Universitas Sumatera Utara

Ukuran: px
Mulai penontonan dengan halaman:

Download "Universitas Sumatera Utara"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Sistem Pendinginan Absorpsi Prinsip pendinginan absorpsi telah di kenal sejak awal tahun 1800-an. Misalnya proses pendinginan absorpsi yang dilaporkan oleh John Leslie pada tahun Tetapi mesin pending sistem absorpsi yang pertama direalisasikan dan dipatenkan adalah karya seorang engineer Francis, Ferdinand P.E. Carre pada tahun Mesin sistem absorpsi pertama ini bekerja secara intermittent (tidak kontiniu) dengan menggunakan pasangan amoniak dengan air, yang dapat menghasilkan es dalam jumlah kecil. Pada saat itu Carre telah melakukan pengembangan beberapa kali terhadap mesinnya dan hasil terbaik yang pernah dilaporkannya adalah dapat memproduksi es sampai 100 kg/jam (pada mesin generasi ke 5). Perbedaan utama kedua siklus tersebut adalah gaya yang menyebabkan terjadinya perbedaan tekanan antara tekanan penguapan dan tekanan kondensasi serta cara perpindahan uap dari wilayah bertekanan rendah ke wilayah bertekanan tinggi. Pada sistem pendingin kompresi uap digunakan kompresor, sedangkan pada sistem pendingin absorpsi digunakan absorber dan generator. Uap bertekanan rendah diserap di absorber, tekanan ditingkatkan dengan pompa dan pemberian panas di generator sehingga absorber dan generator dapat menggantikan fungsi kompresor secara mutlak. Untuk melakukan proses kompresi tersebut, sistem pendingin kompresi uap memerlukan masukan kerja mekanik sedangkan sistem pendingin absorpsi memerlukan masukan energi panas. Oleh sebab itu, siklus kompresi uap sering disebut sebagai siklus yang digerakkan dengan kerja (work operated) dan siklus absorpsi disebut sebagai siklus yang digerakkan dengan panas (Heat operated). Salah satu keistimewaan siklus ini adalah panas yang digunakan untuk menjalankan siklus dapat berupa sumber panas yang temperaturnya kurang dari 200 o C (Cengel, 1989). Sumber panas seperti ini adalah mudah untuk didapatkan secara gratis di sekitar kita seperti, panas buang dari knalpot dan bahkan energi matahari. Sumber energi untuk mesin siklus absorpsi dapat berupa :

2 Pembakaran dengan bahan bakar (direct-fired), dimana bahan bakar yang digunakan dapat berupa minyak bumi dan gas. Pada sistem pembakaran langsung diperlukan peralatan burner untuk pembakaran bahan bakarnya. Uap (steam-fired), tenaga yang dihasilkan berasal dari uap panas (steam) yang biasanya dihasilkan oleh steam boiler. Air panas (hot water-fired) sumber air panas. Panas buang (exaust), baik kendaraan maupun pabrik Prinsip Kerja Siklus Absorpsi Dasar siklus absorpsi disajikan pada gambar 2.1 Pada gambar ditunjukkan adanya dua tingkat tekanan yang bekerja pada sistem, yaitu tekanan rendah yang meliputi proses penguapan (di evaporator) dan penyerapan (di absorber), dan tekanan tinggi yang meliputi proses pembentukan uap (di generator) dan pengembunan (di kondensor). Siklus absorpsi juga menggunakan dua jenis zat yang umumnya berbeda, zat pertama disebut penyerap sedangkan yang kedua disebut refrijeran. Selanjutnya, efek pendinginan yang terjadi merupakan akibat dari kombinasi proses pengembunan dan penguapan kedua zat pada kedua tingkat tekanan tersebut. Proses yang terjadi di evaporator dan kondensor sama dengan pada siklus kompresi uap Gambar 2.1 Sistem refrigrasi absorpsi sederhana (Sumber : Miller, 2006; Moran, 1998; Shan, 1991)

3 Kerja siklus secara keseluruhan adalah sebagai berikut : Proses 1-2/1-3 : Larutan encer campuran zat penyerap dengan refrijeran (konsentrasi zat penyerap rendah) masuk ke generator pada tekanan tinggi. Di generator panas dari sumber bersuhu tinggi ditambahkan untuk menguapkan dan memisahkan refrijeran dari zat penyerap, sehingga terdapat uap refrijeran dan larutan pekat zat penyerap. Larutan pekat campuran zat penyerap mengalir ke absorber dan uap refrijeran mengalir ke kondensor. Proses 2-7 : Larutan pekat campuran zat penyerap dengan refrijeran (konsentrasi zat penyerap tinggi) kembali ke absorber melalui katup cekik. Penggunaan katup cekik bertujuan untuk mempertahankan perbedaan tekanan antara generator dan absorber. Proses 3-4 : Di kondensor, uap refrijeran bertekanan dan bersuhu tinggi diembunkan, panas dilepas ke lingkungan dengan menggunakan kipas angin, dan terjadi perubahan fase refrijeran dari uap ke cair. Dari kondensor dihasilkan refrijeran cair bertekanan tinggi dan bersuhu rendah. Proses 4-5 : Tekanan tinggi refrijeran cair diturunkan dengan menggunakan katup cekik (katup ekspansi) dan dihasilkan refrijeran cair bertekanan dan bersuhu rendah yang selanjutnya dialirkan ke evaporator. Proses 5-6 : Di evaporator, refrijeran cair mengambil panas dari lingkungan yang akan didinginkan dan menguap sehingga terjadi uap refrijeran bertekanan rendah. Proses 6-8/7-8 : Uap refrijeran dari evaporator diserap oleh larutan pekat zat penyerap di absorber dan membentuk larutan encer zat penyerap. Jika proses penyerapan tersebut terjadi secara adiabatik, terjadi peningkatan suhu campuran larutan yang pada gilirannya akan menyebabkan proses penyerapan uap terhenti. Agar proses penyerapan berlangsung terus-menerus, absorber didinginkan dengan air yang mengambil dan melepaskan panas tersebut ke lingkungan. Proses 8-1 : Pompa menerima larutan cair bertekanan rendah dari absorber, meningkatkan tekanannya, dan mengalirkannya ke generator sehingga proses berulang secara terus menerus

4 Gambar 2.2 Diagram p-h siklus kompresi uap dan siklus absorpsi (Sumber : Miler, 2006; Moran, 1998) Pada siklus pertama,setelah refrijeran menguap dari evaporator di titik 1. Uap ini akan masuk ke siklus kedua dan keluar ke titik 2 pada kondisi uap kering (super heat) dan tekanan tinggi. Setelah di titik 2, uap refrijeran masuk masuk ke kondensor dan melepas panas ke lingkungan. Proses pelepasan panas ini terjadi secara isobarik, dan akhirnya refrijeran berubah menjadi cair di titik 3. Kemudian terjadi penurunan tekanan secara adiabatik. Pada saat tekanan tekanan turun temperatur juga akan turun dan sebagian cairan akan berubah menjadi uap di titik 4. Selanjutnya refrijeran akan melakukan fungsi refrigerasi di evaporator dan akhirnya menguap, kembali ke titik 1, dan siklus akan berulang (Moran, 1998). Sebagai catatan siklus absorpsi akan sama dengan siklus kompresi uap, pada siklus dari titik Perbedaannya adalah bagaimana memindahkan refrijeran dari kondisi titik 1 ke kondisi titik 2. Pada siklus kompresi uap tugas ini dilakukan oleh kompresor dengan menggunakan energi mekanik, sementara pada siklus absorpsi tugas ini dilakukan oleh generator dan absorber dengan menggunakan panas sebagai energi masukan utama dan sebagian kecil kerja melalui pompa. Pada siklus kedua, uap refrijeran yang selesai melakukan tugasnya dari siklus pertama akan masuk ke absorber. Uap ini akan diikat oleh larutan yang pekat (absorben konsentrasi tinggi), di titik 5. Proses ikatan kimia ini akan melepas sejumlah panas ke lingkungan. Sebagai hasilnya akan dihasilkan larutan

