BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PENGUMPULAN DAN PENGOLAHAN DATA"

Transkripsi

1 BAB IV PENGUMPULAN DAN PENGOLAHAN DATA Pada bab ini dilakukan kegiatan pengumpulan dan pengolahan data yang terkait dengan materi penelitian. Data-data yang terkumpul kemudian diolah untuk mendapatkan hasil yang selanjutnya akan dibahas pada bagian pengolahan data Pengumpulan Data Sejarah Singkat BPPT Disadari atau tanpa disadari, teknologi ikut memainkan peranan penting baik langsung maupun tidak langsung dalam menyelesaikan permasalahan tersebut. Badan Pengkajian dan Penerapan Teknologi (BPPT), yang didirikan melalui Keppres No. 25 tahun 1978, diberi tugas oleh Presiden sebagai instansi pemerintah untuk melaksanakan pengkajian dan penerapan teknologi sesuai dengan ketentuan perundang-undangan yang berlaku. BPPT mempunyai peran yang kuat dalam meningkatkan kemampuan teknologi untuk mendukung pembangunan sektor produksi dan penyediaan kebutuhan dasar manusia, sehingga mampu meningkatkan standar kehidupan, kemandirian bangsa dan daya saing bangsaindonesia. 43

2 Seiring dengan kemajuan ilmu pengetahuan dan teknologi di dunia yang senantiasa berkembang dengan cepat, maka suatu kebijakan dan strategi perlu dirumuskan untuk mengantisipasi perubahan tersebut. Dalam rangka memasyarakatkan hasil-hasil penelitian, pengkajian dan pengembangan Badan Pengkajian dan Penerapan Teknologi (BPPT), Kepala BPPT melalui Peraturan Kepala Badan Pengkajian dan Penerapan Teknologi No. 170/Kp/KA/BPPT/IV/2006 tentang Organisasi dan Tata Kerja BPPT, menugaskan Pusat Teknologi Konversi dan Konservasi Energi (PTKKE) sebagai unit untuk melaksanakan pengkajian dan penerapan teknologi di bidang teknologi konversi dan konservasi energi. Selanjutnya, dalam melaksanakan tugas PTKKE dibagi dalam tiga bidang, yaitu Bidang Konversi Energi, Bidang Konservasi Energi dan Bidang Rekayasa Sistem. Bidang Konservasi Energi, yang diangkat sebagai lokus penyusunan kertas kerja yang mempunyai tugas melaksanakan pengkajian dan penerapan di bidang teknologi konservasi energi. Badan Pengkajian dan Penerapan Teknologi (BPPT) adalah lembaga pemerintah non-departemen yang berada dibawah koordinasi Kementerian Negara Riset dan Teknologi yang mempunyai tugas melaksanakan tugas pemerintahan di bidang pengkajian dan penerapan teknologi. Proses pembentukan BPPT bermula dari gagasan Mantan Presiden Soeharto kepada Prof Dr. Ing. B.J. Habibie pada tanggal 28-Januari Dengan surat keputusan no. 76/M/1974 tanggal 5- Januari-1974, Prof Dr. Ing. B.J. Habibie diangkat sebagai penasehat pemerintah dibidang advance teknologi dan teknologi penerbangan yang bertanggung jawab langsung pada presiden dengan membentuk Divisi Teknologi dan Teknologi Penerbangan (ATTP) Pertamina. 44

3 Melalui surat keputusan Dewan Komisaris Pemerintah Pertamina No.04/Kpts/DR/DU/1975 tanggal 1 April 1976, ATTP diubah menjadi Divisi Advance Teknologi Pertamina. Kemudian diubah menjadi Badan Pengkajian dan Penerapan Teknologi melalui Keputusan Presiden Republik Indonesia No.25 tanggal 21 Agustus Diperbaharui dengan Surat Keputusan Presiden No.47 tahun Dengan mengemban Visi dan Misi sebagai berikut : VISI Pusat unggulan teknologi yang mengutamakan kemitraan melalui pemanfaatan hasil rekayasa teknologi secara maksimum. MISI 1. Memacu perekayasaan teknologi untuk meningkatkan daya saing produk industri 2. Memacu perekayasaan teknologi untuk meningkatkan pelayanan publik instansi pemerintah. 3. Memacu perekayasaan teknologi untuk kemandirian bangsa Struktur Organisasi 45

4 Gambar 4. 1 : Struktur Organisasi 46

5 4.2 Pengolahan Data Aspek Teknis Lapangan Panas Bumi di Kamojang Manifestasi Panas Bumi di Permukaan Berbeda dengan sistem minyak-gas, adanya suatu sumber daya panasbumi di bawah permukaan sering kali ditunjukan oleh adanya manifestasi panasbumi di permukaan (geothermal surface manifestation), seperti mata air panas, kubang lumpur panas (mud pools), geyser dan manifestasi panasbumi lainnya, dimana beberapa diantaranya, yaitu mata air panas, kolam air panas sering dimanfaatkan oleh masyarakat setempat untuk mandi, berendam, mencuci, masak dll. Manifestasi panasbumi di permukaan diperkirakan terjadi karena adanya perambatan panas dari bawah permukaan atau karena adanya rekahan-rekahan yang memungkinkan fluida panasbumi (uap dan air panas) mengalir ke permukaan. Gambar 4.2 : Manifestasi Permukaan di Lapangan Panasbumi Kamojang Sumber : 47

6 Struktur Geologi Daerah Panas Bumi 1. Sumur Uap Sumur uap merupakan sumber pemasok utama energi uap yang akan disalurkan ke system PLTP. Adapun sumur uap yang dibuat didasarkan atas adanya lapisan yang mendapatkan energi panas dari magma yang ada pada perut bumi. Magma yang mempunyaitemperatur lebih dari C ini mengalirkan energi panas bumi secara konduksi pada lapisan batuan yang berupa bed rock, diatas lapisan inilah terdapat lapisan yang mngandung air. Selanjutnya, air dalam lapisan tersebut mengambil energi panas dari bed rock secara konveksi dan induksi. Kondisi ini mengakibatkan suhu pada lapisan aquifer yang memberikan kecendrungan untuk bergerak naik, akibat adanya perbedaan berat jenis. Gambar 4.3 : Struktur geologi daerah panas bumi Sumber : 48

7 Ada beberapa data penting sumur uap/steam reservoir pada system PLTP, sebagai contoh : DATA-DATA RESERVOIR URAIAN KETERANGAN Area reservoir Potensi 3 MW Km Luas area yang telah terbukti * Kapasitas total yang telah terbukti Kapasitas terpasang 200 MW 140 MW Data Fisik Reservoir 23 Suhu Kualitas uap Data Drilling Jumlah sumur Kedalaman sumur C 96% uap 68 buah Kg/J Meter Produksi uap (Standart Completion) Tabel 4.1 : Data sumur uap BPPT 2. Kandungan Kimia dan Kualitas Uap Uap yang dihasilkan PLTP memiliki kandungan kimia dan kualitas uap yang apa adanya, tergantung dengan yang dihasilkan sumur uap. Uap panas bumi Kamojang termasuk salah satu yang memiliki kualitas uap yang terbaik di dunia. 49

8 Walaupun demikian, uap tersebut harus dianalisis kembali oleh pihak PLTP Kamojang. Analisis ini dilakukan setiap seminggu sekali dengan tujuan memonitor kualitas uap yang akan dijadikan fluida kerja sebelum masuk ke system PLTP Kamojang. Ada beberapa cara yang biasa dilakukan untuk mengantisipasi hal tersebut. Salah satu cara yang digunakan untuk mengurangi lumpur dan material padat lainnya, yakni dilakukan oleh BPPT Kamojang sebagai instansi pengelola sumur, uap yang keluar dari sumur harus di blow off tegak lurus selama selang waktu tertentu, sehingga lumpur dan material lainnya tidak terbawa karena perbedaan berat jenis. 3. Sistem Distribusi Transmisi Uap Dari BPPT sebagai pemasok, uap yang akan digunakan oleh PLTP Kamojang disalurkan melalui empat pipa yang langsung dipasang pada steam receving header. Pipa tersebut mempunyai diameter antara mm. Pipa - pipa tersebut ditempatkan di atas permukaan tanah, tidak di dalam tanah. Hal ini ditujukan untuk mempermudah pengecekan apabila terjadi kebocoran pada pipa - pipa tersebut. Gambar 4.4 : Pipa Saluran Uap BPPT 50

9 Dua lapangan yang telah terbukti termasuk kedalam sistem dominasi uap yaitu lapangan Kamojang dan Darajat yang keduanya terletak di Pulau Jawa. Kedua lapangan ini dicirikan oleh temperatur reservoir C sampai C (Kamojang) dan antara C sampai C (Darajat) dengan kedalaman puncak reservoir panas bumi Kamojang rata-rata berkisar antara 800 m sampai 1200 m dan sekitar 700 m sampai 1000 m untuk lapangan Darajat. Tabel 4.2 : Skema Distribusi Uap Kamojang BPPT BPPT Uap PLN Listrik Konsumen Eksplorasi s.d PLTP Pengembanagan Transmisi Lapangan Uap Distribusi Listrik Sistem Pembangkit PLTP Gambar 4.5 : Flow Diagram PLTP Sumber : PT. PLN,2010, Jakarta 51

