BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1. Motor Induksi Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya berasal dari kenyataan bahwa arus rotor motor ini bukan diperoleh dari sumber tertentu, tetapi merupakan arus yang terinduksi sebagai akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating magnetic field) yang dihasilkan arus stator [1]. Motor induksi sangat banyak digunakan di dalam kehidupan sehari-hari baik di industri maupun di rumah tangga. Motor induksi yang umum dipakai adalah motor induksi 3-fase dan motor induksi 1-fase. Motor induksi 3-fase dioperasikan pada sistem tenaga 3-fase dan banyak digunakan di dalam berbagai bidang industri dengan kapasitas yang besar. Motor induksi 1-fase dioperasikan pada sistem tenaga 1-fase dan banyak digunakan terutama untuk peralatan rumah tangga seperti kipas angin, lemari es, pompa air, mesin cuci dan sebagainya karena motor induksi 1-fase mempunyai daya keluaran yang rendah. Bentuk gambaran motor induksi 3-fasa diperlihatkan padagambar 3.1. a) Bentuk fisik b) Motor induksi dilihat ke dalam Gambar 2.1 Motor induksi 3-fasa

2 2.2. Konstruksi Motor Induksi Motor induksi pada dasarnya mempunyai 3 bagian penting seperti yang di perlihatkan pada gambar 3.3 sebagai berikut. 1. Stator: Merupakan bagian yang diam dan mempunyai kumparan yang dapatmenginduksikan medan elektromagnetik kepada kumparan rotornya. 2. Celah: Merupakan celah udara: Tempat berpindahnya energi dari startor ke rotor. 3. Rotor: Merupakan bagian yang bergerak akibat adanya induksi magnet dari kumparan stator yang diinduksikan kepada kumparan rotor. a) Stator dan rotor sangkar b) Rotor belitan Gambar 2.2 Bentuk konstruksi dari motor induksi Diantara stator dan rotor terdapat celah udara yang merupakan ruangan antara stator dan rotor. Pada celah udara ini lewat fluks induksi stator yang memotong kumparan rotor sehingga meyebabkan rotor berputar. Celah udara yang terdapat antara stator dan rotor diatur sedemikian rupa sehingga didapatkan hasil kerja motor yang optimum. Bila celah udara antara stator dan rotor terlalu besar akan mengakibatkan efisiensi motor induksi rendah, sebaliknya bila jarak 5

3 antara celah terlalu kecil/sempit akan menimbulkan kesukaran mekanis pada mesin. Bentuk gambaran sederhana bentuk alur / slot pada motor induksi diperlihatkan pada gambar 2.3 dan gambaran sederhana penempatan stator dan rotor pada motor induksi diperlihatkan pada gambar 2.4. Gambar 2.3Gambaran sederhana bentuk alur / slot pada motor induksi Gambar 2.4 Gambaran sederhana motor induksi dengan satu kumparan stator dan satu kumparan rotor

4 2.3. Medan Putar Perputaran motor pada arus bolak-balik ditimbulkan oleh adanya medan putar (fluks yang berputar) yang dihasilkan dalam kumparan statornya. Medan putar ini terjadi apabila kumparan stator dihubungkan dalam fasa banyak, umumnya phasa tiga [1]. Misalkan kumparan a a; b b; c c dihubungkan 3 fasa, dengan beda fasa masing-masing (Gambar 2.5a) dan dialiri arus bolak-balik. Distribusi arus i a, i b, i c sebagai fungsi waktu adalah seperti gambar 2.5b. Pada keadaan t 1, t 2, t 3, dan t 4 fluks resultan yang ditimbulkan oleh kumparan tersebut masing-masing adalah seperti Gambar 2.5. Pada t 1 fluks resultan mempunyai arah sama dengan arah fluks yangdihasilkan oleh kumparan a a; sedangkan pada t 2, fluks resultannya mempunyai arah sama dengan arah fluks yang dihasilakan oleh kumparan c c; dan untuk t 3 fluks resultan mempunyai arah sama dengan fluks yang dihasilkan oleh kumparan b b. Untuk t 4, fluks resultannya berlawanan arah dengan fluks resultan yang dihasilkan pada saat t 1 keterangan ini akan lebih jelas pada analisa vektor. 7

5 Gambar 2.5(a) Kumparan a-a; b-b; c-c dihubungkan 3 fasa (b) Arus tiga phasa setimbang (c) Medan putar pada motor induksi tiga phasa Dari gambar diatas terlihat fluks resultan ini akan berputar satu kali. Oleh karena itu untuk mesin dengan jumlah kutub lebih dari dua, kecepatan sinkron dapat diturunkan sebagai berikut: n s = 120f p (2.1) Dimana: n s = Kecepatan sinkron (Rpm) f = frekuensi ( Hz ) p = jumlah kutub 2.4. Slip Motor induksi tidak dapat berputar pada kecepatan sinkron. Seandainya hal ini terjadi, maka rotor akan tetap diam relatif terhadap fluksi yang berputar. Maka tidak akan ada ggl yang diinduksikan dalam rotor, tidak ada arus yang mengalir pada rotor, dan karenanya tidak akan menghasilkan kopel. Kecepatan rotor sekalipun tanpa beban, harus lebih kecil sedikit dari kecepatan sinkron agar

6 adanya tegangan induksi pada rotor, dan akan menghasilkan arus di rotor, arus induksi ini akan berinteraksi dengan fluks listrik sehingga menghasilkan kopel. Selisih antara kecepatan rotor dengan kecepatan sinkron disebut slip (s). Slip dapat dinyatakan dalam putaran setiap menit, tetapi lebih umum dinyatakan sebagai persen dari kecepatan sinkron. Slip s = n s n r n s 100% (2.2) Dimana: n r = n kecepatan rotor (RPM) Persamaan (2.2) di atas memberikan imformasi yaitu: 1. Saat s = 1 dimana n r = 0, ini berati rotor masih dalam keadaan diam atau akanberputar. 2. s = 0 menyatakan bahwa n s = n r, ini berarti rotor berputar sampai kecepatan sinkron. Hal ini dapat terjadi jika ada arus dc yang diinjeksikan ke belitan rotor, atau rotor digerakkan secara mekanik < s < 1, ini berarti kecepatan rotor diantara keadaan diam dengan kecepatan sinkron. Kecepatan rotor dalam keadaan inilah dikatakan kecepatan tidak sinkron Prinsip Kerja Motor Induksi Tiga Phasa Ketika medan magnetik memotong konduktor rotor, di dalam konduktor tersebut akan diinduksikan ggl yang sama seperti ggl yang diinduksikan dalam lilitan sekunder transformator oleh fluksi primer. Rangkaian rotor merupakan rangkaian tertutup, baik melalui cincin ujung maupun tahanan luar. Ggl induksi menyebabkan arus mengalir di dalam konduktor rotor. Sehingga dengan adanya 9

7 aliran arus pada konduktor rotor di dalam medan magnet yang dihasilkan stator, maka akan dibangkitkan gaya (F) yang bekerja pada motor. Untuk memperjelas prinsip kerja motor induksi tiga phasa, maka dapat dijabarkan dalam beberapa langkah berikut: 1. Pada keadaan beban nol ketiga phasa stator yang terhubung dengansumber tegangan tiga phasa yang setimbang akan menghasilkan arus pada tiapbelitanphasa arus pada tiap phasa menghasilkan fluksi bolak balik yang berubah -ubah. 2. amplitudo fluksi yang dihasilkan berubah secara sinusoidal dan arahnyategak lurus terhadap belitanphasa 3. akibat fluksi yang berputar timbul ggl pada stator motor yang besarnya : E 1 = N dφ dt volt (2.3) E 1 = 4.44fN 1 φ volt (2.4) 4. Resultan dari ketiga fluksi bolak balik tersebut menghasilkan medanputar yang bergerak dengan kecepatan sinkron ns yang besarnya ditentukanoleh jumlah kutub p dan frekuensi stator f yang dirumuskan: n s = 120f p rpm (2.5) 5. Fluksi yang berputar tersebut akan memotong batang konduktor padarotor. Akibatnya pada kumparan rotor timbul tegangan induksi sebesar E2yangbesarnya E 2 = 4.44fN 2 φ m volt (2.6) Dimana: E2 = tegangan induksi pada rotor saat rotor dalam keadaan diam(volt)

8 N2 = jumlahlilitanrotor Φm = fluksi maksimum(wb) 6. karena kumparan rotor merupakan rangkaian tertutup, maka ggl tersebutakan menghasilkan arusi2 7. adanya arus I2 di dalam medan magnet akan menimbulkan gaya F padarotor 8. Bila kopel mula yang dihasilkan oleh gaya F cukup besar untukmemikul kopel beban, rotor akan berputar searah dengan medan putarstator. 9. Perputaran rotor akan semakin meningkat hingga mendekatikecepatan sinkron. Perbedaan kecepatan medan putar stator (ns) dengan kecepatanrotor (nr) disebut slip (s) dan dinyatakan dengan: s = n s n r n r x 100% (2.7) 10. Pada saat rotor dalam keadaan berputar, besarnya tegangan yang terinduksi pada kumparan rotor akan bervariasi tergantung besarnya slip.tegangan induksi ini dinyatakan dengan E2s yang besarnya: E 2s = 4.44sfN 2 φ m volt (2.8) Dimana: E 2s = tegangan induksi rotor dalam keadaan berputar (volt) f 2 = sf = frekuensi rotor (frekuensi tegangan induksi pada rotor dalam keadaan berputar) 11. Bila ns = nr, tegangan tidak akan terinduksi dan arus tidak akan mengalirpada kumparan rotor, sehingga tidak akan dihasilkan kopel. Kopel 11

9 akandihasilkan jika nr<ns Rangkaian Ekivalen Motor Induksi Untuk mempermudah analisis motor induksi, digunakan metoda rangkaian ekivalen per-fasa. Motor induksi dapat dianggap sebagai transformator dengan rangkaian sekunder berputar. Rangkaian ekivalen statornya dapat digambarkan sebagai berikut: Gambar 2.6 Rangkaian ekivalen stator motor induksi Dimana: I 0 = arus eksitasi (Amper) V 1 = tegangan terminal stator (Volt) E 1 = ggl lawan yang dihasilkan oleh fluks celah udara resultan (Volt) I 1 = arus stator (Ampere) R 1 = tahanan efektif stator (Ohm) X 1 = reaktansi bocor stator (Ohm) Arus stator terbagi atas 2 komponen, yaitu komponen arus beban dan komponen arus penguat I 0. Komponen arus penguat I 0 merupakan arus stator

10 tambahan yang diperlukan untuk menghasilkan fluksi celah udara resultan, dan merupakan fungsi ggm E 1. Komponen arus penguat I0 terbagi atas komponen rugi rugi inti IC yang sefasa dengan E1 dan komponen magnetisasi IM yang tertinggal 900 dari E1. Hubungan antara tegangan yang diinduksikan pada rotor sebenarnya (Erotor) dan tegangan yang diinduksikan pada rotor ekivalen (E2S) adalah: Atau E 2S E rotor = N 1 N 2 = a (2.9) E 2S = a E rotor (2.10) Dimana a adalah jumlah lilitan efektif tiap fasa pada lilitan stator yang banyaknya a kali jumlah lilitan rotor. Bila rotor rotor diganti secara magnetik, lilitan ampere masing masing harus sama, dan hubungan antara arus rotor sebenarnya Irotor dan arus I2S pada rotor ekivalen adalah: I 2S = I rotor a (2.11) Sehingga hubungan antara impedansi bocor frekuensi slip Z2S dari rotor ekivalen dan impedansi bocor frekuensi slip Zrotor dari rotor sebenarnya adalah: Z 2S = E 2S I 2S = a 2 E eror I eror = a 2 Z eror (2.12) Nilai tegangan, arus dan impedansi tersebut diatas didefinisikan sebagai nilai yang referensinya ke stator. Dimana: Selanjutnya Persamaan (2.8) dapat dituliskan: E 2S I 2S = Z 2S = R 2 + jsx 2 (2.13) 13

11 Z 2s =impedansi bocor rotor frekuensi slip tiap fasa dengan referensi ke stator (Ohm). R 2 = tahanan efektif referensi (Ohm) sx 2 = reaktansi bocor referensi pada frekuensi slip X2 didefinisikan sebagai harga reaktansi bocor rotor dengan referensi frekuensi stator (Ohm). Reaktansi yang didapat pada Persamaan (2.9) dinyatakan dalam cara yang demikian karena sebanding dengan frekuensi rotor dan slip. X 2 Jadi didefinisikan sebagai harga yang akan dimiliki oleh reaktansi bocor pada rotor dengan patokan pada frekuensi stator. Pada stator ada gelombang fluks yang berputar pada kecepatan sinkron. Gelombang fluks ini akan mengimbaskan tegangan pada rotor dengan frekuensi slip sebesar E 2s dan ggl lawan stator E 1. Bila bukan karena efek kecepatan, tegangan rotor akan sama dengan tegangan stator, karena lilitan rotor identik dengan lilitan stator. Karena kecepatan relatif gelombang fluks terhadap rotor adalah s kali kecepatan terhadap stator, hubungan antara ggl efektif pada stator dan rotor adalah: E 2s = se 1 (2.14) Gelombang fluks magnetik pada rotor dilawan oleh fluks magnetik yang dihasilkan komponen beban I 2 dari arus stator, dan karenanya, untuk harga efektif I 2s = I 2 (2.15) Dengan membagi Persamaan (2.14) dengan Persamaan (2.15) didapatkan: E 2s I 2s = se 1 I 2 (2.16) Didapat hubungan antara Persamaan (2.15) dengan Persamaan (2.16), yaitu E 2S I 2S = se 1 I 2 = R 2 + jsx 2 (2.17)

12 Dengan membagi Persamaan (2.17) dengan s, maka didapat E 1 I 2 = R 2 s + jx 2 (2.18) Dari Persamaan (2.14) maka dapat digambarkan rangkaian ekivalen pada rotor Gambar 2.7Rangkaian ekivalen pada rotor motor induksi. R 2 s = R 2 s + R 2 R 2 R 2 s = R 2 R 2 1 s 1 (2.19) Dari penjelasan mengenai rangkaian ekivalen pada stator dan rotor di atas, maka dapat dibuat rangkaian ekivalen motor induksi tiga fasa pada masing masing fasanya. Perhatikan Gambar 2.8 di bawah ini. Gambar 2.8Rangkaian ekivalen motor induksi tiga fasa Untuk mempermudah perhitungan maka rangkaian ekivalen pada Gambar 2.8 diatas dapat dilihat dari sisi stator, rangkaian ekivalen motor induksi tiga fasa akan dapat digambarkan seperti Gambar 2.9 sebagai berikut. 15

13 Gambar 2.9Rangkaian ekivalen dilihat dari sisi stator motor induksi Atau seperti Gambar 2.10 berikut: Dimana: Gambar 2.10 Rangkaian ekivalen dilihat dari sisi stator motor induksi X`2 = a 2 X 2 R`2 = a 2 R 2 Dalam teori transformator-statika, analisis rangkaian ekivalen sering disederhanakan dengan mengabaikan seluruh cabang penalaran atau melakukan pendekatan dengan memindahkan langsung ke terminal primer. Pendekatan demikian tidak dibenarkan dalam motor induksi yang bekerja dalam keadaan normal, karena adanya celah udara yang menjadikan perlunya suatu arus peneralan yang sangat besar (30% sampai 40% dari arus beban penuh) dan karena reaktansi bocor juga perlu lebih tinggi. Untuk itu dalam rangkaian ekivalen R c dapat dihilangkan (diabaikan). Rangkaian ekivalen menjadi Gambar 2.11 berikut.

14 Gambar 2.11Rangkaian ekivalen dari motor induksi 2.7. Aliran Daya Motor Induksi Pada motor induksi, tidak ada sumber listrik yang langsung terhubung ke rotor, sehingga daya yang melewati celah udara sama dengan daya yang diinputkan ke rotor. Daya total yang dimasukkan pada kumparan stator (Pin) dirumuskan dengan P in = 3V 1 I 1 cos θ (Watt) (2.20) Dimana: V 1 = tegangan sumber (Volt) I 1 = arus masukan(ampere) θ = perbedaan sudut fasa antara arus masukan dengan tegangan sumber Daya listrik disuplai ke stator motor induksi diubah menjadi daya mekanik pada poros motor. Berbagai rugi rugi yang timbul selama proses konversi energi listrik antara lain: 1. Rugi rugi tetap (fixed losses), terdiri dari: rugi rugi inti stator (Pi) P i = 3.E 1 2 (Watt) (2.21) R c rugi rugi gesek dan angin 17

15 2. Rugi rugi variabel, terdiri dari: rugi rugi tembaga stator (Pts) 2 P ts = 3. I 1. R 1 (Watt) (2.22) rugi rugi tembaga rotor (Ptr) 2 P tr = 3. I 1. R 2 (Watt) (2.23) Daya pada celah udara (Pcu) dapat dirumuskan dengan: P cu = P in + P ts P i (Watt) (2.24) Gambar 2.15 menunjukkan aliran daya pada motor induksi tiga fasa: Gambar 2.12Diagram aliran daya motor induksi 2.8. Effisiensi Motor Induksi Tiga Phasa Effisiensi dari suatu motor induksi didefiniikan sebagai ukuran keeffektifan motor induksi untuk mengubah energy listrik menjadi energy mekanik yang dinyatakan sebagai perbandingan/rasio daya output (keluaran) dengan daya input (masukan), atau dapat juga dirumuskan dengan: ƞ = P out P in = P out P ou t + losses + P ROT 100 % (2.25) Dari persamaan di atas dapat dilihat bahwa effisiensi motor tergantung pada besarnya rugi-rugi. Pada dasarnya metode yang digunakan untuk

16 menentukan effisiensi motor induksi bergantung pada dua hal apakah motor itu dapat dibebani secara penuh atau pembebanan simulasi yang harus digunakan. Effisiensi dari motor induksi dapat diperoleh dengan melakukan pengujian beban nol dan pengujian hubung singkat. Dari pengujian beban nol akan diperoleh rugi-rugi rotasi yang terdiri dari rugi-rugi mekanik dan rugi-rugi inti. Rugi-rugi tembaga stator tidak dapat diabaikan sekalipun motor berbeban ringan ataupun tanpa beban. Persamaan yang dapat digunakan untuk motor tiga phasa ini adalah: P rot = 3V 1 I 1 cos θ 3I 2 1 R 1 (2.26) Dari kedua rumus diatas dapat dinyatakan bahwa rugi-rugi daya sama dengan totaql daya input rugi tembaga stator. Situasi ini tepat karena rotor tidak dibebani sewaktu sedang beroperasi sehingga slipnya sangat kecil oleh karena itu harus, dan rugi-rugi tembaga rotor diabaikan. Dari pengujian hubung singkat akan dihasilkan parameter rotor. Daya total yang dialirkan ke motor sewaktu tegangan dikurangi selama pengujian ini, didissipasikan dalam rugi-rugi tembaga stator dan rugi-rugi tembaga rotor Penentuan Parameter Motor Induksi Data yang diperlukan untuk menghitung performansi dari suatu motor induksi dapat diperoleh dari hasil pengujian tanpa beban, dan penentuan efisiensi kerja motor tersebut Pengujian Tanpa Beban (No Load Test) Pengujian tanpa beban pada motor induksi akan memberikan keterangan berupa besarnya arus magnetisasi dan rugi rugi tanpa beban. Biasanya pengujian tersebut dilakukan pada frekuensi yang diizinkan dan dengan tegangan tiga phasa dalam keadaan setimbang yang diberikan pada terminal stator. Pembacaan 19

17 diambil pada tegangan yang diizinkan setelah motor bekerja cukup lama, agar bagian bagian yang bergerak mengalami pelumasan sebagaimanamestinya. Rugi rugi rotasional keseluruhan pada frekuensi dan tegangan yang diizinkan pada waktu dibebani biasanya dianggap konstan dan sama dengan rugi rugi tanpa beban. Pada keadaan tanpa beban, besarnya arus rotor sangat kecil dan hanya diperlukan untuk menghasilkan torsi yang cukup untuk mengatasi gesekan. Karenanya rugi rugi I 2 R tanpa beban cukup kecil dan dapat diabaikan. Padatransformator rugi rugi I 2 R primernya tanpa beban dapat diabaikan, akan tetapi rugi rugi stator tanpa beban motor induksi besarnya cukup berarti karena arus magnetisasinya lebih besar. Besarnya rugi rugi rotasional P R pada keadaan kerja normal adalah: P ROT = P nl 3I 2 nlr 1 (2.27) Dimana: P nl I nl R 1 = daya input tiga phasa = arus tanpa beban tiap phasa (A) = tahanan stator tiap phasa (ohm) Karena slip pada keadaaan tanpa beban sangat kecil, maka akan mengakibatkan tahanan rotor R 2 /s sangat besar. Sehingga cabang paralel rotor dan cabang magnetisasi menjadi jx M di shunt dengan suatu tahanan yang sangat besar,dan besarnya reaktansi cabang paralel karenanya sangat mendekati X M. Sehingga besar reaktansi yang tampak X nl yang diukur pada terminal stator pada keadaantanpa beban sangat mendekati X 1 + X M, yang merupakan reaktansi sendiri dari stator, sehingga:

18 X nl = X 1 + X M (2.28) Maka besarnya reaktansi diri stator, dapat ditentukan dari pambacaan alat ukur pada keadaan tanpa beban. Untuk mesin tiga phasa yang terhubung Y besarnya impedansi tanpa beban Z nl / phasa: Z nl = V nl 3I nl (2.29) Di mana V nl merupakan tegangan line, pada pengujian tanpa beban. Besarnya tahanan pada pengujian tanpa beban R nl adalah: R nl = P nl 3I 2 (2.30) nl P nl merupakan suplai daya tiga phasa pada keadaan tanpa beban, maka besar reaktansi tanpa beban 2 2 X nl = Z nl R nl (2.31) Sewaktupengujian beban nol, maka rangkaian ekivalen motor induksi seperti gambar berikut: Gambar 2.13 Rangkaian ekivalen motor induksi pada percobaan beban nol Pengujian Rotor Tertahan ( Block Rotor Test) Pengujian ini bertujuan untuk menentukan parameter parameter motor induksi, dan biasa juga disebut dengan locked rotor test. Pada pengujian ini rotor dikunci/ditahan sehingga tidak berputar. Untuk melakukan pengujian ini, tegangan AC disuplai ke stator dan arus 21

19 yang mengalir diatur mendekati beban penuh. Ketika arus telah menunjukkan nilai beban penuhnya, maka tegangan, arus, dan daya yang mengalir ke motor diukur. Rangkaian ekivalen untuk pengujian ini ada pada gambar 2.14 Gambar 2.14 Rangkaian ekivalen motor induksi pada percobaan block rotor test Saat pengujian ini berlangsung s = 1 dan tahanan rotor R 2 /s = R 2. Karena nilai R 2 dan X 2 begitu kecil, maka arus input akan seluruhnya mengalir melalui tahanan dan reaktansi tersebut. Oleh karena itu, kondisi sirkit pada saat ini terlihat seperti kombinasi seri X 1, R 1, X 2, dan R 2. Sesudah tegangan dan frekuensi diatur, arus yang mengalir pada motor diatur dengan cepat, sehingga tidak timbul kenaikan temperatur pada rotor dengan cepat. Daya input yang diberikan kepada motor adalah: Dimana: P in = 3V T I L (2.32) V T = tegangan line pada saat pengujian berlansung I L = arus line pada saat pengujian berlangsung Z BR = V T 3I L (2.33) Dimana Z BR = impedansi hubung singkat Z BR = R BR + jx BR = Z BR cos θ + jz BR sin θ (2.34)

20 Tahanan block rotor: R BR = R 1 + R 2 (2.35) Sedangkan reaktansi block rotor X BR = X 1 + X 2 X 1 + X 2 adalah reaktansi stator dan rotor pada frekuensi pengujian R 2 = R BR R 1 (2.36) Nilai dari R 1 ditentukan dari test DC. Karena reaktansi berbanding langsung dengan frekuensi, maka reaktansi ekivalen total (X BR ) pada saat frekuensi operasi normal X BR = f rated f test x X BR = X 1 + X 2 (2.37) Untuk memisahkan harga X 1 dan X 2, maka dapat digunakan tabel 2.1 Tabel 2.1 Distribusi reaktansi X 1 dan X 2 pada berbagai desain motor induksi Desain Kelas X 1 X 2 A 0.5 X BR 0.5 X BR B 0.4 X BR 0.6 X BR C 0.3 X BR 0.7 X BR D 0.5 X BR 0.5 X BR Rotor Belitan 0.5X BR 0.5X BR Tegangan Tidak Seimbang Dalam sistem tiga phasa yang seimbang,tegangan line to netral memiliki magnitude yang sama dan tiap tiap sudut phasanya berbeda 120 derajat satu sama lain. Apabila terdapat tegangan tiga phasa yang magnitudnya tidak sama dan sudut fasanya mengalami pergeseran sehingga tidak berbeda 120 derajat satu sama lain, maka dikatakan sistem tersebut memiliki tegangan tidak seimbang. 23

21 Penyebab tegangan tidak seimbang termasuk impedansi saluran transmisi dan saluran distribusi yang tidak sama, distribusi beban beban satu phasa yang tidak merata dalam jumlah besar, dan lain lain. Ketika beban tiga phasa seimbang dihubungkan dengan sistem suplai yang tidak seimbang, maka arus yang dialirkan ke beban juga tidak seimbang. Oleh karena itu sangat sulit / tidak mungkin untuk menyediakan suatu sistem suplai seimbang yang sempurna kepada konsumen, sehingga perlu dilakukan berbagai upaya untuk meminimalisasi ketidakseimbangan tegangan untuk mereduksi pengaruhnya pada beban beban konsumen. i ii Gambar 2.15 (i) diagram vector tegangan seimbang; (ii) diagram vector tegangan tidak seimbang Metode yang biasa digunakan dalam menganalisa baik arus ataupun tegangan dalam keadaaan tidak seimbang adalah dengan menggunakan komponen-komponen simetris yaitu suatu metode yang secara matematis memecahkan suatu sistem yang tidak seimbang menjadi tiga buah sistem yang seimbang. Sistem tersebut adalah urutan positif, urutan negatif dan urutan nol. Untuk sistem yang seimbang sempurna, maka sistem urutan negatife dan urutan nol tidak ada.

22 i ii iii Gambar 2.16 Diagram vector urutan positif (i); diagram vector urutan negatif (ii);diagram vector urutan nol (iii) Sistem urutan ini dapat dilukiskan secara fisika. Arah perputaran dari motor induksi tiga phasa ketika diaplikasikan dengan tegangan urutan negatif akan berlawanan arah dengan arah perputaran motor induksi sewaktu diaplikasikan dengan tegangan urutan positif. Sementara itu sistem urutan nol tidak akan menimbulkan perputaran pada motor induksi, karena tidak ada pebedaan phasa pada ketiga tegangannnya, sehinggan tidak akan dibangkitkan medan putar. Oleh karena itu, ada dua defenisi ketidakseimbangan pada komponen komponen simetris, yaitu:faktor ketidakseimbangan urutan negatif = V 2 V 1 dan Faktor ketidakseimbangan urutan nol = V 0 V 1 dimana (V 1, V 2, V 0 adalah sistem urutan positif, urutan negative, dan urutan nol). Sistem arus urutan nol tidak dapat mengalir pada sistem tiga phasa, misalnya motor induksi. Oleh karena itu factor ketidakseimbangan urutan nol itu sering diabaikan. Adapun ketidakseimbangan tegangan urutan negatif menunjuk pada besarnya tegangan yang mencoba untuk memutar arah motor induksi tiga phasa pada arah yang berlawanan terhadap yang diberikan oleh tegangan urutan positif. 25

23 Adapun faktor ketidakseimbangan urutan negatif menurut IEC [2] adalah: %voltage unbalnce = V ab 2 V ab 1 x 100 (2.38) Dimana: V ab 1 = V ab + a x V bc + a 2 x V ca 3 (2.39) V ab 2 = V ab +a 2 x V bc + a x V ca 3 (2.40) Dimana: a = j dan a 2 = 0.5 j0.866 Sedangkan menurut NEMA standard MG [3] dan IEEE defenisi ketidakseimbangan itu adalah: voltage unbalance = V LL V ll V ll x 100 % (2.41) Dimana: V LL V ll = tegangan line-line yang tertinggi = tegangan rata-rata dari tegangan line Sesuai dengan rumusan yang telah diberikan, dapat dilihat bahwa definisi tegangan tidak seimbang yang diberikan NEMA menghindari penakaian aljabar kompleks, sehingga kedua rumusan tersebut akan memberikan hasil yang berbeda. Contoh jika tegangan tidak seimbang V ab = o, V bc = o, V ca = o (2.42)

24 Maka menurut persamaan 2.42 dan 2.43, maka besarnya V ab1 dan Vab2 adalah: V ab 1 = o dan V ab 2 = o (2.43) Maka besarnya ketidakseimbangan menurut IEC adalah % voltage unbalance = x 100 = % (2.44) Sedangkan menurut NEMA adalah: % voltage unbalance = 43.8 x 100 = % (2.45) Tegangan tidak setimbang dalam persentase yang kecil akan menghasilkan arus tidak seimbang dalam jumlah besar, yang mana hal ini akan menimbulkan kenaikan temperatur pada motor. Jika tegangan yang tidak setimbang menyuplai motor induksi, maka daya kuda nominal dari motor harus dikalikan dengan suatu faktor seperti yang ditunjukkan gambar 2.17 Gambar 2.17 Kurva penurunan rating motor induksi (NEMA) Menurut kurva ini, motor induksi dirancang sedemikian rupa sehingga 27

25 mampu menangani ketidaksetimbangan tegangan 1%, dan selanjutnya akan menurun terganntung pada tingkat ketidaksetimbangan. Operasi pada motor pada harga ketidaksetimbangan tegangan di atas 5% tidak diizinkan Metode Pengukuran Temperatur Motor Induksi National Electrical Manufacturing Association (NEMA) mendefinisikan temperature rise adalah kenaikan temperatur diatas temperature ambient. Temperature ambient yaitu temperatur udara disekeliling motor atau dapat dikatakan sebagai suhu ruangan. Penjumlahan dari temperature rise dan temperature ambient adalah panas keseluruhan panas pada motor. Kelas isolasi temperature pada motor induksi dijelaskan oleh tabel berikut (temperature ambient tidak lebih dari 40 0 C): Tabel 2.2 Temperature rise for large motors with 1.0 sevice factor No Motor Rating Insulation Class and Temperatur Rise 0 C A B F H 1 All horsepower (or kw) ratings hp (1120 kw) and less Over 1500 hp (1120 kw) and 7000 volt or less Over 1500 hp (1120 kw) and over 7000 volt Faktor penyebab rusaknya isolasi winding adalah panas yang berlebih pada motor, panas berlebih yang berlangsung lama pada lilitan akan menyebabkan stress pada lilitan dan isolasi kawat menjadi rapuh. Jika dibiarkan terlalu lama akan menyebabkan isolasi pada lilitan akan retak. Jika gejala ini disertai dengan

26 munculnya partial discharge maka proses penuaan isolasi akan semakin cepat. Berdasarkan penelitian NEMA usia dari isolasi winding akan berkurang setengahnya setiap kenaikan 10 0 C dari kondisi normal kerja motor. Akan tetapi jika motor harus beroperasi 40 0 C di atas temperature normal maka umur isolasinya menjadi 1/16 dari umur normal yang diperkirakan. Oleh sebab itu motor- motor listrik yang digunakan pada dunia industri menggunakan alat proteksi untuk mengatasi panas lebih pada motor seperti thermal overload relay. Sehingga apabila terjadi overheating pada motor relai akan segera bekerja sehinngga dapat meminimalkan kerusakan pada isolasi motor. Berikut ini adalah metode dalam menentukan temperatur motor induksi [4] yaitu: a. Menggunakan thermometer infrared Metode ini adalah penentuan suhu dengan sensor suhu, atau dengan thermometer infrared, dengan metode ini instrumen diterapkan pada bagian terpanas dari mesin yang dapat diakses. b. Mengunakan Embedded Detector Motor yang menggunakan embedded detector pada lilitannya dapat dimonitor langsung output yang dideteksi pada peralatan,output temperature yang ditunjukkan adalah temperature terpanas dimana lokasi sensor diletakkan. Perbedaan antara embedded detector dengan thermometer infrared yaitu embedded detector tertanam di lilitan stator motor sedangkan thermometer infrared dapat diletakkan dimana saja bagian motor yang paling panas yang mudah diakses. c. Mengukur Tahanan Lilitan motor 29

27 Metode digunakan untuk motor yang tidak memiliki embedded detector seperti thermocouple atau resistance temperature detectors (RTDs). Kelebihan metode ini yaitu dapat dilakukan tanpa harus membongkar kerangka motor Penentuan temperature dengan metode ini yaitu dengan membandingkan tahanan lilitan motor pada temperature yang ingin ditentukan (pada saat motor panas) dengan tahanan yang sudah diketahui temperaturnya (temperature ambient). Temperature tahanan yang ingin ditentukan dapat dihitung dengan persamaaan: T t = T b + R t R b R b T b + k (2.46) Dimana: T t : Temperatur total lilitan ( o C) T b : Temperatur pada saat motor dingin ( o C) R t : Tahanan pada saat motor panas (ohm) R b : Tahanan pada saat motor dingin (ohm) K : (konstanta untuk bahan tembaga) ( o C) 225 (konstanta untuk bahan aluminium) ( o C)

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Umum Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mekanis berupa tenaga putar. Dari konstruksinya, motor ini terdiri dari dua bagian

BAB II TINJAUAN PUSTAKA. mekanis berupa tenaga putar. Dari konstruksinya, motor ini terdiri dari dua bagian BAB II TINJAUAN PUSTAKA 2.1 Umum Pada umumnya motor induksi tiga fasa merupakan motor bolak-balik yang paling luas digunakan dan berfungsi untuk mengubah energi listrik menjadi energi mekanis berupa tenaga

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA 2.1 UMUM Motor induksi merupakan motor arus bolak-balik yang paling banyak dipakai dalam industri dan rumah tangga. Dikatakan motor induksi karena arus rotor motor ini merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating

BAB II TINJAUAN PUSTAKA. akibat adanya perbedaan relatif antara putaran rotor dengan medan putar (rotating BAB II TINJAUAN PUSTAKA 2.1 Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya berasal

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB II DASAR TEORI. 2.1 Motor Sinkron Tiga Fasa. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB II DASAR TEORI 2.1 Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 UMUM Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan induksi

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA

PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA PERBANDINGAN PENGARUH TAHANAN ROTOR TIDAK SEIMBANG DAN SATU FASA ROTOR TERBUKA : SUATU ANALISIS TERHADAP EFISIENSI MOTOR INDUKSI TIGA FASA Wendy Tambun, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA

BAB II MOTOR INDUKSI TIGA FASA BAB II MOTOR INDUKSI TIGA FASA.1 Umum Motor induksi tiga fasa merupakan motor listrik arus bolak-balik yang paling banyak digunakan dalam dunia industri. Dinamakan motor induksi karena pada kenyataannya

Lebih terperinci

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi

MODUL 10 DASAR KONVERSI ENERGI LISTRIK. Motor induksi MODUL 10 DASAR KONVERSI ENERGI LISTRIK Motor induksi Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI

ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI ANALISIS PENGARUH JATUH TEGANGAN JALA-JALA TERHADAP UNJUK KERJA MOTOR INDUKSI TIGA FASA ROTOR SANGKAR TUPAI (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) O L E H EKO PRASETYO NIM : 0404007

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip.

BAB II MOTOR INDUKSI TIGA PHASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip. BAB II MOTOR INDUKSI TIGA PHASA 2.1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan putar pada stator, dengan kata lain putaran rotor

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Motor Induksi 13 Motor listrik yang paling umum digunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

BAB II MESIN INDUKSI TIGA FASA. 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator. BAB II MESIN INDUKSI TIGA FASA II.1. Umum Mesin Induksi 3 fasa atau mesin tak serempak dibagi atas dua jenis yaitu : 1. Motor Induksi 3 fasa 2. Generator Induksi 3 fasa, yang pada umumnya disebut alternator.

Lebih terperinci

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA

BAB III 3 METODE PENELITIAN. Peralatan yang digunakan selama penelitian sebagai berikut : 1. Generator Sinkron tiga fasa Tipe 72SA BAB III 3 METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian ini akan dilakukan di Laboratorium Konversi Energi Listrik, Departemen Teknik Elektro, Fakultas Teknik,. Penelitian dilaksanakan selama dua bulan

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar

BAB II DASAR TEORI. searah. Energi mekanik dipergunakan untuk memutar kumparan kawat penghantar BAB II DASAR TEORI 2.1 Umum Generator arus searah mempunyai komponen dasar yang hampir sama dengan komponen mesin-mesin lainnya. Secara garis besar generator arus searah adalah alat konversi energi mekanis

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1. Umum Motor arus searah (motor DC) adalah mesin yang merubah enargi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II GENERATOR SINKRON TIGA FASA

BAB II GENERATOR SINKRON TIGA FASA BAB II GENERATOR SINKRON TIGA FASA II.1. Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (alternator)

Lebih terperinci

DA S S AR AR T T E E ORI ORI

DA S S AR AR T T E E ORI ORI BAB II 2 DASAR DASAR TEORI TEORI 2.1 Umum Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator)

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

Transformator (trafo)

Transformator (trafo) Transformator (trafo) ф 0 t Transformator adalah : Suatu peralatan elektromagnetik statis yang dapat memindahkan tenaga listrik dari rangkaian a.b.b (arus bolak-balik) primer ke rangkaian sekunder tanpa

Lebih terperinci

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya

BAB II MOTOR KAPASITOR START DAN MOTOR KAPASITOR RUN. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya BAB MOTOR KAPASTOR START DAN MOTOR KAPASTOR RUN 2.1. UMUM Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB MOTOR NDUKS SATU PHASA.1. Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran medan

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik.

BAB II TRANSFORMATOR. magnet dan berdasarkan prinsip induksi elektromagnetik. BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolakbalik dari satu level ke level

Lebih terperinci

I. Maksud dan tujuan praktikum pengereman motor induksi

I. Maksud dan tujuan praktikum pengereman motor induksi I. Maksud dan tujuan praktikum pengereman motor induksi Mengetahui macam-macam pengereman pada motor induksi. Menetahui karakteristik pengereman pada motor induksi. II. Alat dan bahan yang digunakan Autotrafo

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum )

STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) STUDI PENGARUH PERUBAHAN TEGANGAN INPUT TERHADAP KAPASITAS ANGKAT MOTOR HOISTING ( Aplikasi pada Workshop PT. Inalum ) Makruf Abdul Hamid,Panusur S M L Tobing Konsentrasi Teknik Energi Listrik, Departemen

Lebih terperinci

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan.

MESIN ASINKRON. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan. MESIN ASINKRON A. MOTOR LISTRIK Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron, dengan dua standar global yakni IEC dan NEMA. Motor asinkron IEC berbasis metrik (milimeter),

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI

ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI ANALISIS PERBANDINGAN EFEK PEMBEBANAN TERHADAP GGL BALIK DAN EFISIENSI PADA MOTOR DC PENGUATAN KOMPON PANJANG DAN MOTOR INDUKSI Jean Jhenesly F Tumanggor, Ir. Riswan Dinzi, MT Konsentrasi Teknik Energi

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor DC Motor DC adalah suatu mesin yang mengubah energi listrik arus searah (energi lisrik DC) menjadi energi mekanik dalam bentuk putaran rotor. [1] Pada dasarnya, motor

Lebih terperinci

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir

BAB I PENDAHULUAN Manfaat Penulisan Tugas Akhir BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Motor induksi merupakan motor arus bolak-balik yang paling luas diaplikasikan dalam dunia industri dan juga dalam rumah tangga. Motor ini mempunyai banyak

Lebih terperinci

Dasar Teori Generator Sinkron Tiga Fasa

Dasar Teori Generator Sinkron Tiga Fasa Dasar Teori Generator Sinkron Tiga Fasa Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin sinkron yangdigunakan untuk

Lebih terperinci

MOTOR LISTRIK 1 FASA

MOTOR LISTRIK 1 FASA MOTOR LISTRIK 1 FASA Alat alat listrik rumah tangga yang menggunakan motor listrik satu fasa biasanya menggunakan motor induksi 1 fasa, motor split fasa, motor kapasitor, motor shaded pole, dan motor universal.

Lebih terperinci

BAB II GENERATOR SINKRON

BAB II GENERATOR SINKRON BAB II GENERATOR SINKRON 2.1 Pendahuluan Generator arus bolak balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak balik. Generator arus bolak balik sering disebut juga sebagai alternator,

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

ANALISIS PERBANDINGAN TORSI START

ANALISIS PERBANDINGAN TORSI START ANALISIS PERBANDINGAN TORSI START DAN ARUS START,DENGAN MENGGUNAKAN METODE PENGASUTAN AUTOTRAFO, STAR DELTA DAN DOL (DIRECT ON LINE) PADA MOTOR INDUKSI 3 FASA (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

BAB II MOTOR INDUKSI

BAB II MOTOR INDUKSI BAB II MOTOR INDUKSI 2.1 Umum Motor-motor listrik pada dasarnya digunakan sebagai sumber beban untuk menjalankan alat-alat tertentu atau membantu manusia dalam menjalankan pekerjaannya sehari-hari, terutama

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi

BAB II DASAR TEORI. mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi BAB II DASAR TEORI 2.1 Umum (1,2,4) Secara sederhana motor arus searah dapat didefenisikan sebagai suatu mesin listrik yang mengubah energi listrik pada arus searah (DC) menjadi energi gerak atau energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 2.1 Umum 1 Motor induksi merupakan motor arus bolak-balik (AC) yang paling BAB II TINJAUAN PUSTAKA banyak digunakan. Penamaannya berasal dari kenyataan bahwa arus rotor motor ini bukan diperoleh dari sumber

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah sangat

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

TUGAS AKHIR PENGENDALIAN TEGANGAN MOTOR INDUKSI TIGA PHASA SEBAGAI GENERATOR (MISG) PADA SETIAP PERUBAHAN BEBAN O L E H

TUGAS AKHIR PENGENDALIAN TEGANGAN MOTOR INDUKSI TIGA PHASA SEBAGAI GENERATOR (MISG) PADA SETIAP PERUBAHAN BEBAN O L E H TUGAS AKHIR PENGENDALIAN TEGANGAN MOTOR INDUKSI TIGA PHASA SEBAGAI GENERATOR (MISG) PADA SETIAP PERUBAHAN BEBAN O L E H RUDIANTO SINAGA NIM : 03 040 075 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja

BAB II DASAR TEORI. 2.1 Mesin arus searah Prinsip kerja BAB II DASAR TEORI 2.1 Mesin arus searah 2.1.1. Prinsip kerja Motor listrik arus searah merupakan suatu alat yang berfungsi mengubah daya listrik arus searah menjadi daya mekanik. Motor listrik arus searah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Arus Searah Sebuah mesin yang mengubah energi listrik arus searah menjadi energi mekanik dikenal sebagai motor arus searah. Cara kerjanya berdasarkan prinsip, sebuah konduktor

Lebih terperinci

ANALISIS PENINGKATAN FAKTOR KERJA MOTOR INDUKSI 3 PHASA

ANALISIS PENINGKATAN FAKTOR KERJA MOTOR INDUKSI 3 PHASA ANALISIS PENINGKATAN FAKTOR KERJA MOTOR INDUKSI 3 PHASA Taufik Barlian 1, A. Faroda 2 1,2 Lecturer, Electrical Engineering Study Program, Faculty Of Engineering, Muhammadiyah University Palembang e-mail:

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah (motor DC) adalah mesin yang merubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Hampir pada semua prinsip pengoperasiannya,

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR II.1 Umum Transformator atau trafo adalah suatu peralatan listrik yang dapat memindahkan energi listrik atau memindahkan dan mengubah energi listrik bolak-balik dari satu level ke

Lebih terperinci

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis.

MESIN LISTRIK. 2. JENIS MOTOR LISTRIK Motor berdasarkan bermacam-macam tinjauan dapat dibedakan atas beberapa jenis. MESIN LISTRIK 1. PENDAHULUAN Motor listrik merupakan sebuah mesin yang berfungsi untuk merubah energi listrik menjadi energi mekanik atau tenaga gerak, di mana tenaga gerak itu berupa putaran dari pada

Lebih terperinci

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1

Modul Kuliah Dasar-Dasar Kelistrikan Teknik Industri 1 TOPIK 12 MESIN ARUS SEARAH Suatu mesin listrik (generator atau motor) akan berfungsi bila memiliki: (1) kumparan medan, untuk menghasilkan medan magnet; (2) kumparan jangkar, untuk mengimbaskan ggl pada

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan

M O T O R D C. Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan M O T O R D C Motor arus searah (motor dc) telah ada selama lebih dari seabad. Keberadaan motor dc telah membawa perubahan besar sejak dikenalkan motor induksi, atau terkadang disebut Ac Shunt Motor. Motor

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Pembangkit Listrik Tenaga Uap merupakan pembangkit yang memanfaatkan energi kinetik berupa uap guna menghasilkan energi listrik. Pembangkit

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Telaah Penelitian Bansal (2005) mengungkapkan bahwa motor induksi 3 fase dapat diioperasikan sebagai generator induksi. Hal ini ditunjukkan dari diagram lingkaran mesin pada

Lebih terperinci

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI

MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives. Oleh PUSPITA AYU ARMI MAKALAH ANALISIS SISTEM KENDALI INDUSTRI Synchronous Motor Derives Oleh PUSPITA AYU ARMI 1304432 PENDIDIKAN TEKNOLOGI DAN KEJURUAN PASCASARJANA FAKULTAS TEKNIK UNIVERSITAS NEGERI PADANG 2013 SYNCHRONOUS

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI II.1 Umum Seperti telah di ketahui bahwa mesin arus searah terdiri dari dua bagian, yaitu : Generator arus searah Motor arus searah Ditinjau dari konstruksinya, kedua mesin ini adalah

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip.

BAB II MOTOR INDUKSI TIGA FASA. dengan putaran medan pada stator terdapat selisih putaran yang disebut slip. BAB II MOTOR INDUKSI TIGA FASA 2.1. Umum Motor induksi merupakan motor arus bolak-balik (AC) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Pada motor

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Motor Induksi 1 Secara umum motor listrik berfungsi untuk mengubah energy listrik menjadi energi mekanik yang berupa tenaga putar. Pada motor DC energi listrik diambil langsung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pembangkit Listrik Tenaga Angin Pembangkit Listrik Tenaga Angin memberikan banyak keuntungan seperti bersahabat dengan lingkungan (tidak menghasilkan emisi gas), tersedia dalam

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

9/10/2015. Motor Induksi

9/10/2015. Motor Induksi 9/10/015 Motor induksi disebut juga motor tak serempak Motor Induksi Merupakan motor AC yang paling banyak dipakai di industri baik 1 phasa maupun 3 phasa Lab. istem Tenaga Lab. istem Tenaga Keuntungan

Lebih terperinci

Jurnal Ilmiah Mustek Anim Ha Vol.1 No.1, April 2012 ISSN

Jurnal Ilmiah Mustek Anim Ha Vol.1 No.1, April 2012 ISSN ANALISIS NILAI EFISIENSI MOTOR INDUKSI DENGAN DIAGRAM LINGKARAN Jayadi Email:Jayadi@yahoo.com Program Studi Teknik Elektro Fakultas Teknik Universitas Musamus Merauke Jl. Kamizaun Mopah Lama Merauke ABSTRAK

Lebih terperinci

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih

BAB II TRANSFORMATOR. maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih BAB II TRASFORMATOR II. UMUM Transformator merupakan suatu alat listrik statis yang mampu mengubah maupun untuk menyalurkan energi listrik arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI

ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ANALISA PERBANDINGAN PENGARUH HUBUNGAN SHORT-SHUNT DAN LONG-SHUNT TERHADAP REGULASI TEGANGAN DAN EFISIENSI GENERATOR INDUKSI PENGUATAN SENDIRI ( APLIKASI PADA LABORATORIUM KONVERSI ENERGI LISTRIK FT USU

Lebih terperinci

Mekatronika Modul 7 Aktuator

Mekatronika Modul 7 Aktuator Mekatronika Modul 7 Aktuator Hasil Pembelajaran : Mahasiswa dapat memahami dan menjelaskan karakteristik dari Aktuator Listrik Tujuan Bagian ini memberikan informasi mengenai karakteristik dan penerapan

Lebih terperinci

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA

ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA ANALISA PENGARUH SATU FASA ROTOR TERBUKA TERHADAP TORSI AWAL, TORSI MAKSIMUM, DAN EFISIENSI MOTOR INDUKSI TIGA FASA Ali Sahbana Harahap, Raja Harahap, Surya Tarmizi Kasim Konsentrasi Teknik Energi Listrik,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum MOTOR ARUS SEARAH Motor arus searah (DC) adalah mesin listrik yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Konstruksi motor arus

Lebih terperinci

Mesin AC. Motor Induksi. Dian Retno Sawitri

Mesin AC. Motor Induksi. Dian Retno Sawitri Mesin AC Motor Induksi Dian Retno Sawitri Pendahuluan Mesin induksi digunakan sebagai motor dan generator. Namun paling banyak digunakan sebagai motor. MI merupakan perangkat penting di industri Kebanyakan

Lebih terperinci

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN Momentum, Vol. 10, No. 2, Oktober 2014, Hal. 62-68 ISSN 0216-7395 PERANCANGAN PARAMETER PADA MOTOR INDUKSI TIGA FASA TIPE ROTOR BELITAN UNTUK PENINGKATAN UNJUK KERJA Tejo Sukmadi Jurusan Teknik Elektro

Lebih terperinci

BAB II TRANSFORMATOR. dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke

BAB II TRANSFORMATOR. dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke BAB II TRANSFORMATOR II.1. Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari satu atau lebih rangkaian listrik ke rangkaian listrik

Lebih terperinci

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l

Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi l Mesin DC Pendahuluan Motor DC mengkonversikan energi listrik menjadi energi mekanik. Sebaliknya pada generator DC energi mekanik dikonversikan menjadi energi listrik. Prinsip kerja mesin DC (dan AC) adalah

Lebih terperinci

BAB III PENDAHULUAN 3.1. LATAR BELAKANG

BAB III PENDAHULUAN 3.1. LATAR BELAKANG 20 BAB III PENDAHULUAN 3.1. LATAR BELAKANG Motor induksi merupakan motor listrik arus bolak balik (AC) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan

Lebih terperinci

Teknik Tenaga Listrik(FTG2J2)

Teknik Tenaga Listrik(FTG2J2) Teknik Tenaga Listrik(FTG2J2) Bagian 9: Motor Sinkron Ahmad Qurthobi, MT. Teknik Fisika Telkom University Outline Pendahuluan Konstruksi Kondisi Starting Rangkaian Ekivalen dan Diagram Fasor Rangkaian

Lebih terperinci