5 yang lebih encer di titik 6. Larutan ini kemudian akan dipompakan ke generator oleh pompa sehingga tekanannya akan naik. Sebagai catatan, untuk membuat proses ini dapat terjadi rasio tekanan pada generator atau kondensor dan absorber atau evaporator harus diatur cukup tinggi Komponen Siklus Absorpsi Mesin pendingin absorpsi bekerja secara siklus dimana terdapat beberapa komponen yang saling berhubungan satu sama lain diantaranya sebgai berikut : Generator Pada sikus absorpsi generator berperan untuk menaikkan tekanan serta memberikan kalor terhadap larutan amonia-air sehingga uap amonia terpisah dari absorbent. Generator akan menghasilkan uap amonia bertekanan tinggi yang selanjutnya masuk ke kondensor (Cengel, 1989). Absorber Absorber merupakan wadah untuk proses pelarutan uap amonia dengan absorbent sekaligus sebagai alat penukar kalor untuk membuang panas yang dihasilkan selama proses absorpsi. Absorber memiliki dua sumber masukan yaitu uap amonia dari evaporator dan larutan konsentrasi lemah dari generator, larutan yang dihasilkan dari absorber adalah larutan amonia konsentrasi tinggi yang akan di pompakan ke generator (Miller, 2006). Kondensor Tugas kondensor pada siklus absorpsi sama halnya pada siklus kompresi uap yaitu membuang panas ke lingkungan dengan media pendingin udara yang di alirkan oleh kipas ke sisi pipa kondensor. Pada kondensor terjadi perubahan fasa yaitu dari fasa uap menjadi fasa cair, refrijeran cair dengan tekanan tinggi selanjutnya masuk menuju katup ekspansi (Miller, 2006). Evaporator Evaporator bertugas untuk menyerap panas dari lingkungan yang akan di dinginkan,proses di evaporator merupakan kebalikan dari kondensor, pada evaporator terjadi perubahan fasa dari refrijeran dimana akibat proses penyerapan kalor dari lingkungan, refrijeran akan berubah dari cair menjadi uap dengan tekanan yang sama. Uap refrijeran ini selanjutnya masuk menuju absorber (Miller, 2006).

6 Katup ekspansi Katup ekspansi adalah komponen siklus absorpsi yang berfungsi untuk menurunkan tekanan dari refrijeran setelah keluar dari kondensor akibat dari penurunan tekan ini temperatur dari refrijeran juga akan menurun sesuai dengan penurunan tekanan (Miller, 2006) Perbedaan Sistem Absorpsi dengan Sistem Kompresi Uap (SKU) Siklus absorpsi hampir sama dalam beberapa hal dengan siklus kompresi uap. Siklus refrigerasi beroperasi dengan peralatan seperti kondensor, katup ekspansi, dan evaporator. Perbedaan yang mendasar hanyalah pada cara menaikkan uap tekanan rendah dari evaporator menjadi uap tekanan tinggi dan dialirkan ke kondensor. Sistem kompresi uap menggunakan kompresor untuk keperluan tersebut. Sedangkan pada sistem refrigerasi absorpsi menggunakan absorber-generator untuk mengganti peran kompresor pada SKU (Moran, 1998). Prinsip sederhana sistem absorpsi yaitu: pertama- tama, sistem absorpsi menyerap uap tekanan rendah ke dalam suatu zat cair penyerap (absorben) yang cocok dan merupakan pasangan biner dari refrijeran yang digunakan. Proses ini terjadinya sepenuhnya di absorber. Yang terkandung di dalam proses absorpsi yaitu konversi (perubahan) dari uap menjadi cair, Karena proses ini sama dengan kondensasi maka selama proses berjalan,kalor dilepaskan. Tahap berikutnya yaitu menaikkan tekanan zat cair dengan pompa ke generator. Dan tahap akhir adalah memanaskan zat cair penyerap dengan cara pemberian kalor sehingga uap tersebut memiliki tekanan yang tinggi dan siap untuk dialirkan ke kondensor. 2.2 Kombinasi Refrijeran Absorber pada Sistem Pendinginan Absorpsi Terdapat beberapa kriteria yang harus dipenuhi oleh kombinasi refrijeran dengan zat penyerap untuk layak digunakan pada mesin pendingin absorpsi. Diantaranya adalah : a. Zat penyerap harus mempunyai nilai afinitas (pertalian) yang kuat dengan uap refrijeran, dan keduanya harus mempunyai daya larut yang baik pada kisaran suhu kerja yang diinginkan. b. Kedua cairan tersebut, baik masing-masing maupun hasil campurannya, harus aman, stabil, dan tidak korosif.

7 c. Secara ideal, kemampuan penguapan zat penyerap harus lebih rendah dari refrijeran sehingga refrijeran yang meninggalkan generator tidak mengandung zat penyerap d. Refrijeran harus mempunyai panas laten penguapan yang cukup tinggi sehingga laju aliran refrijeran yang harus dicapai tidak terlalu tinggi e. Tekanan kerja kedua zat harus cukup rendah (mendekati tekanan atmosfir) untuk mengurangi berat alat dan menghindari kebocoran ke lingkungannya Saat ini, terdapat dua kombinasi refrijeran-zat penyerap yang umum digunakan, yaitu air-litium bromida (H2O-LiBr) dan amonia-air (NH3-H2O). Pada kombinasi pertama, air bertindak sebagai refrijeran dan litium bromida sebagai zat penyerap, sedang pada kombinasi kedua, amonia bertindak sebagai refrijeran dan air sebagai zat penyerap. 1) Sistem Litium Bromida Air Sistem litium bromida-air banyak digunakan untuk pengkondisian udara dimana suhu evaporasi berada di atas 0 ºC. Litium Bromida (LiBr) adalah suatu kristal garam padat, yang dapat menyerap uap air. Larutan cair yang terjadi memberi tekanan uap yang merupakan fungsi suhu dan konsentrasi larutan. Hubungan antara entalpi dengan persentase Litium-Bromida dalam larutan LiBr pada berbagai suhu larutan. Proses terjadi kristalisasi larutan LiBr-H2O, yaitu pada keadaan yang mana larutan mengalami pemadatan. Proses yang terjadi pada wilayah melewati batas kristalisasi akan mengakibatkan pembentukan lumpur padat dan penyumbatan sehingga mengganggu aliran di dalam pipa. 2) Sistem Air Amonia Sistem amonia-air digunakan secara luas untuk mesin pendingin berskala kecil (perumahan) maupun industri, yang mana suhu evaporasi yang dibutuhkan mendekati atau di bawah 0 ºC. Sistem amonia-air mempunyai hampir seluruh kriteria yang diperlukan di atas, kecuali bahwa zat-zat tersebut dapat bersifat korosif terhadap tembaga dan alloynya, serta

8 sifat amonia yang sedikit beracun sehingga membatasi penggunaannya untuk pengkondisian udara. Kelemahan sistem amonia-air yang paling utama adalah air yang juga mudah menguap sehingga amonia yang berfungsi sebagai refrijeran masih mengandung uap air pada saat keluar dari generator dan masuk ke evaporator melalui kondensor. Keadaan ini dapat menyebabkan uap air meninggalkan panas di evaporator dan meningkatkan suhunya sehingga menurunkan efek pendinginan. Untuk menghindari hal itu, mesin pendingin absorpsi dengan sistem amonia-air umumnya dilengkapi dengan rectifier dan analyzer. Amonia yang masih mengandung uap air dari generator melalui rectifier, suatu mekanisme yang bekerja seperti kondensor akibat adanya arus balik uap air dari analyzer. Di sini, uap air yang mempunyai suhu jenuh yang lebih tinggi diembunkan dan dikembalikan ke generator. Selanjutnya amonia dan sejumlah kecil uap air diteruskan ke analyzer, dimana uap air dan sebagian kecil amonia diembunkan dan dikembalikan ke generator melalui rectifier, sedangkan amonia diteruskan ke kondensor. Analyzer pada prinsipnya adalah suatu kolom distilasi, yang umumnya menggunakan air pendingin dari kondensor sebagai media pendingin. Untuk dapat menghitung penampilan panas di dalam siklus pendinginan absorpsi maka diperlukan data entalpi tiap kombinasi refrijeran-zat penyerap yang digunakan. Perlu diperhatikan bahwa pada diagram tersebut konsentrasi yang ditunjukkan adalah konsentrasi NH3 di dalam larutan NH3-H2O, meskipun dalam hal ini amonia berfungsi sebagai refrijeran dan air sebagai zat penyerap Absorben Absorben adalah cairan yang dapat melarutkan bahan yang akan diabsorpsi pada permukaannya,baik secara fisik atau dengan reaksi kimia. Absorben harus memenuhi persyaratan yang sangat beragam yaitu : Memiliki daya melarutkan bahan yang akan diabsorpsi yang sebesar mungkin (kebuthan akan cairan lebih sedikit, volume alat lebih kecil)