10 Sistem pembangkitan PLTP kamojang merupakan system pembangkitan yang memanfaatkan tenaga panas bumi yang berupa uap. Uap tersebut diperoleh dari sumur - sumur produksi yang dibuat oleh BPPT. Uap dari sumur produksi mula - mula dialirkan ke steam receivingheader, yang berfungsi menjamin pasokan uap tidak mengalami gangguan meskipun terjadi perubahan pasokan dari sumur produksi. Selanjutnya melalui flow meter, uap tersebut dialirkan ke Unit 1, Unit 2, dan Unit 3 melalui pipa - pipa. Uap tersebut dialirkan ke separator untuk memisahkan zat - zat padat, silica, dan bintik - bintik air yang terbawa di dalamnya. Hal ini dilakukan untuk menghindari terjadinya vibrasi, erosi dan pembentukkan kerak pada turbine. Uap yang telah melewati separator tersebut kemudian dialirkan ke demister yang berfungsi sebagai pemisah akhir. Uap yang telah bersih itu kemudian dialirkan melalui main steam valve (MSV ) - governor valve menuju ke turbin. Di dalam turbin, uap tersebut berfungsi untuk memutar double flow condensing yang dikopel dengan generator, pada kecepatan 3000 rpm. Proses ini menghasilkan energi listrik dengan arus 3 fasa, frekuensi 50 Hz, dengan tegangan 11,8 KV. Melalui transformer step- up, arus listrik dinaikkan tegangannya hingga 150 KV, selanjutnya dihubungkan secara parallel dengan system penyaluran Jawa - Bali (interkoneksi). Agar turbin bekerja secara efisien, maka exhaust steam / uap bekas yang keluar dari turbin harus dalam kondisi vakum, dengan mengkondensasikan uap dalam kondensor kontak langsung yang dipasang di bawah turbin. Untuk menjaga kepakuman kondenseor, gas yang tak terkondensi harus dikeluarkan secara kontinyu oleh system ekstraksi gas. Gas-gas ini mengandung : CO % H 2 S 3,5% dan sisanya adalah N 2 dan gas - gas lainnya. Disini system ekstaksi gas terdiri atas first-stage dan second-stage ejector. Gas-gas yang tidak dapat dikondensasikan, dihisap oleh steam ejector tingkat 2 untuk diteruskan keafter 52

11 condensor, dimana gas-gas tersebut kemudian kembali disiram oleh air yang dipompakan oleh primary pump. Gas-gas yang dapat dikondensasikan dikembalikan kekondensor, sedangkan sisa gas yang tidak dapat dikondensasikan di buang ke udara. Exhaust steam dari turbin masuk dari sisi atas kondensor, kemudian terkondensasi sebagai akibat penyerapan panas oleh air pendingin yang diinjeksikan lewat spray-nozzle. Level kondensat selalu dijaga dalam kondisi normal oleh dua buah main cooling water pump (MCWP) lalu didinginkan dalam cooling water sebelum disirkulasikan kembali. Air yang dipompakan oleh MCWP dijatuhkan dari bagian atas menara pendingin yang disebut kolam air panas menara pendingin. Menara pendingin berfungsi sebagai heatex changer (penukar kalor) yang besar, sehingga mengalami pertukaran kalor dengan udara bebas. Air dari menara pendingin yang dijatuhkan tersebut mengalami penurunan temperature dan tekanan ketika sampai di bawah, yang disebut kolam air dingin (cold basin). Air dalam kolam air dingin ini dialirkan ke dalam kondensor untuk mendinginkan uap bekas memutar turbin dan kelebihannya (over flow) diinjeksikan kembali kedalam sumur yang tidak produktif, diharapkan sebagai air pengisi atau penambah dalam reservoir, sedangkan sebagian lagi dipompakan oleh primary pump, yang kemudian dialirkan kedalam inter condensor dan after condenser. Untuk mendinginkan uap yang tidak terkondensasi (noncondensable gas). Sytem pendingin di PLTP Kamojang merupakan system pendingin dengan sirkulasi tertutup dari air hasil kondensasi uap, dimana kelebihan kondensat yang terjadi direinjeksi ke dalam sumur reinjeksi. Prinsip penyerapan energi panas dari air yang disirkulasikan adalah dengan mengalirkan udara pendingin secara paksa dengan arah aliran tegak lurus, menggunakan 5 fancooling tower. Sekitar 70% uap yang terkondensasi akan hilang karena penguapan dalam cooling tower, sedangkan sisanya diinjeksikan kembali ke dalam reservoir. 53

12 Reinjeksi dilakukan untuk mengurangi pengaruh pencemaran lingkungan, mengurangi ground subcidence, menjaga tekanan, serta recharge water bagi reservoir. Aliran air dari cold basin ke kondensor disirkulasikan lagi oleh primary pump sebagai media pendingin untuk inter cooler dan melalui after dan inter condensor untuk mengkondensasikan uap yang tidak terkondensasi dikondensor, air kondensat kemudian dimasukkan kembali ke dalam kondensor Perangkat Utama PLTP Bagian-bagian utama dari Pembangkit Listrik Tenaga Panas Bumi Unit Bisnis Pembangkitan adalah : 1. Steam Receiving Header Merupakan suatu tabung yamg berdiameter 1800 mm dan panjang mm yang berfungsi sebagai pengumpul uap sementara dari beberapa sumur produksi sebelum didistribusikan ke turbin. Dengan adanya steam receiving header ini maja pasokan uap tidak akan mengalami gangguan meskipun terdapat perubahan pasokan uap dari sumur produksi Gambar 4.6 : Steam Receiving Header 54

13 2. Vent structure Merupakan bangunan pelepas uap dengan peredam suara. Vent structure terbuat dari beton bertulang berbentuk bak persegi panjang, bagian bawahnya disekat dan bagian atasnya diberi tumpukan batu agar pada saat pelepasan uap ke udara tidak mencemari lingkungan. Dengan menggunakan nozzle diffuser maka getaran dan kebisingan dapat diredam. Pengoperasian vent structure dapat dioperasikan dengan cara manual ataupun otomatis (system remote) yang dapat dilakukan dari panel ruangan kontrol (control room). Adapun fungsi dari vent structure adalah sebagai berikut : Sebagai pengatur tekanan (agar tekanan uap masuk turbin selalu konstan). Sebagai pengaman yang akan membuang uap bilaterjadi tekanan lebih di steam receivingheader. Membuang kelebihan uap jika terjadi penurunan beban atau unit stop Gambar 4.7 : Vent structure (BPPT,2011) 3. Separator Separator adalah suatu alat yang berfungsi sebagai pemisah zat - zat padat, silica, bintik - bintik air, dan zat lain yang bercampur dengan uap yang masuk ke dalam 55

14 separator. Kemudian kotoran dan zat lain yang terkandung dalam uap yang masuk kedalam separator akan terpisah. Uap yang masuk separator akan berputar akibat adanya perbedaan berat jenis, maka kondensat dan partikel - partikel padat yang ada dalam aliran uap akan terpisah dan jatuh ke bawah dan ditampung dalam dust collector sampai mencapai maksimum atau sampai waktu yang telah ditentukan. Sedangkan uap yang lebih bersih akan keluar melalui pipa bagian atas dari separator. Kotoran yang ada dalam dust collector di drain secara berkala baik otomatis ataupun manual. Hal ini dilakukan untuk menghindari terjadinya korosi, erosi dan pembentukan kerak pada turbin. Tabel 4.3 Data - data separator BPPT Code ASME Sect. VII dev. 1 Desain tekanan Desain temperatur Pabrik 1.0 Mpa C Burges Miure Co.Ltd Gambar 4.8 : Separator 56

15 4. Deminster Demister adalah sebuah alat yang berbentuk tabung silinder yang berukuran 14.5 m 3 didalamnya terdapat kisi - kisi baja yang berfungsi untuk mengeliminasi butir - butir air yang terbawa oleh uap dari sumur - sumur panas bumi. Di bagian bawahnya terdapat kerucut yang berfungsi untuk menangkap air dan partikel - partikel padat lainnya yang lolos dari separator, sehingga uap yang akan dikirim ke turbin merupakan uap yang benar - benar uap yang kering dan bersih. Karena jika uap yang masuk ke turbin tidak kering dan kotor, akan menyebabkan terjadinya vibrasi, erosi dan pembentukkan kerak pada turbin. Uap bersih akan masuk ke saluran keluar yang sebelumnya melewati saringan terlebih dahulu dan untuk selanjutnya diteruskan ke turbin. Demister ini dipasang pada jalur uap utama setelah alat pemisah akhir (final separator) yang ditempatkan pada bangunan rangka besi yang sangat kokoh dan terletak di luar gedung pembangkit. Gambar 4.9 : Deminster 5. Turbin Hampir di semua pusat pembangkit tenaga listrik memilii turbin sebagai penghasil gerakkan mekanik yang akan diubah menjadi energi listrik melalui generator. 57

