BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Mawar Merah (Rosa hybrida) Rosa hybridatermasuk dalam Famili Rosaceae, sering di juluki Prince of flowerkarena keindahan bentuk dan warnanya, serta baunya yang harum dan memikat (Widyawan, 1994). Di Indonesia dikenal dengan nama Bunga Mawar. Famili Rosaceae meliputi berbagai macam Mawar dengan berbagai macam bentuk dan warna bunga, serta bau wangi khas. Tanaman Mawar bisa berupa herba tegak, merayap, atau memanjat. Mempunyai percabangan banyak, berduri tempel. Daun majemuk, menyirip ganjil, anak daun 5-7 jarang 3, bentuk helaian anak daun bulat telur - lonjong, ujung- meruncing, tepi daun bergerigi (Suryowinoto, 1997). Berikut sistematika tumbuhan mawar merah. Kingdom Divisi Class rdo Famili Genus Spesies : Plantae : Spermatophyta : Dicotyledonae : Rosanales : Rosaceae : Rosa : Rosa hybrida. Nama Lokal : Mawar Merah Tanaman bunga Mawar adalah tanaman yang menghasilkan biji. Pohonnya memiliki batang yang berkayu. Tanaman ini juga memiliki sistem akar tunggang, kemudian batangnya memiliki kambium yang dapat menyebabkan batang membesar (Manganti, 2015).Jumlah varietas mawar yang ada saat ini diperkirakan mencapai macam, namun hanya sekitar varietas saja yang dikenal secara umum dan sering dibudayakan (Widyawan, 1994).

2 Bunga Mawar dapat tumbuh di dataran rendah hingga dataran tinggi. Tetapi untuk mawar tertentu seperti Mawar teh hibrida hanya menyukai dataran tinggi sebab bunganya akan tumbuh dengan sempurna, baik bentuk, ukuran, warna, maupun baunya (Soekartiwi, 1996) Penggolongan bunga mawar Tim Direktorat Bina Produksi Hortikultura (1998) mencatat bahwa ada sembilan kelompok utama varietas mawar, yaitu: 1. Hybrid tea : Jenis bunga potong yang bertangkai panjang dengan bunga tunggal di ujungnya sehingga tampak megah dan cantik. 2. Floribunda : Jenis bunga potong dan tanaman taman yang bunganya cukup besar dengan warna bervariasi dan tangkai tegak panjang. 3. Grandiflora : Bunganya berukuran raksasa dengan diameter dapat mencapai 7,5-12,5 cm. 4. Climbing rose : Diameter bunga berkisar antara 5-15 cm dan tumbuh merunduk karena beratnya cabang serta tersusun dalam tandan yang jarang. Kelompok mawar ini pertumbuhannya sangat lamban dibandingkan kelompok lain dan rata-rata baru dapat berbunga setelah umurnya lebih dari dua tahun. 5. Polyantha : Jenis mawar taman dengan warna bunga yang sangat beraneka ragam, bunganya kecil dengan garis tengah sekitar 5 cm dan di dekat pucuk cabangnya terdapat banyak ranting yang masing-masing memiliki sekuntum bunga. 6. Hybrid perpetual : Jenis mawar yang diameter bunganya sangat lebar (15 cm) dan juga merupakan kelompok mawar yang sudah sulit dalam literatur.

3 7. Mawar tea : Merupakan nenek moyang mawar di Asia dengan ukuran bunga kecil. 8. Mawar tua : Disebut juga mawar kuno, dan aromanya sangat wangi. 9. Special purpose : Mawar yang dibedakan atas tiga golongan, yaitu mawar pohon, mawar perdu, dan mawar mini Manfaat Bunga Tumbuhan Mawar Merah (Rosa Hybrida) Tidak hanya sebagai hiasan, bunga mawar juga ternyata bisa dimakan untuk dijadikan obat. Aroma dan rendaman air bunga mawar mampu meredakan stres, mengatasi nyeri saat haid, dan membantu menjaga kesehatan kulit. Karena air mawar mengandung astringent yang bersifat menghilangkan racun (Khaerani, 2014). Bunga Mawar juga memiliki efek farmakologis diantaranya melancarkan sirkulasi darah, menormalkan anti radang, menghilangkan bengkak dan menetralisir racun. Bunga dan akar dalam kondisi segar dapat dimanfaatkan untuk mengobati beberapa penyakit seperti batuk darah dan campak (Hariana, 2005). Dalam buku Tanaman bat Untuk Mengobati Jantung Koroner dan Menyembuhkan Stroke bunga Mawar juga memiliki khasiat menghilangkan bau mulut dan mengobati stroke. 2.2 Senyawa Flavonoida Senyawa flavonoida diturunkan dari unit C 6 -C 3 (fenil propana) yang bersumber dari asam sikimat (via fenilalanin) dan unit C 6 yang diturunkan dari jalur poliketida. Fragmen poliketida ini disusun dari tiga molekul malonil-koa yang bergabung dengan unit C 6 -C 3 (sebagai KoA tioester) untuk membentuk unit awal triketida. leh karena itu, flavonoid yang berasal dari biosintesis gabungan terdiri atas unit-unit yang diturunkan dari asam sikimat dan jalur poliketida.

4 Struktur dan sistem penomoran untuk turunan senyawa flavonoid dapat dilihat pada gambar 2.1 yang di bawah ini : 2' 3' 4' ' 2 6' 5' Gambar 2.1. Senyawa Flavonoida (Robinson, 1995). Flavonoida umumnya terdapat pada tumbuhan sebagai glikosida. Gugusan gula bersenyawa pada satu atau lebih gugus hidroksil fenolik. Gugusan hidroksil selalu terdapat pada karbon no. 5 dan no. 7 pada cinicin A. Pada cincin B gugusan hidroksil atau alkoksil terdapat pada karbon no. 3 dan no. 4 ( Sirait, 2007). Adapun struktur dari flavonoida adalah struktur yang mempunyai dua cincin aromatik yang dihubungkan dengan tiga karbon yang membentuk suatu cincin yang terdapat gugus eter (C--C) dan satu karbonil (C=) yang dinotasikan cincin C. Kedua cincin aromatik ini dinotasikan cincin A dan B. Pada cincin A dan B ada dijumpai atau terdapat substituent hidroksil () atau metoksi, juga gugus gula yang bentuk C-glikosida atau -glikosida. Tapi ada juga senyawa flavonoida tanpa adanya gugus C= yang disebut senyawa flavan (Ikan, 1969). Istilah flavonoida dikenakan pada suatu golongan besar senyawa yang yang berasal dari kelompok senyawa yang paling umum yaitu flavon.suatu jembatan oksigen terdapat diantara cincina dalam kedudukan orto dan atom karbon benzil yang terletak di sebelah cincin B membentuk cincin darri tipe 4- piron. Senyawa heterosiklik ini pada tingkat oksidasi yang berbeda terdapat dalam kebanyakan tumbuhan. Flavon adalah bentuk yang mempunyai cincin C dengan tingkat oksidasi yang paling rendah dan dianggap sebagai struktur induk dalam nomenklatur kelompok senyawa ini (Manito, 1992).

5 Flavonoida mengandung sistem aromatik yang terkonjugasi dan karena itu menunjukkan pita serapan kuat pada daerah spektrum UV dan spektrum tampak. Akhirnya flavonoida umumnya terdapat dalam tumbuhan, terikat pad agula sebagai glikosida dan aglikon flavonoida yang mana pun mungkin saja terdapat dalam satu tumbuhan dalam beberapa bentuk kombinasi glikosida. Flavonoid terdapat dalam semua tumbuhan berpembuluh, tetapi beberapa kelas lebih tersebar daripada yang lainnya: flavor dan flavonol terdapat disemesta, sedangkan isoflavon dan biflavon hanya terdapat pada beberapa suku tumbuhan (Harborne, 1996). Tidak ada benda yang begitu menyolok seperti flavonoida yang memberikan kontribusi keindahan dan kesemarakan pada bunga dan buah-buahan di alam. Flavin memberikan warna kuning atau jingga, antosianin memberikan warna merah, ungu, atau biru. Secara biologis, flavonoida memainkan peranan penting dalam kaitan penyerbukan pada tanaman oleh serangga. Sejumlah flavonoida mempunyai rasa pahit hingga dapat bersifat menolak sejenis ulat tertentu (Sastrohamidjojo, 1996). Flavonoida tertentu juga mempengaruhi rasa makanan secara signifikan; misalnya beberapa tanaman memiliki rasa pahit dan kesat seperti flavanon naringin, pada kulit grapefruit (C. paradisi). Dalam tubuh manusia, flavonoida dapat berguna untuk mengobati gangguan sirkulasi perifer, menurunkan tekanan darah dan meningkatkan aquaresis. Banyak juga obat-obat mengandung flavonoid yang dipasarkan diberbagai negara sebagai obat anti-inflamasi, antispasmodik, antialergi dan antivirus. (Heinrich et al, 2005). Manfaat lain lain flavonoida adalah melindungi struktur sel, meningkatkan efektivitas vitamin C, antiinflamasi, mencegah keropos tulang dan sebagai anti bioktik (Muhammad, 2011). Senyawa flavonoid diduga sangat bermanfaat dalam makanan karena, berupa senyawa fenolik, senyawa ini yang bersifat antioksidan kuat. leh karena itu, makanan kaya flavonoid dianggap penting untuk mengobati penyakit-penyakit, seperti kanker dan penyakit jantung (yang dapat memburuk akibat oksidasi lipoprotein densitas-rendah) (Heinrich et al, 2009).

6 Klasifikasi Senyawa Flavonoida Dalam tumbuhan, flavonoid terdapat dalam berbagai bentuk struktur. Keragaman struktur flavonoid ini disebabkan karena perbedaan tahap modifikasi lanjutan dari struktur dasar flavonoid, antara lain: 1. Flavonoid -glikosida. Flavonoid biasanya terdapat sebagai flavonoid -glikosida, pada senyawa tersebut satu gugus hidroksi flavonoid (atau lebih) terikat pada satu gula (atau lebih) dengan ikatan hemiasetal yang tak tahan asam. Pengaruh glikosilasi meyebabkan flavonoid menjadi kurang reaktif dan lebih mudah larut dalam air (cairan). Glukosa merupakan gula yang paling umum terlibat, walaupun galaktosa, ramnosa, xilosa, dan arabinosa sering juga terdapat. Salah satu kelompok senyawa flavonoida-o-glikosida ditunjukkan pada gambar 2.2 di bawah ini: R 2 C H H Gambar 2.2(R=H) Apigenin 7--β-D-glukopiranosida (R=CCH 3 ) Apigenin 7--β-D-(6 --asetil) glukopiranosida 2. Flavonoid C-glikosida. Gula dapat juga terikat pada atom karbon flavonoid dan dalam hal ini gula tersebut terikat langsung pada inti benzena dengan suatu ikatan karbonkarbon. Glikosida yang demikian disebut C-glikosida. Sekarang gula yang terikat pada atom C hanya ditemukan pada atom C nomor 6 dan 8 dalam inti flavonoid. Jenis gula yang terlibat ternyata jauh lebih sedikit ketimbang jenis gula pada -glikosida. Jenis aglikon flavonoid yang terlibat pun sangat terbatas. Salah satu kelompok senyawa flavonoida C- glikosida ditunjukkan pada gambar 2.3 Jadi, walau pun isoflavon,

7 flavanon, dan flavonol kadang-kadang terdapat dalam bentuk C-glikosida, hanya flavon C-glikosida yang paling lazim ditemukan. H H CH 2 H H Gambar 2.3Apigenin 8-C-β-D-glukopiranosida (Viteksin) 3. Flavonoid Sulfat Gabungan flavonoid lain yang mudah larut dalam air yang mungkin ditemukan hanya flavonoid sulfat. Senyawa ini mengandung satu ion sulfat atau lebih, yang terikat pada hidroksil fenol atau gula. 4. Biflavonoid Biflavonod adalah flavonoid dimer, walau pun prosianidin dimer (satuan dasarnya katekin) biasanya tidak dimasukkan ke dalam golongan ini. Flavonoid yang biasanya terlibat adalah flavon dan flavanon yang secara biosintesis mempunyai pola oksigenasi yang sederhana 5,7,4 (atau kadang-kadang 5,7,3,4 ) dan ikatan antar-flavonoid berupa ikatan karbonkarbon atau kadang-kadang ikatan eter. Biflavonoid jarang ditemukan sebagai glikosida, dan penyebarannya terbatas, terdapat terutama pada gimnospermae. Salah satu senyawa kelompok biflavonoid dapat dilihat pada gambar 2.4 di bawah ini: H H Gambar 2.4Amentoflavon

8 5. Aglikon flavonoid yang aktif-optik Aglikon flavonoid mempunyai atom karbon asimetrik dan dengan demikian menunjukkan keaktifan optik (yaitu memutar cahaya terpolarisasi-datar). Yang termasuk dalam golongan flavonid ini ialah flavanon, dihidroflavonol, katekin, pterokarpan, rotenoid, dan beberapa biflavonoid (Markham, 1988). Senyawa flavonoid dapat dikelompokkan berdasarkan tahanan oksidasi dan keragaman lain pada rantai C 3 : 1. Flavon Flavon berbeda dengan flavonol karena pada flavon tak terdapat penyulihan 3-hidroksi. Hal ini mempengaruhi serapan UV-nya, gerakan kromatografinya, serta reaksi warnanya, dan karena itu flavon dapat dibedakan dari flavonol. Flavon terdapat juga sebagai glikosida tetapi lebih sedikit daripada jenis glikosida pada flavonol. Jenis yang paling umum ialah 7-glukosida, contohnya luteolin 7-glukosida. Struktur senyawa Flavon dapat dilihat pada gambar 2.5 di bawah ini: A C B Gambar 2.5 Flavon (Robinson, 1995). 2. Flavonol Flavonol sangat tersebar luas di dalam tumbuhan, baik sebagai kopigmen antosianin dalam daun bunga maupun dalam daun tumbuhan tinggi. Dalam tumbuhan terdapat banyak sekali glikosida flavonol. Sampai saat ini yang paling umum adalah kuersetin 3-rutinosida yang dikenal sebagai rutin.

9 Adapun struktur senyawa Flavonol dapat dilihat pada gambar 2.6 di bawah ini : A C B Gambar 2.6 Flavonol (Robinson, 1995). 3. Isoflavon Isoflavon merupakan senyawa yang tidak begitu mencolok, tetapi senyawa ini penting sebagai fitoaleksin (senyawa pelindung) dalam tumbuhan untuk pertahanan terhadap penyakit. Adapun struktur senyawa Isoflavon ditunjukkan pada gambar 2.7. Isoflavon menunjukkan aktivitas sebagai estrogenik, insektisida, dan antifungi A C B Gambar 2.7 Isoflavon (Robinson, 1995). 4. Flavanon Flavanon adalah senyawa tanwarna yang tak dapat dideteksi pada pemeriksaan kromatografi kecuali bila menggunakan penyemprot kromogen. Uji warna yang penting dalam larutan alkohol ialah reduksi dengan serbuk Mg dan HCl pekat. Struktur senyawa Flavanon dapat dilihat pada gambar di bawah ini : A C B Gambar 2.8 Flavanon (Robinson, 1995).

10 5. Flavanonol Flavanonol (atau dihidroflavonol) barangkali merupakan flavonoid yang paling kurang dikenal, dan tidak dapat diketahui apakah senyawa ini terdapat sebagai glikosida. Senyawa ini stabil dalam asam klorida panas tetapi terurai oleh udara adapun struktur senyawa Flavanonol dapat dilihat pada gambar 2.9 dibawah ini : B A C Gambar 2.9 Flavanonol (Harborne, 1987). 6. Antosianin Antosianin adalah pigmen daun bunga merah sampai biru yang biasa, banyaknya sampai 30% bobot kering dalam beberapa bunga. Antosianin terdapat juga dalam bagian lain tumbuhan tinggi kecuali fungus. Struktur senyawa Antosianin dapat dilihat pada gambar di bawah ini : + B A C Gambar 2.10 Antosianin (Harborne, 1987). 7. Katekin Katekin dan proantosianidin adalah dua golongan senyawa yang mempunyai banyak kesamaan. Semuanya senyawa tanpa warna, terdapat pada seluruh dunia tumbuhan tetapi terutama dalam tumbuhan berkayu B H A C Gambar 2.11 Katekin (Harborne, 1987).

11 8. Leukoantosianidin Merupakan monomer flavan 3,4-diol, leukoantosianidin jarang terdapat sebagai glikosida, namun beberapa bentuk glikosida yang dikenal adalah apiferol, dan peltoginol. Struktur senyawa Leukoantosianidin dapat dilihat pada gambar 2.12 di bawah ini : H A C H B Gambar 2.12 Leukoantosianidin (Harborne, 1987). 9. Kalkon Khalkon adalah pigmen fenol kuning yang berwarna coklat tua dengan sinar UV bila dikromatografi kertas. Aglikon khalkon dapat dibedakan dari glikosidanya karena hanya pigmen dalam bentuk glikosida yang dapat bergerak pada kromatografi kertas dalam pengembang air, adapun struktur senyawa Kalkon dapat dilihat pada gambar 2.13 di bawah ini : A B Gambar 2.13 Kalkon (Harborne, 1987). 10. Auron Seperti kalkon, senyawa ini tampak pada kromatogram kertas berupa bercak kuning. Dengan sinar UV akan tampak berbeda, warna auron berubah menjadi merah jingga bila diuapi ammonia. Struktur senyawa Auron dapat dilihat pada gambar 2.14 di bawah ini: A CH B Gambar 2.14 Auron

12 2.2.2 Sifat Kelarutan Senyawa Flavonoida Aglikon flavonoida adalah polifenol dan karena itu mempunyai sifat kimia seperti fenol yaitu bersifat agak asam sehingga dapat larut dalam basa. Tetapi bila didiamkan dalam larutan basa dan disamping itu terdapat banyak oksigen maka akan banyak yang terurai. Karena mempunyai sejumlah gugus hidroksil yang tak tersulih atau suatu gula, flavonoida merupakan senyawa polar maka umumnya flavonoida larut dalam pelarut polar seperti etanol (Et), metanol (Me), butanol (Bu), aseton, dimetilsulfoksida (DMS), dimetilformamida (DMF), air dan lain-lain. Adanya gula yang terikat pada flavonoida cenderung menyebabkan flavonoida lebih mudah larut dalam air(markham, 1988) Biosintesa Flavonoid Kerangka C 15 yang dihasilkan, telah mempunyai substituen oksigen tertentu, kebanyakan sebagai gugus hidroksil pada kedudukan yang sesuai, sehubungan dengan pembentukan cincin A (jalur poliketida) dan dengan cincin B yang berasal dari sikimat (fenilalanina---asam sikimat). Setelah terjadi berbagai perubahan enzimatik dari ketiga atom karbon sentral dari kerangka 1,3-diaril propana dapat mempunyai berbagai gugus fungsional, misalnya hidroksil, ikatan rangkap, karbonil dan sebagainya. Biosintesa hubungan antara jenis monomer flavonoida dari alur asetat-malonat dan alur sikimat dapat dilihat pada gambar 2.15 di bawah ini:

13 Alur asetat-malonat Alur Sikimat HC Sinamil alkohol LiIGNIN H H H Khalkon (-)-Flavanon H Dihidrokhalkon CH H Auron Flavon H H Isoflavon Pterokarpan H H H (+) -Dihidroflavonol H () Rotenoid H H (+) -Katekin H () H H Antosianidin H Flavonol (-)-Epikatin Gambar 2.15 Biosintesa hubungan antara jenis monomer flavonoida dari alur asetat-malonat dan alur sikimat (Markham, 1988).

