1. Mempunyai tegangan kerja yang sama

Ukuran: px
Mulai penontonan dengan halaman:

Download "1. Mempunyai tegangan kerja yang sama"

Transkripsi

1 SYNCHRONIZING GENERATOR Synchronizing generator adalah memparalelkan kerja dua buah generator atau lebih untuk mendapatkan daya sebesar jumlah generator tersebut dengan syarat syarat yang telah ditentukan. Syarat syarat dasar dari parallel generator adalah sebagai berikut : 1. Mempunyai tegangan kerja yang sama 2. Mempunyai urutan phase yang sama 3. Mempunyai frekuensi kerja yang sama 4. Mempunyai sudut phase yang sama Dalam kerja parallel generator tidak cukup hanya berdasar pada syarat syarat diatas ada hal lain yang perlu diketahui sebagai penjabaran syarat syarat diatas. Adapun penjabarannya sebagai berikut: 1. Mempunyai tegangan kerja yang sama Apa yang diharapkan dengan adanya tegangan kerja yang sama? dengan adanya tegangan kerja yang sama diharapkan pada saat diparalel dengan beban kosong power faktornya 1. Dengan power factor 1 berarti tegangan antara 2 generator persisi sama.jika 2 sumber tegangan itu berasal dari dua sumber yang sifatnya statis misal dari battery atau transformator maka tidak akan ada arus antara kedunya. Namun karena dua sumber merupakan sumber tegangan yang dinamis (diesel generator) Maka power factornya akan terjadi deviasi naik dan turun secara periodic bergantian dan berlawanan. Mengapa bisa terjadi demikian? Hal ini terjadi karena adanya sedikit perbedaan sudut phase yang sesekali bergeser karena factor gerak dinamis dari diesel penggerak.itu bisa dibuktikan dengan membaca secara bersamaan Rpm dari kedua genset dalam keadaan sinkron misalnya Generator 1 mempunyai kecepatan putar 1500 dan generator 2 mempunyai kecepatan putar 1501 maka terdapat selisih 1 putaran / menit Dengan perhitungan 1/1500 x 360 derajat maka terdapat beda fase 0,24 derajat dan jika dihitung selisih teganan sebesar cos phi 0,24 derajat x tegangan nominal (400 V )- tegangan nominal (400 V ) dan selisihnya sekitar V dan selisih tegangan yang kecil cukup mengakibatkan timbulnya arus sirkulasi antara 2 buah genset tersebut dan sifatnya tarik menarik. dan itu tidak membahayakan. Dan pada saat dibebani bersama sama maka power faktornya akan relative sama sesuai dengan power factor beban. Memang sebaiknya dan idealnya masing masing generator menunjukkan power factor yang sama. Namun jika terjadi power factor yang berbeda dengan selisih tidak terlalu banyak tidak terjadi akibat apa apa. Akibatnya salah satu genset yang mempunyai nilai power factor rendah akan mempunyai nilai arus yang sedikit lebih tinggi. Yang penting diperhatikan adalah tidak melebihi arus nominal dan daya nominal dari genset. Sebagai contoh : Jika masing masing generator memikul beban 100 kw, dimana generator 1 dengan power factor 0,85 dan yang satu mempunyai power factor 0,75. Maka dengan menggunakan rumus daya aktif didapat selisih arus dan itu tidak ada masalah, dan bisa saja dianggap bahwa generator bekerja independent dengan arus tersebut. Pada saat generator bekerja parallel perubahan arus excitasi akan merubah power factor, jika arus excitasi diperkuat maka nilai power factor mengecil menjauhi satu, sebaliknya jika excitasi dikurangi

2 maka nilai power factor akan membesar mendekati 1. Pada generator yang akan diparalel biasanya didalam alternatornya ditambahkan peralatan yang dinamakan Droop kit. Droop kit ini berupa current transformer yang dipasang. disebagian lilitan dan outputnya disambungkan ke AVR. Droop kit ini berfungsi untuk mengatur power factor berdasarkan besarnya arus beban.. Sehingga pembagian beban kvar diharapkan sama pada kw yang sama. Pada panel panel kontrol modern sudah diperlengkapi dengan modul yang mana sudah terdapat pengaturan Var generator dengan output yang disambungkan ke AVR generator. sehingga secara otomatis masing masing genset berapapun beban kw power factor akan menjadi sama dan seimbang. Hal ini diperuntukkan pada system yang mana system tersebut parallel sesaat atau transfer beban baik antara genset maupun dengan PLN. Pada saat transfer beban secara soft transfer terjadi pemindahan beban, perubahan power factor yang kecenderungan terjadi diatur secara otomatic oleh modul tersebut, sehingga pada saat transfer beban tidak terjadi perubahan power factor yang berarti. Pada saat ini banyak pembangkit listrik rental yang terdapat pada PLTD PLTD seluruh Indonesia, dimana pihak swasta menyewakan Gensetnya untuk menambah kapasitas daya terpasang PLN. Pada kondisi ini sedikit berbeda dengan yang diuraikan diatas yaitu masalah pembagian dan pengaturan power factor. Pada genset rental sudah ditentukan berapa kw beban yang akan disupply dan berapa kwh energi yang akan dikirim.pada saat mulai memparalelkan tegangan tidak harus sama, karena pengaturan kenaikan beban secara bertahap maka pengaturan penambaha excitasi juga bertahap sampai didapatkan power factor yang dikehendaki. Kita bisa mengatur sendiri power factor yang akan dioperasikan. Bisa 0,8 0,85 0,9 atau 0,95 namun pada umumnya yang lebih disukai pada power factor 0,9. Mengapa kita bisa mengatur power factor sekehendak kita? hal ini dikarenakan kapasitas generator PLN jauh lebih besar dibandingkan generator rental, sehingga perubahan power factor di generator rental tidak begitu mempengaruhi banyak meskipun ada. Sebagai contoh : Beban system suatu kota atau pulau sebesar 55 mega watt dimana PLN menyediakan 50 mega dan genset rental dapat beban 5 mega, Jika power factor beban yang ada 0,9. dimana Pada saat itu Power factor genset PLN 0,9 sedangkan rental juga diset 0,9. Jika suatu saat Power factor genset rental diturunkan menjadi 0,8 dengan mengurangi arus excitasi. Maka perubahan power factor di pembangkit PLN menjadi 0,91. sebaliknya jika power factor genset rental diatur menjadi 1 dengan menaikkan arus excitasi, power factor pembangkit PLN menjadi 0,89 sehingga perubahan sebesar 0,01 diabaikan. Pada saat hendak memparalelkan secara manual generator dengan Catu daya PLN yang sudah berbeban atau generator lain yang sudah berbeban, apa yang mesti dilakukan? Jika kita menyamakan persis dengan tegangan line / jala jala,maka pada saat breaker close power factor genset akan menunjuk 1 dan beban kw akan menunjuk pada posisi 0, jika kita menambah daya output mesin perlahan lahan, maka power factor akan cenderung menuju ke kapasitif (leading) dan memungkinkan terjadinya reverse power. Untuk menghindari tersebut maka setelah sinkron penguatan excitasi dulu yang dinaikkan sampai cosphi menunjuk 0,7. seiring dengan itu naikkan daya mesin dengan menaikkan speed adjuster. Pada saat beban naik, cosphi akan naik membesar

3 mendekati satu. Pada saat bersamaan excitasi diatur mencapai nilai 0,7 demikian seterusnya sampai mencapai nilai yang diinginkan misalnya 1000 kw pada cos phi 0, Mempunyai urutan phase yang sama Yang dimaksud urutan phase adalah arah putaran dari ketiga phase. Arah urutan ini dalam dunia industri dikenal dengan nama CW ( clock wise) yang artinya searah jarum jam dan CCW (counter clock wise ) yang artinya berlawanan dengan jarum jam. Hal ini dapat diukur dengan alat phase sequence type jarum. Dimana jika pada saat mengukur jarum bergerak berputar kekanan dinamakan CW dan jika berputar kekiri dinamakan CCW. Disamping itu dikenal juga urutan phase ABC dan CBA. ABC identik dengan CW sedangkan CBA identik dengan CCW. Perlu diketahui bahwa dalam banyak generator mencantumkan symbol R,S,T,N ataupun L1,L2,L3,N namun tidak selalu berarti bahwa urutan CW / ABC itu berarti RST atau L1L2L3 jika diukur urutan STR, TRS,L2L3L1 itu juga termasuk CW/ABC. Sebagai contoh : jika kabel penghantar yang keluar dari generator diseragamkan semua berwarna hitam dan tidak ada kode sama sekali, apakah kita bisa membedakan secara visual atau parameter listrik bahwa penghantar itu phasenya R, S, atau T tentu tidak. Kita hanya bisa membedakan arah urutannya saja CW atau CCW. Apapun generatornya jika mempunyai arah urutan yang sama maka dapat dikatakan mempunyai salah satu syarat dari parallel generator. Sehingga bisa jadi pada dua generator yang sama urutan RST pada genset 1 dapat dihubungkan dengan phase STR pada Genset 2 dan itu tidak ada masalah asal keduanya mempunyai arah urutan yang sama. 3. Mempunyai frekuensi kerja yang sama Didalam dunia industri dikenal 2 buah system frekuensi yaitu 50 hz dan 60 hz. Dalam operasionalnya sebuah genset bisa saja mempunyai frekuensi yang fluktuatif (berubah ubah) karena factor factor tertentu. Pada jaringan distribusi dipasang alat pembatas frekuensi yang membatasi frekuensi pada minimal 48,5 hz dan maksimal 51,5 Hz. Namun pada genset genset pabrik over frekuensi dibatasi sampai 55 hz sebagai overspeed. Pada saat hendak parallel, dua buah genset tentu tidak mempunyai frekuensi yang sama persis. Jika mempunyai frekuensi yang sama persis maka genset tidak akan bisa parallel karena sudut phasanya belum match, salah satu harus dikurang sedikit atau dilebihi sedikit untuk mendapatkan sudut phase yang tepat. Setelah dapat disinkron dan berhasil sinkron baru kedua genset mempunyai frekuensi yang sama sama persis. 4. Mempunyai sudut phase yang sama Mempunyai sudut phase yang sama bisa diartikan, kedua phase dari 2 genset mempunyai sudut phase yang berhimpit sama atau 0 derajat. Dalam kenyataannya tidak memungkinkan mempunyai sudut yang berhimpit karena genset yang berputar meskipun dilihat dari parameternya mempunyai frekuensi yang sama namun jika dilihat menggunakan synchronoscope pasti bergerak labil kekiri dan kekanan, dengan kecepatan sudut radian yang ada sangat sulit untuk mendapatkan sudut berhimpit dalam jangka waktu0,5 detik. Breaker membutuhkan waktu tidak kurang dari 0,3 detik untuk close