9 Sedapat mungkin sangat reaktif Memiliki tekanan uap yang tinggi Mempunyai viskositas yang rendah Stabil secara termis dan murah 2.3 Refrijeran Refrijeran adalah zat yang mengalir dalam mesin pendingin (refrigerasi) atau mesin pengkondisian udara. Zat ini berfungsi untuk menyerap panas dari benda atau udara yang didinginkan dan membawanya kemudian membuangnya ke udara sekeliling di luar benda (Shan, 1991). Berdasarkan jenis senyawanya, refrijeran dapat dikelompokkan menjadi 7 kelompok yaitu sebagai berikut : 1. Kelompok refrijeran senyawa halocarbon. Kelompok refrijeran senyawa halocarbon diturunkan dari hidrokarbon (HC) yaitu metana (CH 4 ), etana (C 2 H 6 ), atau dari propane (C 3 H 8 ) dengan mengganti atom-atom hydrogen dengan unsur-unsur halogen seperti khlor (Cl), fluor (F), atau brom (Br). Jika seluruh atom hydrogen tergantikan oleh atom Cl dan F maka refrijeran yang dihasilkan akan terdiri dari atom khlor, fluor, dan karbon. Refrijeran ini disebut refrijeran chlorofluorocarbon (CFC). Jika hanya sebagian saja atom hydrogen yang digantikan oleh Cl dan atau F maka refrijeran yang terbentuk disebut hydrochlorofluorocarbon (HCFC). Refrijeran halocarbon yang tidak mengandung atom khlor disebut hydrofluorocarbon (HFC). 2. Kelompok refrijeran senyawa organik cyclic. Kelompok refrijeran ini diturunkan dari butana. Aturan penulisan nomor refrijeran adalah sama dengan cara penulisan refrijeran halocarbon tetapi ditambahkan huruf C sebelum nomor. Contoh dari kelompok refrijeran ini adalah: 1) R-C316 C 4 Cl 2 F 6 1,2-dichlorohexafluorocyclobutane 2) R-C317 C 4 ClF 7 chloroheptafluorocyclobutane 3) R-318 C 4 F 8 octafluorocyclobutane

10 3. Kelompok refrijeran campuran zeotropik. Kelompok refrijeran ini merupakan refrijeran campuran yang bias terdiri dari campuran refrijeran CFC, HCFC, HFC, dan HC. Refrijeran yang terbentuk merupakan campuran tak bereaksi yang masih dapat dipisahkan dengan cara destilasi. 4. Kelompok refrijeran campuran Azeotropik. Kelompok refrijeran ini adalah refrijeran campuran tak bereaksi yang tidak dapat dipisahkan dengan destilasi. Refrijeran ini pada konsentrasi, tekanan dan temperatur tertentu bersifat azeotropik, yaitu mengembun dan menguap pada temperatur yang sama, sehingga mirip dengan refrijeran tunggal. Namun demikian pada kondisi (konsentrasi, temperatur atau tekanan) yang lain refrijeran ini bisa saja menjadi bersifat zeotropik. 5. Kelompok refrijeran senyawa organik biasa. Kelompok refrijeran ini sebenarnya terdiri dari unsur C, H dan lainnya. Namun demikian cara penulisan nomornya tidak dapat mengikuti cara penomoran refrijeran halocarbon karena jumlah atom H nya jika ditambah dengan 1 lebih dari 10 sehingga angka kedua pada nomor refrijeran menjadi dua digit. Sebagai contoh butane (C 4 H 10 ), jika dipaksakan dituliskan sesuai dengan cara penomoran refrijeran halocarbon, maka refrijeran ini akan bernomor R-3110, sehingga akan menimbulkan kerancuan. 6. Kelompok refrijeran senyawa anorganik. Kelompok refrijeran ini diberi nomor yang dimulai dengan angka 7 dan digit selanjutnya menyatakan berat molekul dari senyawanya. Contoh dari refrijeran ini adalah: 1) R-702 : hydrogen 2) R-704 : helium 3) R-717 : amonia 4) R-718 : air 5) R-744 : oksigen

11 7. Kelompok refrijeran senyawa organik tak jenuh Kelompok refrijeran ini mempunyai nomor 4 digit, dengan menambahkan angka keempat yang menunjukkan jumlah ikatan rangkap di depan ketiga angka yang sudah dibahas dalam sistem penomoran refrijeran halocarbon Amonia Amonia adalah senyawa kimia dengan rumus NH 3. Biasanya senyawa ini didapati berupa gas dengan bau tajam yang khas I (disebut bau amonia). Sifat amonia dapat dilihat seperti tabel di bawah ini. Tabel 2.1 Sifat Amonia Sifat Amonia Massa jenis 682 kg/m 3, cair Titik lebur -77,7 o C Titik didih o C Keasaman 9,25 Panas Laten Penguapan (Le) 1357 kj/kg Kelarutan dalam air 89,9g/100ml pada 0 0 c (Sumber : Chang, 2003) Walaupun amonia memberi sumbangan penting bagi keberadaan nutrisi di bumi, amonia sendiri adalah senyawa kaustik dan dapat merusak kesehatan. Kontak dengan gas amonia berkonsentrasi tinggi dapat menyebabkan kerusakan paru-paru dan bahkan kematian. Sekalipun amonia diatur sebagai gas tak mudah terbakar, amonia masih digolongkan sebagai bahan beracun jika terhirup. 2.4 Alat Penukar Kalor Alat penukar kalor adalah alat yang memungkinkan terjadinya perpindahan panas diantara dua fluida yang memiliki temperatur yang berbeda tanpa mencampurkan kedua fluida tersebut. Alat penukar kalor biasanya digunakan secara praktis didalam aplikasi yang luas, seperti dalam kasus pemanasan dan sistem pengkondisian udara, proses-proses kimia dan proses pembangkitan tenaga. Alat penukar kalor berbeda dengan ruangan pencampuran

12 yakni alat penukar kalor tidak memperbolehkan kedua fluida bercampur. Sebagai contoh, pada radiator mobil, panas dipindahkan dari air panas yang mengalir melalui pipa yang terdapat pada radiator yang ditambahkan plat pada jarak yang kecil dengan melewatkan udara diantaranya. Perpindahan panas pada alat penukar kalor biasanya terdiri dari konveksi di setiap fluida dan konduksi pada dinding yang memisahkan kedua fluida. Pada saat menganalisa alat penukar kalor, sangat diperlukan untuk menggunakan koefisien perpindahan panas menyeluruh U yang memungkinkan untuk menghitung seluruh efek dari perpindahan panas. Laju perpindahan panas diantara kedua fluida terletak pada alat penukar kalor yang bergantung pada perbedaan temperatur pada suatu titik, yang bervariasi sepanjang alat penukar kalor. Pada saat menganalisis alat penukar kalor, biasanya bekerja dengan menggunakan logarithmic mean temperatur difference LMTD, yang sebanding dengan perbedaan temperatur rata-rata diantara kedua fluida sepanjang alat penukar kalor. Ketika dua temperatur tidak diketahui kita dapat menganalisisnya dengan metode keefektifan-ntu Jenis Alat Penukar Kalor Secara umum, alat penukar kalor dapat dibagi berdasarkan fungsinya yakni : a. Chiller, alat penukar kalor ini digunakan untuk mendinginkan fluida sampai pada temperatur yang rendah. Temperatur fluida hasil pendinginan didalam chiller yang lebih rendah bila dibandingkan dengan fluida pendinginan yang dilakukan dengan pendingin air. Untuk chiller ini media pendingin biasanya digunakan amonia atau Freon. b. Kondensor, alat penukar kalor ini digunakan untuk mendinginkan uap atau campuran uap, sehingga berubah fasa dari uap menjadi cairan. Media pendingin yang dipakai biasanya air atau udara. Uap atau campuran uap akan melepaskan panas latent kepada pendingin, misalnya pada pembangkit listrik tenaga uap yang mempergunakan condensing turbin, maka uap bekas dari turbin akan dimasukkan kedalam kondensor, lalu diembunkan menjadi kondensat.

