ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret)

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret)"

Transkripsi

1 ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) Miranda Nur Qolbi Aprilina 1, Wiranto 2,Widodo 3 1,2 Program Studi Informatika, FMIPA, Universitas Sebelas Maret 3 UPT Perpustakaan Universitas Sebelas Maret ABSTRAK Perpustakaan sebagai institusi pengelola koleksi karya yang bertujuan untuk memberikan pelayanan kepada pemustaka senantiasa berusaha meningkatkan kualitas pelayanannya, termasuk UPT Perpustakaan Universitas Sebelas Maret (UNS). UPT Perpustakaan UNS merupakan perpustakaan perguruan tinggi yang bertugas memberikan layanan kepada civitas akademika UNS. Dalam usaha meningkatkan kualitas pelayanannya, UPT ini mengalami kendala, pertama, sulit mengetahui kecenderungan minat buku civitas akademika UNS, sehingga pengelola kesulitan mengembangkan perpustakaan sesuai dengan kebutuhan civitas akademika. Kedua, sulit mengetahui apakah koleksi yang telah dimiliki saat ini sudah relevan dengan kebutuhan civitas akademika. Setiap hari, UPT Perpustakaan dapat melayani hingga 50 transaksi peminjaman, jika diakumulasikan dalam satu tahun UPT ini memiliki ribuan data transaksi yang hanya tersimpan dalam database aplikasi UNS Library Automation (UNSLA). Data transaksi tersebut masih dapat diolah menjadi informasi yang bermanfaat, termasuk menyelesaikan permasalahan yang dialami oleh UPT Perpustakaan. Database transaksi peminjaman tersebut diolah dengan menggunakan pendekatan data mining. Teknik data mining yang digunakan adalah Assocation Rule (support, confidence, lift ratio). Algoritma Association Rule yang digunakan adalah Frequent Pattern Growth (FP-Growth). Data transaksi diolah berdasarkan bulan, semester, dan tahun. Dari hasil penelitian diperoleh hasil bahwa pertama, rule yang dihasilkan tiap bulan tidak selalu sama. Kedua, rule hasil berdasarkan semester/tahun sebagian besar merupakan akumulasi dari rule yang dihasilkan perbulan. Kata Kunci: Data mining, Association Rule, FP-Growth, Lift Ratio, Perpustakaan 1. PENDAHULUAN Perpustakaan merupakan institusi pengelola koleksi karya (karya cetak, karya tulis, karya rekam) yang bertujuan memberikan pelayanan kepada pemustaka [1]. Berdasarkan pada tujuan tersebut, peningkatan kualitas perpustakaan menjadi tugas utama bagi pengelola perpustakaan, termasuk pengelola UPT Perpustakaan UNS. UPT Perpustakaan UNS merupakan perpustakaan perguruan tinggi yang bertugas memberikan pelayanan kepada civitas akademika UNS. Dalam menjalankan tugasnya, UPT ini dibantu dengan aplikasi UNSLA (UNS Library Automation) untuk mencatat proses sirkulasi (peminjaman, pengembalian buku). Seluruh proses sirkulasi tersimpan dalam database aplikasi UNSLA. Setiap harinya UPT Perpustakaan dapat melayani hingga 50 transaksi peminjaman buku, jika diakumulasikan dalam satu tahun, database UNSLA dapat berisi ribuan transaksi peminjaman. Data transaksi peminjaman buku tersebut dapat diolah untuk mendapatkan informasi yang bermanfaat. Dengan melakukan analisa terhadap pola peminjaman buku, pengelola UPT Perpustakaan dapat menggunakan hasil analisa tersebut untuk mengetahui pola peminjaman buku dari civitas akademika UNS, menetapkan kebijakan dalam rangka pengembangan UPT Perpustakaan dan mengetahui apakah koleksi yang dimiliki sudah sesuai dengan kebutuhan civitas akademika UNS. Pengolahan database transaksi peminjaman buku dilakukan dengan pendekatan data mining. Data mining merupakan pendekatan yang dilakukan untuk mendapatkan knowledge baru dari tumpukan data berukuran besar [2]. Teknik data mining yang digunakan adalah Association Rule. Association Rule merupakan teknik yang digunakan untuk mengetahui proses apa yang sering terjadi bersamaan [2]. Algoritma Association Rule yang digunakan adalah algoritma FP-Growth. Algoritma ini dipilih karena dinilai lebih baik dibandingkan algoritma sejenis, Apriori [3-5]. Fokus dari penelitian ini adalah melakukan analisa konsistensi terhadap pola peminjaman buku di UPT Perpustakaan dengan menggunakan algoritma FP-Growth. Dalam penelitian sebelumnya, Rama Novta Miraldi dkk mencoba membuat sistem rekomendasi peminjaman buku dengan menggunakan algoritma FP-Growth. Dari penelitian tersebut diperoleh hasil berupa sistem rekomendasi peminjaman buku dengan akurasi algoritma 60,78% [6]. Suryati Ali, dalam penelitiannya mengenai penerapan algoritma FP-Growth untuk penyelesaian kasus pola peminjaman buku menjelaskan bahwa algoritma ini dapat digunakan untuk menyelesaikan kasus pola peminjaman buku. Hasil yang diperoleh berupa pola pola peminjaman buku yang dilakukan oleh pemustaka di Perpustakaan Otorita Batam [7]. Rincian perbedaan antara penelitian Rama Novta Miraldi dkk, Suryati Ali dan penelitian ini dijelaskan pada Tabel 1 dan Tabel

2 Tabel 1. Rincian perbedaan penelitian Novta Miraldi dkk dan penelitian baru Dilihat dari Novta Miraldi dkk (2014) Penelitian baru Fokus Pembuatan sistem rekomendasi Analisa rule Tujuan Untuk mengetahui seberapa kuat rekomendasi sistem yang dibuat Data Data training : 80% data diambil acak Data uji : 20% Association Rule Association Rule (support, confidence) Lift pengujian Pengujian Dilakukan dengan menggunakan lift kemudian lihat apakah ada rule yg terpenuhi dari data uji Output Sistem rekomendasi yang menampilkan 5 rekomendasi buku Akurasi algoritma 60,78% Untuk mengetahui pola/rule yang terbentuk dari peminjaman buku Seluruh data dari tahun digunakan (dibagi perbulan, persemester, pertahun. Data tidak diambil secara acak) Association Rule (support, confidence) Lift faktor penentu rule Tidak dilakukan pengujian Analisa Rule hasil implementasi FP-Growth berdasarkan support, confidence, lift yang dibagi perbulan, persemester, pertahun Tabel 2. Rincian perbedaan penelitian Suryati Ali dan penelitian baru Dilihat dari Suryati Ali (2015) Penelitian Baru Association Association Rule Association Rule (Support, confidence,lift) Rule (Support, confidence) Faktor Interestingness Data Olahan Analisa Data Preprocessing Support rule min_support Confidence rule min_confidence 531 (Mei 2013 Maret 2014) Seluruh data dianalisa sekaligus Transformation (generalisasi) Data selection Fokus Pembangunan sistem, analisa pola Support rule min_support Confidence rule min_confidence Lift rule > (Januari Desember 2012 hingga Juni 2015) Data dianalisa perbulan, persemester, pertahun Data cleaning (hilangkan data redundan, kategorisasi,seleksi kategori sama) Data selection (pilih hanya data yang diperlukan) Analisa rule Pada penelitian ini, faktor interestingeness rule yang digunakan pada Association Rule adalah support, confidence, dan korelasi. Perhitungan korelasi yang dipilih adalah lift ratio karena dengan lift dapat dilihat hubungan keterkaitan antar item penyusun rule selain itu pada penelitian lain [8] dijelaskan bahwa lift terbukti dapat digunakan untuk membentuk Association Rule. 2. METODE Metode yang diterapkan pada penelitian ini ditunjukkan pada Gambar 1. Gambar 1. Metode penelitian yang digunakan. 228

3 2.1. Pengumpulan Data Data yang digunakan pada penelitian ini bersumber dari database UNSLA milik UPT Perpustakaan UNS. Database UNSLA berisi riwayat transaksi sirkulasi mulai dari tahun 2006 hingga saat ini. Namun, pada penelitian ini hanya digunakan data pada bulan Januari Desember 2012 hingga Juni Data tersebut dibagi berdasarkan bulan, semester, dan tahun kemudian diolah untuk mendapatkan pola peminjaman buku Preprocessing Preprocessing merupakan tahap yang dilakukan untuk mengolah data mentah menjadi data yang siap untuk digunakan. Data yang diperoleh dari database UNSLA harus melalui proses ini terlebih dahulu untuk memastikan bahwa data yang digunakan sudah siap dan sesuai. Proses preprocessing yang dilakukan pada penelitian ini ditunjukkan pada Gambar 2. Gambar 2. Preprocessing yang dilakukan pada penelitian Data Selection Data selection merupakan tahap preprocessing yang dilakukan untuk memilih data apa saja yang digunakan pada penelitian. Tidak semua tabel pada database UNSLA digunakan pada penelitian ini Data Cleaning Data cleaning merupakan tahap preprocessing yang dilakukan untuk menghapus redundansi data, proses kategorisasi judul buku, pengecekan terhadap redudansi kategori buku untuk peminjam yang sama. Penghapusan redudansi data dilakukan apabila terdapat lebih dari satu data yang identik. Kategorisasi buku dilakukan dengan cara mengkategorikan judul buku berdasarkan kategori buku. UPT Perpustakaan membagi koleksi buku berdasarkan 10 kategori, seperti ditunjukkan pada Tabel 3. Pengecekan terhadap redudansi kategori buku untuk peminjam yang sama dilakukan untuk melihat apakah pada satu peminjam yang sama terdapat lebih dari satu kategori buku yang sama. Tabel 3. Pembagian kategori buku di UPT Perpustakaan UNS Kode Kategori Buku Nama Kategori 000 Umum 100 Filsafat 200 Agama 300 Sosial 400 Bahasa 500 Ilmu Murni 600 Ilmu Terapan 700 Seni dan Olahraga 800 Kesusastraan 900 Sejarah 229