4 pada saat ada perintah close. Dalam proses sinkron masih diperkenankan perbedaan sudut maksimal 10 derajat. Dengan perbedaan sudut maksimal 10 derajat selisih tegangan yang terjadi berkisar 49 Volt. Gambar : Skema closing window synchronizing. Gambar : proses pergeseran fasa antar bus dan genset Setelah genset berhasil dan telah bekerja sinkron/ parallel, apakah hal itu sudah dikatakan bahwa genset sudah bekerja paralel dengan baik. Tentunya belum dikatakan sempurna sebuah usaha paralel generator sebelum hal hal tersebut dibawah ini bisa di jalankan : 1. Generator set mempunyai system governor yang sama, electrical governor dengan electrical governor, mekanik servo dengan mekanik servo hal ini akan berpengaruh terhadap kepekaan respone terhadap beban kejut. 2. Agar genset pada saat sinkron dapat mensupply beban dengan seimbang dengan genset lain maka masing masing genset dianjurkan untuk memiliki load sharing terutama untuk yang system automatic. 3. Pada beban rendah maupun tinggi dianjurkan masing masing genset mempunyai power factor yang relative sama. Baik pada sinkron manual maupun sinkron otomatic. 4. Pada saat pembebanan / beban kejut masing masing genset mempunyai response yang sama, hal ini berkaitan dengan penyetelan droop speed dan pengaturan speed control. 5. Pada saat pelepasan beban dianjurkan dengan soft unloading yaitu secara perlahan lahan dengan pengaturan speed dan voltage. 6. Pada saat pemasukan beban dianjurkan dengan soft unloading yaitu secara perlahan lahan dengan pengaturan speed dan Voltage. 7. Pada saat pembebanan tidak diperkenankan beban mengayun ayun dari genset satu ke genset lainnya, dan harus pada kondisi konstan. 8. Pada dua genset yang berbeda kapasitasnya pembebanan pada masing masing genset sebaiknya secara proporsional. Pada peralatan modern saat ini sudah banyak diciptakan modul modul yang dapat mengakomodasi kebutuhan synhcrone genset, berikut load sharing, synchronizing, dependent start stop, dan lain lain. Bahkan controlling dan monitoring dapat diakses jarak jauh baik menggunakan kabel data ataupun wireless. Berikut ini bisa dijelaskan mengenai fasilitas yang ada pada modul modul modern antara lain : 1. Dependent Start/ stop genset Adalah fasilitas yang dapat mengatur berapa genset yang hidup menyesuaikan kebutuhan beban, jika beban kecil maka memerintahkan genset yang lainnya untuk shutdown dengan soft unloading terlebih dulu. Demikian juga bila beban secara bertahap naik sampai melampaui setting yang kita tetapkan maka genset yang lainnya akan diperintahkan start secara otomatis dan sinkron otomatis. 2. Peak saving genset

5 Adalah fasilitas dalam modul yang berfungsi untuk memberikan tambahan daya pada trafo, sebagai contoh kapasitas terpasang suatu bangunan 2000 KVA beban puncak mencapai 1400 kw, karena kondisi temperature dan suhu transformator sudah maksimal dan kritis, sedangkan masih ada kecenderungan penambahan beban sehingga akan sangat beresiko, maka genset dioperasikan paralel untuk memberikan tambahan daya. Pada saat beban sudah hampir mencapai kapasitas maksimal trafo maka genset akan secara otomatis start dan otomatis akan parelel. Beban trafo akan dibuat tetap sedangkan kelebihannya akan disupply oleh Genset. Jika suatu saat beban menurun. maka otomatis genset akan diperintahkan untuk melepaskan beban dan shuting down. 3. Base load kontrol Base load kontrol adalah fasilitas dari modul yang mengatur beban genset secara konstan. Sedangkan kelebihannya yang fluktuatif di supply oleh trafo. Sebagai contoh bila sebuah rental genset dimana pihak rental harus memberikan daya sebasar 1000 kw secara kontinu maka genset bisa mensupply 1000 kw meskipun beban berubah ubah, kelebihan akan disupply oleh PLN. Sebagai contoh lain dua buah generator 1000 KVA bekerja paralel dimana salah satu genset Karena alasan teknis dibatasi hanya maksimal 500 Kw sedangkan genset yang satunya yang mensupply beban sisanya. 4. Dapat dioperasikan jarak jauh dengan menggunakan kabel data sampai sejauh 300 meter. Dalam operasional jarak jauh dapat dilakukan start dan stop engine, terbaca parameter listrik antara lain kw,kva,kvar,volt, hz,cosphi,volt dc, running hours dll. Pengaruh dan akibat yang ditimbulkan bila syarat syarat paralel generator tidak dipenuhi : 1. Pada generator yang diparalel dengan PLN, maka apabila generator yang akan diparalel mempunyai tegangan lebih tinggi maka begitu breaker close generator tersebut mempunyai power factor yang rendah, namun tidak membahayakan karena power factor di PLN masih induktif dan berdaya besar.dan apabila jika generator itu mempunyai tegangan yang lebih rendah maka power factor akan bersifat kapasitif dan mempunyai kecenderungan akan terjadi reverse power. Reverse power dibatasi pada level 5 % dari daya nominal. Pada generator yang diparalel dengan generator pada saat sama sama belum berbeban, maka apabila tegangan lebih tinggi power factor akan rendah ( induktif) namun sebaliknya power factor genset yang lain akan juga rendah namun bersifat kapasitif. Hingga genset yang lain mempunyai kecenderungan reverse power. 2. Jika urutan phase tidak sama system ABC di parallel dengan system CBA, maka akan terjadi selisih tegangan sebesar 2 kali tegangan nominal,hal itu bisa dideteksi dengan diukur secara manual menggunakan voltmeter, pada saat synchronoscope menunjuk 0 derajat, terdapat selisih sebesar 2 x 400 V.

6 3. Jika frekuensi tidak sama diparalelkan maka akan terjadi beberapa kemungkinan yaitu dari yang paling ringan sampai yang paling berat. Sebagai contoh generator 1 mempunyai frekuensi 49 hz sedangkan generator 2 mempunyai frekuensi 50 hz. Dengan melihat synchronoscope maka jarum akan berputar dengan kecepatan sudut 2 phi r/ detik atau 1putaran/ detik. Jika pada saat masuk pas pada sudut nol maka generator yang memiliki frekuensi lebih rendah akan mengalami reverse power dimana pada saat terhubung sinkron fekuensi ada pada 49,5 Hz. Dan proteksi reverse power akan bekerja mengamankan, namun jika pada saat masuk sinkron pas posisi synchronoscope di sudut 180 derajat itu berarti terjadi selisih tegangan yang sangat besar disamping kemungkinan reverse juga terjadi kerusakan yang fatal terhadap generator, di breaker akan muncul arus yang besar dan menimbulkan percikan api yang besar dan diengine akan terjadi hunting sesaat dan hal itu bisa mengakibatkan kerusakan mekanis sampai patah pada cransaft. Karena tekanan beban besar yang tiba tiba. 4. Jika sudut fase tidak sama namun kecenderungan frekuensi sama hanya akan menyebabkan hunting sesaat tanpa ada kemungkinan reverse power, namun juga sangat berbahaya jika berbeda sudutnya terlalu besar, engine akan mengalami tekanan sesaat hingga hunting. Power Factor Correction Perbaikan faktor kerja adalah suatu usaha atau langkah langkah untuk dapat mencapai system kelistrikan yang optimal. Power factor yang buruk dapat merugikan suatu sistem kelistrikan. Adapun kerugian yang dapat ditimbulkan dengan adanya factor kerja yang buruk atau rendah adalah : 1. Daya terpasang listrik PLN ( KVA) tidak dapat optimal. Jika beban yang ada sudah mencapai batas arus yang diijinkan. maka tidak dapat menambah beban listrik lagi sedangkan kw yang terpakai masih dibawah daya terpasang. 2. Dengan power factor yang rendah akan dikenakan penalty / denda dari PLN yang nilai rupiah / kvarh nya cukup tinggi. Hal ini karena sudah melebihi ketentuan yang distandarkan dari PLN yaitu sebesar 0, Dengan power factor yang rendah maka arus menjadi lebih tinggi. Dengan arus yang tinggi ini akan menjadikan kabel lebih panas karena energi yang terbuang karena arus. sesuai dengan rumus I Rt. maka dengan tahanan kabel yang tetap dan arus yang melewati kabel berbanding lurus dengan panas yang dikeluarkan. 4. Jika instalasi dengan kabel penghantar yang panjang dan jauh maka akan menyebabkan tegangan jatuh ( V ) semakin besar diujung beban. Tegangan jatuh berbanding lurus dengan arus yang melewati penghantar. Dengan keempat kerugian yang ditimbulkan oleh karena power factor yang rendah maka diupayakan memperbaikinya dengan memasang capasitor bank. Bagaimanakah konsep dasar sehingga dengan pemasangan kapasitor bank dapat memperbaiki factor kerja dari suatu sistem kelistrikan? Hal itu dapat dijelaskan sebagai berikut: - Beban beban yang mempunyai kecenderungan memiliki cosphi kurang dari satu tertinggal ( leaging) adalah beban beban listrik yang mempunyai unsur lilitan dan inti besi. Semisal lampu tabung

7 denga ballastnya, motor motor listrik, las listrik dan transformator regulator. - Sehingga daya listrik yang dipakai untuk mengoperasikan peralatan tersebut terdiri dari dua unsur yaitu daya aktif dan daya reaktif. - Daya aktif adalah daya yang terpakai yang terukur dengan kilowattmeter. Daya ini membentuk energi aktif persatuan waktu dan dapat diukur dengan kwh meter. - Sedangkan daya reaktif adalah daya yang terpakai sebagai energi pembangkitan flux magnetic sehingga timbul magnetisasi. Dan daya ini dikembalikan ke system karena efek induksi elektromagnetik itu sendiri. Capasitor bank adalah sekumpulan beberapa kapasitor yang disambung secara parallel untuk mendapatkan kapasitas kapasitif tertentu. Besaran yang sering dipakai adalah Kvar ( Kilovolt ampere reaktif ) meskipun didalamnya terkandung / tercantum besaran kapasitansi yaitu Farad atau microfarad. Kapasitor ini mempunyai sifat listrik yang kapasitif ( leading ). Sehingga mempunyai sifat mengurangi / menghilangkan terhadap sifat induktif ( leaging ).Dengan Dasar inilah Nilai power factor diperbaiki. Power Factor angle Active Power Apparent Power Reactive Power j Power factor : cos j = kw kva MENGHITUNG DAYA REAKTIF YANG DIPERLUKAN UNTUK MEMPERBAIKI FAKTOR KERJA Berapakah kapasitas daya reaktif yang diperlukan untuk memperbaiki system instalasi agar dicapai power factor yang diinginkan.ada beberapa metode yang bisa digunakan yaitu : 1. Metode tabel Cos Phi Metoda ini menggunakan table cos phi (terlampir).data yang diperlukan adalah daya beban puncak dan factor daya (cos phi ) Contoh : Sebuah instalasi pabrik memiliki factor daya 0,7 untuk beban puncak 600 kw jika factor daya yang diinginkan menjadi 0,93 diperlukan daya kapasitor sebesar : Dari tabel didapat angka : 0,62 Maka daya reaktif yang diperlukan = 0,62 x 600 kw = 372 kvar 2. Pembacaan Kvarh meter

8 Dengan uji petik pembacaan Kvarh meter analog pada beban puncak Data yang diperlukan adalah Ratio CT, Ratio PT dan Rev./kvarh Contoh : Pembacaan putaran piringan kvarh meter setiap 10 putaran adalah 60 dtk. CT Ratio 20/5 A, PT Ratio 20 / 0,1 KV dan rev / kvarh = 900 putaran / kvarh Daya reaktif yang diperlukan : CT ratio ( 4)x PT ratio(200) x 3600 dt /60 dtk x 10 putaran putaran / Kvarh = / 900 = 533 kvar 3. Pembacaan ampere dan cos phi Dengan pembacaan ampere meter pada beban puncak dan pembacaan power factor pada beban puncak. Contoh = Besar arus rata rata pada beban puncak 1000 Ampere Power factor pada beban puncak 0,8 tertinggal (cosphi 1 ) Power factor yang direncanakan 1 ( cos phi 2 ) Q = 3 x VL x ( I sin phi 1 I cos phi 1 x sinphi 2 ) Cos phi 2 Q = 1,732 x 400 V x ( 1000 x 0, x 0,8 x 0 ) Q = 692 x 600 Q = 415 Kvar 4.Pembacaan kw dan cos phi Metode ini bersifat global yang diperkirakan power factor target cosphi 1 Dengan rumus dasar : KVA = KW + KVAR KVAR = KVA - KW Contoh : Beban maksimum 400 kw pada cos phi 0,8 Beban dihitung KVA = 400/ 0,8 = 500 KVAR = = =