13 c. Cooler, alat penukar kalor ini digunakan untuk mendinginkan cairan atau gas dengan mempergunakan air sebagai media pendingin. Disini tidak terjadi perubahan fasa, dengan perkembangan teknologi dewasa ini maka pendingin coler mempergunakan media pendingin berupa udara dengan bantuan fan (kipas). d. Evaporator, alat penukar kalor ini digunakan untuk penguapan cairan menjadi uap. Dimana pada alat ini menjadi proses evaporasi (penguapan) suatu zat dari fasa cair menjadi uap. Yang dimanfaatkan alat ini adalah panas latent dan zat yang digunakan adalah air atau refrijeran cair. e. Reboiler, alat penukar kalor ini berfungsi mendidihkan kembali (reboil) serta menguapkan sebagian cairan yang diproses. Adapun media pemanas yang sering digunakan adalah uap atau zat panas yang sedang diproses itu sendiri. f. Heat Exchanger, alat penukar kalor ini bertujuan untuk memanfaatkan panas suatu aliran fluida yang lain. Maka akan terjadi dua fungsi sekaligus, yaitu: Memanaskan fluida Mendinginkan fluida yang panas Suhu yang masuk dan keluar kedua jenis fluida diatur sesuai dengan kebutuhannya (Sitompul, 1993). 2.5 Kondensor Kondensor merupakan bagian dari mesin pendingin yang berfungsi untuk membuang panas dari uap refrijeran. Proses pembuangan panas dari kondensor terjadi karena adanya penurunan refrijeran dari kondisi superheated menuju ke uap jenuh, kemudian terjadi proses perubahan fasa refrijeran yaitu dari fasa uap menjadi fasa cair. Untuk mencairkan uap refrijeran yang bertekanan dan bertemperatur tinggi, diperlukan usaha melepaskan panas sebanyak panas laten (pengembunan) dengan cara mendinginkan uap refrijeran oleh media pendingin. Jumlah panas yang dilepas di dalam kondensor sama dengan jumlah panas yang

14 diserap refrijeran di dalam kondensor dan panas ekuivalen dengan energi yang diperlukan untuk melakukan kerja kompresi. Uap refrijeran yang bertekanan dan bertemperatur tinggi pada akhir kompresi dengan mudah dicairkan dengan menggunakan fluida pendingin seperti udara atau air. Dengan kata lain, uap refrijeran melepaskan kalor laten pengembunan kepada fluida pendingin sehingga refrijeran tadi mengembun dan menjadi cair. Pada siklus ideal tidak terjadi penurunan tekanan dan temperatur dikondensor. Sedangkan pada siklus aktual terjadi penurunan tekanan yang diikuti penurunan temperatur yang terjadi karena gesekan antara refrijeran dengan pipa kondensor Jenis-Jenis Kondensor 1. Kondensor Tabung dan Pipa Horisontal Kondensor tabung dan pipa banyak digunakan pada unit kondensor berukuran kecil sampai besar, unit pendingin air dan penyegar udara paket baik untuk amonia maupun untuk freon. Seperti pada gambar 2.3 di dalam kondensor tabung dan pipa terdapat banyak pipa pendingin, dimana air pendingin mengalir dalm pipa tersebut. Ujung dan pangkal pipa tersebut terkait dengan plat pipa, sedangkan diantara plat pipa dan tutup tabung dipsang sekat-sekat, untuk membagi aliran yang melewati pipa-pipa tersebut tetapi juga untuk mengatur agar kecepatannya cukup tinggi 1 sampai 2 m/detik (Arismunandar, 2002). Gambar 2.3 Kondensor tabung dan pipa bersirip horisontal (Sumber : Hendragani, 2005)

15 Keterangan : 1. Saluran air pendingin keluar 6. Pengukur muka cairan 2. Saluran air pendingin masuk 7. Saluran masuk refrijeran 3. Pelat pipa 8. Tabung keluar refrijeran 4. Pelat distribusi 9. Tabung 5. Pipa bersirip Air pendingin masuk kondensor dari bagian bawah, kemudian masuk ke dalam pipa pendingin dan keluar pada bagian atas. Jumlah saluran air yang terbentuk oleh sekat-sekat itu dinamai jumlah saluran. Jumlah saluran maksimum yang dipakai adalah 12. Tahanan aliaran air pendingin dalam pipa bertambah besar dengan banyaknya jumlah saluran. Ciri-ciri kondensor tabung dan pipa adalah sebagai berikut: 1. Dapat dibuat dengan pipa pendingin bersirip, sehingga relatif berukuran lebih kecil dan ringan. 2. Pipa air dapat dibuat dengan lebih mudah. 3. Bentuknya sederhana (horisontal) dan mudah pemasangannya. 4. Pipa pendingin mudah dibersihkan. 2. Kondensor Tabung dan Koil Gambar 2.4 Kondensor tabung dan koil (Sumber : Hendragani, 2005)

16 Kondensor tabung dan koil banyak digunakan pada unit dengan freon sebagai refrijeran berkapasitas relatif kecil, misalnya pada penyegar udara jenis paket, pendinigin air dan sebagainya, pada gambar 2.4 digambarkan kondensor tabung dan koil dengan koil pipa pendingin didalam tabung yang dipasang pada posisi vertikal koil pipa pendingin tersebut biasanya terbuat dari tembaga, tanpa sirip atau dengan sirip, pipa tersebut mudah dibuat dan murah harganya. Pada kondensor tabung dan koil, air mengalir di dalam pipa pendingin. Endapan dan kerak yang terbentuk di dalam pipa harus dibersihkan dengan menggunakan zat kimia (deterjen). Ciri-ciri kondensor tabung dan koil adalah sebagai berikut : 1. Harganya murah karena mudah pembuatannya. 2. Kompak karena posisi yang vertikal dan pemasangannnya yang mudah. 3. Boleh dikatakan tidak mungkin diganti pipa pendingin, sedangkan pembersihannya harus dihilangkan dengan deterjen. 3. Kondensor dengan Pendingin Udara Kondensor pendingin udara terdiri dari koil pipa pendingin bersirip pelat (pipa tembaga dan sirip aluminium atau pipa tembaga dengan sirip tembaga). Udara mengalir dengan arah yang tegak lurus dengan pada bidang pendingin. Gas refrijeran yang bertemperatur tinggi masuk ke bagian atas dari koil dan secara berangsur-angsur mencair dalam aliran ke bagian bawah koil. Gambar 2.5 Kondensor dengan pendingin udara (Sumber : Hendragani, 2005)

17 Ciri-ciri kondensor pendingin udara adalah sebagai berikut: 1. Tidak memerlukan pipa air pendingin, pompa air dan penampung air, karena tidak menggunakan air. 2. Dapat dipasang dimana saja asal terdapat udara bebas. 3. Tidak mudah terjadi korosi karena permukaan koil kering. 4. Memerlukan pipa refrijeran tekanan tinggi yang panjang karena kondensor biasanya diletakan diluar rumah. 5. Pada musim dingin, tekanan pengembunan perlu dikontrol untuk mengatasi gangguan yang dapat terjadi karena turunnya tekanan pengembunan yang terlalu besar, yang disebabkan oleh temperatur udara atmosfir yang rendah (Hendragani, 2005). 2.6 Perpindahan Panas pada Kondensor Perpindahan panas adalah ilmu yang mempelajari tentang perpindahan energi (dalam bentuk panas) yang terjadi karena adanya perbedaan suhu diantara kedua benda atau material. Ilmu perpindahan kalor melengkapi hukum pertama dan kedua termodinamika (Incropera, 1996), sebagai contoh pada peristiwa pendinginan yang berlangsung pada suatu batangan baja panas yang dicelupkan kedalam air. Dengan termodinamika kita dapat menentukan suhu keseimbangan akhir dari suatu batangan baja, namun termodinamika tidak akan dapat menunjukkan kepada kita berapa lama waktu yang diperlukan untuk mencapai keseimbangan itu atau berapa suhu batangan itu pada saat sebelum tercapainya keseimbangan, sebaliknya ilmu perpindahan kalor dapat membantu kita untuk menentukan suhu batangan baja sebagai fungsi waktu. Jenis-jenis perpindahan panas yang terjadi pada kondensor yaitu : - Konduksi (hantaran) - Konveksi (aliran)