4 2.5. Analisa data Analisa data merupakan tahap yang dilakukan untuk menganalisa pola/ rule yang terbentuk pada pola peminjaman buku. Tahap yang dilakukan pada analisa data ditunjukkan pada Gambar 3. Gambar 3. Tahap analisa data. Tahapan analisa data yang dilakukan pada penelitian ini adalah: 1) Tahap pertama dimulai dengan mengolah data hasil preprocessing, menghitung nilai support count untuk tiap item yang terlibat kemudian melakukan seleksi terhadap item yang memenuhi persyaratan support rule minimum support. 2) Tahap kedua, menampilkan hasil seleksi item berdasarkan peminjam. Kemudian membuat FP-Tree berdasarkan pada transaksi peminjaman yang dilakukan peminjam. 3) Tahap ketiga, membuat conditional pattern base, conditional FP-Tree, dan frequent itemset dari FP-Tree. 4) Tahap keempat, menghitung nilai confidence dan lift untuk tiap rule yang dihasilkan. Kemudian melakukan seleksi terhadap rule yang memenuhi persyaratan confidence rule minimum confidence dan lift rule > Association Rule Association Rule merupakan teknik data mining yang digunakan untuk mengetahui proses yang sering terjadi bersamaan. Ada dua tahap yang dilakukan pada teknik ini yaitu temukan itemset yang sering muncul kemudian lakukan penyusunan rule [2] Faktor Interestingness Support Support merupakan peluang kejadian rule terhadap keseluruhan transaksi dalam dataset. Minimum support diartikan sebagai nilai support minimal yang harus dipenuhi oleh rule [2]. Support (A B) = P (AUB) = Confidence Confidence merupakan peluang kejadian suatu item muncul bersamaan dengan item lain muncul. Jika dinotasikan dengan bentuk A B, maka confidence diartikan sebagai seberapa sering B muncul ketika A juga muncul. Minimum confidence diartikan sebagai nilai confidence minimal yang harus dipenuhi oleh rule [2]. Confidence (A B) = P(B A) = = (2) (1) 230

5 Lift Ratio Lift ratio digunakan untuk mengetahui korelasi antar item dalam rule. Jika nilai lift rule > 1 maka positive correlation, jika nilai lift rule < 1 maka negative correlation, jika nilai lift rule = 1 maka disebut independent (tidak memiliki keterkaitan) [2]. Lift (A B) = = (3) 2.8. Frequent Pattern Growth (FP-Growth) FP-Growth merupakan salah satu algoritma yang digunakan untuk menyelesaikan kasus Association Rule. Algoritma ini memiliki dua tahap yaitu pertama, dilakukan kompresi terhadap database berdasarkan pada item yang sering muncul dengan membuat Frequent Pattern Tree (FP-Tree). Kedua, dilakukan pemisahan terhadap database hasil kompresi ke dalam bentuk conditional database [2] FP-Tree FP-Tree merupakan ciri khusus yang membedakan antara algoritma FP-Growth dengan algoritma sejenis, Apriori. FP-Tree memiliki dua karakteristik, pertama, dimulai dari sebuah akar yang diberi nama null. Kemudian dari akar membentuk sub-tree yang terdiri dari item-item tertentu dan sebuah tabel frequent header. Kedua, setiap simpul (node) mengandung tiga informasi penting yaitu label item (menunjukkan jenis item (item ID) yang direpresentasikan oleh node tersebut), support count (menunjukkan jumlah lintasan transaksi yang melewati simpul tersebut atau disebut juga sebagai frekuensi), pointer penghubung (node link) sebagai penghubung antara simpul dengan item sekaligus penghubung antar lintasan, pointer penghubung ditandai dengan garis panah putus putus. Contoh FP- Tree ditunjukkan pada Gambar 4. Gambar 4. Contoh FP-Tree [2]. 3. HASIL DAN PEMBAHASAN 3.1. Pengumpulan data Data yang diperoleh dari database UNSLA dipisahkan berdasarkan bulan, semester dan tahun dengan cara melakukan query terhadap database UNSLA. Data hasil query disimpan dalam bentuk csv file dan kemudian diolah menggunakan FP-Growth Preprocessing Data Data Selection Tahap preprocessing dimana dilakukan seleksi terhadap data yang digunakan. Data yang dibutuhkan untuk penelitian ini adalah tabel transaksi peminjaman buku, tabel anggota, tabel buku, dan tabel kategori buku Data Cleaning Penghilangan Redundansi Data Tahap penghilangan redudansi data dilakukan seperti pada Tabel 4. Tabel 4. Contoh penghilangan redudansi data Nama Peminjam Judul Buku Analisis Pembebanan Lalu Lintas Dengan Hadiyanto Mempertimbangkan Pengaruh Fenomena Simpang Hadiyanto 99 Tips Mempersiapkan Dan Menjaga Kehamilan Hadiyanto Indeks Biologi Dan Pertanian Indonesia : 231

6 Hadiyanto Hadiyanto Hadiyanto Hadiyanto Abis Yuni Puspita Adam Megatantra Hubungan Antara Kedisplinan Belajar, Keharmonisan Keluarga Dengan Prestasi Belajar Sosiologi Siswa.. The Reappearance Of The Christ And The Masters Of Wisdom Pengujian Karakteristik Aliran Fasa Tunggal Aliran Air Horisontal Pada Penukar Kalor Saluran Annular Pengujian Karakteristik Aliran Fasa Tunggal Aliran Air Horisontal Pada Penukar Kalor Saluran Annular Anggur: Teknik Mengajar Secara Sistematis Kategorisasi Judul Buku Tahap ini dilakukan dengan mengubah judul buku sesuai dengan kategori bukunya, seperti ditunjukkan pada Tabel 5. Tabel 5. Contoh proses kategorisasi judul buku No Kategori No Nama Peminjam Buku. Nama Peminjam 1 Hadiyanto Hadiyanto Hadiyanto Hadiyanto Hadiyanto 900 Kategori Buku 6 Hadiyanto Hadiyanto Abis Yuni Puspita Adam Megatantra 300 Pengecekan dan penghilangan redundansi kategori Tahap ini dilakukan pengecekan terhadap redudansi kategori untuk peminjam yang sama kemudian dilakukan penghapusan terhadap redudansi tersebut, seperti ditunjukkan Tabel 6. Tabel 6. Contoh penghilangan redudansi kategori No Kategori No. Kategori Nama Peminjam Buku Nama Peminjam Buku 1 Hadiyanto Hadiyanto Hadiyanto Hadiyanto 300 Hadiyanto Hadiyanto Abis Yuni Puspita Hadiyanto Adam Megatantra 300 No Kategori Nama Peminjam Buku 1 Hadiyanto Hadiyanto Hadiyanto Hadiyanto Hadiyanto Abis Yuni Puspita Adam Megatantra

7 Transaksi peminjaman berdasarkan peminjam. Pada tahap ini diperoleh hasil akhir preprocessing berupa transaksi peminjaman buku berdasarkan peminjam. Transaksi yang digunakan adalah transaksi dengan minimal 2 kategori untuk tiap transaksinya, seperti ditunjukkan Tabel 7. Tabel 7. Contoh hasil preprocessing Nama Peminjam Kategori Buku Hadiyanto 600,300,200,900,500 Abis Yuni Puspita 600 Adam Megatantra Analisa Data Pada tahap ini, dilakukan analisa terhadap pola yang dihasilkan. Pertama dicari pola yang terbentuk di tiap bulan, semester dan tahun dengan cara menghitung nilai support (1), confidence (2) dan lift (3) setiap pola. Kemudian dilakukan analisa konsistensi pola yang dihasilkan perbulan, semester, dan tahun. Dalam penelitian ini, nilai minimum support, minimum confidence, dan lift yang digunakan adalah 2%, 0.7, dan lift rule > Hasil Pola Peminjaman Buku Berdasarkan Bulan Data transaksi peminjaman buku setiap bulan diolah menggunakan algoritma FP-Growth, menghasilkan pola transaksi seperti pada Tabel 8 dan Tabel 9. Tabel 8. Contoh pola bulan Januari (sampling) Pola Peminjaman Buku Januari , ,500, ,500, , Tabel 9. Contoh pola bulan Desember(sampling) Pola Peminjaman Buku Desember , ,500, , , Hasil Pola Peminjaman Buku Berdasarkan Semester Data peminjaman buku tiap semester (Januari Juni dan Juli-Desember) diolah menggunakan algoritma FP-Growth. Contoh hasil pengolahan data peminjaman buku tiap semester ditunjukkan pada Tabel 10 dan 11. Tabel 10. Contoh pola semester (Januari-Juni) (sampling) Pola Peminjaman Buku Januari-Juni ,500, ,500, , ,000, Tabel 11. Contoh pola semester (Juli-Desember) (sampling) Pola Peminjaman Buku Juli- Desember ,500, , ,500, , Hasil Pola Peminjaman Buku Berdasarkan Tahun Data peminjaman buku berdasarkan tahun (Januari Desember) diolah menggunakan algoritma FP- Growth. Contoh hasil pengolahan data peminjaman buku berdasarkan tahun ditunjukkan pada Tabel

8 Tabel 12. Contoh pola peminjaman buku dalam satu tahun (sampling) Pola Peminjaman Buku Januari- Desember ,700, ,200, , ,000,700, Analisa Konsistensi Pola Analisa konsistensi pola dilakukan dengan cara melihat seberapa sering sebuah rule muncul pada tiap bulan. Kemudian melihat apakah rule tersebut juga muncul pada pola peminjaman berdasarkan semester dan tahun. Output dari proses ini adalah pola peminjaman buku yang konsisten seperti ditunjukkan pada Tabel 13. Tabel 13. Contoh hasil pola yang konsisten No Pola/Rule Konsistensi Kemunculan Konsisten Pola Semester Tahun 1 000, Ya Ya Ya 2 600,000, Ya Ya Ya 3 300, Tidak Tidak Tidak Pola yang konsisten menunjukkan karakteristik peminjaman buku yang dilakukan oleh civitas akademika UNS. Setelah mengetahui karakteristik peminjaman civitas akademika UNS, dapat diketahui apakah koleksi buku yang dimiliki saat ini sudah relevan dengan kebutuhan civitas akademika UNS. Hal tersebut dilakukan dengan cara membandingkan jumlah koleksi buku ditiap kategori dengan pola yang konsisten. 4. SIMPULAN Pola transaksi peminjaman buku yang dihasilkan tiap bulan tidak selalu sama meskipun dalam tahun yang sama. Hal tersebut dikarenakan karakteristik peminjam tiap bulan belum tentu sama, selain itu waktu peminjaman juga menentukan pola transaksi yang dihasilkan. Pola transaksi peminjaman buku tiap bulan mempengaruhi pembentukan pola transaksi berdasarkan semester dan tahun. Pola transaksi berdasarkan semester mencakup sebagian besar pola yang dihasilkan tiap bulan. Pola transaksi berdasarkan tahun mencakup sebagian besar pola yang dihasilkan tiap semester. Pola/rule yang sering muncul pada bulanbulan di tahun yang sama kemudian pola tersebut juga muncul di semester dan tahun menunjukkan pola tersebut konsisten. 5. REFERENSI [1] Presiden Republik Indonesia Undang-Undang Republik Indonesia Nomor 43 Tahun 2007 Tentang Perpustakaan. p. 45. [2] Han, J. dan Kamber, M Data Mining: Concepts and Techniques, vol. 54, no. Second Edition. Elsevier Inc. [3] Anggraeni, R. M Perbandingan Algoritma Apriori dan Algoritma FP-Growth untuk Perekomendasi Pada Transaksi Peminjaman Buku di Perpustakaan Universitas Dian Nuswantoro. pp [4] Erwin Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth, J. Generic, vol. 4, pp [5] Ahmed, A. dan Mohamed, F A Frequent Pattern Growth Method for Mining Association Rules, pp [6] Miraldi, R. N., Rachmat, A., dan Susanto, B Implementasi Algoritma FP-Growth untuk Sistem Rekomendasi Buku di Perpustakaan UKDW. INFORMATIKA, vol. 10, no. l, pp [7] Ali, S Analisis Data Pola Peminjaman Buku Menggunakan Algoritma FP-Growth (Studi Kasus Perpustakaan Otorita Batam). [8] Hussein, N., Alashqur, A., dan Sowan, B. Using the interestingness measure lift to generate Association Rules. J. Adv. Comput. Sci. Technol., vol. 4, no. 1, p

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 Uma Mazida, 2 Ricardus Anggi Pramunendar, M.Cs Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA)

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) Nur Rohman Ardani 1), Nur Fitrina 2) 1) Magister Teknik Informatika STMIK AMIKOM Yogyakarta 2) Teknik

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian

Lebih terperinci

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Irene Edria Devina / 13515038 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS Fitriyani Fakultas Teknik, Universitas BSI Bandung Jalan Sekolah Internasional No. 1-6, Bandung 40282, Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset David Samuel/NIM :13506081 1) 1) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Kata kunci : Perpustakaan, Sistem Rekomendasi, Knowledge Discovery from Database (KDD), Association Rule Mining, Algoritma CT-PRO

Kata kunci : Perpustakaan, Sistem Rekomendasi, Knowledge Discovery from Database (KDD), Association Rule Mining, Algoritma CT-PRO PENERAPAN ASSOCIATION RULE MINING UNTUK REKOMENDASI PENELUSURAN BUKU DENGAN ALGORITMA CT-PRO Dwi Maryati Suryana, Sri Setyaningsih, Lita Karlitasari e-mail : dwimaryatisuryana@yahoo.com Program Studi Ilmu

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

Mining Association Rules dalam Basis Data yang Besar

Mining Association Rules dalam Basis Data yang Besar Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang BAB III METODE PENELITIAN Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang tersusun secara jelas dan sistematis guna menyelesaikan suatu permasalahan yang sedang diteliti dengan

Lebih terperinci

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT. ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.X) ANALYSIS AND IMPLEMENTATION OF FP-GROWTH ALGORITHM IN SMART

Lebih terperinci

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis ANDREAS HANDOJO, GREGORIUS SATIA BUDHI, HENDRA RUSLY Jurusan Teknik Informatika Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data mining bertujuan untuk menemukan pola-pola yang valid, baru, mempunyai nilai guna, dan mudah dipahami dari data yang ada. Jenis pola yang dihasilkan ditentukan

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan)

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) Sri Rahayu Siregar ( 0911882) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma

Lebih terperinci

1. BAB I PENDAHULUAN 1.1. Latar Belakang ,

1. BAB I PENDAHULUAN 1.1. Latar Belakang  , 1. BAB I PENDAHULUAN 1.1. Latar Belakang Hasil survey Badan Kesejahteraan Keluarga Pemberdayaan Perempuan dan Keluarga Berencana (BKKPPKB) tahun 2009 menunjukkan angka kemiskinan di Kabupaten Bantul sebanyak

Lebih terperinci

ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING

ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING Kanthi Wulandari Mahasiswa Program Studi Statistika Universitas Islam Indonesia kanthiwuland@gmail.com Asriyanti Ali Mahasiswa Program

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN Pada bab ini berisi tentang latar belakang pembuatan dari aplikasi penentuan rekomendasi pencarian buku perpustakaan menggunakan algoritma fp-growth, rumusan masalah, tujuan, batasan

Lebih terperinci

E-Journal Teknik Informatika Vol.8, No.1, April 2016

E-Journal Teknik Informatika Vol.8, No.1, April 2016 Analisa Pola Belanja Swalayan Daily Mart Untuk Menentukan Tata Letak Barang Menggunakan Algoritma FP-Growth Kezia Sumangkut (1), Arie Lumenta (2), Virginia Tulenan (3) Teknik Informatika, Universitas Sam

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENDISKRIPSIKAN TINGKAT KREDIT BERMASALAH PADA BANK

PENERAPAN DATA MINING UNTUK MENDISKRIPSIKAN TINGKAT KREDIT BERMASALAH PADA BANK PENERAPAN DATA MINING UNTUK MENDISKRIPSIKAN TINGKAT KREDIT BERMASALAH PADA BANK Rizky Fajar Nugraha Fakultas Ilmu Komputer, Universitas Dian Nuswantoro Semarang ABSTRAK Pertumbuhan yang pesat dari akumulasi

Lebih terperinci

TINJAUAN PUSTAKA Data Mining

TINJAUAN PUSTAKA Data Mining 25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Yuli Asriningtias, Rodhyah Mardhiyah Program Studi Teknik Informatika Fakultas Bisnis & Teknologi Informasi, Universitas Teknologi

Lebih terperinci

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK Wiwit Agus Triyanto Fakultas Teknik, Program Studi Sistem Informasi Universitas Muria Kudus Email: at.wiwit@yahoo.co.id ABSTRAK Rekomendasi

Lebih terperinci

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi

Lebih terperinci

Analisis Frekuensi Pola Pembelian Konsumen Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Bon Bon Resto Semarang

Analisis Frekuensi Pola Pembelian Konsumen Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Bon Bon Resto Semarang Analisis Frekuensi Pola Pembelian Konsumen Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Bon Bon Resto Semarang Nur Imam Fachruzi Fakultas Ilmu Komputer, Universitas Dian

Lebih terperinci

BAB III METODE PENELITIAN. desaign dan coding program. Dibutuhkan waktu selama kurang lebih 8 bulan

BAB III METODE PENELITIAN. desaign dan coding program. Dibutuhkan waktu selama kurang lebih 8 bulan 19 BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Dalam penelitian ini memerlukan waktu yang cukup lama, yaitu dalam membuat desaign dan coding program. Dibutuhkan waktu selama kurang lebih 8 bulan untuk

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 40 BAB III METODOLOGI PENELITIAN 3.1 DESAIN PENELITIAN Dalam melakukan penelitian, dibutuhkan desain penelitian agar penelitian yang dilakukan dapat berjalan dengan baik. Berikut ini merupakan desain penelitian

Lebih terperinci

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3)

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #7: Association Rules Mining (Bagian 1) Gunawan Jurusan Teknik Informatika Link Analysis (Superset) Tujuan: Mencari hubungan antara

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data BAB IV HASIL DAN PEMBAHASAN A. Pengumpulan Data Sumber data utama yang digunakan dalam penelitian ini berasal dari data transaksi 3 bulan terakhir yaitu bulan Maret, April, Mei tahun 2012 di swalayan XYZ

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI IMPLEMENTATION OF DATA MINING TO PREDICT RESULTS OF SALES GOODS IN THE

Lebih terperinci

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT.

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. PHAPROS SEMARANG Frismadani Anggita Priyana 1, Acun Kardianawati 2 1,2

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Mining Data mining adalah eksplorasi dan analisis data dalam jumlah besar untuk menemukan pola yang berarti dan beraturan. Tujuan data mining adalah untuk meningkatkan pemasaran,

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENGETAHUI POLA ASOSIASI ANTARA DATA MAHASISWA DAN TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FOLD-GROWTH

PENERAPAN DATA MINING UNTUK MENGETAHUI POLA ASOSIASI ANTARA DATA MAHASISWA DAN TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FOLD-GROWTH PENERAPAN DATA MINING UNTUK MENGETAHUI POLA ASOSIASI ANTARA DATA MAHASISWA DAN TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FOLD-GROWTH Betha Nurina Sari1, Drs.Muh. Arif Rahman M.Kom2, Yusi Tyroni Mursityo,S.Kom,M.S.3

Lebih terperinci

ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER

ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER ALGORITMA PARALEL FP-GROWTH UNTUK PENGGALIAN KAIDAH ASOSIASI PADA JARINGAN KOMPUTER F.X. Arunanto, Syaiful Isman Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember

Lebih terperinci

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy (Studi Kasus di PT. Telkom Cabang Wonogiri ) Moch. Yusuf

Lebih terperinci

EDUCATIONAL DATA MINING (KONSEP DAN PENERAPAN)

EDUCATIONAL DATA MINING (KONSEP DAN PENERAPAN) EDUCATIONAL DATA MINING (KONSEP DAN PENERAPAN) Fitri Marisa Program Studi Teknik Informatika Universitas Widyagama Malang Jl. Borobudur No. 35 Malang (0341)492282 e-mail: fitrimarisa@widyagama.ac.id ABSTRACT

Lebih terperinci

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p 22-28 http://ejournal-s1.undip.ac.id/index.php/joint APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA

Lebih terperinci

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH Dessy Chaerunnissa 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas

Lebih terperinci

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG Mohamad Fauzy 1, Kemas Rahmat Saleh W 2, Ibnu Asror 3 123 Fakultas Informatika Telkom University

Lebih terperinci

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG EKA FITRIA WULANSARI Program Studi Teknik Informatika,

Lebih terperinci

BAB 3 ANALISIS HIPOTESIS

BAB 3 ANALISIS HIPOTESIS BAB 3 ANALISIS HIPOTESIS Pada bagian ini dibahas mengenai analisis hipotesis sequential pattern dapat dimanfaatkan sebagai node ordering dalam mengkonstruksi struktur BN. Analisis dimulai dengan melakukan

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK DI PT. FOCUS GAYA GRAHA MENGGUNAKAN METODE ASSOCIATION RULE Aprisal Budiana Teknik Informatika - Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari kebutuhan akan informasi yang akurat sangat dibutuhkan dalam perkembangan masyarakat saat ini dan waktu mendatang. Namun kebutuhan informasi

Lebih terperinci

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA

ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA ALGORITMA GENERALIZED SEQUENTIAL PATTERN UNTUK MENGGALI DATA SEKUENSIAL SIRKULASI BUKU PADA PERPUSTAKAAN UK PETRA Gregorius Satia Budhi 1, Andreas Handojo, Christine Oktavina Wirawan 1,, Jurusan Teknik

Lebih terperinci

Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth

Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth 26 JURNAL GENERIC - Erwin. Analisis Market Basket Dengan Algoritma Apriori dan FP-Growth Erwin *, Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Universitas Sriwijaya Abstrak Algoritma yang umum digunakan

Lebih terperinci

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA)

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Seminar Nasional Teknologi Informasi dan Multimedia 2016 APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Sugiyatno 1), Adhika Pramita Widyasari 2) 1),

Lebih terperinci

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH Oliver Zakaria 1), Kusrini 2) 1) Teknik Informatika STMIK AMIKOM Yogyakarta Jl. Ring Road Utara Condong

Lebih terperinci

DAFTAR ISI Transformasi data... 47

DAFTAR ISI Transformasi data... 47 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii PRAKATA... iv DAFTAR ISI... vi DAFTAR TABEL... ix DAFTAR GAMBAR... xi INTISARI... xiii ABSTRACT... xiv BAB I PENDAHULUAN...

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi BAB II TINJAUAN PUSTAKA 2.1. Pengertian Data Data belum dapat dika/takan mempunyai makna penting atau informasi bagi penerima sebelum dilakukan pengolahan data. Data adalah fakta yang dapat dicatat dan

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Perkembangan teknologi informasi yang sangat pesat yang terjadi dewasa ini menuntut manusia untuk mampu beradaptasi dengan perkembangan tersebut. Upaya adaptasi yang dilakukan

Lebih terperinci

ANALISA POLA TRANSAKSI OBAT MENGGUNAKAN ALGORITMA APRIORI Shalsabilla Luthfi Dewati ABSTRAK

ANALISA POLA TRANSAKSI OBAT MENGGUNAKAN ALGORITMA APRIORI Shalsabilla Luthfi Dewati ABSTRAK ANALISA POLA TRANSAKSI OBAT MENGGUNAKAN ALGORITMA APRIORI Shalsabilla Luthfi Dewati ABSTRAK Poliklinik merupakan salah satu bentuk pelayanan masyarakat dalam bidang kesehatan. Pada umumnya poliklinik hanya

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

1 BAB I 2 PENDAHULUAN

1 BAB I 2 PENDAHULUAN 1 BAB I 2 PENDAHULUAN 1.1 Latar Belakang Data mining merupakan salah satu bidang ilmu yang berupaya untuk menemukan kaidah, pola, model, maupun informasi yang bersifat menarik dari sekumpulan data. Salah

Lebih terperinci

PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI

PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI Fana Wiza Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Lancang Kuning

Lebih terperinci

JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 7 No. 2 Februari 2015

JURNAL TEKNOLOGI TECHNOSCIENTIA ISSN: Vol. 7 No. 2 Februari 2015 SISTEM REKOMENDASI PEMBELAJARAN PADA E-LEARNING MENGGUNAKAN ALGORITMA CT-PRO Khoirul Ummah 1 Program Studi Teknik Informatika, Universitas Trunojoyo Madura Masuk: 4 September 2014, revisi masuk : 11 Januari

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 96 IMPLEMENTASI ASSOCIATION RULE TERHADAP PENYUSUNAN LAYOUT MAKANAN DAN PENENTUAN PAKET MAKANAN HEMAT DI RM ROSO ECHO DENGAN ALGORITMA APRIORI Elsa Widiati, S,Kom. 1, Kania Evita Dewi, S.Pd., M.Si 2 Teknik

Lebih terperinci

Modul Praktikum WEKA. Pembaca modul ini diasumsikan telah mengerti dasar-dasar datamining.

Modul Praktikum WEKA. Pembaca modul ini diasumsikan telah mengerti dasar-dasar datamining. Modul Praktikum WEKA Yudi Wibisono (e: yudi@upi.edu ); t: @yudiwbs Ilmu Komputer Universitas Pendidikan Indonesia (cs.upi.edu) Versi BETA : Oktober 2013 http://creativecommons.org/licenses/by-nc-sa/3.0/

Lebih terperinci

1. BAB I PENDAHULUAN 1.1. Latar Belakang

1. BAB I PENDAHULUAN 1.1. Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Pertumbuhan data yang pesat dari akumulasi data telah menciptakan sebuah kondisi yang sering disebut rich of data but poor of information karena data yang terkumpul

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

PENETAPAN POLA KONSUMEN MENGGUNAKAN ALGORITMA FREQUENT PATTERN GROWTH PADA CROSS MARKET ANALYSIS

PENETAPAN POLA KONSUMEN MENGGUNAKAN ALGORITMA FREQUENT PATTERN GROWTH PADA CROSS MARKET ANALYSIS PENETAPAN POLA KONSUMEN MENGGUNAKAN ALGORITMA FREQUENT PATTERN GROWTH PADA CROSS MARKET ANALYSIS Bain Khusnul Khotimah 1), Andharini Dwi Cahyani 2), Nurwahyu Alamsyah 3) 1,2,3 Jurusan Teknik Informatika,

Lebih terperinci

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN A M I UNTUK R U D D PENETAPAN I N POLA SERTFIKASI GURU Program Pascasarjana rusan Teknik Elektro Program Studi Telematika

Lebih terperinci

Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang)

Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang) Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang) Maya Suhayati,M.Kom. Jurusan Teknik Informatika, STMIK Sumedang mayasuh@stmik-sumedang.ac.id ABSTRAK Dalam suatu

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006

1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006 Metode Market Basket Analysis menggunakan Algoritma Pincer Search untuk Sistem Pembantu Pengambilan Keputusan Gregorius S. Budhi, Leo W. Santoso, Edward Susanto Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

METODE PENELITIAN. Tahapan pengembangan sistem PSP (Penetapan Strategi Penjualan) 1.0 seperti pada Gambar 2 di bawah ini. Mulai

METODE PENELITIAN. Tahapan pengembangan sistem PSP (Penetapan Strategi Penjualan) 1.0 seperti pada Gambar 2 di bawah ini. Mulai III. METODE PENELITIAN 3.1 Kerangka Kerja Penelitian Tahapan pengembangan sistem PSP (Penetapan Strategi Penjualan) 1.0 seperti pada Gambar 2 di bawah ini. Mulai Analisis Sistem, keluaran: - Deskripsi

Lebih terperinci

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART)

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) Rizka Nurul Arifin Program Studi Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula

Lebih terperinci

PENERAPAN DATA MINING UNTUK REKOMENDASI BEASISWA PADA SMA MUHAMMADIYAH GUBUG MENGGUNAKAN ALGORITMA C4.5

PENERAPAN DATA MINING UNTUK REKOMENDASI BEASISWA PADA SMA MUHAMMADIYAH GUBUG MENGGUNAKAN ALGORITMA C4.5 1 PENERAPAN DATA MINING UNTUK REKOMENDASI BEASISWA PADA SMA MUHAMMADIYAH GUBUG MENGGUNAKAN ALGORITMA C4.5 Dina Maurina, Ahmad Zainul Fanani S.Si, M.Kom Jurusan Teknik Informatika FIK UDINUS, Jl. Nakula

Lebih terperinci

DATA MINING UNTUK MENGGALI POLA MAHASISWA BARU MENGGUNAKAN METODE FREQUENT PATTERN GROWTH (STUDI KASUS : INSTITUT TEKNOLOGI ADHI TAMA SURABAYA)

DATA MINING UNTUK MENGGALI POLA MAHASISWA BARU MENGGUNAKAN METODE FREQUENT PATTERN GROWTH (STUDI KASUS : INSTITUT TEKNOLOGI ADHI TAMA SURABAYA) DATA MINING UNTUK MENGGALI POLA MAHASISWA BARU MENGGUNAKAN METODE FREQUENT PATTERN GROWTH (STUDI KASUS : INSTITUT TEKNOLOGI ADHI TAMA SURABAYA) Budanis Dwi Meilani, Muhammad Asadulloh Jurusan Teknik Informatika,

Lebih terperinci

DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA. Oleh : Rita Prima Bendriyanti ABSTRAK

DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA. Oleh : Rita Prima Bendriyanti ABSTRAK DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Oleh : Rita Prima Bendriyanti ABSTRAK Penelitian ini menggunakan metode observasi, dengan melihat atau mengamati secara langsung

Lebih terperinci

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer BAB 1 PENDAHULUAN 1.1 Pengantar Komputer Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer dimanfaatkan dalam segala bidang dikarenakan komputer

Lebih terperinci

DATA MINING UNTUK MENGGALI POLA MAHASISWA BARU MENGGUNAKAN METODE FREQUENT PATTERN GROWTH (STUDI KASUS : INSTITUT TEKNOLOGI ADHI TAMA SURABAYA)

DATA MINING UNTUK MENGGALI POLA MAHASISWA BARU MENGGUNAKAN METODE FREQUENT PATTERN GROWTH (STUDI KASUS : INSTITUT TEKNOLOGI ADHI TAMA SURABAYA) DATA MINING UNTUK MENGGALI POLA MAHASISWA BARU MENGGUNAKAN METODE FREQUENT PATTERN GROWTH (STUDI KASUS : INSTITUT TEKNOLOGI ADHI TAMA SURABAYA) Budanis Dwi Meilani, Muhammad Asadulloh Jurusan Teknik Informatika,

Lebih terperinci

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V10.i2 (81-85)

JURNAL IPTEKS TERAPAN Research of Applied Science and Education V10.i2 (81-85) IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PROGRAM STUDI YANG DIAMBIL MAHASISWA Ahmad Fikri Fajri Sistem Informasi, STMIK Jayanusa, Padang, Sumatera Barat, Kode Pos : 25116 email: fajri.bayang@gmail.com

Lebih terperinci

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR SKRIPSI Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS)

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) Dewi Kartika Pane (0911801) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET

PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET Vol. 5, No. 3, Januari 2010 ISSN 0216-0544 PERBAIKAN STRUKTUR WEIGHTED TREE DENGAN METODE PARTISI FUZZY DALAM PEMBANGKITAN FREQUENT ITEMSET * Budi Dwi Satoto, ** Daniel O Siahaan, *** Akhmad Saikhu * Jurusan

Lebih terperinci

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI Gunawan 1, Fandi Halim 2, Tony Saputra Debataraja 3, Julianus Efrata Peranginangin 4

Lebih terperinci

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN Supardi 1, Dian Eka Ratnawati, Wayan Firdaus Mahmudy Universitas Brawijaya Malang

Lebih terperinci

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS)

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) Tujuan Praktikum 1. Mahasiswa dapat mengetahui salah satu metode asosiasi dalam data mining. 2. Memberikan pemahaman mengenai prosedurmarket

Lebih terperinci

APLIKASI SISTEM INFORMASI PERPUSTAKAAN UNS MENGGUNAKAN PROGRAM DELPHI

APLIKASI SISTEM INFORMASI PERPUSTAKAAN UNS MENGGUNAKAN PROGRAM DELPHI APLIKASI SISTEM INFORMASI PERPUSTAKAAN UNS MENGGUNAKAN PROGRAM DELPHI TUGAS AKHIR Diajukan Untuk Memenuhi Tugas Dan Syarat-syarat Guna Memperoleh Gelar Sarjana Teknik Industri Universitas Muhammadiyah

Lebih terperinci