9 = 300 KVAR Jika target power factor yang diharapkan kurang dari satu maka dapat menggunakan rumus : Cos phi 1 ( awal ) = 0,8 Cos phi 2 (target) = 0,95 Daya aktif = 400 kw Rumus = Kvar = Kw ( tan phi 1 - tan phi 2 ) 1 1 Kvar = Kw ( ) Cosphi 1 cosphi = 400 ( ) 0,8 0,95 = 400 ( 0,75-0,33 ) = 168 Kvar 5. Pembacaan rekening/tagihan listrik Metode ini memerlukan data dari kwitansi selama satu periode (misalnya 1 tahun ). Kemudian data diambil dari pembayaran denda kvar tertinggi. Data lain yang diperlukan adalah jumlah waktu pemakaian. Kvarh tertinggi Q = = = 265 Kvar Waktu pemakaian 8 jam x 30 hari Aparrent power Active Power Reactive power New Apparent Power j 1 j 2 METODA PEMASANGAN INSTALASI KAPASITOR Cara pemasangan instalasi kapasitor dapat dibagi menjadi 3 bagian yaitu : 1. Global compensation

10 Dengan metode ini kapasitor dipasang di induk panel ( MDP ) Arus yang turun dari pemasangan model ini hanya di penghantar antara panel MDP dan transformator. Sedangkan arus yang lewat setelah MDP tidak turun dengan demikian rugi akibat disipasi panas pada penghantar setelah MDP tidak terpengaruh. Terlebih instalasi tenaga dengan penghantar yang cukup panjang Delta Voltagenya masih cukup besar. 2. Sectoral Compensation Dengan metoda ini kapasitor yang terdiri dari beberapa panel kapasitor dipasang dipanel SDP. Cara ini cocok diterapkan pada industri dengan kapasitas beban terpasang besar sampai ribuan kva dan terlebih jarak antara panel MDP dan SDP cukup berjauhan. 3. Individual Compensation Dengan metoda ini kapasitor langsung dipasang pada masing masing beban khususnya yang mempunyai daya yang besar. Cara ini sebenarnya lebih efektif dan lebih baik dari segi teknisnya. Namun ada kekurangan nya yaitu harus menyediakan ruang atau tempat khusus untuk meletakkan kapasitor tersebut sehingga mengurangi nilai estetika. Disamping itu jika mesin yang dipasang sampai ratusan buah berarti total cost yang di perlukan lebih besar dari metode diatas HARMONIC WAVE ( GELOMBANG HARMONIC ) Beban listrik di industri dapat dikelompokkan menjadi 2 bagian yaitu - Beban linier Yang dimaksud dengan beban linier adalah beban beban listrik yang tidak menimbulkan distorsi gelombang frekuensi. Hingga jika dilihat dari spectrum gelombang arus dan tegangan tidak nampak gelombang dengan frekuensi yang lain. Misalnya motor listrik induksi, pemanas, pijar dan lain lain - Beban non linier Yang dimaksud beban non linier adalah beban beban listrik yang dapat menimbulkan distorsi arus dan tegangan sehingga bentuk gelombang sudah tidak lagi sempurna sinusoida melainkan bisa dilihat seperti gambar. Frekuensi lain yang mucul akibat hal ini yang dinamakan gelombang harmonic. Beban beban listrik yang mengandung harmonic tinggi antara lain mesin las listrik, inverter, soft starter, motor motor DC, UPS, trafo saturasi,tanur listrik Dari kedua jenis beban ini beban non linier inilah yang dapat merusakkan kapasitor bank jika harmonic yang dihasilkan peralatan listrik berlebihan. Satuan haromic dalam prosen diukur dengan menggunakan alat ukur khusus ( Power quality meter ). Jenis kapasitor yang akan digunakan juga tergantung sampai seberapa besar Total daya peralatan yang mengandung harmonic dibandingkan dengan total daya trafo dalam satuan persen. Pada batas tertentu diatas 15 % maka harmonic ini dapat berpotensi merusakkan kapasitor. Selain dapat berpotensi merusakkan kapasitor harmonic ini juga dapat menyebabkan : 1. Menaikkan rugi rugi panas pada motor, transformator dan generator sehingga menurunkan

11 rendemen dari peralatan tersebut. 2. Combinasi parallel antara beban dan kapasitor dapat menimbulkan resonansi yang sifatnya memperkuat harmonic.dan berbahaya bagi peralatan elektronik. 3. Karena harmonic berpengaruh terhadap flux motor sehingga menimbulkan mekanikal vibrasi, noise dan ripple pada torsi motor. 4. Karena terpengaruh harmonic interference maka peralatan proteksi yang sifatnya elektronik dapat terpengaruh dan dapat mengalami kegagalan. 5. Karena gelombang arus dan tegangan sudah terdistorsi dengan harmonic maka pengukuran dengan instrument listrik bisa tidak lagi akurat karena gelombang arus dan tegangan sudah tidak sinusoida murni. Bagi peralatan peralatan elektronik vital sangat diperlukan peralatan pencegah harmonic buruk yaitu dengan memasang Filter harmonic yang bekerja menghilangkan gelombang harmonic. Gambar : Filter Harmonic Sedang untuk pengaman kapasitor dipasang kapasitor yang mempunyai tegangan kerja lebih tinggi sampai 525Volt dan kapasitas lebih tinggi. Sebagai contoh : Kapasitor dengan daya 50 Kvar dengan tegangan 470 Volt dipasang pada jaringan 415 Volt maka kapasitas capasitor turun menjadi : V2 P2 = x P1 V1 = 415 V x 50 Kvar =kurang lebih 40 Kvar 470 V Dan Jika harmonic sudah mencapai nilai tinggi hingga kapasitor tegangan 470 V masih terlalu rendah tegangannya, maka dapat digunakan Detuned Reactor. Detuned reactor adalah coil impedansi yang dipasang seri dengan kapasitor bank yang telah dinaikkan range tegangannya menjadi 525 V. Gambar : Detuned Reactor Pemasangan Detuned Reactor akan memberikan keuntungan : - Melindungi kapasitor dari kerusakan akibat kelebihan tegangan / arus karena harmonic yang terlalu tinggi. - Dapat menurunkan prosentase harmonic pada jaringan. Komponen komponen yang terdapat pada panel kapasitor antara lain :

12 1. Main switch / load Break switch Main switch ini sebagai peralatan kontrol dan isolasi jika ada pemeliharaan panel. Sedangkan untuk pengaman kabel / instalasi sudah tersedia disisi atasnya (dari) MDP.Mains switch atau lebih dikenal load break switch adalah peralatan pemutus dan penyambung yang sifatnya on load yakni dapat diputus dan disambung dalam keadaan berbeban, berbeda dengan on-off switch model knife yang hanya dioperasikan pada saat tidak berbeban. Untuk menentukan kapasitas yang dipakai dengan perhitungan minimal 25 % lebih besar dari perhitungan KVar terpasang dari sebagai contoh : Jika daya kvar terpasang 400 Kvar dengan arus 600 Ampere, maka pilihan kita berdasarkan 600 A + 25 % = 757 Ampere yang dipakai size 800 Ampere. 2. Kapasitor Breaker. Kapasitor Breaker digunkakan untuk mengamankan instalasi kabel dari breaker ke Kapasitor bank dan juga kapasitor itu sendiri. Kapasitas breaker yang digunakan sebesar 1,5 kali dari arus nominal dengan I m = 10 x Ir. Untuk menghitung besarnya arus dapat digunakan rumus I n = Qc / 3. VL Sebagai contoh : masing masing steps dari 10 steps besarnya 20 Kvar maka dengan menggunakan rumus diatas didapat besarnya arus sebesar 29 ampere, maka pemilihan kapasitas breaker sebesar % = 43 A atau yang dipakai 40 Ampere. Selain breaker dapat pula digunakan Fuse, Pemakaian Fuse ini sebenarnya lebih baik karena respon dari kondisi over current dan Short circuit lebih baik namun tidak efisien dalam pengoperasian jika dalam kondisi putus harus selalu ada penggantian fuse. Jika memakai fuse perhitungannya juga sama dengan pemakaian breaker. 3. Magnetic Contactor Magnetic contactor diperlukan sebagai Peralatan kontrol.beban kapasitor mempunyai arus puncak yang tinggi, lebih tinggi dari beban motor. Untuk pemilihan magnetic contactor minimal 10 % lebih tinggi dari arus nominal ( pada AC 3 dengan beban induktif/kapasitif). Pemilihan magnetic dengan range ampere lebih tinggi akan lebih baik sehingga umur pemakaian magnetic contactor lebih lama. 5. Kapasitor Bank Kapasitor bank adalah peralatan listrik yang mempunyai sifat kapasitif..yang akan berfungsi sebagai penyeimbang sifat induktif. Kapasitas kapasitor dari ukuran 5 KVar sampai 60 Kvar. Dari tegangan kerja 230 V sampai 525 Volt. 6. Reactive Power Regulator

13 Peralatan ini berfungsi untuk mengatur kerja kontaktor agar daya reaktif yang akan disupply ke jaringan/ system dapat bekerja sesuai kapasitas yang dibutuhkan. Dengan acuan pembacaan besaran arus dan tegangan pada sisi utama Breaker maka daya reaktif yang dibutuhkan dapat terbaca dan regulator inilah yang akan mengatur kapan dan berapa daya reaktif yang diperlukan. Peralatan ini mempunyai bermacam macam steps dari 6 steps, 12 steps sampai 18 steps. Peralatan tambahan yang biasa digunakan pada panel kapasitor antara lain : - Push button on dan push button off yang berfungsi mengoperasikan magnetic contactor secara manual. - Selektor auto off manual yang berfungsi memilih system operasional auto dari modul atau manual dari push button. - Exhaust fan + thermostat yang berfungsi mengatur ambein temperature dalam ruang panel kapasitor. Karena kapasitor, kontaktor dan kabel penghantar mempunyai disipasi daya panas yang besar maka temperature ruang panel meningkat.setelah setting dari thermostat terlampaui maka exhust fan akan otomatic berhenti. DESIGN DAN PERENCANAAN PANEL KAPASITOR Suatu pabrik mempunyai parameter listrik sebagai berikut : Pada beban puncak / full operasional terbaca : Ampere : 1200 Ampere Tegangan : 385 Volt AC Cos phi : 0,75 ( cosphi 1 ) = sin phi 1 : 0,661 Kw meter : 600 Kw Cos phi yang ditargetkan : 0,96 (cosphi 2 ) = sin phi 2 : 0,28 Perhitungan dengan rumus : Ic = ( Arus Maksimum x sin phi 1) ( Arus maksimum x cos phi 1 x sin phi 2 ) Cos phi 2 = ( 1200 x 0,661 ) - ( 1200 x 0,75 x 0,28 ) ,96 = 793,2-262,5 = 530,7 Ampere Reaktif Qc = 3 x VL x Ic = 1,732 x 385 x 530,7 = 353,88 Kvar = 354 Kvar