16 Turbin yang digunakan disesuaikan dengan keadaan dimana turbin tersebut digunakan. Pada system PLTP Kamojang mempergunakan turbin jenis silinder tunggal dua aliran (single cylinder double flow) yang merupakan kombinasi dari turbin aksi (impuls) dan reaksi. Yang membedakan antara turbinaksi dan reaksi adalah pada proses ekspansi dari uapnya. Turbin di PLTP Kamojang dilengkapi dengan peralatan Bantu lainnya, yaitu: Turbin Valve yang terdiri dari Main Steam Valve (MSV) dan Governor Valve, yang berfungsi untuk mengatur jumlah aliran uap yang masuk ke turbin. Turning Gear (Barring Gear) yang berfungsi untuk memutar poros turbin pada saat unit dalam kondisi stop atau pada saat pemanasan sebelum turbin start agar tidak terjadi distorsi pada poros akibat pemanasan / pendinginan yang tidak merata. Peralatan pengaman, yang berfungsi untuk mengamankan bagian-bagian peralatan yang terdapat dalam turbin jika terjadi gangguan atau pun kerusakan operasi pada turbin. Peralatan pengaman tersebut adalah Eccentricity, Differential Expansion, tekanan minyak bantalan aksial, vibrasi bantalan, temperature metal bantalan, temperature minyak keluar bantalan, over speed, emergency hand trip. Adapun data teknis atau spesifikasi turbin yang digunakan di PLTP Kamojang adalah sebagai berikut : 58

17 Tabel 4.4 : Data spesifikasi turbin PLTP BPPT URAIAN UNIT KAMOJANG UNIT 1 UNIT 2 & 3 Mitsubishi Mitsubishi Pabrik pembuatan Heavy Heavy Industri. Industri. Ltd Ltd Tipe Double Flow, 5 stage Condensing Turbin Double Flow, 5 stage Condensing Turbin Kapasitas MW 3 3 Tekanan Uap Masuk Bar Tekanan Uap Keluar Bar Temperatur Uap 0 C Rotasi Rpm Flow Uap Kg/J Gambar : Rotor Turbin (BPPT,2011) 59

18 6. Generator Generator adalah sebuah alat yang berfungsi untuk merubah energi mekanik putaran poros turbin menjadi energi listrik. PLTP kamojang mempergunakan generator jenis hubung langsung dan didinginkan dengan air, memiliki 2 kutub, 3 fasa, 50 Hz dengan putaran 3000 rpm. System penguatan yang digunakan adalah rotating brushless type AC dengan rectifier, sedangkan tegangannya diatur dengan automatic voltage regulator ( AVR ). Generator akan menghasilkan energi listrik bolak balik sebesar 11,8 kv ketika turbin yang berputar dengan putaran 3000 rpm mengkopel terhadap generator. Perputaran pada generator tersebut akan menghasilkan perpotongan gaya gerak magnet yang menghasilkan energi listrik. Adapun data teknis atau spesifikasi dari generator yang digunakan di PLTP Kamojang adalah sebagai berikut : Tabel 4.5 : Data teknis dari generator PLTP BPPT KAMOJANG URAIAN UNIT UNIT 1 UNIT 2 & 3 Pabrik pembuatan Mitsubishi Electric Corp Mitsubishi Electrick Corp Phase 3 3 Frekuensi Hz Tegangan Pada Terminal Volt Rotasi Rpm Arus Pada Beban Nominal Rpm Kapasitas KVA

19 Gambar 4.11 : Generator 7. Trafo utama (main transformer) Trafo utama yang digunakan adalah type ONAN dengan tegangan 11,8 KV pada sisi primer dan 150 KV pada sisi sekunder. Tegangan output generator 11,8 KV ini kemudian dinaikkan ( stepup trafo ) menjadi 150 KV dan dihubungkan secara parallel dengan system Jawa - Bali. Kapasitas dari trafo utama adalah KVA. Gambar 4.12 : Trafo Utama 8. Switch yard Switch yard adalah perangkat yang berfungsi sebagai pemutus dan penghubung aliran listrik yang berada di wilayah PLTP maupun aliran yang akan di distribusikan melalui systeminter koneksi Jawa - Bali. 61

20 Gambar 4.13 : Switch Yard 9. Kondensor Kondensor adalah suatu alat untuk mengkondensasikan uap bekas dari turbin dengan kondisi tekanan yang hampa.. Uap bekas dari turbin masuk dari sisi atas kondensor, kemudian mengalami kondensasi sebagai akibat penyerapan panas oleh air pendingin yang diinjeksikan melalui spray nozzle. Pada saat sedang operasi normal, tekanan dalam kondensor adalah 0,133 bar, dan kebutuhan air pendingin adalah m 3 /jam. PLTP Kamojang menggunakan kondensor kontak langsung yang dipasang dibawah turbin, karena kondensor kontak langsung memiliki efisiensi perpindahan panas yang jauh lebih besar dari pada kondensor permukaan, sehingga ukuran dan biaya investasinya juga lebih kecil. Pemakaian kondensor ini sangat cocok karena pembangkit listrik tenaga panas bumi memiliki siklus terbuka sehingga tidak diperlukan system pengambilan kembali kondensat seperti yang dilakukan oleh PLTU konvesional 62

21 Gambar : Kondensor 10. Main Cooling Water Pump (MCWP) Main cooling water pump ( MCWP ) adalah pompa pendingin utama yang berfungsi untuk memompakan air kondensat dari kondensor ke cooling tower untuk kemudian didinginkan. Jenis pompa yang digunakan di PLTP Kamojang adalah Vertical Barriel type 1 Stage Double Suction Centrifugal Pamp, dengan jumlah dua buah pompa untuk setiap unit. Gambar : Main Cooling Water Pump (MCWP) 63

22 11. Colling tower Cooling tower (menara pendingin) yang terpasang di PLTP Kamojang merupakan bangunan yang terbuat dari kayu yang telah diawetkan sehingga tahan air. Terdiri dari 3 ruang dan 3 kipas untuk unit 1, sedangkan untuk unit 2 dan 3 terdiri dari 5 ruang dengan 5 kipas hisappaksa. Jenis yang digunakan adalah Mechanical Draught Crossflow Tower. Air yang dipompakan dari kondensor didistribusikan kedalam bak (Hot Water Basin) yang terdapat di bagian atas cooling tower. Bak tesebut juga dilengkapi dengan noozle yang berfungsi untuk memancakan air sehingga menjadi butiran butiran halus dan didinginkan dengan cara kontak langsung dengan udara pendingin. Setelah terjadi proses pendinginan, air akan turun karena gaya gravitasi untuk seterusnya menuju bak penampung air (Cool Water Basin) yang terdapat di bagian bawah dari cooling tower dan seterusnya dialirkan ke kondensor yang sebelumnya melewati 4 buah screen untuk menyaring kotoran - kotoran yang terdapat dalam air. Aliran udara yang melewati tiap ruang pendingin dihisap ke atas dengan kipas hisap paksa tipe aksial. Setiap kipas digerakkan oleh motor listrik induksi dengan perantaraan gigi reduksi (Reduction Gear ). Cooling tower dilengkapi dengan sistem pembasah (Wetting PumpSystem) yang gunanya untuk memompakan air dari cool water basin dan disemprotkan kesemua bagian dari cooling tower. 64

23 Gambar 4.16 : Colling tower Sistem Pemeliharaan Mesin PLTP Mesin adalah suatu rangkaian yang dirangkai menjadi satu kesatuan dalam suatu system untuk mengerjakan suatu program atau kerja. Penggunaan mesin ini sangat luas cakupannya terutama dalam bidang perindustrtian. Karena cakupannya yang luas tersebut maka mesin dikategorikan menjadi beberapa bagian, seperti mesin perkakas, tools, mesin alat berat, otomotif, mesin produksi, dan sebagainya. Untuk itu konstruksi mesin dibuat pula berdasarkan aplikasi, factor factor intern dan ekstern seperti pengaruh gaya, beban, bahan, kondisi lingkungan, pemakaian, fluida kerja, dan lain sebagainya. Sumber : Dalam hal ini, dengan karakteristik dari panas bumi yang tersedia secara kontinyu (tidak terpengaruh oleh pergantian musim) maka memacu perangkat konversi (khususnya mesin) untuk bekerja non stop dengan performa maksimal. Fenomena yang timbul pada system yang telah beroperasi lama dan terus 65