18 2.6.1 Perpindahan Panas Konduksi Perpindahan kalor secara konduksi adalah proses perpindahan kalor dimana kalor mengalir dari daerah yang bersuhu tinggi ke daerah yang bersuhu rendah dalam suatu medium padat atau medium - medium yang berlainan yang bersinggungan secara langsung. Secara umum (Cengel, 1989) laju aliran kalor secara konduksi dapat dihitung dengan rumus sebagai berikut : Keterangan : q qq = kkkk δδδδ δδδδ... (2.1) = laju aliran kalor (watt) (Sumber : Cengel, 1989) k = konduktifitas termal bahan (W/(m 2. 0 C) δδδδ = gradient suhu kearah perpindahn kalor ( 0 C/m) δδδδ A = luas penampang (m 2 ) Tanda minus diselipkan agar memenuhi hukum ke 2 termodinamika yaitu kalor mengalir ke temperatur yang lebih rendah. Arah aliran energi kalor adalah dari titik bersuhu tinggi ke titik bersuhu rendah. Sudah diketahui bahwa tidak semua bahan dapat menghantar kalor sama sempurnanya. Dengan demikian, umpamanya seorang tukang hembus kaca dapat memegang suatu barang kaca, yang beberapa cm lebih jauh dari tempat pegangan itu adalah demikian panasnya, sehingga bentuknya dapat berubah. Akan tetapi seorang pandai tempa harus memegang benda yang akan ditempa dengan sebuah tang. Bahan yang dapat menghantar kalor dengan baik dinamakan konduktor. Penghantar yang buruk disebut isolator. Sifat bahan yang digunakan untuk menyatakan bahwa bahan tersebut merupakan suatu isolator atau konduktor ialah koefisien konduksi termal.

19 Gambar 2.6 Perpindahan panas secara konduksi (Sumber : Cengel, 1989) Apabila nilai koefisien ini tinggi, maka bahan mempunyai kemampuan mengalirkan kalor dengan cepat, untuk bahan isolator koefisien ini bernilai kecil. Gambar diatas adalah proses perpindahan panas secara konduksi. Pada umumnya, bahan yang dapat menghantar arus listrik dengan sempurna (logam) merupakan penghantar yang baik juga untuk kalor dan sebaliknya. Selanjutnya bila diandaikan sebatang besi atau sembarang jenis logam dan salah satu ujungnya diulurkan ke dalam nyala api dapat diperhatikan bagaimana kalor dipindahkan dari ujung yang panas ke ujung yang dingin. Apabila ujung batang logam tadi menerima energi kalor dari api, energi ini akan memindahkan sebagian energi kepada molekul dan elektron yang membangun bahan tersebut. Molekul dan elektron merupakan alat pengangkut kalor di dalam bahan menurut proses perpindahan panas konduksi. Dengan demikian dalam proses pengankutan kalor di dalam bahan, aliran elektron akan memainkan peranan penting. Persoalan yang patut diajukan pada pengamatan ini ialah mengapa kadar alir energi kalor adalah berbeda. Hal ini disebabkan susunan molekul dan juga atom di dalam setiap bahan adalah berbeda. Untuk satu bahan berfasa padat molekulnya tersusun rapat, berbeda dengan satu bahan berfasa gas seperti udara dimana molekul udaranya sangat renggang sekali. Tetapi dibandingkan dengan bahan padat seperti kayu, dan besi, maka molekul besi adalah lebih rapat susunannya daripada molekul kayu (Kreith, 1991). Pada alat penukar kalor dalam hal ini kondensor perpindahan konduksi terjadi pada bagian pipa,tahanan termal yang terjadi pada pipa adalah seperti pada gambar 2.7

20 Gambar 2.7 Mode perambatan panas (Sumber : Cengel, 1989) Perpindahan Panas Konveksi Untuk perancangan kondensor yang digunakan untuk mencari perpindahan kalor adalah secara konveksi, yaitu konveksi paksa aliran dalam dan aliran luar. Konveksi adalah proses transfer panas dengan melibatkan perpindahan massa molekul molekul fluida dari satu tempat ke tempat lainnya. Pada permasalahan kondensor perpindahan panas konveksi terdapat pada dua sisi yaitu : a) Sisi aliran udara (Aliran Luar) Gambar 2.8 Aliran luar (Sumber : Incopera, 1996) Pada persoalan aliran luar tersebut lapisan batas aliran berkembang secara bebas, tanpa batasan yang disebabkan oleh permukaan yang berada di dekatnya. Sehubungan dengan itu akan selalu ada daerah lapisan batas yang berada di sisi luar aliran dimana gradien kecepatan temperatur dapat di abaikan. Sebagai contoh meliputi pergerakan fluida diatas plat datar dimana laju perpindahan panasnya :

21 qq = hoo. AA ss. (TT ss TT ) (2.2) Dimana hoo. AA ss. (TT ss TT ) = mm. CC pp. TT (Sumber : Cengel, 1989) Dimana : ho = Koefisien perpindahan pans konveksi aliran udara (luar) As = Luas permukaan perpindahan kalor Ts = Suhu pada plat T = Suhu larutan amonia q = Laju perpindahan panas b) Sisi Aliran Dalam (uap amonia) Gambar 2.9 Aliran dalam (Sumber : Cengel, 1989) Berbeda dengan aliran luar yang tanpa ada batasan luar,pada aliran dalam seperti halnya yang terjadi didalam pipa adalah sesuatu dimana fluida dibatasi oleh permukaan sehingga lapisan batas tidak dapat berkembang secara bebas seperti halnya pada luar. Laju perpindahan panas aliran dalam : qq = hii. AA ss. (TT ss TT ). (2.3) hi As (Sumber : Cengel, 1989) = Koefisien perpindahan pans konveksi aliran refrijeran = Luas permukaan perpindahan kalor Sifat - Sifat Termodinamika Fluida a) Temperatur rata-rata refrigran TTTT, rr = TT rr,ii+tt rr,oo... (2.4) 2

22 Dimana : Temperatur inlet (T r,i ) Temperatur outlet (T r,o ) b) Mencari Temperatur rata-rata udara TTTT, uu = TT uu,oo +TT uu,ii..(2.5) 2 Dimana : Sifat Aliran Fluida Temperatur inlet (Tu,i) Temperatur outlet (Tu,o) Di alam ini terdapat dua jenis aliran fluida. Pertama dikenal dengan aliran laminar dimana sifatnya tenang, kecepatanya rendah, semua partikel partikelnya mempunyai sifat aliran yang seragam. Kedua adalah aliran turbulen pada aliran ini masing masing partikelnya mempunyai arah kecepatan yang berlainan dan tidak seragam sehingga setiap partikelnya mempunyai arah kecepatan yang berlainan dan tidak seragam sehingga setiap partikelnya mempunyai kesempatan yang sama untuk menyentuh permukaan atau dinding saluran, dengan demikian kesempatan fluida menerima atau mentransfer panas pada dinding pipa menjadi lebih besar. Dalam alat penukar kalor selalu diinginkan agar alirannya turbulen sehingga kapasitas perpindahan panasnya meningkat. Aliran turbulen dapat diperoleh dengan pemasangan baffle atau dengan membuat permukaan dinding saluaran kasar. Jenis aliran turbulen atau laminar dapat ditentukan oleh perhitungan bilangan reynold. Bilangan reynold untuk aliran luar dan dalam pipa dapat didefinisikan dengan menggunakan rumus : Keterangan : Aliran dalam pipa rumus mencari Re adalah : RRRR = DDii.mm rr µ.aa ii..... (2.6) Untuk aliran luar menggunakan rumus : RR ee = ρρ.dd.vv µ ρ = massa jenis (kg/m3) V = kecepatan aliran (m/s) D = diameter pipa (m) µ = viskositas dinamik (kg/m.s)....(2.7) (Sumber : Cengel, 1989)