14 Kapasitor yang dibutuhkan : Tegangan kerja kapasitor 415 V ( V 2 ) Tegangan jala jala terukur 385 V ( V1 ) Daya reaktive terhitung 354 Kvar ( Q1 ) Daya Reaktive Kebutuhan ( Q2)? Q Q 2 = = = 411,6 Kvar = 420 Kvar ( V1 / V2 ) ( 385/ 415 ) Jadi kebutuhan daya reaktif aktualnya 420 Kvar 1. Mains switch yang digunakan sebesar : MS = 1,25 x I c = 1,25 x 530 Ampere = 662 Ampere Bisa dipilih antara kapasitas switch 630 A atau 800 A Selain Load break switch ( LBS ) bisa digunakan MCCB atau fuse 2. Regulator yang di pilih mempunyai 12 steps dengan perhitungan 10 Kvar x 1 steps, 20 kvar x 1 steps, 30 Kvar x 1 steps dan 40 Kvar 9 steps = = 420 Kvar Current transformer yang dipakai 600 / 5 A atau menggunakan Current transformer yang sudah ada di panel MDP berapapun ampernya, Reactive power regulator dapat menyesuaikan settingan. 3. Pemutus tenaga yang digunakan bisa menggunakan MCCB atau Fuse Untuk 10 Kvar = 20 Ampere ( fuse 25 Ampere) Untuk 20 Kvar = 40 Ampere ( fuse 50 Ampere ) Untuk 30 KVar = 60 Ampere ( fuse 80 Ampere ) Untuk 40 Kvar = 80 Ampere ( fuse 100 Ampere) Dianjurkan memilih breaker dengan breaking capacity yang tinggi minimal 25 KA. 4. Magnetic contactor yang digunakan untuk kapasitor 10 Kvar = 20 Ampere 20 Kvar = 40 Ampere 30 Kvar = 60 Ampere 40 Kvar = 80 Ampere Rating ampere kontaktor kondisi pada AC 3 bukan AC1 5. Kapasitor bank yang digunakan pada tegangan jaringan 400/415 V 10 Kvar 1 unit 20 Kvar 1 unit 30 Kvar 1 unit

15 40 Kvar 9 unit 6. Busbar utama untuk kapasitas 600 Ampere menggunakan ukuran 8 x 50 mm = 400 mm 2 (batang tembaga ).Untuk busbar main switch menggunakan ukuran 10 x 30 mm = 300 mm2 7. Kabel Power kapasitor bank menggunakan kabel NYA / NYAF 10 Kvar = 6 mm 2 20 Kvar = 10 mm 2 30 Kvar = 16 mm 2 40 Kvar = 25 mm 2 Additional komponen : - Exhaust fan 60 watt 220 V + Thermostat - Selektor auto manual - Push button on off - Pilot lamp - Mcb control / fuse control - Cover pertinax 2 mm Box panel yang digunakan ukuran : Tinggi : 200 cm Panjang : 150 cm ( 2 pintu ) Tebal / dalam : 75 cm Tebal plat : 1,8 mm 2 mm Warna : Grey RAL 7032 Cat : Powder Coating Langkah perakitan dan instalasi : 1. Atur dan pasang dudukan Main Switch, MCCB, Magnetic contactor, dan kapasitor bank 2. Ukur dan setting dudukan untuk busbar utama 3. Ukur dan setting untuk busbar mains switch 4. Lubangi busbar dan cat sesuai dengan urutan RST 5. Lubangi dudukan plat untuk pasang Main switch,mccb,kontaktor dan kapasitor 6. Lubangi pintu panel sesuai gambar rencana untuk Modul regulator,pilot lamp, push button dan selector auto manual. 7. Pasang semua komponen pada tempatnya sesuai gambar 8. Instalasi Kabel Power dari Busbar, MCCB, Magnetic contactor sampai Kapasitor bank.gunakan sleve kabel untuk menandai phasenya. 9. Instalasi kabel kontrol, dianjurkan menggunakan kabel merah warna standar untuk rangkaian kontrol AC) kabel schoon merah untuk menandai Phase dan Kabel schoon biru untuk menandai

16 neutral. Untuk RST menggunakan kabel shoon merah,kuning, biru 10. Instalasi kabel kontrol menggunakan marking kabel untuk kemuda Han identifikasi dan pemeliharaan. Langkah langkah Test Commisioning Panel Kapasitor 1. Tarik kabel Power utama NYY 3 x 1 x 300 mm dari main switch dipanel kapasitor sampai breaker outgoing / busbar panel MDP. 2. Tarik dan instalasi kabel Neutral NYAF 6 mm 3. Tarik kabel grounding dengan ukuran minimal BC 50 mm 4. Tarik kabel instalasi kontrol Current transformer dengan menggunakan kabel NYM 2 x 4 mm, jika jarak antara panel kapasitor dengan panel MDP lebih dari 10 meter maka kabel kontrol Current transformer diperbesar menjadi NYM 2 x 6 mm. 5. Cek ulang penyambungan kabel power dan kabel CT pastikan sudah sesuai urutan dan polaritasnya. 6. Cek dengan ohmmeter antara busbar dengan busbar, dan antara busbar dengan body atau grounding. 7. Semua switch baik main switch, MCCB, mcb kontrol dan selector switch dalam keadaan off. 8. Masukkan tegangan power ke panel Kapasitor. Catat tegangan kerja dan amati. 9. Masukkan main switch diikuti oleh mccb step by step. 10. Naikkan MCB control untuk mengoperasikan modul regulator. 11. Setting C / K regulator dengan rumus : Ampere step pertama 16 ampere C/K = = = 0,13 Ratio CT arus 600/5 12. Setting power factor target pada cos phi 0, Setting program step utama pada : 1:2:3:4:4:4 14. Setting program stepping capasitor Normal / circular 15. Setelah selesai baca parameter power factor saat itu. Biasanya menunjukkan antara paling rendah 0,65 sampai 0,85. Jika terbaca dibawah 0,5 dimungkinkan terjadi salah koneksi kabel sensor ke regulator / salah fase 16. Selektor dipindah diposisi manual. Pada posisi manual ini semua perintah kontaktor dioperasikan dari push button. 17. Tekan push button satu persatu bergantian. Cek ampere masing masing phase dari kapasitor.idealnya seimbang jika terjadi ketidak seimbangan terlalu jauh. Terjadi kerusakan pada kapasitor,bisa juga terjdi pada kontaktor hingga tidak kontak. 18. Baca dan amati besaran ampere yang mengalir apakah sudah sesuai dengan rating ampere yang tertera dalam kapasitas kapasitor. 19. Setelah semua steps diperiksa dan tidak ada kelainan berarti, maka selector dipindah ke posisi auto. 20. Dalam keadaan auto ini steps steps kapasitor akan masuk dengan sendirinya menyesuiakan besaran kvar yang dibutuhkan. 21. Amati perubahan pada tampilan cosphi meter minimal hasil akhir sesuai dengan target atau

17 mendekati dari target. 22. Test thermostat dengan memanasinya pakai korek api, beberapa saat setelah thermal setting terlampaui maka exhaust fan harus bekerja. 23. Test commissioning telah selesai. Bagaimanakah system operasional panel kapasitor bisa bekerja secara otomatis? Hal tersebut dapat diterangkan sebagai berikut : - Dalam modul Reactive Power Regulator mempunyai input CT dan input tegangan, sehingga bisa terbaca arus, tegangan, power factor, KVA, KW dan KVAR,parameter ini tidak selalu ditampilkan dalam layar akan tetapi selalu terbaca dalam proses internal modul Dan parameter Kvar ini yang dipakai sebagai acuan berapa steps dan berapa Kvar yang masuk kesistem agar power factor mencapai target. Waktu tunda dan model rotasi dari steps by stepas dapat diatur sesuai dengan yang diinginkan. - Jika pada saat beban awal mempunyai power factor yang rendah dengan beban rendah maka yang terhitung dalam modul regulator bukan berapa ampere beban atau berapa power factor beban melainkan berapa kvar yang diperlukan untuk mencapai nilai target power factor. Maka kapasitor tidak akan masuk bila nilai kvar yang dibutuhkan dibawah nilai minimum Kvar yang tersedia. - Jika pada suatu saat beban bertambah besar dimana beban ini mengandung beban induktif antara lain lampu mercury, Motor motor listrik, AC dll. Maka dalam modul akan mendeteksi Kva menjadi lebih besar maka steps step kontaktor akan masuk memberikan masukan daya reaktif yang dibutuhkan. Karena Kapasitor mempunyai sifat kapasitif sebagai penyeimbang sifat induktif maka power factor dari beban sudah diperbaiki mendekati power factor target. - Demikian juga sebaliknya jika beban berkurang maka nilai kvar yang disupply kapasitor menjadi berlebihan, hal ini segera dideteksi oleh modul regulator dan segera mengurangi pasokan beban kapasitif, sehingga power factor kembali normal mendekati target. Contoh perhitungan : Berapakah nilai Kvar yang dibutuhkan agar power factor dapat mencapai cos phi =1 dan berapakah nilai cosphi total bila terdapat beban beban sebagai berikut : - 1 buah motor exhaust fan dengan Daya input : 10 kw cos phi 0,8 = 12,5 Kva - 10 buah lampu mercury dengan daya input total 5 kw cos phi 0,5 = 10 Kva - 5 buah motor compressor dengan daya input total 7 kw cos phi 0,7= 10 Kva Dengan menggunakan rumus Kva = Kw + Kvar Kvar = Kva - kw Kvar = 32,5 Kva - 22 Kw

18 = 7,56 Kvar Kw 22 Cos phi total = = = 0,676 Kva 32,5 Diesel Engine Generator Yang maksud dengan Diesel Engine Generator Sets adalah sebuah bentuk pembangkit listrik dimana sebagai penggerak utamanya ( prime mover ) adalah mesin diesel dan di hubungkan (couple) dengan generator listrik dalam satu dudukan ( base frame) yang kokoh dan terinstal dengan baik sehingga dapat dioperasikan dengan baik. Sebagai suatu unit pembangkit listrik yang berpenggerak mesin diesel mempunyai bagian bagian dan system yang saling berkaitan erat. Apa bagian bagian dan system itu dapat diterangkan sebagai berikut 1. Radiator Radiator adalah bagian dari mesin diesel yang berfungsi sebagai pemindah / pelepas kalor mesin. Konstruksi radiator terdiri dari pipa pipa tipis yang disusun sejajar dan satu sama lain dan dilekatkan sirip sirip plat tipis. Konstruksi ini bertujuan untuk memperluas bidang permukaan dari air yang lewat pipa radiator, dibantu dengan hembusan angin dari kipas radiator yang melewati kisi kisi dan sirip sirip radiator proses perpindahan/ pembuangan berlangsung, hal ini dapat dirasakan bahwa udara yang keluar dari radiator terasa hangat atau panas. Sistem pendinginan dalam generator engine dapat dibedakan sebagai berikut : 1.1 Direct Air Coolling System Yaitu system pendinginan udara dihembuskan dari kipas centrifugal yang tersambung secara mekanik dengan mesin. Pendinginan ini tanpa menggunakan air dimana bagian bagian mesin dibentuk sedemikian rupa dengan kisi-kisi yang berselungkup agar luas penampang bagian mesin menjadi lebih luas sehingga pendinginan bisa tercapai secara optimal. Pendinginan model ini jarang digunakan lagi dan hanya untuk kapasitas kapasitas kecil saja. 1.2 Direct Water Cooling Sistem : Yaitu sistem pendinginan menggunakan media air yang disirkulasikan melalui radiator oleh water pump. Kalor panas yang disirkulasikan oleh radiator dibuang dengan menggunakan kipas radiator yang tersambung secara direct maupun dengan V-belt ke engine. Pada keadaan dingin air disirkulasikan langsung ke engine tanpa lewat radiator ini dimaksudkan agar engine dapat cepat mencapai temperature kerja berkisar 75 o Celcius. Jika suhu mesin sudah mencapai nilai tertentu mekanikal thermostat akan membuka dengan demikian sebagian air akan mengalir ke radiator dan menjaga temperature kerja mesin. Dimana temperature kerja mesin rata rata 70 o sampai maksimal 85 o. Lebih dari itu engine akan shutdown pada temperature 90 sampai 98 o celcius. Gambar : Sebuah radiator genset kapasitas 45 KVA 1.3 Separate Water Cooling System :

