TINJAUAN PUSTAKA Data Mining

Ukuran: px
Mulai penontonan dengan halaman:

Download "TINJAUAN PUSTAKA Data Mining"

Transkripsi

1 25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan serangkaian proses untuk menggali nilai tambah berupa informasi yang selama ini tidak diketahui secara manual dari suatu basis data dengan melakukan penggalian pola-pola dari tumpukan data dengan tujuan untuk memanipulasi data menjadi informasi yang lebih berharga. Menurut Berry dan Linoff (2004): Data mining adalah mengeksplorasi dan menganalisis data dalam jumlah besar untuk menemukan pola dan rule yang berarti. Sedangkan menurut Han dan Kamber (2001): Data mining adalah proses menambang (mining) pengetahuan dari sekumpulan data yang sangat besar. Data mining merupakan suatu langkah dalam Knowledge Discovery in Database (KDD). Jadi, dengan semakin berkembangnya kebutuhan akan informasi-informasi, semakin banyak pula bidang-bidang yang rnenerapkan konsep data mining. Data mining merupakan bidang dari beberapa bidang keilmuan yang menyatukan teknik dari pembelajaran mesin, pengenalan pola, statistik, database

2 26 visualisai untuk penanganan permasalahan pengambilan informasi dari database yang besar (Larose, 2005). Data mining adalah analisis otomatis dari data yang berjumlah besar atau kompleks dengan tujuan untuk menentukan pola atau kecenderungan yang penting yang biasanya tidak disadari keberadaannya (Moertini, 2002). Hal-hal penting yang terkait dengan data mining adalah (Luthfi & Kusrini, 2009) : 1. Data mining merupakan suatu proses otomatis terhadap data yang sudah ada. 2. Data yang akan diproses berupa data yang sangat besar. 3. Tujuan data mining adalah mendapatkan hubungan atau pola yang mungkin memberikan indikasi yang bermanfaat. Hubungan yang dicari dalam data mining dapat berupa hubungan antara dua atau lebih objek dalam satu dimensi yang sama. Misalnya dalam dimensi produk dapat melihat keterkaitan pembelian suatu produk dengan produk yang lain. Selain itu, hubungan juga dapat dilihat antara dua atau lebih atribut dan dua atau lebih objek (Ponniah, 2001). Masalah-masalah yang sesuai untuk diselesaikan dengan teknik data mining dapat dicirikan dengan : 1. Memerlukan keputusan yang bersifat knowledge-based. 2. Mempunyai lingkungan yang berubah. 3. Metode yang ada sekarang bersifat sub-optimal. 4. Tersedia data yang bisa diakses, cukup dan relevan. 5. Memberikan keuntungan yang tinggi jika keputusan yang diambil tepat.

3 27 Data mining sering digunakan untuk membangun model prediksi/inferensi yang bertujuan untuk memprediksi tren masa depan atau perilaku berdasarkan analisis data terstruktur. Dalam konteks ini, prediksi adalah pembangunan dan penggunaan model untuk menilai kelas dari contoh tanpa label, atau untuk menilai jangkauan nilai atau contoh yang cenderung memiliki nilai atribut. Klasifikasi dan regresi adalah dua bagian utama dari masalah prediksi, dimana klasifikasi digunakan untuk memprediksi nilai diskrit atau nominal sedangkan regresi digunakan untuk memprediksi nilai terusmenerus atau nilai yang ditentukan (Larose, 2005) Tahapan Data Mining Dalam aplikasinya, data mining sebenarnya merupakan bagian dari Knowledge Discovery in Database (KDD), bukan sebagai teknologi yang utuh berdiri sendiri. Data mining merupakan suatu bagian langkah yang penting dalam KDD terutama berkaitan dengan ekstraksi dan perhitungan pola-pola dari data yang ditelah. Seperti yang ditunjukkan pada gambar 2.1 dibawah ini :

4 28 Gambar 2.1. Tahapan Data Mining Dari gambar dapat dijelaskan proses dari data mining dari setiap tahap yaitu berikut ini: 1. Data cleaning Tahapan ini dilakukan untuk menghilangkan data noise dan data yang tidak konsisten atau relevan dengan tujuan akhir dari proses data mining. 2. Data integration Tahapan ini dilakukan untuk menggabungkan atau mengkombinasikan dari multiple data source. 3. Data selection

5 29 Yang dilakukan pada tahapan ini adalah memilih atau menyeleksi data apa saja yang relevan dan diperlukan dari database. 4. Data transformation Untuk mentransformasikan data ke dalam bentuk yang lebih sesuai untuk di mining. 5. Data mining Proses terpenting dimana metode tertentu diterapkan dalam database untuk menghasilkan data pattern. 6. Pattern evaluation Untuk mengidentifikasi apakah interesting patterns yang didapatkan sudah cukup mewakili knowledge berdasarkan perhitungan tertentu. 7. Knowledge presentation Untuk mempresentasikan knowledge yang sudah didapatkan dari user Pengelompokkan Data Mining Data mining dibagi menjadi beberapa kelompok berdasarkan tugas yang dapat dilakukan, yaitu (Larose, 2005):