14 2.3 Teknik Pemisahan Teknik pemisahan memiliki tujuan untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponenkomponen lainnya. Ada 2 jenis teknik pemisahan: 1. Pemisahan kimia adalah suatu teknik pemisahan yang berdasarkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang akan dipisahkan. 2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaan-perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam satu golongan. Diagram teknik pemisahan dapat dilihat pada gambar 2,16 di bawah ini: Biomassa (tanaman, mikroba, laut) Ekstraksi Skrining Isolasi zat aktif berdasarkan uji hayati Skrining silang Elusidasi Struktur Gambar 2.16 Diagram Teknik Pemisahan (Muldja, 1995) Ekstraksi Sampel yang berasal dari tanaman setelah diidentifikasi, kemudian digolongkan menjadi spesies dan famili, sampel kemudian dikumpulkan dari bagian arialnya (daun, batang, kulit kayu pada batang, kulit batang, dan akar). Sampel ini kemudian dikeringkan dengan cara diangin-anginkan untuk menghindari penguraian komponen oleh udara atau mikroba.

15 Jika telah dikeringkan, biomassa kemudian digiling menjadi partikelpartikel kecil menggunakan blender atau penggilingan. Proses penggilingan ini penting karena ektraksi efektif pada partikel kecil, dikarenakan memiliki luas permukaan yang lebih besar.pemilihan pelarut ekstraksi sangat penting. Jika tanaman diteliti dari sudut pandang etnobotani, ektraksi harus mengikuti pemakaiannya secara tradisional. Kegagalan mengekstraksi biomassa dapat menyebabkan kehilangan akses untuk mendapatkan zat aktif. Terdapat sejumlah metode ekstraksi, yang paling sederhana adalah ekstraksi dingin (dalam labu besar berisi biomassa), dengan cara ini bahan kering hasil gilingan diekstraksi pada suhu kamar secara berturut-turut dengan pelarut yang kepolarannya makin tinggi. Keuntungan utama cara ini adalah merupakan metode ekstraksi yang mudah karena ekstrak tidak dipanaskan sehingga kemungkinan kecil bahan alam terurai. Penggunaan pelarut dengan peningkatan kepolaran secara berurutan memungkinkan pemisahan bahan alam berdasarkan kelarutannya (dan polaritasnya) dalam ektraksi. Hal ini sangat mempermudah proses isolasi. Ekstraksi dingin memungkinkan banyak senyawa terekstraksi, meskipun beberapa senyawa memiliki kelarutan terbatas dalam pelarut ekstraksi pada suhu kamar (Heinrich et al, 2009). Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak pekat, biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator (Harborne, 1996) Partisi Metode pemisahan yang mungkin paling sederhana adalah partisi, yang banyak digunakan sebagai tahap awal pemurnian ekstrak. Partisi menggunakan dua pelarut tak bercampur yang ditambahkan kedalam ekstrak tersebut, hal ini dapat dilakukan secara terus menerus dengan menggunakan dua pelarut yang tak bercampur yang kepolarannya meningkat. Partisi biasanya dilakukan melalui dua tahap:

16 1. Air/petroleum eter ringan (heksana) untuk menghasilkan fraksi nonpolar di lapisan organik 2. Air/diklorometan atau air/kloroform atau air/etil asetat untuk membuat fraksi agak polar di lapisan organik. Ini merupakan metode pemisahan yang mudah dan mengandalkan kelarutan bahan alam dan bukan interaksi fisik dengan medium lain (Heinrich et al, 2009) Hidrolisis Prosedur yang digunakan untuk hidrolisis asam dari flavonoid glikosida adalah, sebanyak 2 mg sampel flavonoid glikosida dicampur dengan asam klorida 6% sebanyak 5 ml dengan jumlah metanol yang sangat sedikit pada sampel untuk membuat proses hidrolisis menjadi sempurna. Larutan dipanaskan selama 45 menit lalu didinginkan, kemudian ekstrak sepenuhnya dilarutkan dengan eter. Penguapan dari larutan akan mengendapkan ramnosa dan glukosa. Lapisan eter, setelah dikeringkan dengan menggunakan natrium sulfat akan didapatkan aglikon flavonoid setelah diuapkan (Mabry et al, 1970) Kromatografi Kromatografi pertama kali dikembangkan oleh seorang ahli botani Rusia Michael Tswett pada tahun 1903 untuk memisahkan pigmen berwarna dalam tanaman dengan cara perkolasi ekstrak petroleum eter dalam kolom gelas yang berisi kalsium karbonat (CaC 3 ). Kromatografi merupakan suatu teknik pemisahan yang menggunakan fase diam (stationary phase) dan fase gerak (mobile phase). Teknik kromatografi telah berkembang dan telah digunakan untuk memisahkan dan mengkuantifikasi berbagai macam komponen yang kompleks, baik komponen organik maupun komponen anorganik. Kromatografi dapat dibedakan atas berbagai macam tergantung pada pengelompokkannya. Berdasarkan pada mekanisme pemisahannya, kromatografi dibedakan menjadi: kromatografi adsorbsi, kromatografi partisi, kromatografi pasangan ion, kromatografi penukar ion, kromatografi eksklusi ukuran.

17 Berdasarkan pada alat yang digunakan, kromatografi dapat dibagi atas: kromatografi kertas, kromatografi lapis tipis (disebut juga kromatografi planar), kromatografi cair kinerja tinggi, dan kromatogtrafi gas. Bentuk kromatografi yang paling awal adalah kromatografi kolom yang digunakan untuk pemisahan sampel dalam jumlah yang besar. Pemisahan pada kromatografi planar pada umumnya dihentikan sebelum semua fase gerak melewati seluruh permukaan fase diam. Solut pada kedua kromatografi ini dikarakterisasi dengan jarak migrasi solut terhadap jarak ujung fase geraknya. Nilai faktor retardasi solut (Rf) dapat dihitung dengan menggunakan perbandingan dalam persamaan: Rf= arak yang ditempuh solut arak yang ditempuh fase gerak Nilai maksimum Rf adalah 1 dan ini dicapai ketika solut mempunyai perbandingan distribusi (D) dan faktor retensi sama dengan 0 yang berarti solut bermigrasi dengan kecepatan yang sama dengan fase gerak. Nilai minimum Rf adalah 0 dan ini teramati jika solut tertahan pada posisi titik awal di permukaan fase diam. Proses Sorpsi Sorpsi merupakan proses pemindahan solut dari fase gerak ke fase diam, sementara itu proses sebaliknya (pemindahan solut dari fase diam ke fase gerak) disebut dengan desorpsi. Kedua proses ini (sorpsi dan desorpsi) terjadi secara terus menerus selama pemisahan kromatografi karenanya sistem kromatografi berada dalam keadaan kesetimbangan dinamis. Solut akan terdistribusi diantara dua fase yang bersesuaian dengan perbandingan distribusinya (D) untuk menjaga keadaan kesetimbangan ini. Ada 4 jenis mekanisme sorpsi dasar dan umumnya 2 atau lebih mekanisme ini terlibat dalam satu jenis kromatografi. Keempat jenis tersebut adalah adsorpsi, partisi, pertukaran ion, dan eksklusi ukuran.

18 Adsorben Silika gel merupakan jenis adsorben (fase diam) yang penggunaannya paling luas. Permukaan silika gel terdiri atas gugus Si--Si dan gugus silanol (Si-). Gugus silanol bersifat sedikit asam dan polar karenanya gugus ini mampu membentuk ikatan hidrogen dengan solut-solut yang agak polar sampai sangat polar. Adanya air dari atmosfer yang diserap oleh permukaan silika gel mampu mendeaktifkan permukaan silika gel karena air akan menutup sisi aktif silika gel. Hal seperti ini dapat diatasi dengan memanaskan pada suhu C, meskipun demikian reprodusibilitasnya sulit dicapai kecuali jika suhu dan kelembapan benar-benar dijaga secara hati-hati. Semakin polar solut maka akan semakin tertahan kuat ke dalam adsorben silika gel ini. Berikut merupakan kepolaran dari beberapa adsorben menurut Gandjar dkk (2007) yang disajikan pada tabel 2.1 berikut: Tabel 2.1 Daftar Adsorben pada Kromatografi No Nama Adsorben Sifat Adsorben 1 Alumina Paling polar 2 Karbon aktif 3 Silika gel 4 Selulosa 5 Resin-resin polimerik (stiren/difenil benzen) Paling non polar Kromatografi Lapis Tipis Teknik kromatografi lapis tipis (KLT) sangat bermanfaat untuk analisis obat dan bahan lain dalam laboratorium karena hanya memerlukan peralatan sederhana, waktu cukup singkat (15-60 menit), dan jumlah zat yang diperiksa cukup kecil (kira-kira 0,01 g senyawa murni atau 0,1 g simplisia) (Harmita, 2009). KLT pada penelitian flavonoid ialah sebagai cara analisis cepat yang memerlukan bahan yang sangat sedikit. Menurut pengalaman pengarang, KLT terutama berguna untuk tujuan berikut :

19 a. Mencari pelarut untuk kromatografi kolom b. Analisis fraksi yang diperoleh dari kromatografi kolom c. Isolasi flavonoid murni skala kecil d. Identifikasi flavonoid secara ko-kromatografi (Markham, 1988) Kromatografi lapis tipis merupakan metode fisikokimia yang didasarkan atas penyerapan, partisi (pembagian), atau gabungannya. Lapisan pemisah tipis yang terdiri atas butir penyerap atau penyangga dilapiskan pada lempeng kaca, logam dan lain-lain. Untuk mendapatkan kondisi jenuh dalam bejana kromatografi, dinding bejana dilapisi dengan lembaran kertas saring, fase gerak dituang kedalam bejana sehingga kertas saring basah dan dalam bejana terdapat fase gerak setinggi 5-10 mm. Bejana ditutup dan dibiarkan selama satu jam pada suhu o C. (Harmita, 2009) Kromatografi Kolom Kolom kromatografi atau tabung untuk pengaliran karena gaya tarik bumi (gravitasi) atau sistem bertekanan rendah biasanya terbuat dari kaca yang dilengkapi keran jenis tertentu pada bagian bawahnya untuk mengatur aliran pelarut. Ukuran keseluruhan kolom sungguh beragam, tetapi biasanya panjangnya sekurang-kurangnya 10 kali garis tengah dalamnya dan mungkin saja sampai 100 kalinya. Ukuran kolom dan banyaknya penjerap yang dipakai ditentukan oleh bobot campuran sampel yang akan dipisahkan. Untuk pemisahan normal, bobot sampel biasanya 30:1 ternyata memadai jika pemisahan tidak terlalu sukar. Ukuran partikel penjerap pada kolom biasanya lebih besar daripada untuk KLT. Walau pun banyak jenis penjerap telah dipakai untuk kolom, alumina dan silika gel adalah penjerap yang paling berguna dan mudah didapat.fraksi kolom yang mengandung senyawa yang sama (diperiksa dengan KLT) atau tampaknya berasal dari satu puncak (memakai pendeteksian sinambung) digabungkan, dan pelarutnya diuapkan, lebih baik dengan tekanan rendah. Jika pelarut dan penjerap murni. Maka fraksi-fraksi pun murni (Gritter et al, 1991).

20 Kromatografi Lapis Tipis Preparatif Sebagian besar pemakaian kromatografi lapis tipis preparatif hanya dalam jumlah miligram. Kromatografi lapis tipis preparatif bersama-sama dengan kromatografi kolom terbuka, dijumpai sebagian besar dalam isolasi bahan alam. Penjerap yang paling umum digunakan adalah silika gel dan dipakai untuk pemisahan campuran senyawa lipofil maupun campuran senyawa hidrofil. Ukuran partikel dan porinya kurang lebih sama dengan ukuran tingkat KLT. Cuplikan sebanyak mg dapat dipisahkan pada lapisan silika gel atau aluminium oksida 20 x 20 cm yang tebalnya 1 mm. Pengembangan plat KLTP biasanya dilakukan dalam bejana kaca yang dapat menampung beberapa plat. Bejana dijaga tetap jenuh dengan pelarut pengembang dengan bantuan sehelai kertas saring yang tercelup ke dalam pengembang. Kebanyakan penjerap KLTP mengandung indikator fluorosensi yang membantu mendeteksi kedudukan pita yang terpisah sepanjang senyawa yang dipisahkan menyerap sinar UV. Pita yang kedudukannya telah diketahui dikerok dari plat dengan spatula atau pengerok berbentuk tabung. Senyawa harus diekstraksi dari penjerap dengan pelarut yang paling kurang polar yang mungkin (sekitar 5 ml pelarut untuk 1 g penjerap). Harus diperhatikan bahwa semakin lama senyawa berkontak dengan penjerap makin besar kemungkinan penguraian (Hostettmann et al, 1995) 2.4.Teknik Spektroskopi Teknik spektroskopi adalah salah satu teknik analisis kimia-fisika yang mengamati tentang interaksi atom atau molekul dengan radiasi elektomagnetik. Ada dua macam instrumen pada teknik spektroskopi yaitu spektrometer dan spektrofotometer. Instrumen yang memakai monokromator celah tetap pada bidang fokus disebut sebagai spektrometer. Apabila spektrometer tersebut dilengkapi dengan detektor yang bersifat fotoelektrik maka disebut spektrofotometer (Muldja, 1955).

21 Interaksi atom atau molekul dapat memiliki berbagai jenis energi, antara lain sebagai berikut. 1. Energi rotasi (energi putaran). Energi ini disebabkan oleh perputaran molekul pada pusat gaya berat molekul tersebut. 2. Energi vibrasi (energi getaran). Energi ini disebabkan oleh perpindahan periodik atom-atom molekul tersebut dari posisi keseimbangan. 3. Energi elektronik. Energi ini disebabkan elektron-elektron yang berhubungan dengan masing-masing atom atau ikatan selalu dalam keadaan bergerak. 4. Energi Translasi. Energi translansi adalah energi kinetik atom atau molekul yang dimiliki untuk bergerak dari satu tempat ke tempat lain E translansi < E rotasi < E vibrasi < E elektronik (Harmita.2009) Spektroskopi Ultraviolet (UV-Vis) Serapan molekul di dalam daerah ultraviolet dan terlihat dari spektrum bergantung pada struktur ultraelektronik dari molekul. Penyerapan sejumlah energi, menghasilkan percepatan dari elektron dalam orbital tingkat dasar ke orbital yangberenergi lebih tinggi di dalam keadaan tereksitasi (Silverstein,1986). Senyawa polifenol memiliki dua karakteristik pita penyerapan Ultraviolet dengan maksimal jarak 240 sampai 285 nm dan 300 sampai 550 nm. Berbagai macam golongan flavonoid dapat dikenali dari spektrum UV mereka masingmasing, karakteristik spektra UV dari masing-masing flavonoid yang mengandung jumlah dari golongan hidroksil aglikon, pola substituen glikosida, dan golongan asil aromatik bahan alam (Andersen, 2006).

22 Spektrum flavonoid biasanya ditentukan dalam larutan dengan pelarut metanol (Me, AR atau yang setara) atau etanol (Et), meski perlu diingat bahwa spektrum yang dihasilkan dalam etanol kurang memuaskan sehingga pada umumnya pelarut metanol yang digunakan untuk menentukan serapan pita yang dihasilkan. Perubahan penyulihan pada cincin A cenderung tercerminkan pada serapan pita II, sedangkan perubahan penyulihan pada cincin B dan C cenderung lebih jelas tercermin pada serapan pita I (Markham, 1988). Ciri spektrum khas jenis flavonoid utama dengan pola oksigenasi yang setara disajikan pada tabel 2.2 dibawah ini : Tabel 2.2 Rentangan Serapan Spektrum UV-Visible golongan Flavonoida No. Pita II (nm) Pita I (nm) Jenis Flavonoida Flavon Flavonol (3- tersubstitusi) Flavonol (3- bebas) bahu Isoflavon bahu Flavanon dan dihidroflavonol (kekuatan rendah) (kekuatan rendah) Khalkon Auron Antosianidin dan antosianin Spektroskopi Inframerah (FT-IR) Spektrum inframerah suatu molekul adalah hasil transisi antara tingkat energi getaran (vibrasi) yang berlainan. Inti-inti atom yang terikat oleh ikatan kovalen mengalami getaran (vibrasi) atau osilasi (oscillation) dengan cara serupa dengan dua bola yang terikat oleh suatu pegas.

23 Bila molekul menyerap radiasi inframerah, energi yang diserap menyebabkan kenaikan dalam amplitudo getaran atom-atom yang terikat itu. Jadi molekul ini berada dalam keadaan vibrasi tereksitasi, energi yang diserap ini akan dibuang dalam bentuk panas bila molekul itu kembali ke keadaan dasar. Panjang gelombang eksak dari absorpsi oleh suatu tipe ikatan, bergantung pada macam getaran dari ikatan tersebut. leh karena itu, tipe ikatan yang berlainan (C-H, C- C, C=, C=C, -H, dan sebagainya) menyerap radiasi inframerah pada panjang gelombang yang berlainan. Dengan demikian spektrometri inframerah dapat digunakan untuk mengidentifikasi adanya gugus fungsi dalam suatu molekul. Banyaknya energi yang diserap juga beraneka ragam dari ikatan ke ikatan. Ini disebabkan sebagian oleh perubahan dalam momen dipol (µ 0) pada saat energi diserap. Ikatan nonpolar (seperti C-H atau C-C) menyebabkan absorpsi lemah, sedangkan ikatan polar (seperti misalnya -H, N-H, dan C=) menunjukkan absorpsi yang lebih kuat. Suatu ikatan dalam sebuah molekul dapat mengalami berbagai vibrasi molekul. Secara umum terdapat dua tipe vibrasi molekul: 1. Streching (vibrasi regang/ulur): vibrasi sepanjang ikatan sehingga terjadi perpanjangan atau pemendekan ikatan. 2. Bending (vibrasi lentur/tekuk): vibrasi yang disebabkan oleh sudut ikatan sehingga terjadi pembesaran atau pengecilan sudut ikatan. leh karena itu suatu ikatan tertentu dapat menyerap energi lebih dari satu panjang gelombang. Contohnya, ikatan -H menyerap energi pada frekuensi 3330 cm -1, energi pada panjang gelombang ini menyebabkan kenaikan vibrasi regang ikatan -H itu. Suatu ikatan -H itu juga menyerap pada kira-kira 1250 cm -1, energi pada panjang gelombang ini menyebabkan kenaikan vibrasi lentur. Tipe vibrasi yang berlain-lainan ini disebut cara vibrasi fundamental (Supratman, 2010).

24 2.4.3 Spektroskopi Resonansi Magnetik Inti Proton ( 1 H-NMR) Setelah spektroskopi inframerah, spektroskopi resonansi magnetik inti (NMR) adalah yang metode yang paling penting digunakan dalam kimia organik. Dalam spektroskopi inframerah mengandung infromasi mengenai adanya gugus fungsi pada molekul, sedangkan spektroskopi NMR memberikan informasi mengenai jumlah dari masing-masing hidrogen. Kemampuan terhebat resonansi inti magnetik timbul karena tidak semua proton dalam molekul memiliki resonansi yang identik pada frekuensi yang sama. Hal ini sesuai dengan fakta bahwa berbagai macam proton dalam molekul dikelilingi oleh elektron dan memiliki sedikit perbedaan dalam lingkungan elektronik dari satu dan yang lainnya. Proton akan terlindungi oleh elektron yang mengelilingi mereka. Dalam daerah magnetik, peredaran elektron valensi dari daerah penghasil proton yang bertentangan dengan daerah magnetik yang berlaku. Pergeseran kimia dalam unit δ ditunjukkan dalam jumlah resonansi proton yang bergeser dari TMS dalam bagian per juta (ppm) dari frekuensi dasar spektroskopi pergeseran dalam δ= frekuensi spektrometer dalam M Unsur dasar dari spektrometer nmr adalah ilustrasi skematis. Sampel dilarutkan dalam pelarut yang tidak memiliki proton (biasanya CCl 4 ) dan dalam jumlah yang kecil dari TMS yang ditambahkan sebagai pusat referensi internal. Semua proton dalam molekul yang identik dalam lingkungan kimia akan memiliki pergerseran kimia yang sama. Dengan demikian, semua proton dari TMS atau semua proton dalam benzena, siklopentana, atau aseton memiliki nilai resonansi yang berdekatan pada nilai δ. Masing-masing komponen akan memiliki penyerapan yang tunggal dalam spektrum nmr. Proton ini dikatakan sama secara kimia. Pada kenyataannya, spektrum tidak dapat hanya dibedakan dari berapa banyak tipe proton yang berbeda pada molekul tersebut, tetapi dapat memperlihatkan berapa banyak jenis perbedaan yang ada dalam molekul tersebut. Dalam spektrum nmr, daerah dibawah masing-masing peak adalah proporsional dengan jumlah dari hidrogen yang ada pada peak tersebut (Pavia, 2009).

25 Tidak semua inti 1 H membalikkan spinnya tepat sama dengan frekuensi radio karena inti-inti tersebut mungkin berbeda dalam lingkungan kimianya atau bahkan lingkungan elektroniknya. Kondisi ini menyebabkan adanya pergeseran kimia. Kebanyakan senyawa organik memiliki puncak bawah medan (dimedan rendah) dari TMS/senyawa standar dan diberi δ positif. Nilai δ= 1,00 berarti bahwa puncak muncul 1 ppm dibawah medan dari puncak TMS. Cara umum untuk menetapkan puncak ialah dengan membandingkan pergeseran kimia dengan proton yang serupa dalam senyawa standar yang diketahui. Sebagai contoh, Benzena memiliki enam hidrogen ekuivalen dan menunjukkan satu puncak pada spektrumnya pada δ = 7,24. Senyawa aromatik lain juga menunjukkan puncak didaerah ini. Hal ini menunjukkan bahwa kebanyakan hidrogen cincin aromatik akan memiliki pergeseran kimia pada sekitar δ = 7. Demikian pula kebanyakan hidrogen CH 3 -Ar muncul pada δ = 2,2-2,5. Pergeseran kimia dari inti 1 H pada berbagai lingkungan kimia telah ditetapkan dengan mengukur spektrum NMR 1 H dari sejumlah besar senyawa dengan relatif sederhana yang diketahui (Achmadi,2003).

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 17 BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Jambu Biji (Psidium guajava L) Jambu biji merupakan tanaman dari genus Psidium dan terbagi atas banyak spesies tanaman ini bukan tanaman asli Indonesia. Tanaman

Lebih terperinci

a. Kardenolida Universitas Sumatera Utara O O b. Bufadienolida H R= gugus gula

a. Kardenolida Universitas Sumatera Utara O O b. Bufadienolida H R= gugus gula a. Senyawa lemak rantai terbuka atau alifatik, seperti asam-asam lemak, gula-gula, dan hampir semua asam amino b. Senyawa sikloalifatik atau alisiklik, seperti terpenoid, steroid, dan beberapa alkaloid

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Benalu cengkeh (Scurrula ferruginea (jack) Danser) Benalu merupakan tumbuhan parasit terhadap inang tumbuhnya, walaupun bersifat parasit benalu berpotensi sebagai tumbuhan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 2 TINJUN PUSTK 2.1 iji uah Pinang 2.1.1 Morfologi dan Manfaat iji uah Pinang Tanaman pinang (reca catechu L) di Indonesia sejak dulu telah banyak dimanfaatkan oleh masyarakat khususnya buah, yang digunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Pucuk Merah (Syzygium oleosum (F.Muell.) B.Hyland) Pucuk Merah adalah jenis tanaman hias yang tergolong dalam family myrtaceae.tanaman ini dikenal dengan nama pucuk

Lebih terperinci

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi 2 dikeringkan pada suhu 105 C. Setelah 6 jam, sampel diambil dan didinginkan dalam eksikator, lalu ditimbang. Hal ini dilakukan beberapa kali sampai diperoleh bobot yang konstan (b). Kadar air sampel ditentukan

Lebih terperinci

UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) Surakarta 57127

UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) Surakarta 57127 UNIVERSITAS SETIA BUDI FAKULTAS FARMASI Program Studi S1 Farmasi Jl. Letjen. Sutoyo. Telp (0271) 852518 Surakarta 57127 UJIAN TENGAH SEMESTER GANJIL TAHUN AKADEMIK 2006 / 2007 Mata Kuliah : Fitokimia II

Lebih terperinci

Beberapa keuntungan dari kromatografi planar ini :

Beberapa keuntungan dari kromatografi planar ini : Kompetensi Dasar: Mahasiswa diharapkan dapat menjelaskan metode pemisahan dengan KLT dan dapat mengaplikasikannya untuk analisis suatu sampel Gambaran Umum KLT Kromatografi lapis tipis (KLT) dikembangkan

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Alat-alat 1. Alat Destilasi 2. Batang Pengaduk 3. Beaker Glass Pyrex 4. Botol Vial 5. Chamber 6. Corong Kaca 7. Corong Pisah 500 ml Pyrex 8. Ekstraktor 5000 ml Schoot/ Duran

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Buni (Antidesma bunius (L) Spreng.) 2.1.1 Sistematika Tumbuhan Buni Kingdom Divisi Class rdo Famili Genus Spesies Nama Lokal : Plantae : Spermatophyta : Dicotyledoneae

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 13 HASIL DAN PEMBAHASAN Ekstraksi dan Fraksinasi Sampel buah mahkota dewa yang digunakan pada penelitian ini diperoleh dari kebun percobaan Pusat Studi Biofarmaka, Institut Pertanian Bogor dalam bentuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl.)

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl.) 17 A 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Mahkota Dewa (Phaleria Macrocarpa (Scheff.) oerl.) 2.1.1. Morfologi Tumbuhan Mahkota Dewa Tanaman mahkota dewa sebenarnya berasal dari Papua, oleh karena itu dinamakan

Lebih terperinci

BAB 1 TINJAUAN PUSTAKA

BAB 1 TINJAUAN PUSTAKA PENDAHULUAN Glibenklamid merupakan sulfonylurea generasi kedua yang digunakan sebagai obat antidiabetik oral yang berperan menurunkan konsentrasi glukosa darah. Glibenklamid merupakan salah satu senyawa

Lebih terperinci

BAB 1 TINJAUAN PUSTAKA

BAB 1 TINJAUAN PUSTAKA BAB 1 TIJAUA PUSTAKA 1.1 Glibenklamid Glibenklamid adalah 1-[4-[2-(5-kloro-2-metoksobenzamido)etil]benzensulfonil]-3- sikloheksilurea. Glibenklamid juga dikenal sebagai 5-kloro--[2-[4{{{(sikloheksilamino)

Lebih terperinci

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak 15 HASIL DAN PEMBAHASAN Penetapan Kadar Air Penentuan kadar air berguna untuk mengidentifikasi kandungan air pada sampel sebagai persen bahan keringnya. Selain itu penentuan kadar air berfungsi untuk mengetahui

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1.

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN. Hasil pemeriksaan ciri makroskopik rambut jagung adalah seperti yang terdapat pada Gambar 4.1. BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Pada awal penelitian dilakukan determinasi tanaman yang bertujuan untuk mengetahui kebenaran identitas botani dari tanaman yang digunakan. Hasil determinasi menyatakan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar

IV. HASIL DAN PEMBAHASAN. Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar IV. HASIL DAN PEMBAHASAN A. Isolasi Senyawa Fenolik Dari penelitian ini telah berhasil diisolasi senyawa flavonoid murni dari kayu akar tumbuhan kenangkan yang diperoleh dari Desa Keputran Sukoharjo Kabupaten

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo,

BAB IV HASIL DAN PEMBAHASAN. Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo, BAB IV HASIL DAN PEMBAHASAN 4.1 Penyiapan Sampel Sampel daging buah sirsak (Anonna Muricata Linn) yang diambil didesa Monggupo Kecamatan Atinggola Kabupaten Gorontalo Utara Provinsi Gorontalo, terlebih

Lebih terperinci

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman 17 HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Sebanyak 5 kg buah segar tanaman andaliman asal Medan diperoleh dari Pasar Senen, Jakarta. Hasil identifikasi yang dilakukan oleh Pusat Penelitian

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Jambu Biji (Psidium guajava L.) Jambu biji berasal dari Amerika tropik, tumbuh pada tanah yang gembur maupun liat, pada tempat terbuka dan mengandung air cukup banyak.

Lebih terperinci

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan

III. METODOLOGI PENELITIAN. Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan III. METODOLOGI PENELITIAN Metodologi penelitian meliputi aspek- aspek yang berkaitan dengan preparasi sampel, bahan, alat dan prosedur kerja yang dilakukan, yaitu : A. Sampel Uji Penelitian Tanaman Ara

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di

III. METODELOGI PENELITIAN. Penelitian ini dilakukan pada bulan April Januari 2013, bertempat di 30 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan April 2012 - Januari 2013, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Situlan (Macaranga Dipterocarpifolia Merrill)

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Situlan (Macaranga Dipterocarpifolia Merrill) BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Situlan (Macaranga Dipterocarpifolia Merrill) 2.1.1 Sistematika Tumbuhan Situlan Kingdom Divisi Class rdo Famili Genus Spesies Nama Lokal : Plantae : Spermatophyta :

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston)

BAB 2 TINJAUAN PUSTAKA. 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston) 2 BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Jambu Air ( Syzygium aquea (Burm.f.)Alston) 2.1.1 Morfologi Tumbuhan Jambu Air Syzygium aquea asli dari Malaysia dan Indonesia yang tergolong ke dalam family Myrtaceae

Lebih terperinci

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung.

III. METODE PENELITIAN di Laboratorium Biomassa Terpadu Universitas Lampung. 16 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Agustus 2012 sampai dengan bulan Maret 2013 di Laboratorium Biomassa Terpadu Universitas Lampung. 3.2 Alat

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.)

BAB 2 TINJAUAN PUSTAKA Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.) BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Balik Angin 2.1.1 Morfologi Tumbuhan Balik Angin (Macaranga recurvata Gage.) Balik angin (M.recurvata Gage.) merupakan jenis pohon teduhan, biasanya ditemui di tempat-tempat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi

BAB IV HASIL DAN PEMBAHASAN. Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi BAB IV HASIL DAN PEMBAHASAN 4.1. Determinasi Tumbuhan Tumbuhan yang akan diteliti dideterminasi di Jurusan Pendidikan Biologi FPMIPA UPI Bandung untuk mengetahui dan memastikan famili dan spesies tumbuhan

Lebih terperinci

PEMISAHAN ZAT WARNA SECARA KROMATORAFI. A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan.

PEMISAHAN ZAT WARNA SECARA KROMATORAFI. A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan. PEMISAHAN ZAT WARNA SECARA KROMATORAFI A. Tujuan Memisahkan zat-zat warna yang terdapat pada suatu tumbuhan. B. Pelaksanaan Kegiatan Praktikum Hari : Senin, 13 April 2009 Waktu : 10.20 12.00 Tempat : Laboratorium

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN BAB 4 HASIL PERCBAAN DAN PEMBAHASAN Penelitian ini bertujuan untuk membuat, mengisolasi dan mengkarakterisasi derivat akrilamida. Penelitian diawali dengan mereaksikan akrilamida dengan anilin sulfat.

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Tumbuhan Bunga Kupu-kupu Rambat (Bauhinia kockiana Lour)

TINJAUAN PUSTAKA. 2.1 Tumbuhan Bunga Kupu-kupu Rambat (Bauhinia kockiana Lour) TINJAUAN PUSTAKA 2.1 Tumbuhan Bunga Kupu-kupu Rambat (Bauhinia kockiana Lour) 2.1.1 Sistematika Tumbuhan Bunga Kupu-kupu Rambat (Herbarium Medanense, 2016) Kingdom Divisi Class rdo Famili Genus Spesies

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan dari bulan Januari sampai Juni 2010 di Laboratorium Kimia Organik, Jurusan Kimia Fakultas MIPA Universitas Lampung.

Lebih terperinci

II. TINJAUAN PUSTAKA. Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat

II. TINJAUAN PUSTAKA. Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat 4 II. TINJAUAN PUSTAKA 2.1 Gamal (Gliricidia maculata) Tanaman gamal (Gliricidia maculata) adalah nama jenis perdu dari kerabat polong - polongan (suku Fabaceae atau Leguminosae). Penyebaran alami tidak

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Alpukat 2.1.1. Morfologi Tumbuhan Alpukat Pohon buah ini berasal dari Amerika tengah, tumbuh liar di hutan-hutan, banyak juga ditanam di kebun, dan di pekarangan yang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Tumbuhan Bunga Mawar Putih (Rosa hybrida L.)

BAB 2 TINJAUAN PUSTAKA Tumbuhan Bunga Mawar Putih (Rosa hybrida L.) BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Bunga Mawar Putih (Rosa hybrida L.) Tumbuhan mawar tersebar menjadi 100 spesies lebih, yang kebanyakan tumbuh di bagian daerah yang berudara sejuk. Spesies mawar dimasukkan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar

IV. HASIL DAN PEMBAHASAN. Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar IV. HASIL DAN PEMBAHASAN A. Persiapan Sampel Sampel Akar tumbuhan akar wangi sebanyak 3 kg yang dibeli dari pasar Bringharjo Yogyakarta, dibersihkan dan dikeringkan untuk menghilangkan kandungan air yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta

BAB II TINJAUAN PUSTAKA. nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta BAB II TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan Uraian tumbuhan meliputi habitat dan daerah tumbuh, sistematika tumbuhan, nama asing, nama daerah, morfologi tumbuhan, kandungan senyawa kimia, serta penggunaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Harimonting 2.1.1. Morfologi Tumbuhan Harimonting Tumbuhan Harimonting adalah termasuk familli Myrtaceae (suku jambu-jambuan). Harimonting adalah sejenis tanaman liar

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis 22 BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daun pohon suren (Toona sinensis Roem) yang diperoleh dari daerah Tegalpanjang, Garut dan digunakan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 13 HASIL DAN PEMBAHASAN Sampel Temulawak Terpilih Pada penelitian ini sampel yang digunakan terdiri atas empat jenis sampel, yang dibedakan berdasarkan lokasi tanam dan nomor harapan. Lokasi tanam terdiri

Lebih terperinci

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc)

ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc) ISOLASI DAN IDENTIFIKASI SENYAWA FLAVONOID DARI FASE n-butanol DAUN JERUK PURUT (Citrus hystrix.dc) Zuhelmi Aziz*, Ratna Djamil Fakultas Farmasi Universitas Pancasila,Jakarta 12640 email : emi.ffup@yahoo.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Bawang Merah 2.1.1 Morfologi Bawang Merah (Allium cepa L.) Bawang merah (lihat lampiran B) merupakan tanaman semusim yang berbentuk rumput, berbatang pendek dan berakar

Lebih terperinci

KIMIA ANALISIS ORGANIK (2 SKS)

KIMIA ANALISIS ORGANIK (2 SKS) KIMIA ANALISIS ORGANIK (2 SKS) 1.PENDAHULUAN 2.KONSEP DASAR SPEKTROSKOPI 3.SPEKTROSKOPI UV-VIS 4.SPEKTROSKOPI IR 5.SPEKTROSKOPI 1 H-NMR 6.SPEKTROSKOPI 13 C-NMR 7.SPEKTROSKOPI MS 8.ELUSIDASI STRUKTUR Teknik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Mahkota Dewa 2.1.1 Morfologi Tumbuhan Mahkota Dewa Tumbuhan Mahkota dewa merupakan tumbuhan yang hidup di daerah tropis, juga bisa ditemukan di pekarangan rumah sebagai

Lebih terperinci

KROMATOGRAFI. Adelya Desi Kurniawati, STP., MP., M.Sc.

KROMATOGRAFI. Adelya Desi Kurniawati, STP., MP., M.Sc. KROMATOGRAFI Adelya Desi Kurniawati, STP., MP., M.Sc. Tujuan Pembelajaran 1. Mahasiswa memahami pengertian dari kromatografi dan prinsip kerjanya 2. Mahasiswa mengetahui jenis-jenis kromatografi dan pemanfaatannya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Kecapi Pohon, tinggi 30 m,memiliki cabang dan ranting yang banyak. Batang melengkung, berkayu, bergetah, percabangan mulai dari bagian pangkalnya. Daun majemuk, lonjong,

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014,

III. METODE PENELITIAN. Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014, III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilakukan pada bulan Januari sampai dengan Juli 2014, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas Matematika

Lebih terperinci

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN

BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN BAB 4 HASIL PERCOBAAN DAN PEMBAHASAN Pemeriksaan karakteristik dilakukan untuk mengetahui kebenaran identitas zat yang digunakan. Dari hasil pengujian, diperoleh karakteristik zat seperti yang tercantum

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di

III. METODE PENELITIAN. Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan Januari 2015 Juli 2015, bertempat di Laboratorium Kimia Organik, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K

HASIL DAN PEMBAHASAN. Persentase inhibisi = K ( S1 K 7 Persentase inhibisi = K ( S1 S ) 1 K K : absorban kontrol negatif S 1 : absorban sampel dengan penambahan enzim S : absorban sampel tanpa penambahan enzim Isolasi Golongan Flavonoid (Sutradhar et al

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Agustus April 2013, bertempat di

III. METODOLOGI PENELITIAN. Penelitian ini akan dilakukan pada bulan Agustus April 2013, bertempat di III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini akan dilakukan pada bulan Agustus 2012 -April 2013, bertempat di Laboratorium Kimia Organik Jurusan Kimia Fakultas MIPA Universitas

Lebih terperinci

DESTILASI SECARA UMUM

DESTILASI SECARA UMUM DESTILASI SECARA UMUM Disusun oleh : NANDA RISKI JANESTIA (1011101020034) FARHAN RAMADHANI (1011101010035) PADLI SYAH PUTRA (1111101010020) JAMNUR SAHPUTRA FAHMI SUHANDA (1211101010050) IBRAHIM (1111101010017)

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 25 HASIL DAN PEMBAHASAN Kandungan Zat Ekstraktif Hasil penelitian menunjukkan bahwa kandungan ekstrak aseton yang diperoleh dari 2000 gram kulit A. auriculiformis A. Cunn. ex Benth. (kadar air 13,94%)

Lebih terperinci

Kelompok 2: Kromatografi Kolom

Kelompok 2: Kromatografi Kolom Kelompok 2: Kromatografi Kolom Arti Kata Kromatografi PENDAHULUAN chroma berarti warna dan graphien berarti menulis Sejarah Kromatografi Sejarah kromatografi dimulai sejak pertengahan abad ke 19 ketika

Lebih terperinci

4. Hasil dan Pembahasan

4. Hasil dan Pembahasan 4. Hasil dan Pembahasan 4.1 Pembuatan Asap Cair Asap cair dari kecubung dibuat dengan teknik pirolisis, yaitu dekomposisi secara kimia bahan organik melalui proses pemanasan tanpa atau sedikit oksigen

Lebih terperinci

san dengan tersebut (a) (b) (b) dalam metanol + NaOH

san dengan tersebut (a) (b) (b) dalam metanol + NaOH 4 Hasil dan Pembaha san Pada penelitian mengenai kandungan metabolitt sekunder dari kulit batang Intsia bijuga telah berhasil diisolasi tiga buah senyawaa turunan flavonoid yaitu aromadendrin (26), luteolin

Lebih terperinci

J. Gaji dan upah Peneliti ,- 4. Pembuatan laporan ,- Jumlah ,-

J. Gaji dan upah Peneliti ,- 4. Pembuatan laporan ,- Jumlah ,- Anggaran Tabel 2. Rencana Anggaran No. Komponen Biaya Rp 1. Bahan habis pakai ( pemesanan 2.500.000,- daun gambir, dan bahan-bahan kimia) 2. Sewa alat instrument (analisa) 1.000.000,- J. Gaji dan upah

Lebih terperinci

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal.

HASIL DAN PEMBAHASAN. 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa. steroid, saponin, dan fenolik.(lampiran 1, Hal. IV. HASIL DAN PEMBAHASAN 4.1 Hasil 1. Pemeriksaan kandungan kimia kulit batang asam kandis ( Garcinia cowa Roxb.) menunjukkan adanya golongan senyawa flavonoid, terpenoid, steroid, saponin, dan fenolik.(lampiran

Lebih terperinci

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1.

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1. PEMBAHASAN Pengaruh Pencucian, Delignifikasi, dan Aktivasi Ampas tebu mengandung tiga senyawa kimia utama, yaitu selulosa, lignin, dan hemiselulosa. Menurut Samsuri et al. (2007), ampas tebu mengandung

Lebih terperinci

LAPORAN TETAP KIMIA ANALITIK INSTRUMEN

LAPORAN TETAP KIMIA ANALITIK INSTRUMEN LAPORAN TETAP KIMIA ANALITIK INSTRUMEN KROMATOGRAFI LAPIS TIPIS I Oleh : Kelompok III 1. Bella Anggraini (061330400291) 2. Deka Pitaloka (061330400293) 3. Eka Anggraini (061330400298) 4. Elvania Novianti

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Uji pendahuluan Uji pendahuluan terhadap daun Artocarpus champeden secara kualitatif dilakukan dengan teknik kromatografi lapis tipis dengan menggunakan beberapa variasi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Senggani Tumbuhan senggani merupakan tumbuhan yang tumbuh liar di tempat-tempat yang mendapat cukup sinar matahari, seperti dilereng gunung, semak belukar, lapangan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mempercantik wajah. Kosmetik yang berbahaya mengandung komposisi dari

BAB II TINJAUAN PUSTAKA. mempercantik wajah. Kosmetik yang berbahaya mengandung komposisi dari BAB II TINJAUAN PUSTAKA 2.1 Kosmetik Kosmetik merupakan bahan atau komponen kimia yang digunakan untuk mempercantik wajah. Kosmetik yang berbahaya mengandung komposisi dari berbagai macam senyawa kimia

Lebih terperinci

BAHAN DAN METODE. Tempat dan Waktu Penelitian

BAHAN DAN METODE. Tempat dan Waktu Penelitian 19 BAHAN DAN METODE Tempat dan Waktu Penelitian Penelitian ini dilakukan di Bagian Kimia Hasil Hutan Departemen Hasil Hutan Fakultas Kehutanan, Laboratorium Kimia Organik Departemen Kimia Fakultas MIPA

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan dari bulan Agustus hingga bulan Desember 2013 di Laboratorium Bioteknologi Kelautan Fakultas Perikanan dan Ilmu Kelautan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L

IV. HASIL DAN PEMBAHASAN. 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L IV. HASIL DAN PEMBAHASAN 4.1 Hasil Dari penelitian yang telah dilakukan, maka diperoleh hasil sebagai berikut: 1. Dari 100 kg sampel kulit kacang tanah yang dimaserasi dengan 420 L etanol, diperoleh ekstrak

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian III.1 Pengumpulan dan Persiapan Sampel Sampel yang digunakan dalam penelitian ini adalah daun Artocarpus champeden Spreng yang diperoleh dari Kp.Sawah, Depok, Jawa Barat,

Lebih terperinci

II. TINJAUAN PUSTAKA. berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia

II. TINJAUAN PUSTAKA. berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia 4 II. TINJAUAN PUSTAKA 2.1. Tunibiilian nenas (Ananas comosus) Nenas atau nanas "Pineapple" bukan tanaman asli Indonesia. Nenas berasal dari ber.ua Amerika, selanjutnya berkembang meiuas di se'.uiuh dur.ia

Lebih terperinci

Noda tidak naik Minyak 35 - Noda tidak naik Minyak 39 - Noda tidak naik Minyak 43

Noda tidak naik Minyak 35 - Noda tidak naik Minyak 39 - Noda tidak naik Minyak 43 BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Hasil uji pendahuluan Setelah dilakukan uji kandungan kimia, diperoleh hasil bahwa tumbuhan Tabemaemontana sphaerocarpa positif mengandung senyawa alkaloid,

Lebih terperinci

BAB IV PROSEDUR PENELITIAN

BAB IV PROSEDUR PENELITIAN BAB IV PROSEDUR PENELITIAN 4.1. Pengumpulan Bahan Tumbuhan yang digunakan sebagai bahan penelitian ini adalah daun steril Stenochlaena palustris. Bahan penelitian dalam bentuk simplisia, diperoleh dari

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil

BAB III METODOLOGI PENELITIAN. Sampel atau bahan penelitian ini adalah daun M. australis (hasil BAB III METODOLOGI PENELITIAN 3.1 Sampel dan Lokasi Penelitian Sampel atau bahan penelitian ini adalah daun M. australis (hasil determinasi tumbuhan dilampirkan pada Lampiran 1) yang diperoleh dari perkebunan

Lebih terperinci

BAB I PENDAHULUAN. Schraiber pada tahun KLT merupakan bentuk kromatografi planar,

BAB I PENDAHULUAN. Schraiber pada tahun KLT merupakan bentuk kromatografi planar, BAB I PENDAHULUAN Kromatografi lapis tipis (KLT) dikembangkan oleh Izmailoff dan Schraiber pada tahun 1938. KLT merupakan bentuk kromatografi planar, selain kromatografi kertas dan elektroforesis. Berbeda

Lebih terperinci

I. PENDAHULUAN. rusak serta terbentuk senyawa baru yang mungkin bersifat racun bagi tubuh.

I. PENDAHULUAN. rusak serta terbentuk senyawa baru yang mungkin bersifat racun bagi tubuh. I. PENDAHULUAN 1.1. Latar Belakang Lipida merupakan salah satu unsur utama dalam makanan yang berkontribusi terhadap rasa lezat dan aroma sedap pada makanan. Lipida pada makanan digolongkan atas lipida

Lebih terperinci

Percobaan 4 KROMATOGRAFI KOLOM & KROMATOGRAFI LAPIS TIPIS. Isolasi Kurkumin dari Kunyit (Curcuma longa L)

Percobaan 4 KROMATOGRAFI KOLOM & KROMATOGRAFI LAPIS TIPIS. Isolasi Kurkumin dari Kunyit (Curcuma longa L) Percobaan 4 KROMATOGRAFI KOLOM & KROMATOGRAFI LAPIS TIPIS Isolasi Kurkumin dari Kunyit (Curcuma longa L) I. Tujuan 1. Melakukan dan menjelaskan teknik-teknik dasar kromatografi kolom dan kromatografi lapis

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di 21 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari sampai dengan September 2015 di Laboratorium Kimia Organik Jurusan Kimia FMIPA Universitas Lampung.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. 1 Waktu dan Lokasi Penelitian Waktu penelitian dimulai dari bulan Februari sampai Juni 2014. Lokasi penelitian dilakukan di berbagai tempat, antara lain: a. Determinasi sampel

Lebih terperinci

Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.)

Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.) Lampiran 1. Gambar tumbuhan gambas (Luffa cutangula L. Roxb.) Gambar 1. Tumbuhan gambas (Luffa acutangula L. Roxb.) Gambar 2. Biji Tumbuhan Gambas (Luffa acutangula L. Roxb.) Lampiran 2. Gambar Mikroskopik

Lebih terperinci

PATEN NASIONAL Nomor Permohonan Paten :P Warsi dkk Tanggal Permohonan Paten:19 November 2013

PATEN NASIONAL Nomor Permohonan Paten :P Warsi dkk Tanggal Permohonan Paten:19 November 2013 1 PATEN NASIONAL Nomor Permohonan Paten :P00147 Warsi dkk Tanggal Permohonan Paten:19 November 13 2, bis(4 HIDROKSI KLORO 3 METOKSI BENZILIDIN)SIKLOPENTANON DAN 2, bis(4 HIDROKSI 3 KLOROBENZILIDIN)SIKLOPENTANON

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Lagundi Tumbuhan Lagundi (V. trifolia L.) merupakan pohon semak, tinggi berkisar 5 meter dan batangnya ditutupi oleh rambut-rambut lembut. Meski banyak kasiatnya, orang

Lebih terperinci

OLIMPIADE SAINS NASIONAL Medan, 1-7 Agustus 2010 BIDANG KIMIA. Ujian Praktikum KIMIA ORGANIK. Waktu 150 menit. Kementerian Pendidikan Nasional

OLIMPIADE SAINS NASIONAL Medan, 1-7 Agustus 2010 BIDANG KIMIA. Ujian Praktikum KIMIA ORGANIK. Waktu 150 menit. Kementerian Pendidikan Nasional OLIMPIADE SAINS NASIONAL 2010 Medan, 1-7 Agustus 2010 BIDANG KIMIA Ujian Praktikum KIMIA ORGANIK Waktu 150 menit Kementerian Pendidikan Nasional Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah

Lebih terperinci

IDENTIFIKASI SENYAWA ANTIOKSIDAN DALAM SELADA AIR (Nasturtium officinale R.Br)

IDENTIFIKASI SENYAWA ANTIOKSIDAN DALAM SELADA AIR (Nasturtium officinale R.Br) IDENTIFIKASI SENYAWA ANTIOKSIDAN DALAM SELADA AIR (Nasturtium officinale R.Br) Hindra Rahmawati 1*, dan Bustanussalam 2 1Fakultas Farmasi Universitas Pancasila 2 Lembaga Ilmu Pengetahuan Indonesia (LIPI)

Lebih terperinci

4002 Sintesis benzil dari benzoin

4002 Sintesis benzil dari benzoin 4002 Sintesis benzil dari benzoin H VCl 3 + 1 / 2 2 + 1 / 2 H 2 C 14 H 12 2 C 14 H 10 2 (212.3) 173.3 (210.2) Klasifikasi Tipe reaksi dan penggolongan bahan ksidasi alkohol, keton, katalis logam transisi

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van

BAB III HASIL DAN PEMBAHASAN. A. Determinasi Tanaman. acuan Flora of Java: Spermatophytes only Volume 2 karangan Backer dan Van 22 BAB III HASIL DAN PEMBAHASAN A. Determinasi Tanaman Determinasi merupakan suatu langkah untuk mengidentifikasi suatu spesies tanaman berdasarkan kemiripan bentuk morfologi tanaman dengan buku acuan

Lebih terperinci

BAHAN DAN METODE Waktu dan Tempat Alat dan Bahan Prosedur Penelitian

BAHAN DAN METODE Waktu dan Tempat Alat dan Bahan Prosedur Penelitian 9 BAHAN DAN METODE Waktu dan Tempat Penelitian dilakukan mulai bulan November 2010 sampai dengan bulan Juni 2011 di Laboratorium Kimia Analitik Departemen Kimia FMIPA dan Laboratorium Pusat Studi Biofarmaka

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Azalea (Rhododendron kamfaeri Planch) Azalea (Rhododendron spp.) banyak ditanam dipegunungan. Azalea pada dasarnya dapat bertumbuh dalam rumah kaca dan dapat berbunga

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Mangga 2.1.1. Morfologi Tumbuhan Mangga Mangga adalah tanaman buah asli dari India. Kini, tanaman ini tersebar di berbagai penjuru dunia termasuk Indonesia. Tanaman

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Morfologi tumbuhan sirsak Sirsak (Annona muricata L) berupa tumbuhan atau potion yang berbatang utama berukuran kecil dan rendah. Daunnya berbentuk bulat telur agak tebal dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Tumbuhan Pidada Merah 2.1.1 Morfologi Tumbuhan Pidada Merah Tumbuhan pidada (Soneratia) adalah sejenis pohon penghuni rawa-rawa tepi sungai, dan bagian dari vegetasi mangrove.

Lebih terperinci

BAB IV HASIL PERCOBAAN DAN PEMBAHASAN

BAB IV HASIL PERCOBAAN DAN PEMBAHASAN 22 BAB IV HASIL PERCOBAAN DAN PEMBAHASAN 4.1 Produksi Furfural Bonggol jagung (corn cobs) yang digunakan dikeringkan terlebih dahulu dengan cara dijemur 4-5 hari untuk menurunkan kandungan airnya, kemudian

Lebih terperinci

PERCOBAAN X KROMATOGRAFI LAPIS TIPIS

PERCOBAAN X KROMATOGRAFI LAPIS TIPIS PERCOBAAN X KROMATOGRAFI LAPIS TIPIS I. Tujuan Percobaan Adapun tujuan yang ingin dicapai praktikan setelah percobaan ini adalah - Mengetahui dan memahami cara-cara pemisahan dan identifikasi suatu zat

Lebih terperinci

ADLN-Perpustakaan Universitas Airlangga BAB IV HASIL DAN PEMBAHASAN Skrining Alkaloid dari Tumbuhan Alstonia scholaris

ADLN-Perpustakaan Universitas Airlangga BAB IV HASIL DAN PEMBAHASAN Skrining Alkaloid dari Tumbuhan Alstonia scholaris BAB IV ASIL DAN PEMBAASAN 4.1. Skrining Alkaloid dari Tumbuhan Alstonia scholaris Serbuk daun (10 g) diekstraksi dengan amonia pekat selama 2 jam pada suhu kamar kemudian dipartisi dengan diklorometan.

Lebih terperinci

BAB IV METODE PENELITIAN. glukosa darah mencit yang diinduksi aloksan dengan metode uji toleransi glukosa.

BAB IV METODE PENELITIAN. glukosa darah mencit yang diinduksi aloksan dengan metode uji toleransi glukosa. 33 BAB IV METODE PENELITIAN 4.1 Rancangan Penelitian Penelitian ini bersifat deskriftif dan eksperimental, dilakukan pengujian langsung efek hipoglikemik ekstrak kulit batang bungur terhadap glukosa darah

Lebih terperinci

BAB II TINJAUAN PUSTAKA. makin meluas. Sebelum tahun 1950-an hanya satu varietas yang dikenal yaitu

BAB II TINJAUAN PUSTAKA. makin meluas. Sebelum tahun 1950-an hanya satu varietas yang dikenal yaitu BAB II TINJAUAN PUSTAKA 2.1 Uraian Tumbuhan Lamtoro tersebar secara luas di Mexico dan Amerika Tengah pada tahun 1520 saat datangnya orang Spanyol ke negara tersebut. Baru pada akhir abad ke 20 lebih menyebar

Lebih terperinci

BABm METODOLOGI PENELITIAN

BABm METODOLOGI PENELITIAN BABm METODOLOGI PENELITIAN 3.1. Alat dan Bahan 3.1.1. Alat-alat yang digunakan Alat-alat yang digunakan adalah seperangkat destilasi sederhana (Elektromantel MX), neraca analitik, ultrasonik Kery Puisatron,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 1. Taksonomi Dan Morfologi Tanaman Durian. Kingdom : Plantae ( tumbuh tumbuhan ) Divisi : Spermatophyta ( tumbuhan berbiji )

BAB II TINJAUAN PUSTAKA. 1. Taksonomi Dan Morfologi Tanaman Durian. Kingdom : Plantae ( tumbuh tumbuhan ) Divisi : Spermatophyta ( tumbuhan berbiji ) BAB II TINJAUAN PUSTAKA A. Durian 1. Taksonomi Dan Morfologi Tanaman Durian Menurut Rahmat Rukmana ( 1996 ) klasifikasi tanaman durian adalah sebagai berikut : Kingdom : Plantae ( tumbuh tumbuhan ) Divisi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia

BAB III METODOLOGI PENELITIAN. Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia BAB III METODOLOGI PENELITIAN 3.1 Objek dan Lokasi Penelitian Objek atau bahan penelitian ini adalah daging buah paria (Momordica charantia L.) yang diperoleh dari Kampung Pipisan, Indramayu. Dan untuk

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan 4.1 Tahap Sintesis Biodiesel Pada tahap sintesis biodiesel, telah dibuat biodiesel dari minyak sawit, melalui reaksi transesterifikasi. Jenis alkohol yang digunakan adalah metanol,

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun

BAB III METODOLOGI PENELITIAN. Sampel atau bahan yang digunakan dalam penelitian ini adalah daun BAB III METODOLOGI PENELITIAN 3.1 Sampel dan Lokasi Penelitian Sampel atau bahan yang digunakan dalam penelitian ini adalah daun Artocarpus communis (sukun) yang diperoleh dari Garut, Jawa Barat serta

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tujuan penelitian ini adalah untuk mengidentifikasi kandungan rhodamin

BAB IV HASIL DAN PEMBAHASAN. Tujuan penelitian ini adalah untuk mengidentifikasi kandungan rhodamin digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN Tujuan penelitian ini adalah untuk mengidentifikasi kandungan rhodamin B pada pemerah pipi (blush on) yang beredar di Surakarta dan untuk mengetahui berapa

Lebih terperinci

IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat)

IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat) IDENTIFIKASI FITOKIMIA DAN EVALUASI TOKSISITAS EKSTRAK KULIT BUAH LANGSAT (Lansium domesticum var. langsat) Abstrak Kulit buah langsat diekstraksi menggunakan metode maserasi dengan pelarut yang berbeda

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Isolasi sinamaldehida dari minyak kayu manis. Minyak kayu manis yang digunakan dalam penelitian ini diperoleh dari

BAB IV HASIL DAN PEMBAHASAN. 4.1 Isolasi sinamaldehida dari minyak kayu manis. Minyak kayu manis yang digunakan dalam penelitian ini diperoleh dari 37 BAB IV HASIL DAN PEMBAHASAN 4.1 Isolasi sinamaldehida dari minyak kayu manis Minyak kayu manis yang digunakan dalam penelitian ini diperoleh dari hasil penyulingan atau destilasi dari tanaman Cinnamomum

Lebih terperinci