19 Yaitu sistem pendinginan secara terpisah. Biasanya engine dalam ruangan (indoor) sedangkan radiator di luar ruangan (outdoor ). Sebagai pengganti penggerak kipas digunakan motor listrik yang disupply dari generator itu sendiri. Sistem ini biasanya dipakai untuk generator berdaya besar diatas 1 Mega Watt. Sistem ini cocok untuk generator yang diletakkan di lantai bawah/ground bangunan (basement) dan tidak memungkinkan dibuat ruang radiator. 1.4 Cooling Tower Water Cooling System : Yaitu sistem pendinginan menggunakan menara pendingin (cooling tower) dimana air dipompa dan disirkulasikan ke cooling tower. Air kemudian dilewatkan dalam pipa berlubang untuk disemprotkan dalam bentuk butiran air (spray) sehingga titik-titik air tersebut dapat bersinggungan langsung dengan udara yang dihisap keluar / keatas. Sehingga proses pendinginan terjadi. Air yang telah dingin disirkulasikan lewat heat-exchanger yang mana di dalam terdapat pipa pipa air yang tersambung ke dalam mesin (close circuit) sedangan dalam sirkulasi ke cooling tower terjadi sirkulasi open circuit. Gambar : Bagan Cooling tower ( menara pendingin ) 2. Water pump Water pump adalah bagian dari mesin diesel yang berfungsi mensirkulasikan air pendingin ( cooling water ) dari engine ke radiator dan kembali ke engine lagi. Water pump ini digerakkan oleh putaran mesin itu sendiri melewati mekanisme pulley yang disambung dengan V-belt. Gambar : Water pump engine 3. Dinamo starter Dinamo starter ini bagian dari mesin yang berfungsi sebagai penggerak awal dari mesin. Dimana melalui mekanisme roda gigi dan pinion dynamo starter ini menggerakkan Flywheel. Dari awal putaran diporos ini akan menghasilkan kompresi diruang bakar dan putaran injection pump yang akan mengabutkan bahan bakar.setelah terjadi pembakaran dan menghasilkan gerakan berputar sendiri, dynamo akan lepas dari gigi flywheel. Karena arus start yang tinggi hingga sampai 100 Ampere atau lebih maka diperlukan solenoid, solenoid ini terdapat kontak yang mempunyai rating yang cukup besar hingga mampu men ngalirkan arus sesaat smpai 200 A atau lebih. Seporos dengan solenoid ini terdapat mekanisme penggerak pinion yang akan tersambung dengan flywheel di awal start dan akan terlepas di akhir start. Lilitan magnetic dari solenoid ini masih cukup besar sehingga perlu penambahan relay bantu..karena kontak kunci mempunyai rating ampere yang terbatas. Dinamo starter ini didesain untuk bekerja hanya sesaat pada saat starting. Dengan daya kw yang besar dan ukuran fisik yang relative kecil maka kemampuan menahan panas tidak cukup jika dioperasikan dengan waktu yang agak lama. Paling tidak waktu starting tidak boleh melebihi 10 detik. dan dalam satu perioda tidak lebih dari 7 kali starting dengan interval yang pendek. Untuk itu biasanya dalam panel kontrol diperlengkapi dengan safety relay yang akan membatasi

20 start hingga tidak lebih dari 10 detik. Gambar : Dinamo starter berikut solenoid dan relay bantu Gambar : wiring diagram dynamo starter Selain menggunakan electric starter, digunakan juga air starter. Hal ini mengingat kapasitas electric starter yang terbatas khususnya untuk genset dengan daya diatas 2000 KVA. Cara bekerjanya sebagai berikut : Yaitu menggunakan media tekanan udara sebagai energi mekaniknya. Tekanan udara dihasilkan oleh kompressor yang kemudian ditampung dalam tangki tekanan sampai sebatas 25 sampai 30 Bar. Air starter ini terbagi menjadi 2 macam : 1. Air motor starter : yaitu menggunakan sebuah mekanika bilah turbin yang mana tekanan udara yang tinggi sekitar bar memutar sudu sudu turbin dan menghasilkan tenaga putar mekanik rpm.air motor starter ini terpa sang sama seperti electric motor starter yang akan memutar roda flywheel. 2. Direct pressure : Yaitu tekanan udara yang tersimpan dalam tangki diinjeksikan langsung menuju ruang bakar melalui sebuah distributor dimana distributor ini urutannya menyesuaikan firing order / urutan pengapian. Tekanan yang dibutuhkan sekitar 30 bar. Gambar : Skema diagram air starting direct pressure system 4. Alternator Charging Alternator charging adalah bagian dari mesin yang berfungsi sebagai pengisi battery aki sewaktu mesin jalan. Alternator charging ini dilihat dari konstruksinya menyerupai generator 3 phase dimana statornya terlilit kumparan 3 Phase namun tegangannya kecil antara V atau V. Keluaran 3 phase ini disearahkan dengan 6 buah dioda sehingga terbentuk terminal positif dan negative. Tegangan DC ini dikontrol oleh regulator. Keluaran dari regulator ini akan mengatur exsitasinya. Regulator ini berfungsi untuk mengatur arus charging supaya tidak berlebihan, jika aki belum penuh alternator ini akan mengisi dengan laju arus yang cukup besar dan akan mengurangi laju arus pengisian jika aki sudah akan penuh. Didalam terminal alternator terdapat terminal yang dapat dipakai untuk undikasi sinyal bahwa alternator dalam keadaan mengisi. Untuk mengetahui bahwa alternator sudah bekerja atau mengisi bisa dengan mengukur tegangan baterry pada saat setelah jalan. Diukur dengan voltmeter voltasenya akan perlahan lahan naik.dan akan terlihat jelas dengan pengukuran Voltmeter digital.

21 Gambar : Alternator charging tampak samping Gambar : Alternator Charging tampak belakang Gambar : Wiring Diagram alternator Gambar : Single line diagram alternator 5. Turbocharger Turbocharger adalah bagian dari mesin yang berfungsi untuk membantu menaikkan tekanan udara didalam saluran udara masuk, Karena turbocharger tidak lain adalah sebuah compressor yang digerakkan oleh turbin gas buang. Dengan naikknya tekanan didalam saluran udara masuk kandungan udara yang berarti kandungan oksigen akan lebih padat. Dengan kandungan oksigen yang lebih padat maka jumlah bahan bakar yang dapat terbakar akan lebih banyak, sehingga tenaga mesin yang menggunakan turbocharger ini akan meningkat dari 20 sampai 35 % dari daya sebelum menggunakan turbocharger Gambar : Turbocharger Gambar : Bagan Turbocharger 6. Injection pump Injection pump adalah bagian dari mesin yang berfungsi sebagai pompa injeksi ke ruang bakar melalui nozel. Pompa injeksi ini mempunyai tekanan kerja yang tinggi hingga mencapai bar.tekanan kerja yang tinggi inilah hingga bahan bakar solar dapat dikabutkan diruang bakar. Injection pump terdiri dari plunger 2 yang digerakkan melalui mekanisme cam yang berputar. Plunger plunger ini yang memompa bahan bakar ke ruang silinder sesuai urutan firing order. Injection pump ini diputar oleh mesin melalui mekanisme roda gigi. Didalam injection pump ini terdapat pengaturan pemasukan bahan bakar sehingga kecepatan/ speed dapat diatur. Gambar : Injection pump

22 7. Engine Control Panel Engine Control Panel adalah bagian dari generator sets yang berfungsi sebagai Proteksi, Monitoring, command. roteksi yang dimaksud adalah memberikan pengamanan terhadap mesin antara lain high water temperature switch, low oil pressure switch, overspeed relay. Pada genset yang kapasitas besar proteksi didalamnya lebih banyak dan komplit karena sdh dalam bentuk modul kontrol. Monitoring yang dimaksud adalah pembacaan parameter Volt,Ampere, Frekuensi, jam kerja,suhu air dan tekanan oli. Command yang dimaksud adalah untuk perintah start engine, stop engine dan emergency stop. Gambar : Panel engine control analog Gambar : Panel engine control analog Gambar : Panel kontrol engine digital ( modul deepsea ) Gambar : Panel kontrol engine digital ( deep sea ) 8. Air Filter Air filter adalah bagian dari mesin yang berfungsi untuk menyaring atau memfilter udara yang masuk. Udara yang ada disekitar kita mengandung partikel partikel debu, Jika debu debu ini dibiarkan masuk kedalam ruang bakar tanpa difilter terlebih dahulu maka akan mengakibatkan ruang bakar cepat kotor dan hitam karena sebagian dari debu ini akan melekat dan hangus menempel di kepala silinder.lama kelamaan performa mesin akan cepat turun karena ruang bakar kotor dan saluran masuk serta buang akan terhambat. Gambar : Air filter dan indicator air filter 9.Fuel filter Fuel filter adalah bagian dari mesin yang berfungsi untuk menyaring kotoran kotoran yang ikut terbawa dalam bahan bakar bisa berupa pasir, serbuk serbuk besi atau kotoran lain yang berbahaya bagi mesin. Akibat jika terdapat kotoran yang tidak tersaring adalah mesin akan turun performanya karena saluran injeksi pump ke nosel injector akan buntu dan akan mengganggu kelancaran pengabutan bahan bakar. Gambar : Fuel Filter 10.Oil Filter Oil Filter adalah bagian dari mesin untuk menyaring kotoran kotoran yang bersirkulasi, karena pemakaian oli akan menjadi hitam dan serbuk 2 yang ikut terbawa akibat perputaran mesin. Hal ini untuk menghindari dari kerusakan mesin terutama pada dinding silinder agar tidak tergores.

23 Gambar : Filter minyak pelumas 11.Jacket Water Heater Adalah perlengkapan tambahan generator yang dipakai untuk mesin kapasitas menengah keatas ( up 250 KVA ). Peralatan ini bentuknya semacam heater pemanas yang dipasang disamping mesin mempunyai 2 buah pipa flexible. Daya yang dipakai untuk pemanas ini berasal dari listrik PLN. Prinsip kerja peralatan ini adalah memanasi sebagian air yang melewati jacket water heater, karena panas sifat alami dari air akan naik sehingga mengelilingi mesin berulang ulang. Maksud dan tujuan dari pemasangan ini adalah untuk mengkondisikan bahwa genset dalam keadaan selalu hangat dan siap setiap saat jika di start. Dengan kondisi hangat mesin dikondisikan mendekati temperature kerja sehingga bila dibebani dapat lebih optimal. Nilai tingkat panas dari heater ini dibatasi oleh water temperature switch yang ada diengine dengan suhu limit 42 derajat celcius. Jika temperature mesin sudah mencapai suhu tersebut maka arus listrik ke jacket water heater akan terputus. 12.Prelubrication Pump Prelubrication pump atau disebut priming pump adalah perlengkapan tambahan untuk diesel generator yang berfungsi untuk memberikan pelumasan pada mesin dalam keadaan berhenti/ standby. Pelumasan yang dimaksud adalah mensirkulasikan minyak pelumas keseluruh bagian mesin dengan mekanisme pompa oli yang digerakkan oleh motor listrik. Biasanya pompa ini disetting bahwa setiap 6 jam sekali pompa oli akan hidup selama 6 menit. Dengan kondisi bahwa keadaan mesin sudah terlumasi maka jika suatu saat dibutuhkan untuk hidup bisa segera dibebani dan tidak khawatir kerusakan pada mesin karena oli belum melumasi. Selain untuk itu juga untuk mengkondisikan bahwa oli tidak mengendap dan mengembun dibandingkan jika tidak dipakai dalam jangka waktu yang lama. Gambar : Prelubication pump 13. Water Separator Water Separator adalah peralatan tambahan bagi mesin sebagai pemisah antara bahan bakar dan kandungan air. Kandungan air jika ikut masuk dalam system bahan bakar akan membahayakan terhadap mesin itu sendiri dan bisa rusak. Tangki tangki penampungan bahan bakar yang dibiarkan terlalu lama bisa mengakibatkan pengembunan baik pagi maupun malam, peristiwa ini memungkinkan terbentuk tetes tetes air yang akan mengendap ditangki bahan bakar. Untuk menghindari air sampai masuk ke engine maka saluran bahan bakar sebelum ke engine ditambahkan water separator. Gambar : Water separator 14. Main stator Stator generator adalah bagian statis dari generator yang merubah perubahan garis garis gaya