6 30 1. Deskripsi Terkadang penelitian analisis secara sederhana ingin mencoba mencari cara untuk menggambarkan pola dan kecenderungan yang terdapat dalam data. Sebagai contoh, petugas pengumpulan suara mungkin tidak dapat menemukan keterangan atau fakta bahwa siapa yang tidak cukup profesional akan sedikit didukung dalam pemilihan presiden. Deskripsi dari pola dan kecenderungan sering memberikan kemungkinan penjelasan untuk suatu pola atau kecenderungan. 2. Estimasi Estimasi hampir sama dengan klasifikasi, kecuali variabel target estimasi lebih ke arah numerik daripada ke arah kategori. Model dibangun menggunakan record lengkap yang menyediakan nilai dari variabel target sebagai nilai prediksi. Selanjutnya, pada peninjauan berikutnya estimasi nilai dari variabel target dibuat berdasarkan nilai variabel prediksi. Sebagai contoh, akan dilakukan estimasi tekanan darah sistolik pada pasien rumah sakit berdasarkan umur pasien, jenis kelamin, indeks berat badan, dan level sodium darah. Hubungan antara tekanan darah sistolik dan nilai variabel prediksi dalam proses pembelajaran akan menghasilkan model estimasi. Model estimasi yang dihasilkan dapat digunakan untuk kasus baru lainnya. 3. Prediksi

7 31 Prediksi hampir sama dengan klasifikasi dan estimasi, kecuali bahwa dalam prediksi nilai dari hasil akan ada di masa datang. Contoh prediksi dalam bisnis dan penelitian adalah : 1. Prediksi harga beras dalam tiga bulan yang akan datang. 2. Prediksi presentase kenaikan kecelekaan lalu lintas tahun depan jika batas bawah kecepatan dinaikkan. Beberapa metode dan teknik yang digunakan dalam klasifikasi dan estimasi dapat pula digunakan (untuk keadaan yang tepat) untuk prediksi. 4. Klasifikasi Dalam klasifikasi, terdapat target variabel kategori. Sebagai contoh, penggolongan pendapatan dapat dipisahkan dalam tiga kategori, yaitu pendapatan tinggi, pendapatan sedang, dan pendapatan rendah. Contoh lain klasifikasi dalam bisnis dan penelitian adalah : 1. Menentukan apakah suatu transaksi kartu kredit merupakan transaksi yang curang atau bukan. 2. Memperkirakan apakah suatu pengajuan hipotek oleh nasabah merupakan suatu kredit yang baik atau buruk.

8 32 3. Mendiagnosis penyakit seorang pasien untuk mendapatkan kategori penyakit apa. 5. Pengklusteran Pengklusteran merupakan pengelompokan record, pengamatan, atau memperhatikan dan membentuk kelas objek-objek yang memiliki kemiripan. Cluster adalah kumpulan record yang memiliki kemiripan satu dengan yang lainnya dan memiliki ketidakmiripan dengan record-record dalam cluster lain. Pengklusteran berbeda dengan klasifikasi yaitu tidak adanya variabel target dalam pengklusteran. Pengklusteran tidak mencoba untuk melakukan klasifikasi, mengestimasi, atau memprediksi nilai dari variabel target. Akan tetapi, algoritma pengklusteran mencoba untuk melakukan pembagian terhadap keseluruhan data menjadi kelompok-kelompok yang memiliki kemiripan (homogen), yang mana kemiripan record dalam satu kelompok akan bernilai maksimal, sedangkan kemiripan dengan record dalam kelompok lain akan bernilai minimal. Contoh pengklusteran dalam bisnis dan penelitian adalah: 1. Melakukan pengklusteran terhadap ekspresi dari gen, untuk mendapatkan kemiripan perilaku dari gen dalam jumlah besar.

9 33 2. Mendapatkan kelompok-kelompok konsumen untuk target pemasaran dari suatu produk bagi perusahaan yang tidak memiliki dana pemasaran yang besar. 3. Untuk tujuan audit akuntansi, yaitu melakukan pemisahan terhadap perilaku finansial dalam baik dan mencurigakan. 6. Asosiasi Tugas asosiasi dalam data mining adalah menemukan atribut yang muncul dalam satu waktu. Dalam dunia bisnis lebih umum disebut analisis keranjang belanja. Contoh asosiasi dalam bisnis dan penelitian adalah : 1. Menemukan barang dalam supermarket yang dibeli secara bersamaan dan barang yang tidak pernah dibeli secara bersamaan. 2. Meneliti jumlah pelanggan dari perusahaan telekomunikasi seluler yang diharapkan untuk memberikan respons positif terhadap penawaran upgrade layanan yang diberikan.

