Gambar 2.1 Prinsip kerja Hydrocyclone

Ukuran: px
Mulai penontonan dengan halaman:

Download "Gambar 2.1 Prinsip kerja Hydrocyclone"

Transkripsi

1 BAB II TINJAUAN PUSTAKA.1 Pengertian Hydrocyclone Pada dasarnya hydrocyclone merupakan gabungan dari dua kata yaitu hydro dan cyclone. Hydro dapat diartikan air ataupun cairan, sedangkan cyclone dapat diartikan sebagai pusaran. Sehingga hydrocyclone diartikan sebagai pusaran air. Dalam penggunaanya secara nyata hydrocyclone dapat diartikan sebagai suatu alat yang dapat memisahkan material ataupun partikel dari suatu komposisi campuran baik berbentuk padatan dengan cairan ataupun cairan dengan cairan.. Prinsip kerja Hydrocyclone Prinsip kerja dari hydrocyclone adalah terdapatnya kumpulan partikel dan air yang masuk dalam arah tangensial ke dalam siklon pada bagian puncaknya. Kumpulan air dan partikel ditekan ke bawah secara spiral (primary vortex) karena bentuk dari siklon. Gaya sentrifugal menyebabkan partikel terlempar ke arah luar, membentur dinding dan kemudian bergerak turun ke dasar hydrocyclone. Dekat dengan bagian dasar hydrocyclone, air bergerak membalik dan bergerak ke atas dalam bentuk spiral yang lebih kecil (secondary vortex) partikel yang lebih ringan bergerak keluar dari bagian puncak hydrocyclone sedangkan partikel yang berat keluar dari dasar hydrocyclone. Gambar.1 Prinsip kerja Hydrocyclone

2 Ada beberapa alasan mengapa hydrocyclone dipakai sebagai alat pemisah, yaitu: 1. Biaya operaional yang relatif murah. Prosesnya dapat dilakukan pada satu tempat 3. Desain ataupun modelnya sederhana, berupa kombinasi konstruksi silinder dan kerucut 4. Tidak memiliki bagian yang bergerak 5. Minim biaya perawatan. Jenis Hydrocyclone..1 Hydrocyclone tipe konvensional Pada Hydrocyclone tipe konvensional memiliki bagian berbentuk silinder dan bagian berbentuk kerucut. Memiliki dua jenis tipe yang berbeda yang berdasarkan sudut kemiringannya. Tipe yang pertama memiliki sudut kemiringan 0 o 5 O, sedangkan jenis yang lain memiliki sudut > 5 o hingga 180 o. Fluida dialirkan melalui dari lubang inlet bagian atas pada silinder dan aliran tersebut menghasilkan gerakan berbentuk pusaran yang kuat pada dinding Hydrocyclone. Gambar. Hydrocyclone tipe konvensional

3 .3 Konstruksi pada multicyclone Pada proses klarifikasi ataupun pada proses klasifikasi untuk ukuran partikel yang sangat kecil biasanya dipergunakan hydrocylone dalam jumlah yang banyak. Tetapi ukuran dari hydrocyclone yang digunakan tidak sebesar hydrocyclone pada umumnya. Hal ini dimaksudkan karena diperlukannya proses pemisahan yang berulang-ulang dan kualitas hasil pemisahan yang sangat baik sehingga dibuatlah konstruksi multicyclone. Secara umum dapat dilihat terdapat jenis konstruksi multicyclone yang dapat dijumpai, yaitu : konstruksi linear dan konstruksi circular. Kedua jenis konstruksi tersebut memiliki fungsinya masing-masing, seperti pada konstruksi circular yang memungkinkan tiap hydrocyclone dapat terhubung dalam jumlah banyak dimana mengelilingi satu pipa atau lubang utama sehingga panjang pipa penghubung tiap hydrocyclone tetap sama..3.1 Round Desilter Hydrocyclone Terdiri dari 10 hingga 0 Hydrocyclone yang digabungkan secara melingkar menjadi satu bagian. Pada Hydrocyclone ini dilengkapi dengan Shut-off valves pada setiap konstruksinya. Sehingga memungkinkan untuk memindahkan atau mengganti salah satu Hydrocyclone jika rusak tanpa menganggu kinerja Hydrocyclone lainnya dan juga memudahkan operator untuk mengawasi kinerja disetiap Hydrocyclone. Gambar.3 Round Desilter Hydrocyclone (Krebs Engineering,009)

4 .3. Inline Desilter Hydrocyclone Terdiri dari 10 0 Hydrocyclone yang disusun secara pararel. Inline Desilter Hydrocyclone biasanya digunakan pada tempat yang tidak memiliki area yang cukup luas untuk menampung banyak konstruksi instalasi mesin. Sehingga dapat menghemat pemakaian tempat. Gambar.4 Inline Desilter Hydrocyclone.3.3 Hydrocyclone aliran aksial Pada umumnya digunakan pada industri pengolahan air bersih. Berfungsi memisahkan sisi minyak dari campuran air kemudian sisa minyak tersebut ditampung dan dibuang. Karateristik dari Hydrocyclone aliran aksial : a.) Konsentrasi penyerapan minyak hingga ppm b.) Besar penurunan tekanan balik - 3,5 bar c.) Besar penurunan tekanan buang 4 7,5 bar d.) Penurunan tekanan dapat diminimalkan dengan menambah jumlah pipa didalam Hydrocyclone Gambar.5 Hydrocyclone aliran aksial

5 .4 Bagian-bagian dari Hydrocyclone berikut : Secara umum bagian-bagian dari Hydrocyclone dapat dilihat dari gambar Feed Chamber Lubang Keluar Lubang Masuk Vortex Finder Cone Section (Bagian Kerucut) Tail Pipe (Pipa bawah) Apex Valve (Katup keluar) Lubang Keluar Gambar.6 Bagian-bagian Hydrocyclone Keterangan: 1. Lubang masuk. Cylindrical section 3. Vortex finder 4. Cone section 5. Lubang keluar.4.1 Lubang masuk (Inlet area) Ada beberapa tipe dari lubang masuk (Inlet area), yaitu : lubang masuk tipe involute, lubang masuk tipe ramp dan lubang masuk tipe scroll. Berbagai tipe tersebut dimaksudkan untuk lebih memaksimalkan kinerja dari Hydrocyclone. Dengan konstruksi lubang masuk dengan tipe involute, lubang masuk tipe ramp dan lubang masuk tipe scroll dapat mengurangi efek dari turbulensi yang terjadi disekitar dinding lubang masuk dan daerah antara lubang masuk dengan cylinder section.

6 Gambar.7 Beberapa tipe dari lubang masuk (Inlet area).4. Cylindrical section Pada dasarnya diameter dari cylindrical section memilki diameter sebesar diameter dari Hydrocyclone. Konstruksi dari cylindrical section yang panjang dimaksudkan untuk memperbesar kapasitas dan juga mengurangi dari kecepatan tangensial. Besar kecilnya dari konstruksi dari cylindrical section dapat mempengaruhi besarnya tekanan. Gambar.8 Beberapa tipe dari cylindrical section

7 .4.3 Vortex finder Pada umumnya besar dari vortex finder 0-45 % dari diameter Hydrocyclone. Besar dari vortex finder dapat kualitas pemisahan yang dihisap..4.4 Cone section Besar sudut pada cone section didasarkan pada jenis pemakaiannya. Pada cone section besudut 0 merupakan standar pemakaian pada industri pertambangan mineral. Sedangkan untuk Hydrocyclone yang memiliki bagian bawah datar diperuntukan untuk pemisahan materialmaterial berstruktur kasar. Gambar.9 Beberapa tipe dari cone section

8 .5 Hydrocyclone pada industri kelapa sawit Digunakan pada stasiun pengolahan inti. Hydrocyclone berfungsi untuk memisahkan antara inti dengan cangkang. Adapun proses pengolahan dari kelapa sawit hingga mencapai pada proses pemisahan menggunakan hydrocyclone terdiri dari beberapa tahapan yaitu: Fresh Friut Bunch Sterilization Digestion Pressing Depericarper Silo Drier Nut Cracker Cracked Nut Blower Hydrocyclone Kernel Drier Kernel Storage Gambar.10 Tahapan proses pengolahan hingga mencapai hydrocyclone

9 .5.1 Proses kerja unit Hydrocyclone Campuran cangkang dan inti yang keluar dari separating coloum dimasukan kedalam bak 1, lalu oleh pompa hydrocyclone (P1) dipompakan kedalam hydrocyclone (H1), campuran ini akan diputar oleh gaya sentrifugal, inti yang mempunyai berat jenis lebih kecil berkumpul ditengah cyclone lalu melalui vortex finder keluar ke sebelah atas. Inti yang bercampur dengan air ini kemudian masuk ke dewatering screen untuk memisahkan air, selanjutnya inti secara teratur banyaknya (atau diatur water lock) masuk ke kernel transport fan untuk dimasukan ke pemeraman inti (kernel bin) melalui saringan kernel sterilizer. Sedangkan cangkang yang mempunyai berat jenis besar akan berkumpul dibagian pinggir cyclone lalu keluar dari bawah bersama air ke bak. Produk pada bak masih terdapat inti bercampur cangkang. Campuran ini dipompakan oleh pompa hydrocyclone (P) dipompakan ke hydrocyclone (H) proses pemisahan disini sama dengan pada hydrocyclone (H1). Inti keluar sebelah atas pipa melalui vortex finder masuk kembali ke bak 3. Proses pada bak 3 mengandung sedikit inti. Campuran ini dipompakan oleh pompa hydrocyclone (P3) dipompakan ke hydrocyclone (H3), proses pemisahan disini sama dengan pada hydrocyclone (H1) dimana cangkang akan keluar ke shall dewatering screen, selanjutnya secara teratur (diatur water lock) masuk ke shall transport fan untuk direbus ke Gambar.11 Skema kerja unit hydrocylone

10 shall hopper sebagai bahan bakar ketel. Inti akan keluar melalui pipa dari atas dan masuk ke bak. Inti kemudian dibawa ke kernel dryer untuk dikeringkan dan disimpan di kernel storage[4]..5. Bagian-bagian unit Hydrocyclone Alat ini terdiri dari : a. Tabung pemisah (Hydrocyclone) yang dilengkapi dengan pompa pengutip (vortex Finder) dan konus dibawahnya. b. Bak penampung a. Tabung pemisah (Hydrocyclone) Alat ini bekerja bersarkan karena gaya senrtifugal yang di timbulkan oleh aliran air yang membentuk pusaran (vortex). Akibat gaya sentrifugal yang di timbulkan oleh aliran vortex maka Inti kelapa sawit yang memiliki massa jenis 1080 kg/ akan berada pada pusat pusaran sedangkan cangkang kelapa sawit yang memiliki massa jenis 1300 kg/ akan terlempar hingga ke dinding hydrocyclone. Gambar.1 Proses pemisahan di dalam tabung Kapasitas aliran masuk pada saluran inlet: v Q = (.5.-1) A dimana: Q = kapasitas aliran (kg/s) v = kecepatan aliran (m/s) A = luas penampang (m )

11 Dimana kecepatan aliran dapat diperoleh dari : 4Q v = (.5.-) π d s d i = diameter pipa inlet (m) sedangkan laju aliran massa dapat ditentukan dari: m = ρ Q Gaya-gaya yang terjadi (Coulson,1986): atau dapat di tulis dimana: F C = gaya sentrifugal F = m (.5.-3) C a C F C = m r ω (.5.-4) m = massa benda yang mengalami gaya sentrifugal = kecepatan sudut a C = percepatan sudut Jika : v ω = (.5.-5) r v = kecepatan tangensial (m/s) Jika kecepatan rotasi dinyatakan dalam N rpm: π N ω = (.5.-6) 60 Perbandingan gaya gravitasi dan gaya sentrifugal (Coulson,1986): Gaya gravitasi: F = m g (.5.-7) Perbandingan: F F C r ω r π N = g = g = g 60 0,001118rN a C = 0,001118rN g

12 Maka gaya sentrifugal yang di alami oleh inti adalah : F C (.5.-8) 1 = m1 r1 ω dimana : F C1= gaya sentrifugal yang dialami oleh inti m 1 = massa dari inti r 1 = jarak terlemparnya inti dari pusat pusaran Dan gaya yang dialami oleh cangkang adalah : F C (.5.-9) = m r ω dimana : F C = gaya sentrifugal yang dialami oleh cangkang m = massa dari cangkang r = jarak terlemparnya cangkang dari pusat pusaran b. Bak penampung Bak penampung campuran hasil pemisahan yang dilakukan oleh tabung pemisah (hydrocylone), yang dilengkapi dengan dewatering drum. Hasil pemisahan yang dikeluarkan hydrocylone melalui pipa bawah akan masuk ke dalam bak ini yang selanjutnya akan dibawa keluar oleh shall transport fan untuk dibawa ke proses selanjutnya untuk direbus ke shall hopper sebagai bahan bakar ketel[4]. Gambar.13 Jalur distribusi inti dan cangkang

13 .6 Kecepatan settling sentrifugal Kecepatan settling sentrifugal atau kecepatan pengendapan sentrifugal ditinjau dari sebuah sebuah partikel berdiamater Dp, berotasi pada jari-jari = r, maka gaya sentrifugal seperti perilaku gerak partikel dalam fluida, tetapi gaya gravitasi diganti dengan gaya sentrifugal[1]. Adapun kecepatan settling sentrifugal dapat dilihat pada persamaan.6-1 (Coulson,1986). v gt vt = vt (.6-1) gr v gt = gravitational terminal velocity (m/s) v t = kecepatan tangensial (m/s) Gambar.14 Variasi kecepatan tangensial dan kecepatan radial [Ter linden, Inst.page165.(1949)] vr g dout Maka, v gt = (.6-) v t Dimana: v r v = π r v = kecepatan air volumetrik [massa/waktu] (m 3 /s) (.6-3) Jika dinyatakan dalam luas penampang masuk (A in ):

14 v gt Ain d = π d in g v out (.6-4).7 Aliran Vortex Vortex adalah massa fluida yang partikel-partikelnya bergerak berputar dengan garis arus (streamline) membentuk lingkaran konsentris[7]. Gerakan vortex berputar disebabkan oleh adanya perbedaan kecepatan antar lapisan fluida yang berdekatan. Dapat diartikan juga sebagai gerak alamiah fluida yang diakibatkan oleh parameter kecepatan dan tekanan. Vortex sebagai pusaran yang merupakan efek dari putaran rotasional dimana viskositas berpengaruh didalamnya. Sebuah vortex mewakili sebuah aliran yang garisgaris arusnya adalah lingkaran-lingkaran sepusat (konsentris). Aliran vortex awalnya dianggap sebagai kerugian dalam suatu aliran fluida. Belakangan ini prinsip aliran vortex digunakan untuk pengembangan teknologi penegeboran minyak, pemisahan partikel ataupun material padatan dengan cairan, industri kimia dan lain sebagainya. Pergerakan aliran fluida dapat dibedakan menjadi tiga jenis, yaitu: 1. Translasi murni atau translasi irrotasional. Rotasi murni atau translasi rotasional 3. Distorsi atau deformasi murni, baik angular ataupun linier Aliran irrotasional terjadi apabila elemen fluida di setiap titik tidak mempunyai kecepatan sudut netto terhadap titik tersebut. Sebaliknya aliran rotasional terjadi apabila elemen fluida mempunyai kecepatan sudut netto. Gerak vortex dapat dikategorikan sebagai dalam aliran rotasional. Vortex digambarkan sebagai aliran yang bergerak dan berputar terhadap sumbu vertikal sehingga terjadi perbedaan tekanan antara bagian sumbu dan sekelilingnya. Tetapi pada beberapa kondisi vortex juga dapat dikategorikan sebagai aliran irrotasional. Kelihatannya agak mengherankan bahwa gerakan vortex irrotasional. Namun demikian harus diingat kembali bahwa rotasi mengacu pada orientasi pada elemen fluida bukan lintasan yang diikuti oleh elemen tersebut. Jadi, untuk sebuah vortex irrotasional, jika sebuah tongkat pendek

15 ditempatkan di dalam medan aliran pada lokasi A, seperti pada gambar.16, tongkat-tongkat itu kan berotasi selagi bergerak ke lokasi B. Salah satu tongkat yang sesuai garis-garis akan mengikuti sebuah lintasan yang melingkar dan berputar dengan arah berlawanan dengan arah jarum jam. Tongkat yang lain akan berotasi searah putaran jarum jam karena sifat alamiah dari medan aliran, di mana bagian tongkat yang terdekat dengan titik asal bergerak cepat dari pada ujung lainya. Gambar.15 Pola garis arus untuk sebuah vortex Berdasarkan klasifikasi aliran berputar yang terjadi dalam kehidupan sehari-hari maka aliran vortex dapat dibedakan menjadi tiga bagian, yaitu :.7.1 Aliran vortex Bebas Aliran vortex terjadi walaupun tidak adanya gaya yang dilakukan pada fluida tersebut. Karateristik dari vortex bebas adalah kecepatan tangensial dari partikel fluida yang berputar pada jarak tertentu dari pusat vortex. Hubungan kecepatan partikel fluida v terhadap jaraknya dari pusat putaran r dapat dilihat pada persamaan (Munson,003). v = Γ πr (.7.1-1) dimana :

16 v = kecepatan tangensial fluida (m s -1 ) r = jari-jari putaran partikel fluida dari titik pusat (m) Γ = sirkulasi Gambar.16 Gerakan elemen fluida dari A ke B : vortex bebas Pada aliran vortex bebas dengan menganggap elemen air memiliki : l = panjang elemen air dr = ketebalan elemen air v = kecepatan tangensial dp = beda tekanan dari elemen air dan aliran bebas mempunyai gaya, tekanan yang sebanding dengan aksi gaya sentrifugal air. dp xl = dp w ( wl dr) gr v v dr = (.7.1-) gr Dan diketahui energi keseluruhan elemen air : P v E = + (.7.1-3) w gh Didefenisikan maka:

17 dp vdv de = + w g v dr = gr + vdv dr dp v dr = w gr de dr = v g v dv + + r dr (.7.1-4) Dalam vortex bebas, tidak ada perubahan energi melintas pada aliran lurus, jadi persamaan diatas sama dengan nol. v v dv + + = 0 g r dr v dv + = 0 r dr dv dr + = 0 v r Setelah diintegralkan persamaan diatas menjadi: log e v + log e r = C (.7.1-5) vr = C (identik dengan teori kinematik fluida) Jika digeneralisasikan, maka: C v = (.7.1-6) r Jika C sama dengan konstan maka dapat diketahui kekuatan dari vortex, nampak jelas bahwa kecepatan partikel berbanding terbalik dengan jarak dari pusat vortex..7. Aliran Vortex Paksa

18 Apabila suatu gaya diberikan pada suatu fluida dengan maksud membuat aliran fluida berputar. Hubungan kecepatan partikel fluida v terhadap jaraknya dari pusat putaran r dapat dilihat pada persamaan.7.-1 (Munson,003). dimana : ω = kecepatan sudut r = jari-jari putaran (m) v = ω r (.7.-1) Gambar.17 Gerakan elemen fluida dari A ke B : Vortex paksa Air dalam tabung diputar dengan gaya torsi, partikel P pada permukaan air, berjarak x pada sumbu putaran, bekerja gaya-gaya: 1. Berat partikel, arah ke bawah (W). Gaya sentrifugal dengan arah menjauhi pusat putaran (F C ) 3. Gaya reaksi zat cair yang mendesak partikel (R) Bekerjanya gaya selain gaya gravitasi pada air dalam tabung menghasilkan gaya vortex yang dikenal sebagai aliran vortex paksa. Pada putaran silinder, N dan kecepatan sudut ψ, partikel P mempunyai sudut tangen ψ, berat partikel W dan gaya sentrifugal F C. Gaya sentrifugal didefenisikan sebagai berikut (Ridwan dan Siswantara,00): F C ( ωx ) W = (.7.-) g dimana:

19 ω = kecepatan sudut (rad/s) W = berat partikel (kg) g = gaya gravitasi (m/s ) X = jarak dari sumbu (m).7.3 Aliran Vortex Kombinasi Aliran Vortex Kombinasi adalah vortex dengan vortex paksa pada inti pusatnya dan distribusi kecepatan yang sesuai dengan vortex bebas pada luar intinya. Jadi untuk sebuah votex kombinasi dapat dilihat pada persamaan berikut (Munson,003) dan v ωr θ = 0 K v = r θ 0 r r (.7.3-1) r > r (.7.3-) dimana K dan ω adalah konstanta dan r 0 adalah jari-jari inti pusat. Sebuah konsep matematika yang biasanya berhubungan dengan gerakan vortex adalah sirkulasi. Sirkulasi didefenisikan sebagai sebuah integral garis dari komponen tangensial kecepatan yang diambil dari sekeliling kurva tertutup di medan aliran. Konsep sirkulasi sering digunakan untuk mengevaluasi gaya-gaya pada terbentuk pada benda-benda yang terendam dalam fluida yang bergerak. Gambar.18 Tipe-tipe Vortex (Hecker,1987) Tipe vortex 1 merupakan awal aliran air berputar di permukaan. Tipe putaran air mulai menunjukkan adanya cekungan kedalam di bagian tengah pusaran. Tipe 3 pusaran air mulai membentuk kolom udara (vortex) yang

20 bergerak menuju oulet. Tipe 4 kekuatan vortex mampu menarik material apung masuk ke dalam pusaran. Tipe 5 adalah vortex dimana gelembunggelembung udara pecah di ujung pusat pusaran yang masuk konstruksi silinder. Tipe 6 vortex dengan lubang udara penuh menuju outlet..8 Aliran berputar dalam tabung Sebuah tulisan yang dibuat oleh F.Chang dan V.K Dhir mengemukakan sebuah penelitian eksperimental untuk memahami karateristik daerah turbulen pada aliran berpusar secara tangensial dalam tabung. Profil kecepatan aksial menunjukkan terjadinya aliran balik dibagaian tengah tabung yang mengecil ukurannya sesuai berkurangnya intensitas putaran, kecepatan aksial minimum didekat dinding juga berkurang sesuai berkurangnya intensitas pusaran. Profil kecepatan tangensial menunjukkan bahwa daerah kecepatan tangensial maksimum akan bergerak secara radial menuju tengah putaran, sesuai denagn penambahan jarak aksial putaran dari fluida yang masuk. Aliran yang berputar dapat dibagi dua bagian tengahnya terbentuk vortex paksa dan pada bagian tepinya merupakan vortex bebas dengan daerah transisi diantaranya. Maka aliran yang terbentu dalam tabung tersebut merupakan aliran vortex Rankine. Parameter yang paling penting pada Hydrocyclone sebagai alat pemisah adalah efisiensi pengumpulannya dan titik tekan antar unit. Efisiensi pengumpulan Hydrocyclone ditentukan oleh kemampuannya menangkap dan menyimpan partikel atau material dimana titik tekanan sejumlah dengan kekuatan yang dibutuhkan unit untuk melakukan hal tersebut. Gaya pemisah : Faktor pemisah : 4 V W + 1 = g R F S (.8-1) FC V S = = (.8-) W gr dimana : W = Berat partikel (kg)

21 V = Kecepatan aliran (m/s) R = Jari-jari rotasi (m) g = Gaya gravitasi (m/s ) Distribusi kecepatan tangensial tidak bervariasi secara signifikan terhadap arah aksial (Xiang and Lee, 005). Perbedaan antara kecepatan tangensial dalam silinder bagian atas dan kerucut bagian bawah tidak terjadi. Hal ini menunjukkan bahwa tidak terjadi percepatan kecepatan dalam kerucut akibat penurunan luas penampang kerucut. Bagaimanapun, terjadi perbedaan kecepatan tangensial pada ketinggian yang berbeda. Kecepatan tangensial secara signifikan turun ketika ketinggian hydrocyclone meningkat dan ini bertanggung jawab pada rendahnya efisiensi pemisahan. Fenomena ini terjadi pada kerucut yang panjang. Satu perkecualian adalah bahwa jika hydrocyclonenya sangat pendek sehingga menyebabkan pipa keluar menonjol ke bagian kerucut sehingga efisiensi dari siklon akan turun akibat aliran pintas ke pipa keluar. Menurut Kim dan Lee lapisan batas kecepatan yang terbentuk pada permukaan dinding siklon memegang peranan penting sebagai penghalang deposisi partikel karena terjadinya penurunan gaya sentrifugal yang tajam di daerah dekat dinding (Kim and Lee, 001). Pemodelan turbulen perlu memperhitungkan difusi turbulen dalam daerah inti aliran dan gerakan partikel di dalam lapisan batas ini.turbulen merupakan bentuk aliran yang berfluktuasi terhadap ruang dan waktu. Turbulen merupakan proses yang kompleks.aliran turbulen adalah bagian dari disiplin ilmu mekanika fluida. Dalam analisanya, mekanika fluida selalu menggunakan pendekatan bahwa fluida sebagai kontinum, suatu ukuran fluida yang jauh lebih besar dari ukuran molekul, tetapi lebih kecil dari ukuran partikel. Karakter aliran turbulen tidak ditentukan oleh jenis fluida tetapi oleh karakter aliran itu sendiri. Turbulensi aliran pada fluida air dengan udara akan memiliki karakter yang sama jika memiliki bilangan Reynolds yang sama. Tegangan geser yang terjadi pada lapisan batas turbulen berasal dari viskositas fluida/viskositas molekuler (sifat molekuler fluida) dan viskositas turbulensi (sifat aliran).

22 Turbulen akan terjadi ketika gaya inersia dalam fluida menjadi sangat dominan dibandingkan gaya viskos (dicirikan dengan tingginya Reynolds, (Re). Nilai absolut dari bilangan Reynolds untuk turbulen selalu relatif terhadap konfigurasi aliran. Misalnya aliran eksternal akan memiliki bilangan Reynolds yang lebih tinggi daripada aliran internal. Tetapi nilai relatif bilangan Reynolds aliran turbulen selalu lebih tinggi daripada aliran laminer. Karena bilangan Reynolds merupakan rasio antara gaya inersia aliran dan gaya gesek, pengaruh gaya inersi pada aliran turbulen jauh lebih dominan dibandingkan dengan pengaruh gaya gesek[6].

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

INDUSTRI PENGOLAHAN BATUBARA

INDUSTRI PENGOLAHAN BATUBARA (Indra Wibawa Dwi Sukma_Teknik Kimia_Universitas Lampung) 1 INDUSTRI PENGOLAHAN BATUBARA Adapun berikut ini adalah flowsheet Industri pengolahan hasil tambang batubara. Gambar 1. Flowsheet Industri Pengolahan

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

Bab III Aliran Putar

Bab III Aliran Putar Bab III Aliran Putar Ada banyak jenis aliran fluida dalam dunia teknik, dimana komponen rotasi dari nilai rata-rata deformasi memberikan kontribusi lebih besar terhadap pola aliran yang terjadi. Memperhatikan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PEMISAHAN MEKANIS (mechanical separations)

PEMISAHAN MEKANIS (mechanical separations) PEMISAHAN MEKANIS (mechanical separations) sedimentasi (pengendapan), pemisahan sentrifugal, filtrasi (penyaringan), pengayakan (screening/sieving). Pemisahan mekanis partikel fluida menggunakan gaya yang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

ANALISA ALIRAN VORTEX PADA PEMBESARAN SALURAN PIPA DENGAN TEKNOLOGI COMPUTATIONAL FLUID DYNAMICS (CFD)

ANALISA ALIRAN VORTEX PADA PEMBESARAN SALURAN PIPA DENGAN TEKNOLOGI COMPUTATIONAL FLUID DYNAMICS (CFD) ANALISA ALIRAN VORTEX PADA PEMBESARAN SALURAN PIPA DENGAN TEKNOLOGI COMPUTATIONAL FLUID DYNAMICS (CFD) Ridwan [1] ; A. Indra Siswantara [2] ; Supriyanto [3] [1] Staff Pengajar Jurusan Teknik Mesin, Universitas

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

PBP S1 Sperisa Distantina

PBP S1 Sperisa Distantina PBP S1 Sperisa Distantina Dust collector (lanjutan) Centrifugal separator Pustaka : Coulson, Particle Technology and Separation Processes, Volume, 5 th ed. Coulson, Chem. Engg. Des., Volume 6. Foust. Perry.

Lebih terperinci

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml

2 yang mempunyai posisi vertikal sama akan mempunyai tekanan yang sama. Laju Aliran Volume Laju aliran volume disebut juga debit aliran (Q) yaitu juml KERUGIAN JATUH TEKAN (PRESSURE DROP) PIPA MULUS ACRYLIC Ø 10MM Muhammmad Haikal Jurusan Teknik Mesin Universitas Gunadarma ABSTRAK Kerugian jatuh tekanan (pressure drop) memiliki kaitan dengan koefisien

Lebih terperinci

ANALISA ALIRAN FLUIDA PADA HYDROCYCLONE DENGAN METODE NUMERIK MENGGUNAKAN PERANGKAT LUNAK CFD

ANALISA ALIRAN FLUIDA PADA HYDROCYCLONE DENGAN METODE NUMERIK MENGGUNAKAN PERANGKAT LUNAK CFD ANALISA ALIRAN FLUIDA PADA HYDROCYCLONE DENGAN METODE NUMERIK MENGGUNAKAN PERANGKAT LUNAK CFD SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ION RISWAN SINAGA NIM.

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

SIMULASI PENGARUH VARIASI KECEPATAN INLET TERHADAP PERSENTASE PEMISAHAN PARTIKEL PADA CYCLONE SEPARATOR DENGAN MENGGUNAKAN CFD ABSTRAK

SIMULASI PENGARUH VARIASI KECEPATAN INLET TERHADAP PERSENTASE PEMISAHAN PARTIKEL PADA CYCLONE SEPARATOR DENGAN MENGGUNAKAN CFD ABSTRAK VOLUME 10 NO.1, FEBRUARI 2014 SIMULASI PENGARUH VARIASI KECEPATAN INLET TERHADAP PERSENTASE PEMISAHAN PARTIKEL PADA CYCLONE SEPARATOR DENGAN MENGGUNAKAN CFD A.Husairy 1 dan Benny D Leonanda 2 ABSTRAK Pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bauksit Bauksit merupakan bahan yang heterogen, yang mengandung mineral dari oksida aluminium, yaitu berupa mineral buhmit (Al 2 O 3.H 2 O) dan mineral gibsit (Al 2 O 3.3H 2

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

SOAL MID SEMESTER GENAP TP. 2011/2012 : Fisika : Rabu/7 Maret 2012 : 90 menit

SOAL MID SEMESTER GENAP TP. 2011/2012 : Fisika : Rabu/7 Maret 2012 : 90 menit Mata Pelajaran Hari / tanggal Waktu SOAL MID SEMESTER GENAP TP. 2011/2012 : Fisika : Rabu/7 Maret 2012 : 90 menit Petunjuk : a. Pilihan jawaban yang paling benar diantaraa huruf A, B, C, D dan E A. Soal

Lebih terperinci

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan)

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) Panduan Praktikum Fenomena Dasar 010 A. Tujuan Percobaan: Percobaan 5 Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) 1. Mengamati kerugian tekanan aliran melalui elbow dan sambungan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Alat Cara kerja Mesin pemisah minyak dengan sistem gaya putar yang di control oleh waktu, mula-mula makanan yang sudah digoreng di masukan ke dalam lubang bagian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

Rachmat Boedisantoso. Cyclone

Rachmat Boedisantoso. Cyclone Rachmat Boedisantoso Cyclone Cyclone separator adalah alat yang menggunakan prinsip gaya sentrifugal dan tekanan rendah karena adanya perputaran untuk memisahkan materi berdasarkan perbedaan massa jenis

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

KATA PENGANTAR. Medan, Oktober Penulis

KATA PENGANTAR. Medan, Oktober Penulis KATA PENGANTAR Puji dan syukur penulis ucapkan kepada Tuhan Yang Maha Esa, karena atas berkah rahmat dan hidayah-nya penulis dapat menyelesaikan Makalah tentang Pengolahan Inti Sawit (Kernel) dengan sebaik-baiknya.

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrodinamika 2.1.1 Definisi Hidrodinamika Hidrodinamika merupakan salah satu cabang ilmu yang berhubungan dengan gerak liquid atau lebih dikhususkan pada gerak air. Skala

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM

PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM NASKAH PUBLIKASI PENGARUH VARIASI VOLUME TABUNG TEKAN TERHADAP EFISIENSI PADA POMPA HIDRAM Naskah Publikasi ini disusun guna memenuhi Tugas Akhir pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D 9:4:04 Posisi, Kecepatan dan Percepatan Angular 9:4:04 Partikel di titik P bergerak melingkar sejauh θ. Besarnya lintasan partikelp (panjang busur) sebanding sebanding dengan: s = rθ Satu keliling lingkaran

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

Gerak Melingkar Pendahuluan

Gerak Melingkar Pendahuluan Gerak Melingkar Pendahuluan Gerak roda kendaraan, gerak CD, VCD dan DVD, gerak kendaraan di tikungan yang berbentuk irisan lingkaran, gerak jarum jam, gerak satelit mengitari bumi, dan sebagainya adalah

Lebih terperinci

Bab VI Hasil dan Analisis

Bab VI Hasil dan Analisis Bab VI Hasil dan Analisis Dalam bab ini akan disampaikan data-data hasil eksperimen yang telah dilakukan di dalam laboratorium termodinamika PRI ITB, dan juga hasil pengolahan data-data tersebut yang diberikan

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis, BAB II TINJAUAN PUSTAKA.1 Perancangan Mesin Pemisah Biji Buah Sirsak Proses pembuatan mesin pemisah biji buah sirsak melalui beberapa tahapan perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA Syofyan Anwar Syahputra 1, Aspan Panjaitan 2 1 Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai Sei Raja

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: Treefy Education PEMBAHASAN LATIHAN 1 1.a) Bayangkan bola berada di puncak pipa. Ketika diberikan sedikit dorongan, bola akan bergerak dan menabrak tanah dengan kecepatan. Gerakan tersebut merupakan proses

Lebih terperinci

MEKANIKA FLUIDA I HMKK 325. Dr. Aqli Mursadin Rachmat Subagyo, MT

MEKANIKA FLUIDA I HMKK 325. Dr. Aqli Mursadin Rachmat Subagyo, MT MEKANIKA FLUIDA I HMKK 325 Dr. Aqli Mursadin Rachmat Subagyo, MT FLUIDA SEBAGAI KONTINUM Dalam membahas hubungan-hubungan aliran fluida secara matematik atau analitik, perlu diperhatikan bahwa struktur

Lebih terperinci

BAB 1 PENDAHULUAN. Liquid Cylindrical Cyclone (LLCC), LLCC menggunakan prinsip Aliran

BAB 1 PENDAHULUAN. Liquid Cylindrical Cyclone (LLCC), LLCC menggunakan prinsip Aliran BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring berkembangnya teknologi, penelitian mengenai pemisahan minyak dan air pun juga semakin berkembang, salah satunya adalah Liquid- Liquid Cylindrical Cyclone (LLCC),

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas

Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Beberapa topik tegangan permukaan

Lebih terperinci

PUNTIRAN. A. pengertian

PUNTIRAN. A. pengertian PUNTIRAN A. pengertian Puntiran adalah suatu pembebanan yang penting. Sebagai contoh, kekuatan puntir menjadi permasalahan pada poros-poros, karena elemen deformasi plastik secara teori adalah slip (geseran)

Lebih terperinci

BAB I PENDAHULUAN. Analisa efek secondary..., Paian Oppu Torryselly, FT UI, 2008

BAB I PENDAHULUAN. Analisa efek secondary..., Paian Oppu Torryselly, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Penggunaan pompa sentrifugal untuk memindahkan fluida air dari satu wadah ke wadah yang lain, lazim kita temui dalam dunia industri maupun kehidupan sehari-hari.

Lebih terperinci

BAB II LANDASAN TEORI. dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya

BAB II LANDASAN TEORI. dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya BAB II LANDASAN TEORI 2.1 Pengukuran Laju Aliran Fluida dapat dilakukan berdasarkan persamaan kontinuitas yang mana prinsif dasarnya berasal dari hukum kekekalan massa seperti yang terlihat pada Gambar

Lebih terperinci

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET i Saat ini begitu banyak perusahaan teknologi dalam pembuatan satu barang. Salah satunya adalah alat penyemprotan nyamuk. Alat penyemprotan nyamuk ini terdiri dari beberapa komponen yang terdiri dari pompa,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN REAKTOR GASIFIKASI

BAB III PERANCANGAN DAN PEMBUATAN REAKTOR GASIFIKASI BAB III PERANCANGAN DAN PEMBUATAN REAKTOR GASIFIKASI 3.1 Perancangan Reaktor Gasifikasi Reaktor gasifikasi yang akan dibuat dalam penelitian ini didukung oleh beberapa komponen lain sehinga membentuk suatu

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

BAB2 TINJAUAN PUSTAKA

BAB2 TINJAUAN PUSTAKA BAB2 TINJAUAN PUSTAKA 2.1. Proses Pengolahan Kelapa Sawit Secara umum pengolahan kelapa sawit terbagi menjadi dua hasil akhir, yaitu pengolahan minyak kelapa sawit (CPO) dan pengolahan inti sawit (kernel).

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur

BAB II MESIN PENDINGIN. temperaturnya lebih tinggi. Didalan sistem pendinginan dalam menjaga temperatur BAB II MESIN PENDINGIN 2.1. Pengertian Mesin Pendingin Mesin Pendingin adalah suatu peralatan yang digunakan untuk mendinginkan air, atau peralatan yang berfungsi untuk memindahkan panas dari suatu tempat

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT

STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT Sarjito, Subroto, Arif Kurniawan Jurusan Teknik Mesin Fakultas Tekknik Universitas Muhammadiyah

Lebih terperinci

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O 1 1. Empat buah partikel dihubungkan dengan batang kaku yang ringan dan massanya dapat diabaikan seperti pada gambar berikut: Jika jarak antar partikel sama yaitu 40 cm, hitunglah momen inersia sistem

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN 3 GEAK MELINGKA BEATUAN Kincir raksasa melakukan gerak melingkar. Sumber: Kompas, 20 Juli 2006 Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu benda bergerak pada garis lurus, gerak

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Sungai Sungai adalah suatu alur yang panjang diatas permukaan bumi tempat mengalirnya air yang berasal dari hujan dan senantiasa tersentuh air serta terbentuk secara alamiah (Sosrodarsono,

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Pemipil Jagung Mesin pemipil jagung merupakan mesin yang berfungsi sebagai perontok dan pemisah antara biji jagung dengan tongkol dalam jumlah yang banyak dan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

Integral yang berhubungan dengan kepentingan fisika

Integral yang berhubungan dengan kepentingan fisika Integral yang berhubungan dengan kepentingan fisika 14.1 APLIKASI INTEGRAL A. Usaha Dan Energi Hampir semua ilmu mekanika ditemukan oleh Issac newton kecuali konsep energi. Energi dapat muncul dalam berbagai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan J. of Math. and Its Appl. ISSN: 189-605X Vol. 1, No. 1 004, 63 68 Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan Basuki Widodo Jurusan Matematika Institut

Lebih terperinci

PERTEMUAN III HIDROSTATISTIKA

PERTEMUAN III HIDROSTATISTIKA PERTEMUAN III HIDROSTATISTIKA Pengenalan Statika Fluida (Hidrostatik) Hidrostatika adalah ilmu yang mempelajari perilaku zat cair dalam keadaan diam. Konsep Tekanan Tekanan : jumlah gaya tiap satuan luas

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian pompa Pompa adalah peralatan mekanis untuk meningkatkan energi tekanan pada cairan yang di pompa. Pompa mengubah energi mekanis dari mesin penggerak pompa menjadi energi

Lebih terperinci