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Prinsip Umum Sinkronisasi Ganset di PT. ALTRAK 1978 3.1.1. Penjelasan Umum Sistem Kelistrikan Seiring laju perkembangan zaman dan teknilogi, maka pemenuhan akan kebutuhan sarana

Lebih terperinci

BAB IV SISTEM KERJA DAN CARA PENGOPRASIAN PANEL AUTOMATIC MAINS FAILURE

BAB IV SISTEM KERJA DAN CARA PENGOPRASIAN PANEL AUTOMATIC MAINS FAILURE BAB IV SISTEM KERJA DAN CARA PENGOPRASIAN PANEL AUTOMATIC MAINS FAILURE 4.1 Proses Sinkronisasi Genset Pada proses sinkronisasi manual, deteksi awal sinkronisasi dilakukan dengan mengmati dan mengatur

Lebih terperinci

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan BAB II LANDASAN TEORI 2.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan kerja atau

Lebih terperinci

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda 25 BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA 3.1 Pengertian Faktor Daya Listrik Faktor daya (Cos φ) dapat didefinisikan sebagai rasio perbandingan antara daya aktif (watt) dan daya

Lebih terperinci

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive)

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive) 15 BAB III CAPACITOR BANK 3.1 Panel Capacitor Bank Dalam sistem listrik arus AC/Arus Bolak Balik ada tiga jenis daya yang dikenal, khususnya untuk beban yang memiliki impedansi (Z), yaitu: Daya Semu (S,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. ditunjukkan pada Gambar 2.1. Sedangkan, arus dan kurva karakteristik sel. surya ditunjukkan pada Gambar 2.2.

BAB II TINJAUAN PUSTAKA. ditunjukkan pada Gambar 2.1. Sedangkan, arus dan kurva karakteristik sel. surya ditunjukkan pada Gambar 2.2. BAB II TINJAUAN PUSTAKA 2.1 Spesifikasi Sel Surya 2.1.1 Karakteristik Sel Surya Skema sel surya secara sederhana yang terhubung pada tegangan ditunjukkan pada Gambar 2.1. Sedangkan, arus dan kurva karakteristik

Lebih terperinci

DAYA LISTRIK ARUS BOLAK BALIK

DAYA LISTRIK ARUS BOLAK BALIK DAYA LISTRIK ARUS BOLAK BALIK DASAR TEORI Daya listrik didefinisikan sebagai laju hantaran energi listrik dalam rangkaian listrik. Satuan SI daya listrik adalah watt. Arus listrik yang mengalir dalam rangkaian

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 TEORI DASAR GENSET Genset adalah singkatan dari Generating Set. Secara garis besar Genset adalah sebuah alat /mesin yang di rangkai /di design /digabungkan menjadi satu kesatuan.yaitu

Lebih terperinci

Percobaan 1 Hubungan Lampu Seri Paralel

Percobaan 1 Hubungan Lampu Seri Paralel Percobaan 1 Hubungan Lampu Seri Paralel A. Tujuan Mahasiswa mampu dan terampil melakukan pemasangan instalasi listrik secara seri, paralel, seri-paralel, star, dan delta. Mahasiswa mampu menganalisis rangkaian

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT 4.1. Perancangan Instalasi dan Jenis Koneksi (IEEE std 18-1992 Standard of shunt power capacitors & IEEE 1036-1992 Guide for Application

Lebih terperinci

BAB IV HASIL PERANCANGAN DIAGRAM SATU GARIS SISTEM DISTRIBUSI TENAGA LISTRIK

BAB IV HASIL PERANCANGAN DIAGRAM SATU GARIS SISTEM DISTRIBUSI TENAGA LISTRIK BAB IV HASIL PERANCANGAN DIAGRAM SATU GARIS SISTEM DISTRIBUSI TENAGA LISTRIK 4.1 Hasil 4.1.1 Proses Perancangan Diagram Satu Garis Sistem Distribusi Tenaga Listrik Pada Hotel Bonero Living Quarter Jawa

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 PENDAHULUAN Sistem Pengisian Konvensional Pembangkit listrik pada alternator menggunakan prinsip induksi yaitu perpotongan antara penghantar dengan garis-garis gaya magnet.

Lebih terperinci

Program pemeliharaan. Laporan pemeliharaan

Program pemeliharaan. Laporan pemeliharaan 17 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 PROSES KERJA PEMERIKSAAN DAN PEMELIHARAAN Berikut diagram alir proses perawatan dan pemeliharaan Jadwal pemeliharaan Program pemeliharaan Pemeliharaan Mingguan

Lebih terperinci

BAB III. PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF

BAB III. PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF BAB III PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF 3.1. Perancangan Perbaikan Faktor Daya ( Power Factor Correction ) Seperti diuraikan pada bab terdahulu, Faktor

Lebih terperinci

BAB IV ANALISA DATA. Berdasarkan data mengenai kapasitas daya listrik dari PLN dan daya

BAB IV ANALISA DATA. Berdasarkan data mengenai kapasitas daya listrik dari PLN dan daya BAB IV ANALISA DATA Berdasarkan data mengenai kapasitas daya listrik dari PLN dan daya Genset di setiap area pada Project Ciputra World 1 Jakarta, maka dapat digunakan untuk menentukan parameter setting

Lebih terperinci

BAB IV PEMILIHAN KOMPONEN DAN PENGUJIAN ALAT

BAB IV PEMILIHAN KOMPONEN DAN PENGUJIAN ALAT BAB IV PEMILIHAN KOMPONEN DAN PENGUJIAN ALAT Pada bab sebelumnya telah diuraikan konsep rancangan dan beberapa teori yang berhubungan dengan rancangan ACOS (Automatic Change Over Switch) pada AC (Air Conditioning)

Lebih terperinci

Standby Power System (GENSET- Generating Set)

Standby Power System (GENSET- Generating Set) DTG1I1 Standby Power System (- Generating Set) By Dwi Andi Nurmantris 1. Rectifiers 2. Battery 3. Charge bus 4. Discharge bus 5. Primary Distribution systems 6. Secondary Distribution systems 7. Voltage

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 54 BAB III METODOLOGI PENELITIAN Pada perancangan modifikasi sistem kontrol panel mesin boiler ini, selain menggunakan metodologi studi pustaka dan eksperimen, metodologi penelitian yang dominan digunakan

Lebih terperinci

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR M. Hariansyah 1, Joni Setiawan 2 1 Dosen Tetap Program Studi Teknik Elektro

Lebih terperinci

Percobaan 8 Kendali 1 Motor 3 Fasa Bekerja 2 Arah Putar dengan Menggunakan Timer Delay Relay (TDR)

Percobaan 8 Kendali 1 Motor 3 Fasa Bekerja 2 Arah Putar dengan Menggunakan Timer Delay Relay (TDR) Percobaan 8 Kendali 1 Motor 3 Fasa Bekerja 2 Arah Putar dengan Menggunakan Timer Delay Relay (TDR) I. TUJUAN PRAKTIKUM 1. Mahasiswa mampu memasang dan menganalisis 2. Mahasiswa mampu membuat rangkaian

Lebih terperinci

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU PHASA. Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU PHASA II1 Umum Motor induksi adalah motor listrik arus bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan putaran

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISA

BAB IV PERHITUNGAN DAN ANALISA BAB V PERHTUNGAN DAN ANALSA 4.1 Sistem nstalasi Listrik Sistem instalasi listrik di gedung perkantoran Dinas Teknis Kuningan menggunakan sistem radial. Sumber utama untuk suplai listrik berasal dari PLN.

Lebih terperinci

BAB IV ANALISA DAN PERENCANAAN SISTEM INSTALASI LISTRIK

BAB IV ANALISA DAN PERENCANAAN SISTEM INSTALASI LISTRIK 57 BAB IV ANALISA DAN PERENCANAAN SISTEM INSTALASI LISTRIK 4.1. Sistem Instalasi Listrik Sistem instalasi listrik di gedung perkantoran Talavera Suite menggunakan sistem radial. Sumber utama untuk suplai

Lebih terperinci

BAB IV HASIL DATA DAN ANALISA

BAB IV HASIL DATA DAN ANALISA BAB IV HASIL DATA DAN ANALISA 4.1 Pengujian Hal ini akan dilakukan mengacu pada prosedur yang tepat dan direkomendasikan berdasarkan service manual, panduan instalasi dan operasi dari modul deepsea dan

Lebih terperinci

BAB II PRINSIP KERJA PEMBANGKIT LISTRIK TENAGA DIESEL (PLTD)

BAB II PRINSIP KERJA PEMBANGKIT LISTRIK TENAGA DIESEL (PLTD) BAB II PRINSIP KERJA PEMBANGKIT LISTRIK TENAGA DIESEL (PLTD) II.1. Umum Pada dasarnya pembangkitan tenaga listrik AC biasanya menggunakan mesin sinkron yang bekerja sebagai generator. Beberapa kelebihan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Daya Aktif, Daya Reaktif & Daya Semu Daya aktif (P) adalah daya beban listrik yang terpasang pada jaringan distribusi termasuk rugi-rugi yang ditimbulkan oleh kabel, trafo dan

Lebih terperinci

BAB III PENGASUTAN MOTOR INDUKSI

BAB III PENGASUTAN MOTOR INDUKSI BAB III PENGASUTAN MOTOR INDUKSI 3.1 Umum Masalah pengasutan motor induksi yang umum menjadi perhatian adalah pada motor-motor induksi tiga phasa yang memiliki kapasitas yang besar. Pada waktu mengasut

Lebih terperinci

METODE PERBAIKAN FAKTOR DAYA MENGGUNAKAN KAPASITOR BANK UNTUK MENGURANGI DAYA REAKTIF UNTUK PENINGKATAN KUALITAS DAYA LISTRIK PADA INDUSTRI

METODE PERBAIKAN FAKTOR DAYA MENGGUNAKAN KAPASITOR BANK UNTUK MENGURANGI DAYA REAKTIF UNTUK PENINGKATAN KUALITAS DAYA LISTRIK PADA INDUSTRI METODE PERBAIKAN FAKTOR DAYA MENGGUNAKAN KAPASITOR BANK UNTUK MENGURANGI DAYA REAKTIF UNTUK PENINGKATAN KUALITAS DAYA LISTRIK PADA INDUSTRI M. Khairil Anwar - 23211007 email : anwardz12@gmail.com Sekolah

Lebih terperinci

BAB IV DESIGN SISTEM PROTEKSI MOTOR CONTROL CENTER (MCC) PADA WATER TREATMENT PLANT (WTP) Sistem Kelistrikan di PT. Krakatau Steel Cilegon

BAB IV DESIGN SISTEM PROTEKSI MOTOR CONTROL CENTER (MCC) PADA WATER TREATMENT PLANT (WTP) Sistem Kelistrikan di PT. Krakatau Steel Cilegon BAB IV DESIGN SISTEM PROTEKSI MOTOR CONTROL CENTER (MCC) PADA WATER TREATMENT PLANT (WTP) 3 4.1 Sistem Kelistrikan di PT. Krakatau Steel Cilegon Untuk menjalankan operasi produksi pada PT. Krakatau Steel

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

Percobaan 6 Kendali 3 Motor 3 Fasa Bekerja Secara Berurutan dengan Menggunakan Timer Delay Relay (TDR)

Percobaan 6 Kendali 3 Motor 3 Fasa Bekerja Secara Berurutan dengan Menggunakan Timer Delay Relay (TDR) Percobaan 6 Kendali 3 Motor 3 Fasa Bekerja Secara Berurutan dengan Menggunakan Timer Delay Relay (TDR) I. TUJUAN PRAKTIKUM 1. Mahasiswa mampu memasang dan menganalisis 2. Mahasiswa mampu membuat rangkaian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Daya 2.1.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan

Lebih terperinci

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT BUILD DESIGN MODUL POWER FACTOR CONTROL UNIT Tri Agus Budiyanto (091321063) Jurusan Teknik Elektro Program Studi Teknik Listrik Politeknik Negeri Bandung

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Kanagarian Kasang, Padang Pariaman (Sumatera Barat).