24 menerus adalah terjadinya penurunan efesiensi pada seluruh perangkat system pembangkit. Untuk menjaga agar perangkat pada system tetap memiliki efesiensi yang tinggi serta perangkat memilki umur operasi yang lama maka dilakukan penanganan khusus baik melalui tekhnik pemeliharaan, pelumasan, serta tekhnik pengoperasian yang procedural. Tekhnik pemeliharaan yang dilakukan di PT. INDONESIA POWER UBP Kamojang ada 4 macam, diantaranya Preventif, Periodik, Prediktif, dan Korektif. 1. Pemeliharaan Preventif Pemeliharaan yang dilakukan secara rutin yang sifatnya kontinyu. 2. Pemeliharaan Periodik Pemeliharaan yang disesuaikan dengan jam operasi perangkat kerja guna penggantian pelumas dan penggantian spare part. Dan tekhnik pemeliharaan terumit dan beresiko adalah overhaul. Yaitu pemeliharaan perangkat utama yang dilakukan kurang lebih 12 bulanan atau 8000 jam kerja turbin. Pada saat dilakukan overhaul, semua perangkat baik itu perangkat bantu maupun perangkat utama dalam satu unit pembangkitan dilakukan pemeliharaan. Inti dari overhaul adalah pemeriksaan dan pemeliharaan perangkat utama maupun perangkat bantu dan dilakukan penggantian bila perlu. 3. Pemeliharaan Prediktif Pemeliharaan yang dilakukan berupa pengujian perangkat untuk menganalisis kinerja alat sehingga umur alat bias diprediksi serta dapat dilakukan pemeliharaan dan penggantian alat sebelum alat itu rusak total dan tidak berfungsi. 66

25 4. Pemeliharaan Korektif Proses penggantian suatu perangkat saat perangkat itu rusak. Proses pemeliharaan ini diminimalisir dengan mengintefsikan proses pemeliharaan prediktif agar tidak terjadi kerusakan yang beruntun. 67

26 NO JENIS PEMELIHARAAN PEMERIKSAAN 1 RECEIVING HEADER Kebersihan lokasi, kelainan suara, bocoran uap. Line uap, penunjukan vibrasi, penunjukan suhu bantalan, kekencangan baut, kondisi 2 SEPARATOR support pipa, keutuhan pondasi, kebersihan dan tanda-tanda korosi. Line uap, suara, kekencangan baut, kondisi support pipa, keutuhan pondasi, kebersihan dan 3 DEMISTER tanda-tanda korosi. Line air, uap, pelumas, unjukan suara, vibrasi, suhu bantalan, kekencangan baut, kondisi 4 MAIN STOP VALVE (MSV) fleks join, kondisi support pipa, kebersihan dan tanda-tanda korosi. Line uap, pelumas, ujukan suara, vibrasi, suhu bantalan, kekencangan baut, kondisi fleks 5 GOVERNORE VALVE join, kondisi support pipa, kebersihan dan tanda-tanda korosi. Kebersihan turbin dan lokasi, kelainan suara, vibrasi, bocoran oli dan uap, serta tanda-tanda 6 TURBIN korosi. 7 EJECTOR Line uap, udara, kelainan suara, kekencangan baut, line pelumas, vibrasi, penunjukan level 68

27 pelumas, kopling, support pipa, keutuhan pondasi, kebersihan. Line air, uap, kelainan suara, kekencangan baut, support pipa, keutuhan pondasi, 8 AFTER CONDENSOR kebersihan dan tanda-tanda korosi. Line air, uap, kelainan suara, kekencangan baut, support pipa, keutuhan pondasi, 9 INTER CONDENSOR kebersihan dan tanda-tanda korosi. 10 PRIMARY PUMP Kebersihan pompa, kelainan suara, vibrasi, bocoran air dan oli, kekencangan baut. 11 SECONDARY PUMP Kebersihan pompa, kelainan suara, vibrasi, bocoran air dan oli, kekencangan baut. 12 MAIN COOLING WATER PUMP (MCWP) Kebersihan lokasi dan pompa, kelainan suara, vibrasi, bocoran line air. Line uap, udara, kelainan suara, kekencangan baut, line pelumas, vibrasi, penunjukan level 13 CONDENSOR pelumas, kopling, support pipa, keutuhan pondasi, kebersihan dan tanda korosi. Kebersihan hot basin, kebersihan nozzle, kelainan suara, bocoran air, oli, pemeriksaan level 14 COOLING TOWER oli. 69

28 Line uap, pelumas, air, kelainan suara, kekencangan baut, penunjukan suhu bantalan, pelumas katup, penunjukan level pelumas, kopling, support pipa, keutuhan pondasi, 15 FAN COOLING TOWER kebersihan dan tanda korosi. Line udara, pelumas, air, kelainan suara, kekencangan baut, penunjukan suhu bantalan, penunjukan level pelumas, kopling, support pipa, keutuhan pondasi, kebersihan dan tanda 16 INTER COOLER korosi. Line air, pelumas, udara, penunjukan suara, vibrasi, kekencangan baut, penunjukan level 17 LUBE OIL COOLER pelumas, kopling, kondisi support pipa, keutuhan pondasi, kebersihan dan tanda korosi. TabeL 4.6 : Data Perawatan mesin PLTP Sumber : 70

29 4.2.2 Analisa Keekonomian Harga Listrik Lapangan Panas Bumi Pada lapangan panas bumi di Kamojang terdapat beberapa kapasitas yang biasa digunakan sebagai pemasok tenaga listrik. Dalam studi kasus ini saya menggunakan kapasitas pembangkit 3 MW. Pada dasarnya perhitungan harga listrik untuk masing-masing kapasitas mempunyai pola yang sama. Yaitu dengan memeperhitungkan indicator keekonomian seperti Net Present Value (NPV), dan Internal Rate Of Return (IRR). Berikut adalah data keekonomian dari PLTP 3 MW di Kamojang. Tabel 4.7 Data keekonomian PLTP kapasitas 3 MW (BPPT, 2011) Item Unit Value Keterangan Installed Capacity kw 3,000 Data Life time years 30 Assumption Capacity factor % 100% Assumption Effisiensi % 38% Assumption Specific Steam Consumption kg/kwh 8.20 Data Specific Steam Consumption ton/mwh 8.20 Calculation Steam Consumption ton/a 200,588 Calculation Steam Consumption ton/hr Calculation Plant Derating % / year 0.5% Assumption Total Operating Time hours/a 8,154 Calculation Electricity production kwh/annum 24,462,000 Calculation Electricity own use 8% Assumption Electricity own use kwh/a 1,956,960 Calculation 71

30 Electricity sales to PLN kwh/a 22,505,040 Calculation Cost of Steam US$/ton Assumption Cost of Steam Cent $/kwh Calculation Annual increase of the steam cost % 2% Ulubelu Capital Cost (DIPA) Milyar Rp 55 DIPA US$/kW 1,930 Calculation Capital Cost ( ) US$/kW Assumption Kebutuhan Dana Equity for Capital Cost 30% Assumption Loan for Capital Cost 70% Assumption Construction time years 15 Assumption Spread of payment first year 30% Assumption Spread of payment second year 70% Assumption Spread of payment third year 0% Assumption Planned outage rate days/a 7 Assumption Force outage 5% Assumption Availability 93% Calculation Fixed O & M US$/kW/a 7.80 Ref Markal Variable O & M US$/GJ 0.90 Ref Markal US$/kWh Calculation O & M Cost min Cent $/kwh 0.45 Ref REPP US$/MWh 4.50 O & M Cost max Cent $/kwh 0.70 Ref REPP US$/MWh 7.00 Minimum electricity price for sale Cent $/kwh 9.70 Assumption US$/kWh US$/MWh Annual increase of the tariff 2% Assumption Exchange Rate Rp/US$ 9,500 Assumption MARR %/a 13.00% Assumption Contingency (from Total Interest) 5% Assumption Income Tax (Royalti) 25.00% Assumption Suku Bunga Kredit 12.00% Assumption 72

31 Tabel 4.8 Sistem Pembangkitan Panas Bumi No Sistem Pembangkit Klasifikasi 1 Vapor dominated system > 370 o C 2 Flushed steam system o C 3 Binary cycle system o C Dari data-data tentang Kamojang dan tabel 2 maka sistem pembangkitan panas bumi di Kamojang menggunakan flushed steam system atau binary cycle system. Sumber : Perhitungan Pendapatan per Tahun Untuk menentukan usulan proyek investasi mana yang akan diterima atau ditolak, maka usulan proyek investasi tersebut harus dinilai dengan membandingkan dengan metode atau teknik yang cocok. Beberapa metode atau teknik yang bisa digunakan untuk membandingkan alternatif-alternatif investasi adalah : 1. Payback Period 2. Net Present Value (NPV) atau Nilai Sekarang 3. Internal Rate of Return (IRR). 73