10 Algoritma Apriori Algoritma apriori adalah sebuah algoritma pencarian pola yang sangat populer dalam teknik penambangan data (data mining). Algoritma ini ditujukan untuk mencari kombinasi itemset yang mempunyai suatu nilai keseringan tertentu sesuai kriteria atau filter yang diinginkan. Algoritma ini diajukan oleh R. Agrawal dan R. Srikant tahun Hasil dari algoritma apriori dapat digunakan untuk membantu dalam pengambilan keputusan pihak manajemen. Algoritma apriori melakukan pendekatan iteratif yang dikenal dengan pencarian level-wise, dimana k-itemset digunakan untuk mengeksplorasi atau menemukan (k+1)-itemset. Oleh karena itu, algoritma apriori dibagi menjadi beberapa tahap yang disebut iterasi. Tiap iterasi menghasilkan pola frekuensi tinggi (frequent itemset). Dalam menentukan suatu association rule, terdapat suatu interestingness measure (ukuran ketertarikan) yang didapatkan dari hasil pengolahan data dengan perhitungan tertentu. Umumnya ada dua ukuran, yaitu: 1. Support (nilai penunjang/pendukung): suatu ukuran yang menunjukkan seberapa besar tingkat dominasi suatu item/itemset dari keseluruhan transaksi. Ukuran ini menentukan apakah suatu item/itemset layak untuk dicari confidencenya (misal, dari keseluruhan transaksi yang ada, seberapa besar tingkat dominasi yang menunjukkan bahwa item A dan B dibeli bersamaan).

11 35 2. Confidence (nilai kepastian/keyakinan): suatu ukuran yang menunjukkan hubungan antar 2 item secara conditional (misal, seberapa sering item B dibeli jika orang membeli item A). Kedua ukuran ini nantinya berguna dalam menentukan interesting association rules, yaitu untuk dibandingkan dengan batasan (threshold) yang ditentukan oleh user. Batasan tersebut umumnya terdiri dari min_support dan min_confidence, dimana hal tersebut ditempuh dengan cara sebagai berikut : 1. Mencari semua frequent itemset yaitu itemset dengan nilai support minimum support yang merupakan ambang batas yang diberikan oleh user. Dimana itemset itu merupakan himpunan item yaitu kombinasi produk yang dibeli. 2. Mencari aturan asosiasi yang confidence dari frequent itemset yang didapat. 3. Sedangkan tahap selanjutnya adalah mencari rule-rule yang sesuai dengan target user yang didapat dari proses association rule mining sebelumnya. Rulerule yang didapat mendeskripsikan kombinasi itemset yang dijadikan pertimbangan di dalam membuat kesimpulan. Secara terperinci, berikut adalah langkah-langkah proses pembentukan Association Rule dengan algoritma apriori : 1. Di iterasi pertama ini, support dari setiap item dihitung dengan men-scan database. Support disini artinya jumlah transaksi dalam database yang mengandung

12 36 satu item dalam C1. Setelah support dari setiap item didapat, Kemudian nilai support tersebut dibandingkan dengan minimum support yang telah ditentukan, jika nilainya lebih besar atau sama dengan minimum support maka itemset tersebut termasuk dalam large itemset. Item yang memiliki support di atas minimum support dipilih sebagai pola frekuensi tinggi dengan panjang 1 atau sering disebut Large 1-itemset atau disingkat L1. 2. Iterasi kedua menghasilkan 2-itemset yang tiap set-nya memiliki dua item. sistem akan menggabungkan dengan cara, kandidat 2-itemset atau disingkat C2 dengan mengkombinasikan semua candidat 1-itemset (C1). Lalu untuk tiap item pada C2 ini dihitung kembali masing-masing support-nya. Setelah support dari semua C2 didapatkan, Kemudian dibandingkan dengan minimum support. C2 yang memenuhi syarat minimum support dapat ditetapkan sebagai frequent itemset dengan panjang 2 atau Large 2-itemset (L2). 3. Itemset yang tidak termasuk dalam large itemset atau yang tidak memenuhi nilai minimum support tidak diikutkan dalam iterasi selanjutnya (di prune). 4. Setelah itu dari hasil frequent itemset atau termasuk dalam Large 2-itemset tersebut, dibentuk aturan asosiasi (association rule) yang memenuhi nilai minimum support dan confidence yang telah ditentukan Algoritma FP-Growth Algoritma FP-Growth merupakan pengembangan dari algoritma Apriori. Sehingga kekurangan dari algoritma Apriori diperbaiki oleh algoritma FP- Growth. Frequent Pattern Growth (FP-Growth) adalah salah satu alternatif

13 37 algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sebuah kumpulan data. Pada algoritma Apriori diperlukan generate candidate untuk mendapatkan frequent itemsets. Akan tetapi, di algoritma FP-Growth generate candidate tidak dilakukan karena FP-Growth menggunakan konsep pembangunan tree dalam pencarian frequent itemsets. Hal tersebutlah yang menyebabkan algoritma FP-Growth lebih cepat dari algoritma Apriori. Karakteristik algoritma FP-Growth adalah struktur data yang digunakan adalah tree yang disebut dengan FP-Tree. Dengan menggunakan FP-Tree, algoritma FP-growth dapat langsung mengekstrak frequent Itemset dari FP-Tree. Penggalian itemset yang frequent dengan menggunakan algoritma FP-Growth akan dilakukan dengan cara membangkitkan struktur data tree atau disebut dengan FP-Tree. Metode FP-Growth dapat dibagi menjadi 3 tahapan utama yaitu sebagai berikut : 1. Tahap pembangkitan conditional pattern base, 2. Tahap pembangkitan conditional FP-Tree, dan 3. Tahap pencarian frequent itemset.

14 38 Dengan menggunakan algoritma FP-Growth, dapat dilakukan pencarian frequent itemset tanpa harus melalui candidate generation. FP-Growth menggunakan struktur data FP-Tree, sehingga cara kerja algoritma ini adalah melaui scan database yang dilakukan hanya dua kali saja. Data kemudian ditampilkan dalam bentuk FP-Tree, dan setelah FP-Tree terbentuk, digunakan pendekatan devide dan conquer untuk mendapatkan frequent itemset Market Basket Analysis Kehadiran teknologi informasi terutama basis data dalam suatu perusahaan sudah menjadi hal yang umum bahkan mungkin menjadi kebutuhan pokok perusahaan. Basis data tersebut mulanya hanya digunakan untuk menyimpan data transaksi penjualan yang dilakukan oleh perusahaan. Tetapi dengan berkembangnya perusahaan, basis data tersebut sebenarnya memiliki informasi yang dapat dimanfaatkan oleh pihak manajemen untuk dapat meningkatkan kinerja penjualan pada perusahaan. Contoh-contoh dari pemanfaatan basis data misalnya aplikasi manajemen bisnis, pengawasan produksi dan analisa pemasaran dengan desain produksi. Untuk memperoleh pengetahuan dari basis data tersebut dapat memanfaatkan yaitu algoritma data mining. Pengertian data mining itu sendiri adalah analisis otomatis dari data yang berjumlah besar atau kompleks dengan tujuan untuk menemukan pola atau kecendrungan yang penting yang biasanya tidak disadari keberadaannya (Moertini, 2002). Data mining banyak diaplikasi di bidang-bidang usaha salah satunya

15 39 diaplikasikan untuk bidang usaha retail yaitu analisis keranjang pasar atau Market Basket Analysis. Market Basket Analysis adalah suatu analisis atas perilaku konsumen secara spesifik dari suatu golongan atau kelompok tertentu. Market basket juga merupakan salah satu cara yang digunakan pada transaksi penjualan untuk merancang strategi penjualan atau pemasaran yang efektif dengan memanfaatkan data transaksi penjualan yang telah tersedia di perusahaan (Budhi et al. 2006). Market basket dapat menemukan pola yang berupa produk-produk yang dibeli bersamaan atau cenderung muncul bersama dalam sebuah transaksi. Perusahaan lalu dapat menggunakan pola ini untuk menempatkan produk yang sering dibeli bersamaan ke dalam sebuah area yang berdekatan. Sumber data dari market basket analysis dapat bersumber dari transaksi kartu kredit, kupon diskon dan juga dapat dari struk belanjaan yang didapatkan oleh konsumen. Market basket analysis umumnya dimanfaatkan sebagai titik awal pencarian pengetahuan dari suatu transaksi data yang tidak diketahui pola spesifiknya. Ide dasar dari market basket itu sendiri yaitu dari trolley ataupun keranjang belanja yang dibawa oleh konsumen untuk meletakkan belanjaan mereka ke dalam keranjang tersebut. Di dalam keranjang tersebut berisi berbagai macam produk yang menginformasikan tentang apa saja yang dibeli oleh konsumen. Dari keranjang belanja tersebut atau trolley dapat memberikan informasi kepada pihak perusahaan (apotek) berupa daftar lengkap pembelian yang dilakukan olek konsumen. Daftar lengkap pembelian ini memiliki sebuah bagian penting dari bisnis ritel seperti barang apa saja yang dibeli oleh konsumen, konsumen membeli serangkaian produk yang berbeda dengan quantity yang berbeda dan dalam kerangka

16 40 waktu yang berbeda. Market basket analysis menggunakan informasi tentang apa saja yang dibeli oleh konsumen untuk menghasilkan sebuah pengetahuan untuk melakukan tindak lanjut terhadap strategi pemasaran yang telah dilakukan oleh perusahaan selama ni, apakah harus diadakan promosi untuk meningkatkan minat konsumen berbelanja di perusahaan tersebut ataupun untuk mengatur ulang tata letak produk pada perusahaan berdasarkan struk-struk belanjaan konsumen. Kelebihan dari proses market basket analysis adalah sebagai berikut: 1. Hasilnya jelas dan mudah dimengerti sebab hanya merupakan suatu pola jikamaka. Misalnya : jika produk A dan B dibeli secara bersamaan, maka kemungkinan produk C turut dibeli. 2. Market basket analysis sangat berguna untuk undirected mining yaitu pencarian awal pola. 3. Market basket analysis dapat memproses transaksi tanpa harus kehilangan informasi sebab dapat memproses banyak variabel tanpa perlu dirangkum (summarization) terlebih dahulu. 4. Proses komputasi yang lebih muda daripada teknik yang kompleks seperti algoritma genetik & sistem syaraf, meskipun jumlah perhitungan akan meningkat pesat bersamaan dengan peningkatan jumlah transaksi dan jumlah items yang berbeda dalam analisis. Adapun kekurangan dari proses market basket analysis adalah sebagai berikut:

17 41 1. Tingkat pertumbuhan proses secara eksponensial sebagai akibat pertumbuhan ukuran data. 2. Memilki keterbatasan untuk atribut data, misalnya hanya berdasarkan tipe produk. 3. Sulit untuk menemukan items yang akan diolah secara tepat, sebab frekuensi dari item tersebut harus diusahakan seimbang 2.5. Visual Basic Net Microsoft Visual Basic. NET adalah sebuah alat untuk mengembangkan dan membangun aplikasi yang bergerak di atas sistem.net Framework, dengan menggunakan bahasa Basic. Dengan menggunakan alat ini, para programmer dapat membangun aplikasi Windows Forms, Aplikasi web berbasis ASP. NET, dan juga aplikasi command-line. Bahasa Visual Basic. NET sendiri menganut paradigma bahasa pemrograman berorientasi objek yang dapat dilihat sebagai evolusi dari Microsoft Visual Basic versi sebelumnya yang diimplementasikan di atas.net Framework. Visual Basic yang sekarang digunakan oleh jutaan programmer adalah berawal dari sebuah Bahasa pemrograman yang diciptakan oleh Prof. Jhon Kemeny dan

18 42 Thomas Kurtz pada tahun 1964 dengan nama BASIC yang kepanjangan dari Beginner All Purpose Symbolic Intruction Code. Bahasa BASIC ini tergolong bahasa pemrograman yang paling mudah dipelajari Kelebihan Visual Basic Net Visual Basic mempunyai banyak kelebihan dibandingkan Software/bahasa pemograman yang lain. Di antaranya adalah : VB.NET mengatasi semua masalah yang sulit disekitar pengembangan aplikasi berbasis windows. Cocok digunakan untuk mengembangkan aplikasi/program yang bersifat Rapid Application Development. Sangat cocok digunakan untuk membuat program/aplikasi Bisnis. Digunakan oleh hampir semua keluarga Microsoft Office sebagai bahasa Macro-nya, segera akan diikuti oleh yang lain. Mendekati Object Oriented Programming. Dapat di integrasikan dengan Internet, baik itu pada sisi Client maupun pada sisi Server

19 43 Dapat menjalankan server tersebut dari mesin yang sama atau bahkan dari mesin/komputer yang lain Kekurangan Visual Basic Net Visual Basic juga mempunyai kekurangan/kelemahan, yaitu : Visual Basic (VB) tidak memiliki database sendiri dan biasanya VB mengunakan database seperti : mysql, sql server, microsoft access. VB tidak punya pendukung untuk membuat report dari bawaan VB sendiri Program/aplikasi yg dibuat dgn VB.Net harus menggunakan.net Framework untuk menjalaninya Visual Basic. NET bukan merupakan bahasa pemprograman yang open source, sehingga akan sulit bagi programmer untuk lebih mendalami VB. NET secara lebih independen.

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN Pada bab ini berisi tentang latar belakang pembuatan dari aplikasi penentuan rekomendasi pencarian buku perpustakaan menggunakan algoritma fp-growth, rumusan masalah, tujuan, batasan

Lebih terperinci

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI Gunawan 1, Fandi Halim 2, Tony Saputra Debataraja 3, Julianus Efrata Peranginangin 4

Lebih terperinci

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p 22-28 http://ejournal-s1.undip.ac.id/index.php/joint APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA

Lebih terperinci

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam 12 BAB II TINJAUAN PUSTAKA Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam melakukan penelitian data mining dengan metode asosiasi menggunakan algoritma apriori yang terdiri dari state

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree

Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree Disusun oleh : Budanis Dwi Meilani Achmad dan Fauzi Slamat Jurusan Sistem Informasi Fakultas Teknologi Informasi.

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang

Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Tia Arifatul Maulida Fakultas Ilmu Komputer, Universitas Dian Nuswantoro,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Data Mining Data mining adalah eksplorasi dan analisis data dalam jumlah besar untuk menemukan pola yang berarti dan beraturan. Tujuan data mining adalah untuk meningkatkan pemasaran,

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Yuli Asriningtias, Rodhyah Mardhiyah Program Studi Teknik Informatika Fakultas Bisnis & Teknologi Informasi, Universitas Teknologi

Lebih terperinci

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset David Samuel/NIM :13506081 1) 1) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Perkembangan teknologi informasi yang sangat pesat yang terjadi dewasa ini menuntut manusia untuk mampu beradaptasi dengan perkembangan tersebut. Upaya adaptasi yang dilakukan

Lebih terperinci

BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket

BAB 1 KONSEP DATA MINING 2 Gambar 1.1 Perkembangan Database Permasalahannya kemudian adalah apa yang harus dilakukan dengan data-data itu. Sudah diket Bab1 Konsep Data Mining POKOK BAHASAN: Konsep dasar dan pengertian Data Mining Tahapan dalam Data Mining Model Data Mining Fungsi Data Mining TUJUAN BELAJAR: Setelah mempelajari materi dalam bab ini, mahasiswa

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA)

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) Nur Rohman Ardani 1), Nur Fitrina 2) 1) Magister Teknik Informatika STMIK AMIKOM Yogyakarta 2) Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI. yang tepat. Sistem data mining mampu memberikan informasi yang tepat dan BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1. Tinjauan Pustaka Sistem data mining akan lebih efektif dan efisiensi dengan komputerisasi yang tepat. Sistem data mining mampu memberikan informasi yang

Lebih terperinci

PENENTUAN STRATEGI MARKETING PENJUALAN PRODUK DENGAN ALGORITMA APRIORI

PENENTUAN STRATEGI MARKETING PENJUALAN PRODUK DENGAN ALGORITMA APRIORI Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2017, pp. 50~56 50 PENENTUAN STRATEGI MARKETING PENJUALAN PRODUK DENGAN ALGORITMA APRIORI Mohammad Badrul 1 1 STMIK Nusa Mandiri Jakarta e-mail:mohammad.mbl@nusamandiri.ac.id

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret)

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) Miranda Nur Qolbi Aprilina 1, Wiranto 2,Widodo 3 1,2 Program Studi Informatika,

Lebih terperinci

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM)

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) Nurani 1, Hamdan Gani 2 1 nurani_nanni@yahoo.com, 2 hamdan.gani.inbox@gmail.com

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan)

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) Sri Rahayu Siregar ( 0911882) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data mining bertujuan untuk menemukan pola-pola yang valid, baru, mempunyai nilai guna, dan mudah dipahami dari data yang ada. Jenis pola yang dihasilkan ditentukan

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis ANDREAS HANDOJO, GREGORIUS SATIA BUDHI, HENDRA RUSLY Jurusan Teknik Informatika Universitas

Lebih terperinci

Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk

Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk Amrin Program Studi Teknik Komputer AMIK Bina Sarana Informatika Jakarta Jl. R.S Fatmawati no. 24 Pondok Labu,

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS Fitriyani Fakultas Teknik, Universitas BSI Bandung Jalan Sekolah Internasional No. 1-6, Bandung 40282, Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi BAB II TINJAUAN PUSTAKA 2.1. Pengertian Data Data belum dapat dika/takan mempunyai makna penting atau informasi bagi penerima sebelum dilakukan pengolahan data. Data adalah fakta yang dapat dicatat dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan

Lebih terperinci

Mining Association Rules dalam Basis Data yang Besar

Mining Association Rules dalam Basis Data yang Besar Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep

Lebih terperinci

Prodi Sistem Informasi, STMIK Triguna Dharma Medan. Prodi Sistem Komputer, STMIK Triguna Dharma Medan . : #1

Prodi Sistem Informasi, STMIK Triguna Dharma Medan. Prodi Sistem Komputer, STMIK Triguna Dharma Medan  . : #1 ISSN : 1978-6603 Penerapan Data Mining dengan Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL (Studi Kasus di CV. Sumber Utama Telekomunikasi) Dicky Nofriansyah

Lebih terperinci

ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK

ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK ANALISIS PENERAPAN TEKNIK DATAMINING DALAM PENGIMPLEMENTASIAN DAN PENGEMBANGAN MODEL ACTIVE LEARNING DENGAN METODE KELOMPOK Dody Herdiana, S.T., M. Kom. Dosen PNS DPK pada Program Studi Teknik Informatika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Konsep Pemasaran Dalam merancang dan mengembangkan produk, baik yang berupa jasa maupun barang, tidak terlepas dari konsep pemasaran yang bertujuan memenuhi

Lebih terperinci

PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI

PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI PEMODELAN POLA HUBUNGAN KEMAMPUAN LULUSAN UNIVERSITAS LANCANG KUNING DENGAN KEBUTUHAN DUNIA USAHA DAN INDUSTRI Fana Wiza Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Lancang Kuning

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS)

MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) Tujuan Praktikum 1. Mahasiswa dapat mengetahui salah satu metode asosiasi dalam data mining. 2. Memberikan pemahaman mengenai prosedurmarket

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference

Lebih terperinci

Analisis Frekuensi Pola Pembelian Konsumen Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Bon Bon Resto Semarang

Analisis Frekuensi Pola Pembelian Konsumen Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Bon Bon Resto Semarang Analisis Frekuensi Pola Pembelian Konsumen Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Bon Bon Resto Semarang Nur Imam Fachruzi Fakultas Ilmu Komputer, Universitas Dian

Lebih terperinci

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi

Lebih terperinci

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI.

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI. PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI Abstrak Data Mining is the process of extracting knowledge hidden

Lebih terperinci

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENDISKRIPSIKAN TINGKAT KREDIT BERMASALAH PADA BANK

PENERAPAN DATA MINING UNTUK MENDISKRIPSIKAN TINGKAT KREDIT BERMASALAH PADA BANK PENERAPAN DATA MINING UNTUK MENDISKRIPSIKAN TINGKAT KREDIT BERMASALAH PADA BANK Rizky Fajar Nugraha Fakultas Ilmu Komputer, Universitas Dian Nuswantoro Semarang ABSTRAK Pertumbuhan yang pesat dari akumulasi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 40 BAB III METODOLOGI PENELITIAN 3.1 DESAIN PENELITIAN Dalam melakukan penelitian, dibutuhkan desain penelitian agar penelitian yang dilakukan dapat berjalan dengan baik. Berikut ini merupakan desain penelitian

Lebih terperinci

1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006

1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006 Metode Market Basket Analysis menggunakan Algoritma Pincer Search untuk Sistem Pembantu Pengambilan Keputusan Gregorius S. Budhi, Leo W. Santoso, Edward Susanto Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

Data Mining. Pengenalan Sistem & Teknik, Serta Contoh Aplikasi. Avinanta Tarigan. 22 Nov Avinanta Tarigan Data Mining

Data Mining. Pengenalan Sistem & Teknik, Serta Contoh Aplikasi. Avinanta Tarigan. 22 Nov Avinanta Tarigan Data Mining Data Mining Pengenalan Sistem & Teknik, Serta Contoh Aplikasi Avinanta Tarigan 22 Nov 2008 1 Avinanta Tarigan Data Mining Outline 1 Pengertian Dasar 2 Classification Mining 3 Association Mining 4 Clustering

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Pada Penelitian ini referensi yang digunakan sebagai landasan teori diperoleh dari berbagai media seperti jurnal, thesis, skripsi, dan buku. Adapun penelitian

Lebih terperinci

DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA. Oleh : Rita Prima Bendriyanti ABSTRAK

DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA. Oleh : Rita Prima Bendriyanti ABSTRAK DESAIN APLIKASI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Oleh : Rita Prima Bendriyanti ABSTRAK Penelitian ini menggunakan metode observasi, dengan melihat atau mengamati secara langsung

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data BAB IV HASIL DAN PEMBAHASAN A. Pengumpulan Data Sumber data utama yang digunakan dalam penelitian ini berasal dari data transaksi 3 bulan terakhir yaitu bulan Maret, April, Mei tahun 2012 di swalayan XYZ

Lebih terperinci

Konsep Data Mining. Pendahuluan. Bertalya. Universitas Gunadarma 2009

Konsep Data Mining. Pendahuluan. Bertalya. Universitas Gunadarma 2009 Konsep Data Mining Pendahuluan Bertalya Universitas Gunadarma 2009 Latar Belakang Data yg dikumpulkan semakin bertambah banyak Data web, e-commerce Data pembelian di toko2 / supermarket Transaksi Bank/Kartu

Lebih terperinci

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING

MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING MODEL DATA MINING DALAM PENGKLASIFIKASIAN KETERTARIKAN BELAJAR MAHASISWA MENGGUNAKAN METODE CLUSTERING Marlindawati1), Andri2) 1), 2) Sistem Informasi UNIVERSITAS BINA DARMA Palembang Jl, Jend. A.Yani

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 96 IMPLEMENTASI ASSOCIATION RULE TERHADAP PENYUSUNAN LAYOUT MAKANAN DAN PENENTUAN PAKET MAKANAN HEMAT DI RM ROSO ECHO DENGAN ALGORITMA APRIORI Elsa Widiati, S,Kom. 1, Kania Evita Dewi, S.Pd., M.Si 2 Teknik

Lebih terperinci

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Irene Edria Devina / 13515038 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy

Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy Penerapan Data Mining Association Rule Menggunakan Algoritma Apriori Untuk Meningkatkan Penjualan dan Memberikan Rekomendasi Pemasaran Produk Speedy (Studi Kasus di PT. Telkom Cabang Wonogiri ) Moch. Yusuf

Lebih terperinci

1. BAB I PENDAHULUAN 1.1. Latar Belakang ,

1. BAB I PENDAHULUAN 1.1. Latar Belakang  , 1. BAB I PENDAHULUAN 1.1. Latar Belakang Hasil survey Badan Kesejahteraan Keluarga Pemberdayaan Perempuan dan Keluarga Berencana (BKKPPKB) tahun 2009 menunjukkan angka kemiskinan di Kabupaten Bantul sebanyak

Lebih terperinci

PENGANTAR SOLUSI DATA MINING

PENGANTAR SOLUSI DATA MINING PENGANTAR SOLUSI DATA MINING Kusnawi STMIK AMIKOM Yogyakarta e-mail : Khusnawi@amikom.ac.id ABSTRAK Data mining adalah salah satu solusi untuk menjelaskan proses pengalian informasi dalam suatu basis data

Lebih terperinci

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN A M I UNTUK R U D D PENETAPAN I N POLA SERTFIKASI GURU Program Pascasarjana rusan Teknik Elektro Program Studi Telematika

Lebih terperinci

ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING

ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING ANALISIS ASSOCIATION RULES ALGORITMA APRIORI PENJUALAN KAOS TRAVELLING Kanthi Wulandari Mahasiswa Program Studi Statistika Universitas Islam Indonesia kanthiwuland@gmail.com Asriyanti Ali Mahasiswa Program

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang BAB III METODE PENELITIAN Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang tersusun secara jelas dan sistematis guna menyelesaikan suatu permasalahan yang sedang diteliti dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Data Mining Secara sederhana data mining adalah penambangan atau penemuan informasi baru dengan mencari pola atau aturan tertentu dari sejumlah data yang sangat besar. Data mining

Lebih terperinci

BAB II LANDASAN TEORI. yang terdiri dari komponen-komponen atau sub sistem yang berorientasi untuk

BAB II LANDASAN TEORI. yang terdiri dari komponen-komponen atau sub sistem yang berorientasi untuk BAB II LANDASAN TEORI 2.1 Sistem Menurut Gondodiyoto (2007), sistem adalah merupakan suatu kesatuan yang terdiri dari komponen-komponen atau sub sistem yang berorientasi untuk mencapai suatu tujuan tertentu.

Lebih terperinci

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR SKRIPSI Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah

BAB II TINJAUAN PUSTAKA Indeks Prestasi Kumulatif dan Lama Studi. menggunakan dokumen/format resmi hasil penilaian studi mahasiswa yang sudah BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Indeks Prestasi Kumulatif dan Lama Studi Mahasiswa yang telah menyelesaikan keseluruhan beban program studi yang telah ditetapkan dapat dipertimbangkan

Lebih terperinci

PERANCANGAN SISTEM INFORMASI DATA MINING DENGAN ALGORITMA APRIORI UNTUK PENENTUAN LAYOUT PRODUK PADA PT. METRO MAKMUR NUSANTARA

PERANCANGAN SISTEM INFORMASI DATA MINING DENGAN ALGORITMA APRIORI UNTUK PENENTUAN LAYOUT PRODUK PADA PT. METRO MAKMUR NUSANTARA PERANCANGAN SISTEM INFORMASI DATA MINING DENGAN ALGORITMA APRIORI UNTUK PENENTUAN LAYOUT PRODUK PADA PT. METRO MAKMUR NUSANTARA SKRIPSI Oleh: OLIVIA NIM : 1145050 PROGRAM STUDI SISTEM INFORMASI SEKOLAH

Lebih terperinci

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART)

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) Rizka Nurul Arifin Program Studi Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula

Lebih terperinci

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG EKA FITRIA WULANSARI Program Studi Teknik Informatika,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari kebutuhan akan informasi yang akurat sangat dibutuhkan dalam perkembangan masyarakat saat ini dan waktu mendatang. Namun kebutuhan informasi

Lebih terperinci

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Lutfi Mukaromah 1, Kusumaningtyas 2, Apriliani Galih Saputri 3, Harleni Vionita 4, Rendi Susilo 5,Tri Astuti 6, Lusi Dwi Oktaviana

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI)

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) IMPLEMENTATION DATA MINING OF SALES TRANSACTION FRUIT SEEDLING WITH ALGORITHM APRIORI

Lebih terperinci

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN

PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN PENGENALAN POLA TRANSAKSI SIRKULASI BUKU PADA DATABASE PERPUSTAKAAN MENGGUNAKAN ALGORITMA GENERALIZED SEQUENTIAL PATTERN Supardi 1, Dian Eka Ratnawati, Wayan Firdaus Mahmudy Universitas Brawijaya Malang

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Banyaknya persaingan dalam dunia bisnis khususnya dalam industri penjualan, menuntut para pengembang untuk menemukan suatu strategi yang dapat meningkatkan

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN TINGKAT KELULUSAN MAHASISWA DENGAN ALGORITMA APRIORI

APLIKASI DATA MINING UNTUK MENAMPILKAN TINGKAT KELULUSAN MAHASISWA DENGAN ALGORITMA APRIORI PLIKSI DT MINING UNTUK MENMPILKN TINGKT KELULUSN MHSISW DENGN LGORITM PRIORI Benni R Siburian (0911536) Mahasiswa Jurusan Teknik Informatika STMIK Budi Darma Medan Jl. Sisingamangaraja No. 338 Simpang

Lebih terperinci

BAB V IMPLEMENTASI DAN PENGUJIAN SISTEM

BAB V IMPLEMENTASI DAN PENGUJIAN SISTEM BAB V IMPLEMENTASI DAN PENGUJIAN SISTEM 5.1 Implementasi Sistem Setelah melakukan analisis sistem yang dilakukan pada tahap sebelumnya dan dirancang sedemikian rupa, maka dilakukan tahapan selanjutnya

Lebih terperinci

APLIKASI PENJADWALAN PENGADAAN BARANG MENGGUNAKAN ALGORITMA APRIORI

APLIKASI PENJADWALAN PENGADAAN BARANG MENGGUNAKAN ALGORITMA APRIORI APLIKASI PENJADWALAN PENGADAAN BARANG MENGGUNAKAN ALGORITMA APRIORI Dahlan Abdullah, Dedi Saputra Program Studi Teknik Informatika, Fakultas Teknik, Universitas Malikussaleh, Aceh, Indonesia 24354 Email

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Penambangan Data (Data Mining) Pengertian data mining, berdasarkan beberapa orang: 1. Data mining (penambangan data) adalah suatu proses untuk menemukan suatu pengetahuan atau

Lebih terperinci

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT.

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. PHAPROS SEMARANG Frismadani Anggita Priyana 1, Acun Kardianawati 2 1,2

Lebih terperinci

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE Dewi Sibagariang 1), Karina Auliasari 2) 1.2) Jurusan Teknik Informatika, Institut Teknologi Nasional Malang Jalan

Lebih terperinci

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH Dessy Chaerunnissa 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas

Lebih terperinci

Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES. Bertalya Universitas Gunadarma 2009

Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES. Bertalya Universitas Gunadarma 2009 Konsep Data Mining DATA MINING & KNOWLEDGE DISCOVERY IN DATABASES Bertalya Universitas Gunadarma 2009 Data Mining (DM) DM merupakan suatu proses penjelajahan otomatis untuk mendapatkan informasi berguna

Lebih terperinci

E-Journal Teknik Informatika Vol.8, No.1, April 2016

E-Journal Teknik Informatika Vol.8, No.1, April 2016 Analisa Pola Belanja Swalayan Daily Mart Untuk Menentukan Tata Letak Barang Menggunakan Algoritma FP-Growth Kezia Sumangkut (1), Arie Lumenta (2), Virginia Tulenan (3) Teknik Informatika, Universitas Sam

Lebih terperinci