BAB III METODOLOGI PENELITIAN. Kanagarian Kasang, Padang Pariaman (Sumatera Barat). BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Lokasi : PT. Kunago Jantan Jl. By Pass Km. 25 Korong Sei. Pinang, Kanagarian Kasang, Padang Pariaman (Sumatera Barat). 3.2 Waktu Penelitian Penelitian

Lebih terperinci

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti 6 BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN 2.1 Sistem Tenaga Listrik Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti PLTA, PLTU, PLTD, PLTP dan PLTGU kemudian disalurkan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BAB III PERANCANGAN GENSET. Genset yang akan dipasang di PT. Aichitex Indonesia sebagai sumber energi

BAB III PERANCANGAN GENSET. Genset yang akan dipasang di PT. Aichitex Indonesia sebagai sumber energi BAB III PERANCANGAN GENSET 3.1 SPESIFIKASI GENSET Genset yang akan dipasang di PT. Aichitex Indonesia sebagai sumber energi listrik cadangan adalah terdiri dari 2 ( dua ) unit generating set yang memiliki

Lebih terperinci

BAB IV PERAKITAN DAN PENGUJIAN PANEL AUTOMATIC TRANSFER SWITCH (ATS) DAN AUTOMATIC MAIN FAILURE (AMF)

BAB IV PERAKITAN DAN PENGUJIAN PANEL AUTOMATIC TRANSFER SWITCH (ATS) DAN AUTOMATIC MAIN FAILURE (AMF) BAB IV PERAKITAN DAN PENGUJIAN PANEL AUTOMATIC TRANSFER SWITCH (ATS) DAN AUTOMATIC MAIN FAILURE (AMF) 4.1 Komponen-komponen Panel ATS dan AMF 4.1.1 Komponen Kontrol Relay Relay adalah alat yang dioperasikan

Lebih terperinci

PARALEL GENERATOR. Paralel Generator

PARALEL GENERATOR. Paralel Generator PARALEL GENERATOR Paralel generator dapat diartikan menggabungkan dua buah generatoratau lebih dan kemudian dioperasikan secara bersama sama dengan tujuan : 1. Mendapatkan daya yang lebih besar. 2. Untuk

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 3.1 Sistem Kerja Panel Kontrol Lift BAB III LANDASAN TEORI Gambar 3.1 Lift Barang Pada lift terdapat 2 panel dimana satu panel adalah main panel yang berisi kontrol main supaly dan control untuk pergerakan

Lebih terperinci

TUGAS MAKALAH INSTALASI LISTRIK

TUGAS MAKALAH INSTALASI LISTRIK TUGAS MAKALAH INSTALASI LISTRIK Oleh: FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO PRODI S1 PENDIDIKAN TEKNIK ELEKTRO UNIVERSITAS NEGERI MALANG Oktober 2017 BAB I PENDAHULUAN 1.1. Latar Belakang Seiring jaman

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Solarcell (Photovoltaic) Solarcell atau panel surya adalah alat untuk mengkonversi tenaga matahari menjadi energi listrik. Photovoltaic adalah teknologi yang berfungsi

Lebih terperinci

BAB III ALAT PENGUKUR DAN PEMBATAS (APP)

BAB III ALAT PENGUKUR DAN PEMBATAS (APP) BAB III ALAT PENGUKUR DAN PEMBATAS (APP) 3.1 Alat Ukur Listrik Besaran listrik seperti arus, tegangan, daya dan lain sebagainya tidak dapat secara langsung kita tanggapi dengan panca indra kita. Untuk

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Umum Gedung Keuangan Negara Yogyakarta merupakan lembaga keuangan dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat serta penyelenggaraan

Lebih terperinci

Gambar 3.1 Wiring Diagram Direct On Line Starter (DOL)

Gambar 3.1 Wiring Diagram Direct On Line Starter (DOL) BAB III METODE STARTING MOTOR INDUKSI 3.1 Metode Starting Motor Induksi Pada motor induksi terdapat beberapa jenis metoda starting motor induksi diantaranya adalah Metode DOL (Direct Online starter), Start

Lebih terperinci

BAB III METODE PENELITIAN. Pada prinsipnya penelitian ini bertujuan untuk mengetahui

BAB III METODE PENELITIAN. Pada prinsipnya penelitian ini bertujuan untuk mengetahui 32 BAB III METODE PENELITIAN Pada prinsipnya penelitian ini bertujuan untuk mengetahui apakah minyak sawit (palm oil) dapat digunakan sebagai isolasi cair pengganti minyak trafo, dengan melakukan pengujian

Lebih terperinci

BAB IV PEMBAHASAN 4.1 PERAWATAN DAN PENGOPERASIAN RINGAN PADA GENSET DAN PANEL ATS AMF AGAR TETAP OPTIMAL. Gambar 4.1 Mesin Genset

BAB IV PEMBAHASAN 4.1 PERAWATAN DAN PENGOPERASIAN RINGAN PADA GENSET DAN PANEL ATS AMF AGAR TETAP OPTIMAL. Gambar 4.1 Mesin Genset BAB IV PEMBAHASAN 4.1 PERAWATAN DAN PENGOPERASIAN RINGAN PADA GENSET DAN PANEL ATS AMF AGAR TETAP OPTIMAL Gambar 4.1 Mesin Genset Ada beberapa hal yang harus di perhatikan untuk sistem otomatisasi agar

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Dasar Teori Teori Dasar Ilmu Kelistrikan: A. Muatan Listrik Muatan listrik tidak dapat dilihat oleh mata tetapi efeknya dapat dirasakan dan diamati gejalanya. Besar muatan listrik

Lebih terperinci

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang

BAB II LANDASAN TEORI. mobil seperti motor stater, lampu-lampu, wiper dan komponen lainnya yang 7 BAB II LANDASAN TEORI A. LANDASAN TEORI 1. Pembebanan Suatu mobil dalam memenuhi kebutuhan tenaga listrik selalu dilengkapi dengan alat pembangkit listrik berupa generator yang berfungsi memberikan tenaga

Lebih terperinci

RANCANG BANGUN SISTEM AUTOMATIC TRANSFER SWITCH DAN AUTOMATIC MAINS FAILURE PADA GENERATOR SET 80 KVA DENGAN DEEP SEA ELECTRONIC 4420

RANCANG BANGUN SISTEM AUTOMATIC TRANSFER SWITCH DAN AUTOMATIC MAINS FAILURE PADA GENERATOR SET 80 KVA DENGAN DEEP SEA ELECTRONIC 4420 RANCANG BANGUN SISTEM AUTOMATIC TRANSFER SWITCH DAN AUTOMATIC MAINS FAILURE PADA GENERATOR SET 80 KVA DENGAN DEEP SEA ELECTRONIC 4420 Suhanto Prodi D3 Teknik Listrik Bandar Udara, Politeknik Penerbangan

Lebih terperinci

BAB IV PEMBAHASAN.

BAB IV PEMBAHASAN. 24 BAB IV PEMBAHASAN 4.1 Prosedur Mengoperasikan Genset Prosedur operasi dari keseluruhan Genset adalah sebagai berikut: A. Mula-mula periksa pada masing-masing Genset apakah sudah siap dalam keadaan untuk

Lebih terperinci

BAB V ANALISA KERJA RANGKAIAN KONTROL

BAB V ANALISA KERJA RANGKAIAN KONTROL 82 BAB V ANALISA KERJA RANGKAIAN KONTROL Analisa rangkaian kontrol pada rangkaian yang penulis buat adalah gabungan antara rangkaian kontrol dari smart relay dan rangkaian kontrol konvensional yang terdapat

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan memaparkan secara jelas tentang pengujian yang telah dilakukan terhadap spindel utama yang ada pada mesin Aciera F5 serta menganalisa hasil dari percobaan

Lebih terperinci

BAB III PERANCANGAN DIAGRAM SATU GARIS RENCANA SISTEM DISTRIBUSI TENAGA LISTRIK

BAB III PERANCANGAN DIAGRAM SATU GARIS RENCANA SISTEM DISTRIBUSI TENAGA LISTRIK BAB III PERANCANGAN DIAGRAM SATU GARIS RENCANA SISTEM DISTRIBUSI TENAGA LISTRIK 3.1 TAHAP PERANCANGAN DISTRIBUSI KELISTRIKAN Tahapan dalam perancangan sistem distribusi kelistrikan di bangunan bertingkat

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik dan pembuatan mekanik turbin. Sedangkan untuk pembuatan media putar untuk

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 9 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Genset atau kepanjangan dari generator set adalah sebuah perangkat yang berfungsi menghasilkan daya listrik. Disebut sebagai generator set dengan pengertian adalah

Lebih terperinci

1.KONSEP SEGITIGA DAYA

1.KONSEP SEGITIGA DAYA Daya Aktif, Daya Reaktif dan Dan Pasif 1.KONSEP SEGITIGA DAYA Telah dipahami dan dianalisa tentang teori daya listrik pada arus bolak-balik, bahwa disipasi daya pada beban reaktif (induktor dan kapasitor)

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan

BAB II PENDEKATAN PEMECAHAN MASALAH. Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan BAB II PENDEKATAN PEMECAHAN MASALAH A. Aspek Perancangan Dalam Modifikasi Sebuah modifikasi dan aplikasi suatu sistem tentunya membutuhkan perencanaan, pemasangan dan pengujian. Dalam hal tersebut timbul

Lebih terperinci

BAB III KEBUTUHAN GENSET

BAB III KEBUTUHAN GENSET BAB III KEBUTUHAN GENSET 3.1 SUMBER DAYA LISTRIK Untuk mensuplai seluruh kebutuhan daya listrik pada bangunan ini maka direncanakan sumber daya listrik dari : A. Perusahaan Umum Listrik Negara (PLN) B.