32 Ketiga metode penilaian kelayakan proyek investasi ini membutuhkan perhitungan aliran kas atau cash in flow. Cash in flow adalah suatu metode untuk menggambarkan aliran kas dari suatu perusahaan atau proyek. Untuk menentukan pemasukan per Tahun, maka harus diperhitungkan : Hasil produksi listrik selama 1 tahun dengan pembangkitan rata-rata 100% dari kapasitas penuh manfaat pembangkit 100%. Total Operating time = Availibility x days x hours x Capacity factor = 93% x 365 x 24 x 100% = 8154 Produksi/tahun = Installed capacity x Capacity factor x Total Operting time = 3000 x 100% x 8154 = 24,462,000 KWh/tahun Pemakaian sendiri dengan asumsi sebesar 8% dari total kapasitas produksi pembangkit listrik. Pemakaian sendiri/tahun = 0.08 x KWh/tahun = kwh/tahun Dari data diatas, maka hasil produksi energi listrik yang terjual per Tahun nya adalah Produksi jual/ tahun = Produksi per Tahun Pemakaian sendiri = kwh/tahun = kwh/tahun 74

33 Penghasilan produksi listrik per tahun adalah : Dengan harga jual sebesar 9,70 cent$/kwh Peng/ tahun = x = US$ Dengan harga jual sebesar 11 cent$/kwh Peng/tahun = x = US$ Dengan harga jual sebesar 13 cent$/kwh Peng/tahun = x = US$ Dengan harga jual sebesar 15 cent$/kwh Peng/tahun = x = US$ Perhitungan Depresiasi Untuk hasil perhitungan depresiasi proyek ini, ditunjukan pada lampiran Perhitungan Rugi Laba Untuk hasil perhitungan proyek ini, ditunjukan pada lampiran Indikator Keekonomian Untuk analisa keekonomian suatau lapangan panas bumi didasarkan pada indicator keekonomian dengan parameternya adalah Net Present Value (NPV), dan Internal Rate Of Return (IRR). 75

34 Tabel 4.9 Hasil Indikator Perhitungan Keekonomian Kapasitas Pembangkit 3 MW Harga Jual 0,097 US$/kWh Net Presen Value (NPV) Rp 4,873,412,639 Internal Rate Of Return (IRR) 1% Aspek Lingkungan Lapangan Panas Bumi Kamojang Masyarakat dunia sudah semakin sadar dengan isu lingkungan. Kebijakan energi juga harus memperhatikan dengan sungguh-sungguh mengenai perkembangan isu lingkungan. Prakiraan dampak penting dalam pembangunan PLTP Kamojang ini, diantaranya : Pada tahap perencanaan Pembangunan PLTP ini dikhawatirkan menimbulkan dampak keresahan sosial dan juga persepsi positif dan negatif pada masyarakat setempat akibat dari pembangunan PLTP Kamojang, upaya yang dilakukan adalah dengan memberikan penyuluhan pada masyarakat setempat mengenai rencana kegiatan dan manfaat proyek terhadap lingkungan lokal. Pada tahap konstruksi ada beberapa masalah lingkungan yang perlu dijadikan pertimbangan, diantaranya adalah : Pembangunan Kantor/Bengkel dan Base camp, komponen lingkungan yang terkena dampak antara lain Tanah, Air, Udara akibat dari limbah cair (oli), karena mencemari kualitas air dan udara, Upaya yang dilakukan membuat khusus untuk penampungan oli, membuat alat untuk pemisahan oli dan air dan menjual oli bekas kepada pembeli yang telah memiliki ijin. 76

35 Pembuatan Sumur juga berakibat buruk tehadap Udara dan Tanah, selain menimbulkan kebisingan juga degradasi sempadan sungai, upaya yang dilakukan menguragi kegiatan yang sifatnya berbenturan keras dengan sempadan sungai. Pada tahap operasi PLTP Kamojang juga menimbulkan beberapa dampak terhadap lingkungan diantaranya adalah : Main Transformer dan Switchyard Berakibat kebisingan dan getaran, upaya yang dilakukan menetapkan batas maksimum kebisingan - kebisingan dan Penggunaan alat Earplug atau Earmuff alat ini dapat mereduksi kebisingan khususnya tenaga kerja yang kontak langsung. Water Supply dan Treatment, mempengaruhi kualitas dan kuantitas air di dalam tanah. Upaya yang perlu dilakukan adalah menjaga kuantitas air tanah dengan menginjekkan kemlai air yang sudah terkondensasi ke dalam tanah. Selama beroperasi PLTP menghasilkan gas buang yang mengandung karbon (CO2), yang merupkan salah satu penyebab global warming. Akan tetapi jumlah gas karbon yang dihasilkan jauh lebih rendah dari pada pembangkit thermal lainnya. Sumber : Pada tahap operasi ini pula PLTP Kamojang mempunyai dampak lingkungan yang sekarang menjadi pusat perhatian dunia, yaitu mengenai pemanasan global (global warming) yang diakibatkan dari gas CO2. Panas bumi termasuk energi terbarukan yang bersih lingkungan, akan tetapi PLTP juga masih 77

36 menghasilkan CO2. Apabila dibandingkan dengan pembangkit listrik dengan tenaga fossil, maka PLTP mempunyai produksi CO2 yang lebih kecil dari pada pembangkit yang lainnya. Perlindungan terhadap kondisi lingkungan sangat diperlukan, hal ini dikarenakan lingkungan merupakan tempat sumber energi. Apabila lingkungannya rusak, maka sumber energi akan tercemar dan kontinuitas sumber energi tidak akan berlangsung. Sumber : Soemarto, Otto Indonesia Dalam Kancah Lingkungan Global,Jakarta. Dengan ratifikasi kyoto protocol menunjukkan komitmen negara maju tekait global warming untuk insentif atau carbon credit terhadap pembangunan (clean development mecahnism) berdasarkan seberapa besar pengurangan CO 2 dibandingkan dengan base line yang telah ditetapkan. Penjualan carbon melalui mekanisme CDM (Clean Development Mechanism) bertujuan untuk mengurangi efek rumah kaca yang menyebankan pemanasan global diseluruh dunia. Selain itu sistem penjualan carbon dapat merangsang pengembangan energi terbarukan panas bumi. Grafik 4.1. Emisi Gas dari Bermacam-macam Pembangkit 78

37 Dari gambar grafik untuk pembangkit dengan bahan bakar panas bumi memiliki emisi yang paling rendah yaitu 100 kg/kwh. Tiap kg/mwh emisi yang dihasilkan didenda sebesar 4,5 cent./kwh. Karena PLTP memiliki 100 kg/kwh dengan batas rata-rata 728 kg/kwh maka sebaliknya akan mendapat CDM sebesar : = 3,88 Cent = Rp. 388 Jadi pemasukan PLTP Kamojang 3 MW dari CDM adalah : = Rp. 388 x (1 x kwh x 8154) = Rp. 949,1256 milyar 79

DAFTAR PUSTAKA. Farid Harianto dan Siswanto Sudomo (1998, 2), mendefinisikan investasi, Jakarta.

DAFTAR PUSTAKA. Farid Harianto dan Siswanto Sudomo (1998, 2), mendefinisikan investasi, Jakarta. DAFTAR PUSTAKA Azimudin, T.,1999 : Kajian Ulang Model Konsepsi Reservoir Panasbumi Lapangan Lahendong-Sulawesi Utara, Laporan Intern PERTAMINA Area Panasbumi Lahendong. Badan Pengkajian Ekonomi, Keuangan,

Lebih terperinci

Gambar 2.2 Flow Diagram PLTP Kamojang

Gambar 2.2 Flow Diagram PLTP Kamojang BAB II GAMBARAN UMUM PLTP UBP KAMOJANG 2.1 Definisi PLTP Pembangkit Listrik Tenaga Geothermal ( Panas Bumi ) yang kita sebut dengan PLTP adalah sebuah instalasi yang merubah energi panas menjadi energi

Lebih terperinci

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT

KONVERSI ENERGI PANAS BUMI HASBULLAH, MT KONVERSI ENERGI PANAS BUMI HASBULLAH, MT TEKNIK ELEKTRO FPTK UPI, 2009 POTENSI ENERGI PANAS BUMI Indonesia dilewati 20% panjang dari sabuk api "ring of fire 50.000 MW potensi panas bumi dunia, 27.000 MW

Lebih terperinci

BIAYA MODAL/ CAPITAL COST BIAYA TETAP (O & M)

BIAYA MODAL/ CAPITAL COST BIAYA TETAP (O & M) BIAYA MODAL/ CAPITAL COST Biaya modal pertahun adalah biaya investasi pembangunan pembangkit tenaga listrik dikalikan dengan faktor penyusutan Biaya modal / Capital Cost (CC) dirumuskan sebagai berikut

Lebih terperinci

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai STEAM TURBINE POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai PENDAHULUAN Asal kata turbin: turbinis (bahasa Latin) : vortex, whirling Claude Burdin, 1828, dalam kompetisi teknik tentang sumber daya air

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan energi listrik meningkat seiring berkembangnya perekonomian, oleh karena itu upaya pembaharuaan energi untuk memanfaatkan seluruh sumber daya alam sudah

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak

Lebih terperinci

: PT P T PL P N N (P

: PT P T PL P N N (P PLTP Gunung Tangkuban Perahu dipegang oleh PT Geothermal Indonesia dengan konsorsium PT Indonesia Power bersama Leisser AS "Apabila semuanya berjalan lancar, target pada 2010 PLTP Tangkuban Perahu itu

Lebih terperinci

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG MAKALAH SEMINAR KERJA PRAKTEK PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG Reza Pahlefi¹, Dr.Ir. Joko Windarto, MT.² ¹Mahasiswa dan ²Dosen Jurusan Teknik Elektro Fakultas

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara berkembang yang sedang mengalami gejolak kemajuan industri. Hal ini menyebabkan kebutuhan energi listrik bagi negara ini sangat besar.

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. menggunakan panas bumi (geothermal) sebagai energi penggeraknya. Indonesia

BAB II TINJAUAN PUSTAKA. menggunakan panas bumi (geothermal) sebagai energi penggeraknya. Indonesia BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Pembangkit listrik tenaga panas bumi adalah pembangkit listrik yang menggunakan panas bumi (geothermal) sebagai energi penggeraknya. Indonesia dikaruniai sumber

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data-Data tentang Tugas Akhir ini diambil mengacu pada Laporan Praktek Kerja Lapangan (PKL) yang diberikan tugas dan di perhadapkan dengan sistem pendingin Primary

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1]

BAB I PENDAHULUAN. Gambar 1.1. Potensi dan kapasitas terpasang PLTP di Indonesia [1] BAB I PENDAHULUAN I.1. Latar Belakang Dewasa ini kelangkaan sumber energi fosil telah menjadi isu utama. Kebutuhan energi tersebut setiap hari terus meningkat. Maka dari itu, energi yang tersedia di bumi

Lebih terperinci

JENIS TURBIN. Jenis turbin menurut bentuk blade terdiri dari. Jenis turbin menurut banyaknya silinder. Jenis turbin menurut arah aliran uap

JENIS TURBIN. Jenis turbin menurut bentuk blade terdiri dari. Jenis turbin menurut banyaknya silinder. Jenis turbin menurut arah aliran uap TURBINE PERFORMANCE ABSTRACT Pada umumnya steam turbine di operasikan secara kontinyu dalam jangka waktu yang lama.masalah-masalah pada steam turbin yang akan berujung pada berkurangnya efisiensi dan performansi

Lebih terperinci

Permasalahan. - Kapasitas terpasang 7,10 MW - Daya mampu 4,92 MW - Beban puncak 31,75 MW - Defisit daya listrik 26,83 MW - BPP sebesar Rp. 1.

Permasalahan. - Kapasitas terpasang 7,10 MW - Daya mampu 4,92 MW - Beban puncak 31,75 MW - Defisit daya listrik 26,83 MW - BPP sebesar Rp. 1. STUDI PEMBANGUNAN PLTU MAMUJU 2X7 MW DITINJAU DARI ASPEK TEKNIS, EKONOMI DAN LINGKUNGAN SERTA PENGARUHNYA TERHADAP TARIF LISTRIK REGIONAL SULAWESI BARAT Yanuar Teguh Pribadi NRP: 2208100654 Dosen Pembimbing

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Energi listrik merupakan salah satu kebutuhan pokok yang cukup penting bagi manusia dalam kehidupan. Saat ini, hampir setiap kegiatan manusia membutuhkan energi

Lebih terperinci

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI

BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI BAB III APLIKASI TERMODINAMIKA PADA PEMBANGKIT LISTRIK TENAGA PANAS BUMI Pembangkit Listrik Tenaga Panas Bumi (PLTP) pada prinsipnya sama seperti Pembangkit Listrik Tenaga Uap (PLTU), hanya pada PLTU uap

Lebih terperinci

ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA

ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA ANALISIS PEMBANGUNAN PLTU MADURA KAPASITAS 2 X 200 MW SEBAGAI PROGRAM 10.000 MW PT. PLN BAGI PEMENUHAN KEBUTUHAN LISTRIK DI PULAU MADURA OLEH : MUHAMMAD KHAIRIL ANWAR 2206100189 Dosen Pembimbing I Dosen

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam tugas akhir ini akan dilakukan perancangan bejana tekan vertikal dan simulasi pembebanan eksentrik pada nozzle dengan studi kasus pada separator kluster 4 Fluid

Lebih terperinci

learning, sharing, meaningful

learning, sharing, meaningful learning, sharing, meaningful Home System & Technology of Geothermal Development of Geothermal Events Contents Irsamukhti Monday, October 15, 2012 Fasilitas Lapangan Uap Pada Pembangkit Listrik Tenaga

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Di dunia industri terutama dibidang petrokimia dan perminyakan banyak proses perubahan satu fluida ke fluida yang lain yang lain baik secara kimia maupun non kimia.

Lebih terperinci

BAB I PENDAHULUAN. Tabel 1.1. Perkembangan Neraca Listrik Domestik Indonesia [2].

BAB I PENDAHULUAN. Tabel 1.1. Perkembangan Neraca Listrik Domestik Indonesia [2]. BAB I PENDAHULUAN I.1. Latar Belakang Saat ini, kebutuhan listrik telah menjadi kebutuhan dasar manusia. Kebutuhan listrik sendiri didasari oleh keinginan manusia untuk melakukan aktivitas lebih mudah

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

KATA PENGANTAR. untuk segala hal yang dianugerahkan kepada penulis sehingga penulis dapat

KATA PENGANTAR. untuk segala hal yang dianugerahkan kepada penulis sehingga penulis dapat KATA PENGANTAR Segala puji dan syukur penulis ucapkan kepada Tuhan Yang Maha Esa untuk segala hal yang dianugerahkan kepada penulis sehingga penulis dapat menyelesaikan Laporan Tugas Akhir ini dengan baik

Lebih terperinci

Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah

Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah Studi Pembangunan PLTU 2x60 MW di Kabupaten Pulang Pisau berkaitan dengan Krisis Energi di Kalimantan Tengah oleh: Alvin Andituahta Singarimbun 2206 100 040 DosenPembimbing 1: Ir. Syarifuddin M, M.Eng

Lebih terperinci

COOLING SYSTEM ( Sistim Pendinginan )

COOLING SYSTEM ( Sistim Pendinginan ) COOLING SYSTEM ( Sistim Pendinginan ) Adalah sistim dalam engine diesel yang berfungsi: 1. Mendinginkan engine untuk mencegah Over Heating.. 2. Memelihara suhu kerja engine. 3. Mempercepat dan meratakan

Lebih terperinci

STUDI PEMBANGUNAN PLTP GUCI 1 X55MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN

STUDI PEMBANGUNAN PLTP GUCI 1 X55MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN TUGAS AKHIR STUDI PEMBANGUNAN PLTP GUCI 1 X55MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN Satrio Hanindhito 2207 100 549 Dosen Pembimbing 1. Ir. Syariffuddin Mahmudsyah M.Eng 2.Ir.

Lebih terperinci

STUDI PEMBANGUNAN PLTP GUCI 1 X 55 MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN.

STUDI PEMBANGUNAN PLTP GUCI 1 X 55 MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN. STUDI PEMBANGUNAN PLTP GUCI 1 X 55 MW JAWA TENGAH BERDASARKAN ASPEK TEKNIS, EKONOMI, DAN LINGKUNGAN. Satrio Hanindhito, Syariffudin Mahmudsyah, Teguh Yuwono Jurusan Teknik Elektro, Fakultas Teknologi Industri,

Lebih terperinci

Session 11 Steam Turbine Protection

Session 11 Steam Turbine Protection Session 11 Steam Turbine Protection Pendahuluan Kesalahan dan kondisi tidak normal pada turbin dapat menyebabkan kerusakan pada plant ataupun komponen lain dari pembangkit. Dibutuhkan sistem pengaman untuk

Lebih terperinci

Keekonomian Pengembangan PLTP Skala Kecil

Keekonomian Pengembangan PLTP Skala Kecil EL-07 Keekonomian Pengembangan PLTP Skala Kecil Agus Sugiyono* 1 1 Bidang Perencanaan Energi, Badan Pengkajian dan Penerapan Teknologi, Jakarta, Indonesia *E-mail: agussugiyono@yahoo.com A B S T R A K

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat besar. Hampir 27.000 MWe potensi panas bumi tersimpan di perut bumi Indonesia. Hal ini dikarenakan

Lebih terperinci

Turbin Uap BOILER. 1 4 konderser

Turbin Uap BOILER. 1 4 konderser Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan dalam instalasi pembangkit daya jauh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

Oleh: Bayu Permana Indra

Oleh: Bayu Permana Indra STUDI PEMBANGUNAN PEMBANGKIT LISTRIK IPP - PLT PANAS BUMI BEDUGUL 10 MW KECAMATAN BATURITI KABUPATEN TABANAN BALI PADA PROYEK PERCEPATAN 10.000 MW PADA TAHUN 2018 Oleh: Bayu Permana Indra 2207100532 Dosen

Lebih terperinci

Pengoperasian pltu. Simple, Inspiring, Performing,

Pengoperasian pltu. Simple, Inspiring, Performing, Pengoperasian pltu PERSIAPAN COLD START PLTU 1. SISTEM AUXILIARY STEAM (UAP BANTU) FUNGSI : a. Menyuplai uap ke sistem bahan bakar minyak pada igniter untuk mengabutkan bahan bakar minyak (Atomizing sistem).

Lebih terperinci

STUDI PEMBANGUNAN PLTA KOLAKA 2 X 1000 KW UNTUK MEMENUHI KEBUTUHAN LISTRIK DI KABUPATEN KOLAKA SULAWESI TENGGARA

STUDI PEMBANGUNAN PLTA KOLAKA 2 X 1000 KW UNTUK MEMENUHI KEBUTUHAN LISTRIK DI KABUPATEN KOLAKA SULAWESI TENGGARA STUDI PEMBANGUNAN PLTA KOLAKA 2 X 1000 KW UNTUK MEMENUHI KEBUTUHAN LISTRIK DI KABUPATEN KOLAKA SULAWESI TENGGARA Madestya Yusuf 2204 100 023 Pembimbing : Ir. Syariffuddin Mahmudsyah, M.Eng NIP. 194612111974121001

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) MAKALAH PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Di Susun Oleh: 1. VENDRO HARI SANDI 2013110057 2. YOFANDI AGUNG YULIO 2013110052 3. RANDA MARDEL YUSRA 2013110061 4. RAHMAT SURYADI 2013110063 5. SYAFLIWANUR

Lebih terperinci

listrik di beberapa lokasi/wilayah.

listrik di beberapa lokasi/wilayah. PEMBANGUNAN PEMBANGKIT PLTU SKALA KECIL TERSEBAR 3 x 7 MW SEBAGAI PROGRAM 10.000 MW TAHAP KEDUA PT. PLN DI KABUPATEN SINTANG, KALIMANTAN BARAT Agus Nur Setiawan 2206 100 001 Pembimbing : Ir. Syariffuddin

Lebih terperinci

BAB I PENDAHULUAN. BAB I Pendahuluan

BAB I PENDAHULUAN. BAB I Pendahuluan BAB I PENDAHULUAN 1.1 LATAR BELAKANG PLTU adalah suatu pembangkit listrik dimana energi listrik dihasilkan oleh generator yang diputar oleh turbin uap yang memanfaatkan tekanan uap hasil dari penguapan

Lebih terperinci

TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL

TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL TUGAS TEKNIK DAN MANAJEMEN PERAWATAN SISTEM PEMELIHARAAN AC CENTRAL Disusun Oleh: KELOMPOK 9 Angga Eka Wahyu Ramadan (2113100122) Citro Ariyanto (2113100158) Ahmad Obrain Ghifari (2113100183) INSTITUT

Lebih terperinci

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS Pratama Akbar 4206 100 001 Jurusan Teknik Sistem Perkapalan FTK ITS PT. Indonesia Power sebagai salah satu pembangkit listrik di Indonesia Rencana untuk membangun PLTD Tenaga Power Plant: MAN 3 x 18.900

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

BAB 5 DASAR POMPA. pompa

BAB 5 DASAR POMPA. pompa BAB 5 DASAR POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contohnya adalah air, oli atau minyak pelumas,

Lebih terperinci

BAB III TEORI DASAR KONDENSOR

BAB III TEORI DASAR KONDENSOR BAB III TEORI DASAR KONDENSOR 3.1. Kondensor PT. Krakatau Daya Listrik merupakan salah satu anak perusahaan dari PT. Krakatau Steel yang berfungsi sebagai penyuplai aliran listrik bagi PT. Krakatau Steel

Lebih terperinci

III. METODOLOGI PENELITIAN. berdasarkan prosedur yang telah di rencanakan sebelumnya. Dalam pengambilan data

III. METODOLOGI PENELITIAN. berdasarkan prosedur yang telah di rencanakan sebelumnya. Dalam pengambilan data 26 III. METODOLOGI PENELITIAN A. Instalasi Pengujian Pengujian dengan memanfaatkan penurunan temperatur sisa gas buang pada knalpot di motor bakar dengan pendinginan luar menggunakan beberapa alat dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan Kata Pengantar Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Satria Duta Ninggar

Satria Duta Ninggar Satria Duta Ninggar 2204 100 016 Pembimbing : Ir. Syariffuddin Mahmudsyah, M.Eng NIP. 130 520 749 Ir. Teguh Yuwono NIP. 130 604 244 Pertumbuhan pelanggan di Jawa Tengah yang pesat mengakibatkan kebutuhan

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) PEMBANGKIT LISTRIK TENAGA GAS (PLTG) A. Pengertian PLTG (Pembangkit listrik tenaga gas) merupakan pembangkit listrik yang memanfaatkan gas untuk memutar turbin dan generator. Turbin dan generator adalah

Lebih terperinci

Cooling Tower (Menara Pendingin)

Cooling Tower (Menara Pendingin) Cooling Tower (Menara Pendingin) A. Pengertian Menurut El. Wakil, menara pendingin didefinisikan sebagai alat penukar kalor yang fluida kerjanya adalah air dan udara yang berfungsi mendinginkan air dengan

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

PLTU (PEMBANGKIT LISTRIK TENAGA UAP)

PLTU (PEMBANGKIT LISTRIK TENAGA UAP) PLTU (PEMBANGKIT LISTRIK TENAGA UAP) I. PENDAHULUAN Pusat pembangkit listrik tenaga uap pada saat ini masih menjadi pilihan dalam konversi tenaga dengan skala besar dari bahan bakar konvensional menjadi

Lebih terperinci

Studi Pembangunan PLTGU Senoro (2 x 120 MW) Dan Pengaruhnya Terhadap Tarif Listrik Regional di Sulawesi Tengah

Studi Pembangunan PLTGU Senoro (2 x 120 MW) Dan Pengaruhnya Terhadap Tarif Listrik Regional di Sulawesi Tengah Studi Pembangunan PLTGU Senoro (2 x 120 MW) Dan Pengaruhnya Terhadap Tarif Listrik Regional di Sulawesi Tengah Tedy Rikusnandar NRP 2208 100 643 Dosen Pembimbing Ir. Syariffuddin Mahmudsyah, M. Eng Ir.

Lebih terperinci

BAB III METODOLOGI DAN PENGUMPULAN DATA

BAB III METODOLOGI DAN PENGUMPULAN DATA BAB III METODOLOGI DAN PENGUMPULAN DATA 3.1 Bendungan Gambar 3.1 Ilustrasi PLTMH cinta mekar (sumber,ibeka, 2007) PLTMH Cinta Mekar memanfaatkan aliran air irigasi dari sungai Ciasem yang berhulu di Gunung

Lebih terperinci

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System 32 BAB IV HASIL ANALISA DAN PEMBAHASAN 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System PLTP Gunung Salak merupakan PLTP yang berjenis single flash steam system. Oleh karena itu, seperti yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous Pendahuluan PLTG adalah pembangkit listrik yang menggunakan tenaga yang dihasilkan oleh hasil pembakaran bahan bakar dan udara bertekanan tinggi.

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013

Gambar 2.21 Ducting AC Sumber : Anonymous 2 : 2013 1.2.3 AC Central AC central sistem pendinginan ruangan yang dikontrol dari satu titik atau tempat dan didistribusikan secara terpusat ke seluruh isi gedung dengan kapasitas yang sesuai dengan ukuran ruangan

Lebih terperinci

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI Motor penggerak mula adalah suatu alat yang merubah tenaga primer menjadi tenaga sekunder, yang tidak diwujudkan dalam bentuk aslinya, tetapi diwujudkan dalam

Lebih terperinci

Session 13 STEAM TURBINE OPERATION

Session 13 STEAM TURBINE OPERATION Session 13 STEAM TURBINE OPERATION SISTEM OPERASI Operasi plant yang baik harus didukung oleh hal-hal berikut: Kelengkapan buku manual dari pabrikan Prosedur operasi standar yang meliputi instruksi untuk

Lebih terperinci

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik).

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik). BAB I PENDAHULUAN 1.1 LATAR BELAKANG Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam

Lebih terperinci

BAB III. DESKRIPSI SOLVENT EXTRACTION PILOT PLANT, ALAT PENY ANGRAI DAN BOILER

BAB III. DESKRIPSI SOLVENT EXTRACTION PILOT PLANT, ALAT PENY ANGRAI DAN BOILER BAB III. DESKRIPSI SOLVENT EXTRACTION PILOT PLANT, ALAT PENY ANGRAI DAN BOILER Alat-alat dipergunakan pada penelitian terdiri dari solvent extraction pilot plant, alat penyangrai dan boiler. ~. SOLVENT

Lebih terperinci

Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik.

Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Apa itu PLTU? Pembangkit listrik tenaga uap (PLTU) adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator

Lebih terperinci

PETUNJUK PRAKTIKUM MESIN KAPAL JURUSAN TEKNIK SISTEM PERKAPALAN MARINE ENGINEERING

PETUNJUK PRAKTIKUM MESIN KAPAL JURUSAN TEKNIK SISTEM PERKAPALAN MARINE ENGINEERING PETUNJUK PRAKTIKUM MESIN KAPAL JURUSAN TEKNIK SISTEM PERKAPALAN MARINE ENGINEERING DAFTAR ISI 1. PENDAHULUAN... 1 2. TUJUAN PENGUJIAN... 1 3. MACAM MACAM PERALATAN UJI... 2 4. INSTALASI PERALATAN UJI...

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sejak Tahun 1961, Indonesia merupakan salah satu negara yang tergabung dalam OPEC (Organization Petroleum Exporting Countries), dimana anggotanya merupakan negara-negara

Lebih terperinci

BAB III METODOLOGI STUDI KASUS. Bahan yang digunakan dalam penelitian ini adalah sebagai berikut :

BAB III METODOLOGI STUDI KASUS. Bahan yang digunakan dalam penelitian ini adalah sebagai berikut : BAB III METODOLOGI STUDI KASUS 3.1 Bahan Studi Kasus Bahan yang digunakan dalam penelitian ini adalah sebagai berikut : a. Data pengukuran pompa sirkulasi minyak sawit pada Concentrated Solar Power selama

Lebih terperinci

TURBOCHARGER BEBERAPA CARA UNTUK MENAMBAH TENAGA

TURBOCHARGER BEBERAPA CARA UNTUK MENAMBAH TENAGA TURBOCHARGER URAIAN Dalam merancang suatu mesin, harus diperhatikan keseimbangan antara besarnya tenaga dengan ukuran berat mesin, salah satu caranya adalah melengkapi mesin dengan turbocharger yang memungkinkan

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Indonesia merupakan negara pemilik potensi energi panas bumi terbesar di dunia, mencapai 28.617 megawatt (MW) atau setara dengan 40% total potensi dunia yang tersebar

Lebih terperinci

Sistem Hidrolik. Trainer Agri Group Tier-2

Sistem Hidrolik. Trainer Agri Group Tier-2 Sistem Hidrolik No HP : 082183802878 Tujuan Training Peserta dapat : Mengerti komponen utama dari sistem hidrolik Menguji system hidrolik Melakukan perawatan pada sistem hidrolik Hidrolik hydro = air &

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

Tugas khusus Adi Kunchoro

Tugas khusus Adi Kunchoro Tugas khusus Adi Kunchoro 03111003045 EJEKTOR A. Fungsi Ejektor Ejektor merupakan alat yang digunakan untuk memindahkan udara atau gas gas yang tidak dapat dikondensasikan di tempat-tempat vakum. Ejektor

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 3 BAB 2 TINJAUAN PUSTAKA 2.1. Pengertian Menara Pendingin Menurut El. Wakil [11], menara pendingin didefinisikan sebagai alat penukar kalor yang fluida kerjanya adalah air dan udara yang berfungsi mendinginkan

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas I. PENDAHULUAN 1.1. Latar Belakang Energi panas bumi (Geothermal) merupakan sumber energi terbarukan berupa energi thermal (panas) yang dihasilkan dan disimpan di dalam inti bumi. Saat ini energi panas

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Penelitian Energi memiliki peranan penting dalam menunjang kehidupan manusia. Seiring dengan perkembangan zaman, kebutuhan akan energi terus meningkat. Untuk dapat

Lebih terperinci

SESSION 12 POWER PLANT OPERATION

SESSION 12 POWER PLANT OPERATION SESSION 12 POWER PLANT OPERATION OUTLINE 1. Perencanaan Operasi Pembangkit 2. Manajemen Operasi Pembangkit 3. Tanggung Jawab Operator 4. Proses Operasi Pembangkit 1. PERENCANAAN OPERASI PEMBANGKIT Perkiraan

Lebih terperinci

PENGOPERASIAN COOLING WATER SYSTEM UNTUK PENURUNAN TEMPERATUR MEDIA PENDINGIN EVAPORATOR. Ahmad Nurjana Pusat Teknologi Limbah Radioaktif-BATAN

PENGOPERASIAN COOLING WATER SYSTEM UNTUK PENURUNAN TEMPERATUR MEDIA PENDINGIN EVAPORATOR. Ahmad Nurjana Pusat Teknologi Limbah Radioaktif-BATAN PENGOPERASIAN COOLING WATER SYSTEM UNTUK PENURUNAN TEMPERATUR MEDIA PENDINGIN EVAPORATOR ABSTRAK Ahmad Nurjana Pusat Teknologi Limbah Radioaktif-BATAN PENGOPERASIAN COOLING WATER SYTEM UNTUK PENURUNAN

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger

Aku berbakti pada Bangsaku,,,,karena Negaraku berjasa padaku. Pengertian Turbocharger Pengertian Turbocharger Turbocharger merupakan sebuah peralatan, untuk menambah jumlah udara yang masuk kedalam slinder dengan memanfaatkan energi gas buang. Turbocharger merupakan perlatan untuk mengubah

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci

COOLING WATER SYSTEM

COOLING WATER SYSTEM 2.8. Pengertian Cooling Water System pada Gas Turbine merupakan suatu sistem pendinginan tertutup yang digunakan untuk pendinginan lube oil dan udara pendingin generator. Cooling Water System menggunakan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Skema Oraganic Rankine Cycle Pada penelitian ini sistem Organic Rankine Cycle secara umum dibutuhkan sebuah alat uji sistem ORC yang terdiri dari pompa, boiler, turbin dan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas

BAB II DASAR TEORI. 2.1 Prinsip Pembangkit Listrik Tenaga Gas BAB II DASAR TEORI. rinsip embangkit Listrik Tenaga Gas embangkit listrik tenaga gas adalah pembangkit yang memanfaatkan gas (campuran udara dan bahan bakar) hasil dari pembakaran bahan bakar minyak (BBM)

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

LUBRICATING SYSTEM. Fungsi Pelumas Pada Engine: 1. Sebagai Pelumas ( Lubricant )

LUBRICATING SYSTEM. Fungsi Pelumas Pada Engine: 1. Sebagai Pelumas ( Lubricant ) LUBRICATING SYSTEM Adalah sistim pada engine diesel yang dapat merawat kerja diesel engine agar dapat berumur panjang, dengan memberikan pelumasan pada bagian-bagian engine yang saling bergerak/mengalami

Lebih terperinci

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02

ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN. Disusun Oleh: GRACE ELIZABETH ID 02 ARTIKEL TUGAS INDUSTRI KIMIA ENERGI TERBARUKAN Disusun Oleh: GRACE ELIZABETH 30408397 3 ID 02 JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA 2011 ENERGI TERBARUKAN Konsep energi

Lebih terperinci

Mekatronika Modul 11 Pneumatik (1)

Mekatronika Modul 11 Pneumatik (1) Mekatronika Modul 11 Pneumatik (1) Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari komponen Pneumatik Tujuan Bagian ini memberikan informasi mengenai karakteristik dan

Lebih terperinci

PEMANFAATAN LIMBAH KAYU (BIOMASSA) UNTUK PEMBANGKIT LISTRIK. PT. Harjohn Timber. Penerima Penghargaan Energi Pratama Tahun 2011 S A R I

PEMANFAATAN LIMBAH KAYU (BIOMASSA) UNTUK PEMBANGKIT LISTRIK. PT. Harjohn Timber. Penerima Penghargaan Energi Pratama Tahun 2011 S A R I PEMANFAATAN LIMBAH KAYU (BIOMASSA) UNTUK PEMBANGKIT LISTRIK PT. Harjohn Timber Penerima Penghargaan Energi Pratama Tahun 2011 S A R I PT. Harjhon Timber adalah salah satu Penerima Penghargaan Energi Pratama

Lebih terperinci

STUDI PERENCANAAN PLTP 2X2,5 MW UNTUK KETENAGALISTRIKAN DI LEMBATA NUSA TENGGARA TIMUR

STUDI PERENCANAAN PLTP 2X2,5 MW UNTUK KETENAGALISTRIKAN DI LEMBATA NUSA TENGGARA TIMUR STUDI PERENCANAAN PLTP 2X2,5 MW UNTUK KETENAGALISTRIKAN DI LEMBATA NUSA TENGGARA TIMUR Cherian Adi Purnanta 2205 100 147 Dosen pembimbing : Ir. Syariffuddin M, M.Eng Ir. Teguh Yuwono PENDAHULUAN Salah

Lebih terperinci