23 Bilangan Reynolds digunakan sebagai kriteria untuk menunjukkan sifat aliran fluida, apakah aliran termasuk aliran laminar, transisi atau turbulen. Untuk Re < 2000 biasanya termasuk jenis aliran laminar sedangkan untuk 2000 < Re <4000 adalah jenis aliran transisi dan untuk Re> 4000 adalah jenis aliran turbulen. Bilangan nusselt untuk aliran laminar biasanya ditentukan oleh bentuk penampang dari pipa nilainya dibuat dalam bentuk tabel, berikut ketetapan untuk beberapa bilangan nusselt sesuai dengan besar bilangan Reynolds dan bentuk penamapang. - Untuk konveksi aliran dalam perhitungan bilangan Nusselt adalah : NNNN ii = 0,023 (RRRR) 0,8 PPPP 1 3 (2.8) Dengan ketentuan (0,7 Pr 160) - Untuk konveksi aliran luar perhitungan bilangan Nusselt aliran menyilang yaitu : NNNN oo = 0,683 (RRRR) 0,466 (PPPP 1 3).(2.9) (Sumber : Cengel, 1989) 2.7 Laju Perpindahan Kalor pada Kondensor Pada dasarnya laju perpindahan kalor pada kondensor dalam hal ini kondensor dipengaruhi oleh adanya tiga (3) hal, yaitu : 1. Koefisien perpindahan kalor menyeluruh (U) Koefisien perpindahan panas yang terjadi pada kondensor adalah konveksi paksa yang terjadi di dalam dan di luar tube serta konduksi pada tubenya.koefisien perpindahan panas total yang terjadi merupakan kombinsi dari ketiganya. Harga koefisien perpindahan panas menyeluruh ditentukan dengan menggunakan persamaan berikut: UU = 1 ddoo h oo.dd ii + dd oo 2.kk.ln dd oo dd ii + 1 h ii.(2-10) (Sumber : Cengel, 1989) Dengan: U = Koefisien pepindahan panas menyeluruh (W/m 2 o C) hi = Koefisien perpindahan panas sisi refrijeran (W/m 2 o C) h o = Koefisien perpindahan panas sisi udara (W/m 2 o C)

24 D o D i l = Diameter luar pipa (m) = Diameter dalam pipa (m) = Tebal pipa (m) k = Konduktifitas termal pipa (W/m o C) Rf o = Faktor pengotoran sisi luar (m 2 o C/W) Rf i = Faktor pengotoran sisi dalam (m 2 o C/W) Koefisien perpindahan kalor pada masing masing proses perpindahan kalor dapat dijabarkan sebagai berikut : Menghitung nilai koefisien perpindahan panas konveksi bagian dalam (hi). Berdasarkan perhitungan perubahan fasa pada kondensasi digunakan rumus persamaan Cato yaitu : hii = 0,555 gg.ρρ ll (ρρ ll ρρ vv )kk ll 3 µ(tt ssssss TT ss ) Keterangan : h ffff CC pppp (TT ssssss TT ss 0,25... (2.11) hi = Koefisien perpindahan panas konveksi bagian dalam (W/m 2 K) kl,r = Konduktifitas thermal cair refrijeran (W/m 2 K) g = Gaya grafitasi (m/s 2 ) ρl, r = Massa jenis cair refrijeran (kg/m 3 ) ρv, r = Massa jenis uap refrijeran (kg/m 3 ) µl,r = Viskositas dinamik cair refrijeran ( kg/m.s) Tsat = Temperatur saturasi (K) Ts hfg Cpl,r = Temperatur dinding (K) = Kalor laten (kj/kg) = Spesifik thermal cair refrijeran Menghitung nilai koefisien perpindahan panas konveksi bagian luar (ho) h oo = kk DD oo NNNN oo..(2.12) Keterangan : ho = koefisien perpindahan panas konveksi bagian luar (W/m 2 K) k = Kondukt ifitas thermal (W/m 2 0 C) Do= Diameter luar (m)

25 Menghitung Faktor Pengotoran Koefisien Perpindahan Panas Setelah dipakai beberapa lama, permukaan perpindahan kolar penukar kalor mungkin dilapisi oleh endapan yang biasa terdapat dalam aliran, atau permukaan itu mungkin mengalami korosi sebagai akibat interaksi antara fluida dengan bahan yang digunakan dalam kontruksi penukar kalor. Dari kedua hal tersebut, lapisan itu memberikan tahanan termal tambahan terhadap aliran kalor, dan hal ini menyebabkan menurunnya kemampuan kerja alat itu. Pengaruh menyeluruh daripada hal tersebut diatas dinyatakan dengan faktor pengotoran, tahanan pengotoran (R f ). Beberapa besaran faktor pengotoran hasil pengujian dan penelitian sebagai berikut Keterangan : RR ff = 1 h ii 1 h ii.. (2.13) RR ff = 1 h oo 1 h oo (2.14) h ii = Koefisien konveksi internal total (W/m 2 K) h oo = Koefisien konveksi eksternal total (W/m 2 K) Tabel 2.2 Faktor pengotoran beberapa fluida Fluida Air laut, air sungai, air mendidih, air suling Dibawah 50 o C Diatas 50 o C 0,0001 0,0002 Bahan bakar 0,0009 Uap air (bebas minyak) 0,0001 Refrijeran (cair) 0,0002 Refrijeran (gas) 0,0004 Alkohol (gas) 0,0001 Udara 0,0004 (Sumber : Janna, 2000) 2. Luas perpindahan panas (A) Menghitung luas perpindahan panas (A) RR rr, mm 2, ⁰CC/WW

26 Luas permukaan perpindahan panas permukaan dalam pipa (Ai) AA ii = π DD 4 ii 2...(2.15) Luas permukaan perpindahan panas permukaan luar pipa (Ao) AA oo = ππ. DD oo. LL.(2.16) Luas permukaan penukar kalor total dapat juga dihitung berdasarkan persamaan : Luas permukaan penukar panas (Atotal) QQQQ = UU. AA tttttttttt. ΔΔΔΔ LLLLLLLL... (2.17) AA tttttttttt = Keterangan : QQQQ UU oo. ΔΔΔΔ LLLLLLLL.....(2.18) Ao = Luas permukaan total,dalam (m 2 ) Ai = Luas permukaan total,luar (m 2 ) L = Panjang pipa (m) U = Koefisien perpindahan panas menyeluruh (W/m 2 K) ΔT LMTD = Beda suhu rata-rata log (Sumber : Cengel, 1989) 3. Beda suhu rata-rata log atau Logarithmic Mean Temperatur Difference (ΔT LMTD) Di dalam kondensor, banyaknya perpindahan kalor dihitung berdasarkan perbedaan temperatur logaritmik. Hal tersebut dilukiskan pada gambar Makin besar perbedaan temperatur rata-rata, makin kecil ukuran penukar kalor (luas bidang perpindahan kalor) yang bersangkutan.

27 Gambar 2.10 Selisih perbedaan temperatur rata-rata logaritmik kondensor ΔΔΔΔ 1 = TT rr,oo TT uu,ii.....(2.19) ΔΔΔΔ 2 = TT rr,ii TT uu,oo....(2.20) ΔΔ LLLLLLLL = ΔΔΔΔ 2 ΔΔΔΔ 1 LLLL ΔΔΔΔ 2 ΔΔΔΔ 1 Keterangan :.....(2.21) Tr,i = Temperatur refrijeran masuk ( o C) Tr,o = Temperatur refrijeran keluar ( o C) Tu,i = Temperatur udara masuk ( o C) Tu,o = Temperatur udara keluar ( o C) Dimana LMTD ini disebut beda suhu rata-rata log atau beda suhu pada satu ujung kalor dikurangi beda suhu pada ujung lainnya dibagi dengan logaritma alamiah daripada perbandingan kedua beda suhu pada ujung lainnya. Konfigurasi aliran alternative adalah alat penukar panas dimana fluida bergerak dalam arah aliran melintang (cross flow) atau dengan sudut tegak lurus satu sama lainya melalui alat penukar panas tersebut, jika suatu penukar kalor yang bukan jenis pipa ganda digunakan, perpindahan kalor dihitung dengan menerapkan faktor koreksi terhadap LMTD untuk pipa susunan ganda aliran lawan arah dengan suhu fluida panas dan dingin yang sama, maka persamaan perpindahan panas menjadi Q = U.A.ΔT LMTD (Cengel, 1989). 2.8 Aliran dan Distribusi Temperatur pada Kondensor Untuk dapat menggambarkan aliran dan distribusi temperature pada kondensor itu, maka harus diketahui proses apa yang terjadi dalam kondensor itu. Dalam kondensor terjadi perubahan fase uap menjadi fase cair. Ini terjadi karena uap basah (saturated steam) itu memberikan panas yang dikandung ( latent heat ) kepada udara pendingin. Temperatur udara pendingin biasanya sama dengan temperatur lingkungan. Diagram distribusi temperature panjang atau luas tube dapat digambarkan pada gambar 2.11 sebagai berikut :

28 Gambar 2.11 (a) distribusi temperatur panjang (luas) tube pada kondensor aliran paralel, (b) distribusi temperatur panjang (luas) tube pada kondensor aliran berlawanan arah (Sumber : Sitompul, 1993)

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Absorpsi Siklus absorpsi adalah termodinamika yang dapat digunakan sebagai siklus refrigerasi dan pengkondisian udara yang digerakkan oleh energi dalam bentuk panas.

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Absorpsi Siklus absorpsi adalah siklus termodinamika yang dapat digunakan sebagai siklus refrigerasi dan digerakkan oleh energi dalam bentuk panas. Ferdinand Carre seorang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Absorpsi Siklus absorpsi adalah siklus termodinamika yang dapat digunakan sebagai siklus refrijerasi dan digerakkan oleh energi dalam bentuk panas. Ferdinand Carre,seorang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

RANCANG BANGUN KONDENSOR PADA MESIN PENDINGIN MENGGUNAKAN SIKLUS ABSORPSI DENGAN PASANGAN REFRIJERAN ABSORBEN AMONIA - AIR

RANCANG BANGUN KONDENSOR PADA MESIN PENDINGIN MENGGUNAKAN SIKLUS ABSORPSI DENGAN PASANGAN REFRIJERAN ABSORBEN AMONIA - AIR RANCANG BANGUN KONDENSOR PADA MESIN PENDINGIN MENGGUNAKAN SIKLUS ABSORPSI DENGAN PASANGAN REFRIJERAN ABSORBEN AMONIA - AIR Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

ANALISA DESAIN DAN PERFORMA EVAPORATOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

ANALISA DESAIN DAN PERFORMA EVAPORATOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN ANALISA DESAIN DAN PERFORMA EVAPORATOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN Rohmat Abudaris * ) Ir. Alam Baheramsyah, M.Sc. ** ) * ) Mahasiswa Teknik Sistem Perkapalan FTK-ITS ** ) Dosen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant

BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung ( Indirect Cooling System 2.2 Secondary Refrigerant BAB II DASAR TEORI 2.1 Sistem Pendinginan Tidak Langsung (Indirect Cooling System) Sistem pendinginan tidak langsung (indirect Cooling system) adalah salah satu jenis proses pendinginan dimana digunakannya

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin Galuh Renggani Wilis, ST.,MT ABSTRAKSI Pengkondisian udara disebut juga system refrigerasi yang mengatur temperature & kelembaban udara. Dalam beroperasi

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian umum. Refrigerasi adalah aplikasi dari hukum ke dua Termodinamika yang. dinyatakan oleh Clausius.

BAB II DASAR TEORI. 2.1 Pengertian umum. Refrigerasi adalah aplikasi dari hukum ke dua Termodinamika yang. dinyatakan oleh Clausius. 4 BAB II DASAR TEORI 2.1 Pengertian umum Refrigerasi adalah aplikasi dari hukum ke dua Termodinamika yang dinyatakan oleh Clausius. adalah hal yang tidak mungkin untuk membangun suatu alat yang beroperasi

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE

PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PERANCANGAN DAN ANALISA PERFORMANSI COLD STORAGE PADA KAPAL PENANGKAP IKAN DENGAN CHILLER WATER REFRIGERASI ABSORPSI MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) Nama Mahasiswa : Radityo Dwi Atmojo

Lebih terperinci

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008

BAB II DASAR TEORI. Pengujian alat pendingin..., Khalif Imami, FT UI, 2008 BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah proses yang terjadi ketika gas atau cairan berkumpul atau terhimpun pada permukaan benda padat, dan apabila interaksi antara gas atau cairan yang terhimpun

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

BAB II Dasar Teori BAB II DASAR TEORI

BAB II Dasar Teori BAB II DASAR TEORI II DSR TEORI 2. Termoelektrik Fenomena termoelektrik pertama kali ditemukan tahun 82 oleh ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah rangkaian. Di antara kedua

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan

besarnya energi panas yang dapat dimanfaatkan atau dihasilkan oleh sistem tungku tersebut. Disamping itu rancangan tungku juga akan dapat menentukan TINJAUAN PUSTAKA A. Pengeringan Tipe Efek Rumah Kaca (ERK) Pengeringan merupakan salah satu proses pasca panen yang umum dilakukan pada berbagai produk pertanian yang ditujukan untuk menurunkan kadar air

Lebih terperinci

PENDINGINAN KOMPRESI UAP

PENDINGINAN KOMPRESI UAP Babar Priyadi M.H. L2C008020 PENDINGINAN KOMPRESI UAP Pendinginan kompresi uap adalah salah satu dari banyak siklus pendingin tersedia yang banyak digunakan. Metode ini merupakan yang paling banyak digunakan

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR SKRIPSI Skripsi yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan panas adalah Ilmu termodinamika yang membahas tentang transisi kuantitatif dan penyusunan ulang energi panas dalam suatu tubuh materi. perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1. Prinsip Kerja Mesin Pendingin Penemuan siklus refrigerasi dan perkembangan mesin refrigerasi merintis jalan bagi pembuatan dan penggunaan mesin penyegaran udara. Komponen utama

Lebih terperinci

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric)

Gambar 2.1 Sebuah modul termoelektrik yang dialiri arus DC. ( https://ferotec.com. (2016). www. ferotec.com/technology/thermoelectric) BAB II. TINJAUAN PUSTAKA Modul termoelektrik adalah sebuah pendingin termoelektrik atau sebagai sebuah pompa panas tanpa menggunakan komponen bergerak (Ge dkk, 2015, Kaushik dkk, 2016). Sistem pendingin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori 2.1.1 Pengertian Heat Exchanger (HE) Heat Exchanger (HE) adalah alat penukar panas yang memfasilitasi pertukaran panas antara dua cairan pada temperatur yang berbeda

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Batasan Rancangan Untuk rancang bangun ulang sistem refrigerasi cascade ini sebagai acuan digunakan data perancangan pada eksperiment sebelumnya. Hal ini dikarenakan agar

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Pendinginan Proses pendinginan merupakan proses pengambilan kalor/panas dari suatu ruang atau benda untuk menurunkan suhunya dengan jalan memindahkan kalor yang terkandung

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang 1.2. Rumusan Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Penyejuk udara atau pengkondisi udara atau penyaman udara atau erkon atau AC (air conditioner) adalah sistem atau mesin yang dirancang untuk menstabilkan suhu udara

Lebih terperinci

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari.