Lebih terperinci

CONTOH SOAL TEORI KEJURUAN KOMPETENSI KEAHLIAN : TEKNIK INSTALASI TENAGA LISTRIK

CONTOH SOAL TEORI KEJURUAN KOMPETENSI KEAHLIAN : TEKNIK INSTALASI TENAGA LISTRIK CONTOH SOAL TEORI KEJURUAN KOMPETENSI KEAHLIAN : TEKNIK INSTALASI TENAGA LISTRIK Pilih salah satu jawaban yang paling tepat dengan memberi tanda silang ( X ) pada huruf A, B, C, D atau E pada lembar jawaban

Lebih terperinci

AUTOMATIC POWER FACTOR CONTROL (APFR) CAPACITOR SHUNT UNTUK OPTIMALISASI DAYA REAKTIF MENGGUNAKAN METODE INVOICE (CASE STUDY PDAM)

AUTOMATIC POWER FACTOR CONTROL (APFR) CAPACITOR SHUNT UNTUK OPTIMALISASI DAYA REAKTIF MENGGUNAKAN METODE INVOICE (CASE STUDY PDAM) AUTOMATIC POWER FACTOR CONTROL (APFR) CAPACITOR SHUNT UNTUK OPTIMALISASI DAYA REAKTIF MENGGUNAKAN METODE INVOICE (CASE STUDY PDAM) Safrizal Department of Electrical Engineering University of Islam Nahdlatul

Lebih terperinci

ALAT PEMBAGI TEGANGAN GENERATOR

ALAT PEMBAGI TEGANGAN GENERATOR ALAT PEMBAGI TEGANGAN GENERATOR 1. Pendahuluan Listrik seperti kita ketahui adalah bentuk energi sekunder yang paling praktis penggunaannya oleh manusia, di mana listrik dihasilkan dari proses konversi

Lebih terperinci

BAB III SPESIFIKASI TRANSFORMATOR DAN SWITCH GEAR

BAB III SPESIFIKASI TRANSFORMATOR DAN SWITCH GEAR 38 BAB III SPESIFIKASI TRANSFORMATOR DAN SWITCH GEAR 3.1 Unit Station Transformator (UST) Sistem PLTU memerlukan sejumlah peralatan bantu seperti pompa, fan dan sebagainya untuk dapat membangkitkan tenaga

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II PENDAHULUAN BAB II LANDASAN TEORI 2.1 Motor Bakar Bensin Motor bakar bensin adalah mesin untuk membangkitkan tenaga. Motor bakar bensin berfungsi untuk mengubah energi kimia yang diperoleh dari

Lebih terperinci

BAB V MENGENAL KOMPONEN SISTEM PENDINGIN

BAB V MENGENAL KOMPONEN SISTEM PENDINGIN BAB V MENGENAL KOMPONEN SISTEM PENDINGIN Pada bab ini, sistem pendingin dibagi dalam dua kategori yaitu sistem pemipaan dan sistem kelistrikan. Komponen dalam sistem pemipaan terdiri dari; kompresor, kondenser,

Lebih terperinci

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya Ahmad Yani, Pemasangan... Pemasangan untuk Perbaikan Faktor Daya Ahmad Yani Staf Pengajar Teknik Elektro STT-Harapan email: yani.ahmad34@yahoo.com Abstrak seri dan parallel pada system daya menimbulkan

Lebih terperinci

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator.

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator. BAB III METODOLOGI 3.1 Desain Peralatan Desain genset bermula dari genset awal yaitu berbahan bakar bensin dimana diubah atau dimodifikasi dengan cara fungsi karburator yang mencampur bensin dan udara

Lebih terperinci

Gerak translasi ini diteruskan ke batang penghubung ( connectiing road) dengan proses engkol ( crank shaft ) sehingga menghasilkan gerak berputar

Gerak translasi ini diteruskan ke batang penghubung ( connectiing road) dengan proses engkol ( crank shaft ) sehingga menghasilkan gerak berputar Mesin Diesel 1. Prinsip-prinsip Diesel Salah satu pengegrak mula pada generator set adala mesin diesel, ini dipergunakan untuk menggerakkan rotor generator sehingga pada out put statornya menghasilkan

Lebih terperinci

PERBAIKAN REGULASI TEGANGAN

PERBAIKAN REGULASI TEGANGAN JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PERBAIKAN REGULASI TEGANGAN Distribusi Tenaga Listrik Ahmad Afif Fahmi 2209 100 130 2011 REGULASI TEGANGAN Dalam Penyediaan

Lebih terperinci

4.3 Sistem Pengendalian Motor

4.3 Sistem Pengendalian Motor 4.3 Sistem Pengendalian Motor Tahapan mengoperasikan motor pada dasarnya dibagi menjadi 3 tahap, yaitu : - Mulai Jalan (starting) Untuk motor yang dayanya kurang dari 4 KW, pengoperasian motor dapat disambung

Lebih terperinci

BAB III RANCANG BANGUN

BAB III RANCANG BANGUN 26 BAB III RANCANG BANGUN 3.1. Tujuan Perancangan. Dalam pembuatan suatu alat, perancangan merupakan tahapan yang sangat penting dilakukan. Tahapan perancangan merupakan suatu tahapan mulai dari pengamatan,

Lebih terperinci

BAB IV SISTEM PENGOPERASIAN GENERATOR SINKRONISASI

BAB IV SISTEM PENGOPERASIAN GENERATOR SINKRONISASI BAB IV SISTEM PENGOPERASIAN GENERATOR SINKRONISASI 4.1 Prinsip Kerja Sinkronisasi Genset di PT. ALTRAK 1978 Jika sebuah kumparan diputar pada kecepatan konstan pada medan magnet homogen, maka akan terinduksi

Lebih terperinci

COS PHI (COS φ) METER

COS PHI (COS φ) METER COS PHI (COS φ) METER Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Alat Ukur Dan Pengukuran Listrik Dosen Pengampu Achmad Hardito, B.Eng., M.Kom. Disusun Oleh kelompok 3 kelas LT 1D : 1. 2. 3.

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Flow Chart Pengujian Deskripsi sistem rancang rangkaian untuk pengujian transformator ini digambarkan dalam flowchart sebagai berikut : Mulai Peralatan Uji Merakit Peralatan

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

BAB II. LANDASAN TEORI

BAB II. LANDASAN TEORI BAB II. LANDASAN TEORI 2.1. Mengenal Motor Diesel Motor diesel merupakan salah satu tipe dari motor bakar, sedangkan tipe yang lainnya adalah motor bensin. Secara sederhana prinsip pembakaran pada motor

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator.

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator. BAB III METODOLOGI 3.1 Desain Peralatan Desain genset bermula dari genset awal yaitu berbahan bakar bensin dimana diubah atau dimodifikasi dengan cara fungsi karburator yang mencampur bensin dan udara

Lebih terperinci

BAB II PRINSIP DASAR TRANSFORMATOR

BAB II PRINSIP DASAR TRANSFORMATOR BAB II PRINSIP DASAR TRANSFORMATOR 2.1 UMUM Transformator (trafo ) merupakan piranti yang mengubah energi listrik dari suatu level tegangan AC lain melalui gandengan magnet berdasarkan prinsip induksi

Lebih terperinci

BAB III PLTU BANTEN 3 LONTAR

BAB III PLTU BANTEN 3 LONTAR BAB III PLTU BANTEN 3 LONTAR UBOH Banten 3 Lontar merupakan Pembangkit Listrik Tenaga Uap yang memiliki kapasitas daya mampu 315 MW sebanyak 3 unit jadi total daya mampu PLTU Lontar 945 MW. PLTU secara

Lebih terperinci

UTILITAS BANGUNAN. Tjahyani Busono

UTILITAS BANGUNAN. Tjahyani Busono UTILITAS BANGUNAN Tjahyani Busono UTILITAS BANGUNAN INSTALASI KELISTRIKAN DI BANDUNG TV STASIUN TELEVISI BANDUNG TV JL. SUMATERA NO. 19 BANDUNG SISTEM INSTALASI LISTRIK Sistim kekuatan / daya listrik Sistim

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Metode Penelitian 3.1.1. Metode Observasi Metode observasi dimasudkan untuk mengadakan pengamatan terhadap subyek yang akan diteliti, yaitu tentang perencanaan sistem

Lebih terperinci

III PENGUMPULAN DAN PENGOLAHAN DATA

III PENGUMPULAN DAN PENGOLAHAN DATA III PENGUMPULAN DAN PENGOLAHAN DATA 3.1. Umum Berdasarkan standard operasi PT. PLN (Persero), setiap pelanggan energi listrik dengan daya kontrak di atas 197 kva dilayani melalui jaringan tegangan menengah

Lebih terperinci

BAB II MOTOR INDUKSI 3 Ø

BAB II MOTOR INDUKSI 3 Ø BAB II MOTOR INDUKSI 3 Ø 2.1. Prinsip Kerja Motor Induksi Pada motor induksi, supply listrik bolak-balik ( AC ) membangkitkan fluksi medan putar stator (B s ). Fluksi medan putar stator ini memotong konduktor

Lebih terperinci

KATA PENGANTAR. Meulaboh,15 Januari Penulis. Afrizal Tomi

KATA PENGANTAR. Meulaboh,15 Januari Penulis. Afrizal Tomi KATA PENGANTAR Puji Syukur Kehadirat Allah SWT karena berkat limpahan Rahmat dan Karunia-Nya penulis dapat menulis dan menyelesaikan makalah ini. Shalawat serta salam tak lupa penulis panjatkan kepada

Lebih terperinci

UNIT LAYANAN PENGADAAN BARANG/JASA SEKRETARIAT DAERAH PROVINSI KEPULAUAN RIAU TAHUN ANGGARAN 2010 RISALAH AANWIJZING

UNIT LAYANAN PENGADAAN BARANG/JASA SEKRETARIAT DAERAH PROVINSI KEPULAUAN RIAU TAHUN ANGGARAN 2010 RISALAH AANWIJZING UNIT LAYANAN PENGADAAN BARANG/JASA SEKRETARIAT DAERAH PROVINSI KEPULAUAN RIAU TAHUN ANGGARAN 2010 RISALAH AANWIJZING NOMOR : 19 / Risalah - AAn/ULPBJ-SETDA/APBD/V/2010 Kegiatan : Pengadaan Genset Kantor

Lebih terperinci

Percobaan 3 Kendali Motor 3 Fasa 2 Arah Putar

Percobaan 3 Kendali Motor 3 Fasa 2 Arah Putar Percobaan 3 Kendali Motor 3 Fasa 2 Arah Putar A. Tujuan Mahasiswa mampu dan terampil melakukan instalasi motor listrik menggunakan kontaktor sebagai pengunci. Mahasiswa mampu dan terampil melakukan instalasi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Dalam tugas akhir ini ada beberapa alat dan bahan yang digunakan dalam

BAB III METODOLOGI PENELITIAN. Dalam tugas akhir ini ada beberapa alat dan bahan yang digunakan dalam BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan Dalam tugas akhir ini ada beberapa alat dan bahan yang digunakan dalam merancang bangun, yaitu : 3.1.1 Alat Alat-alat yang digunakan dalam perancangan Variable

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

DTG1I1. Bengkel Instalasi Catu Daya dan Perangkat Pendukung KWH METER DAN ACPDB. By Dwi Andi Nurmantris

DTG1I1. Bengkel Instalasi Catu Daya dan Perangkat Pendukung KWH METER DAN ACPDB. By Dwi Andi Nurmantris DTG1I1 Bengkel Instalasi Catu Daya dan Perangkat Pendukung KWH METER DAN ACPDB By Dwi Andi Nurmantris OUTLINE 1. KWH Meter 2. ACPDB TUGAS 1. Jelaskan tentang perangkat dan Instalasi Listrik di rumah-rumah!

Lebih terperinci

BAB III SISTEM PROTEKSI DAN SISTEM KONTROL PEMBANGKIT

BAB III SISTEM PROTEKSI DAN SISTEM KONTROL PEMBANGKIT BAB III SISTEM PROTEKSI DAN SISTEM KONTROL PEMBANGKIT 1.1 Sistem Proteksi Suatu sistem proteksi yang baik diperlukan pembangkit dalam menjalankan fungsinya sebagai penyedia listrik untuk dapat melindungi

Lebih terperinci

MENGENAL ALAT UKUR. Amper meter adalah alat untuk mengukur besarnya arus listrik yang mengalir dalam penghantar ( kawat )

MENGENAL ALAT UKUR. Amper meter adalah alat untuk mengukur besarnya arus listrik yang mengalir dalam penghantar ( kawat ) MENGENAL ALAT UKUR AMPER METER Amper meter adalah alat untuk mengukur besarnya arus listrik yang mengalir dalam penghantar ( kawat ) Arus = I satuannya Amper ( A ) Cara menggunakannya yaitu dengan disambung

Lebih terperinci

SISTEM PROTEKSI PADA GENERATOR

SISTEM PROTEKSI PADA GENERATOR SISTEM PROTEKSI PADA GENERATOR GANGGUAN PADA GENERATOR Pada Sirkit Listrik Generator yang menyebabkan tripnya PMT, pada umumnya disebabkan oleh : 1. Gangguan diluar seksi generator tetapi PMT generator

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci