumi terdapat kurang lebih 1,3-1,4 milyard km 3 air yang terdistribusi

Lebih terperinci

III. METODE PENELITIAN. Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung

III. METODE PENELITIAN. Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilaksanakan di lingkungan Masjid Al-Wasi i Universitas Lampung pada bulan Juli - September 2011. 3.2 Alat dan Bahan Alat dan bahan yang

Lebih terperinci

Pemanasan Bumi. Suhu dan Perpindahan Panas

Pemanasan Bumi. Suhu dan Perpindahan Panas Pemanasan Bumi Meteorologi Suhu dan Perpindahan Panas Suhu merupakan besaran rata- rata energi kine4k yang dimiliki seluruh molekul dan atom- atom di udara. Udara yang dipanaskan akan memiliki energi kine4k

Lebih terperinci

Luas Luas. Luas (Ha) (Ha) Luas. (Ha) (Ha) Kalimantan Barat

Luas Luas. Luas (Ha) (Ha) Luas. (Ha) (Ha) Kalimantan Barat II. TINJAUAN PUSTAKA 2.1. Hutan Hujan Tropis Hujan hujan tropis adalah daerah yang ditandai oleh tumbuh-tumbuhan subur dan rimbun serta curah hujan dan suhu yang tinggi sepanjang tahun. Hutan hujan tropis

Lebih terperinci

Radio dan Medan Elektromagnetik

Radio dan Medan Elektromagnetik Radio dan Medan Elektromagnetik Gelombang Elektromagnetik Gelombang Elektromagnetik adalah gelombang yang dapat merambat, Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Kekeringan

II. TINJAUAN PUSTAKA. 2.1 Kekeringan II. TINJAUAN PUSTAKA 2.1 Kekeringan Kekeringan (drought) secara umum bisa didefinisikan sebagai kurangnya persediaan air atau kelembaban yang bersifat sementara secara signifikan di bawah normal atau volume

Lebih terperinci