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. KALOR A. Pengertian Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar panas (heat exchanger), mekanisme perpindahan panas pada heat exchanger, konfigurasi aliran fluida, shell and tube heat exchanger,

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Desalinasi Desalinasi merupakan suatu proses menghilangkan kadar garam berlebih dalam air untuk mendapatkan air yang dapat dikonsumsi binatang, tanaman dan manusia.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 HE Shell and tube Penukar panas atau dalam industri populer dengan istilah bahasa inggrisnya, heat exchanger (HE), adalah suatu alat yang memungkinkan perpindahan dan bisa berfungsi

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Solar Menurut Syarifuddin (2012), solar sebagai bahan bakar yang berasal dari minyak bumi yang diproses di tempat pengilangan minyak dan dipisah-pisahkan hasilnya berdasarkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

REFRIGERAN & PELUMAS. Catatan Kuliah: Disiapakan Oleh; Ridwan

REFRIGERAN & PELUMAS. Catatan Kuliah: Disiapakan Oleh; Ridwan REFRIGERAN & PELUMAS Persyaratan Refrigeran Persyaratan refrigeran (zat pendingin) untuk unit refrigerasi adalah sebagai berikut : 1. Tekanan penguapannya harus cukup tinggi. Sebaiknya refrigeran memiliki

Lebih terperinci

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Muhamad dangga A 2108 100 522 Dosen Pembimbing : Ary Bachtiar Krishna

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Perhitungan Daya Motor 4.1.1 Torsi pada poros (T 1 ) T3 T2 T1 Torsi pada poros dengan beban teh 10 kg Torsi pada poros tanpa beban - Massa poros; IV-1 Momen inersia pada poros;

Lebih terperinci

UJI EKSPERIMENTAL MESIN PENDINGIN BERPENDINGIN UDARA, DENGAN MENGGUNAKAN REFRIGERAN R22 DAN REFRIGERAN R407C.

UJI EKSPERIMENTAL MESIN PENDINGIN BERPENDINGIN UDARA, DENGAN MENGGUNAKAN REFRIGERAN R22 DAN REFRIGERAN R407C. UJI EKSPERIMENTAL MESIN PENDINGIN BERPENDINGIN UDARA, DENGAN MENGGUNAKAN REFRIGERAN R22 DAN REFRIGERAN Kevin Sanjaya 1), I Made Kartika Dhiputra 2) dan Harto Tanujaya 1) 1) Program Studi Teknik Mesin,

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

- - KALOR - - Kode tujuh3kalor - Kalor 7109 Fisika. Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila.

- - KALOR - - Kode tujuh3kalor - Kalor 7109 Fisika. Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila. - - KALOR - - KALOR Definisi Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia

BAB II DASAR TEORI. Pengujian sistem refrigerasi..., Dedeng Rahmat, FT UI, Universitas 2008 Indonesia BAB II DASAR TEORI 2.1 REFRIGERASI DAN SISTEM REFRIGERASI Refrigerasi merupakan proses penyerapan kalor dari ruangan bertemperatur tinggi, dan memindahkan kalor tersebut ke suatu medium tertentu yang memiliki

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2. 1. Sistem Pengkondisian Udara. Seperti yang pernah kita ketahui, bahwa tujuan pengkondisian udara adalah untuk mendapatkan kenyamanan bagi penghuni yang berada didalam ruangan.

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara

BAB II DASAR TEORI. Tugas Akhir Rancang Bangun Sistem Refrigerasi Kompresi Uap untuk Prototype AHU 4. Teknik Refrigerasi dan Tata Udara BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem Refrigerasi Kompresi Uap merupakan system yang digunakan untuk mengambil sejumlah panas dari suatu barang atau benda lainnya dengan memanfaatkan

Lebih terperinci

= Perubahan temperatur yang terjadi [K]

= Perubahan temperatur yang terjadi [K] BAB II DASAR TEORI 2.1 KALOR Kalor adalah salah satu bentuk energi. Jika suatu zat menerima atau melepaskan kalor, maka ada dua kemungkinan yang akan terjadi. Yang pertama adalah terjadinya perubahan temperatur

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

Gambar 1 Open Kettle or Pan

Gambar 1 Open Kettle or Pan JENIS-JENIS EVAPORATOR 1. Open kettle or pan Prinsip kerja: Bentuk evaporator yang paling sederhana adalah bejana/ketel terbuka dimana larutan didihkan. Sebagai pemanas biasanya steam yang mengembun dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Perencanaan pengkondisian udara dalam suatu gedung diperlukan suatu perhitungan beban kalor dan kebutuhan ventilasi udara, perhitungan kalor ini tidak lepas dari prinsip perpindahan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Menara Pendingin Menurut El. Wakil [11], menara pendingin didefinisikan sebagai alat penukar kalor yang fluida kerjanya adalah air dan udara yang berfungsi mendinginkan

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Perpindahan kalor meliputu proses pelepasan maupun penyerapan kalor, untuk

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Adsorption nomenclature [4].

BAB II DASAR TEORI. Gambar 2.1 Adsorption nomenclature [4]. BAB II DASAR TEORI 2.1 ADSORPSI Adsorpsi adalah fenomena fisik yang terjadi saat molekul molekul gas atau cair dikontakkan dengan suatu permukaan padatan dan sebagian dari molekul molekul tadi mengembun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Mesin pendingin BAB II TINJAUAN PUSTAKA Mesin pendingin merupakan mesin yang berfungsi untuk memindahkan panas dari lingkungan bersuhu rendah ke lingkungan bersuhu tinggi. Mesin pendingin dapat dibayangkan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1 Proses Pendinginan

II. TINJAUAN PUSTAKA 2.1 Proses Pendinginan II. TINJAUAN PUSTAKA 2.1 Proses Pendinginan Pendinginan merupakan proses pengeluaran panas untuk menurunkan serta menjaga suhu dari suatu benda atau ruangan dibawah suhu sekelilingnya. Panas diambil dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada penelitian ini landasan teori yang digunakan ialah mengenai cara kerja sistem pendingin lemari es dan teori mengenai heatsink. 2.1. Heatsink Heatsink merupakan material yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Simulator Pengertian simulator adalah program yg berfungsi untuk menyimulasikan suatu peralatan, tetapi kerjanya agak lambat dari pada keadaan yg sebenarnya. Atau alat untuk melakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016 RANCANG BANGUN GENERATOR PADA MESIN PENDINGIN MENGGUNAKAN SIKLUS ABSORPSI MEMANFAATKAN PANAS BUANG MOTOR BAKAR DENGAN PASANGAN REFRIJERAN - ABSORBEN AMONIA-AIR Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

KIMIA TERAPAN (APPLIED CHEMISTRY) (PENDAHULUAN DAN PENGENALAN) Purwanti Widhy H, M.Pd Putri Anjarsari, S.Si.,M.Pd

KIMIA TERAPAN (APPLIED CHEMISTRY) (PENDAHULUAN DAN PENGENALAN) Purwanti Widhy H, M.Pd Putri Anjarsari, S.Si.,M.Pd KIMIA TERAPAN (APPLIED CHEMISTRY) (PENDAHULUAN DAN PENGENALAN) Purwanti Widhy H, M.Pd Putri Anjarsari, S.Si.,M.Pd KIMIA TERAPAN Penggunaan ilmu kimia dalam kehidupan sehari-hari sangat luas CAKUPAN PEMBELAJARAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering 15 BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka 2.1.1. Tinjauan tentang aplikasi sistem pengabutan air di iklim kering Sebuah penelitian dilakukan oleh Pearlmutter dkk (1996) untuk mengembangkan model

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Mesin Pendingin Untuk pertama kali siklus refrigerasi dikembangkan oleh N.L.S. Carnot pada tahun 1824. Sebelumnya pada tahun 1823, Cagniard de la Tour (Perancis),

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Air Conditioning (AC) atau alat pengkondisian udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk mengkondisikan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

DESAIN DAN ANALISA PERFORMA GENERATOR PADA REFRIGERASI ABSORBSI UNTUK KAPAL PERIKANAN

DESAIN DAN ANALISA PERFORMA GENERATOR PADA REFRIGERASI ABSORBSI UNTUK KAPAL PERIKANAN DESAIN DAN ANALISA PERFORMA GENERATOR PADA REFRIGERASI ABSORBSI UNTUK KAPAL PERIKANAN Oleh: Dhony Prabowo Setyawan Dosen pembimbing : Ir. Alam Baheramsyah, Msc. Abstrak Nelayan tradisional Indonesia menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Perpindahan kalor adalah ilmu yang mempelajari perpindahan energi karena perbedaan temperatur diantara benda atau material. Apabila dua benda yang berbeda

Lebih terperinci