SISTEM mpower DAN PROSPEK PEMANFAATANNYA DI INDONESIA

Ukuran: px
Mulai penontonan dengan halaman:

Download "SISTEM mpower DAN PROSPEK PEMANFAATANNYA DI INDONESIA"

Transkripsi

1 Sistem mpower dan Prospek Pemanfaatannya di Indonesia (Sudi Ariyanto) SISTEM mpower DAN PROSPEK PEMANFAATANNYA DI INDONESIA Sudi Ariyanto Pusat Pengembangan Energi Nuklir (PPEN) BATAN Jalan Kuningan Barat, Mampang Prapatan, Jakarta Selatan Telp/Fax: (021) Masuk : 9 Agustus 2012 Direvisi: 13 September 2012 Diterima: 12 Oktober 2012 ABSTRAK SISTEM mpower DAN PROSPEK PEMANFAATANNYA DI INDONESIA. Salah satu SMR yang masuk dalam kategori near-term deployment adalah mpower yang didesain oleh Babcock and Wilcox, Amerika Serikat. Reaktor mpower merupakan sebuah reaktor air tekan integral yaitu teras reaktor, pembangkit uap dan pressurizer berada dalam satu bejana tekan, begitu juga perangkat penggerak batang kendali dan pompa pendingin reaktor. Reaktor mpower menggunakan sistem keselamatan pasif, pengungkung bawah tanah, dan siklus operasi 4 tahun. Sistem mpower dengan reaktor integral menghilangkan sistem perpipaan yang biasanya ada di sistem PWR selama ini, dan ini sangat meminimalkan kemungkinan terjadinya LOCA dan juga memiliki potensi penghematan. Sistem modular memungkinkan pembangunan secara paralel antara bejana reaktor dan gedung fasilitas lain. Desain gedung nuclear island di bawah tanah mengurangi potensi bahaya eksternal, bahaya seismik, dan mengurangi kemungkinan lepasan bahan radioaktif ke lingkungan udara. Sistem keselematan melekat dan pengguanaan sistem pasif serta besarnya volume pendingin menghindarkan mpower dari kemungkinan kecelakaan seperti yang terjadi di Fukusima. Reaktor mpower memiliki potensi untuk dibangun di Kalimantan, Sumatra dan Jawa-Madura-Bali pada rentang tahun Kata kunci: mpower, reaktor integral, kungkungan bawah tanah ABSTRACT SYSTEM OF mpower AND ITS UTILIZATION PROSPECT IN INDONESIA. One of SMR in near deployment status is mpower, designed by Babcock and Wilcox, USA. Reactor mpower is a type of integral pressurized reactor with rector core, steam generation, pressurizer, control rod drive mechanism and coolant pumps in a pressure vessel. It uses a passive safety system, underground containment system and refuelling cycle of 4 years. It also minimizes piping system of conventional PWR resulted ini minimal potential of LOCA occurrence, and it is good in economic term. Construction of building can be done in parallel with construction of reactor vessel. Underground building make the design robust in term of seismics hazard, external hazard, and radioactivity emission to the air. Passive safety system, lager volume of coolant system may hinder accident such as occurred in Fukushima Dai 2. Reactor mpower has a potential to be conctructed in Kalimantan, Sumatra and Jawa-Madura-Bali systems in a period of Keywords: mpower, integral reactor, underground containment, 136

2 Jurnal Pengembangan Energi Nuklir Vol. 14 No. 2, Desember PENDAHULUAN Energi merupakan salah satu faktor penting dalam penciptaan kemakmuran, dan sebab itulah Indonesia terus berusaha untuk meningkatkan ketersediaan energi untuk memenuhi kebutuhan energi yang semakin tinggi dalam rangka meningkatkan taraf hidup bangsa Indonesia. Untuk memenuhi kebutuhan energi tersebut dibutuhkan suatu bauran energi yang optimum berdasarkan ketersediaan semua sumber energi. Salah satu permasalahan yang dihadapi Indonesia adalah semakin berkurangnya ketersediaan sumber daya fosil. Berdasarkan pemikiran semacam ini, maka secara teknis energi nuklir menjadi salah satu opsi sebagai bagian dalam bauran energi yang optimum untuk menghasilkan listrik. Dilihat dari kebutuhan listrik dan kapasitas jaringan, Indonesia terdiri atas wilayah dengan kebutuhan listrik dan kapasitas jaringan yang besar yaitu sistem kelistrikan Jawa- Madura-Bali (Jamali) dan sistem Sumatra; dan wilayah dengan kebutuhan listrik dan kapasitas jaringan yang kecil yaitu sistem kelistrikan di pulau lainnya. Oleh sebab itu PLTN berdaya besar sangat cocok untuk memenuhi kebutuhan listrik di sistem Jamali dan sistem Sumatra. Konsekuensinya, jika memenuhi semua persyaratan untuk pembangunan dan pengoperasian PLTN, maka PLTN berdaya kecil bisa dibangun di pulau lainnya. Salah satu kendala yang dihadapi saat ini adalah masih belum adanya unit PLTN berdaya kecil inovatif yang telah diperasikan. Beberapa reaktor berdaya kecil dan menengah (SMR) telah dioperasikan di beberapa negara, namun semuanya masih menggunakan teknologi tahun an. Salah satu SMR yang masuk dalam kategori near-term deployment adalah mpower yang didesain oleh Babcock and Wilcox, Amerika Serikat. Reaktor mpower merupakan sebuah reaktor air tekan integral (Integral Pressurized Water Reactor) [1]. Arti dari pengaturan integral adalah bahwa teras reaktor, pembangkit uap dan pressurizer berada dalam satu bejana tekan, begitu juga perangkat penggerak batang kendali (CRDM=control rod drive mechanisms) dan pompa pendingin reaktor. Reaktor mpower menggunakan sistem keselamatan pasif, pengungkung bawah tanah, dan siklus operasi 4 tahun [2]. Makalah ini akan membahas desain mpower dan prospek pemanfaatannya di Indonesia. 2. DESKRIPSI UMUM Desain reaktor mpower dikembangkan dari reaktor Otto-Hahn yang digunakan untuk menggerakkan kapal dagang. Reaktor mpower menggunakan sistem modular dan setiap modul memiliki daya listrik 125 MW. Modul bisa ditambahkan untuk menambahkan daya listrik sampai kapasitas yang diinginkan. Umur desain reaktor adalah 60 tahun, dan dirancang untuk memiliki siklus pengisian bahan bakar 4 tahun. Tata Letak Gambar 1 menunjukkan tata letak kompleks PLTN tipe mpower [3]. Tata letak yang ditunjukkan pada Gambar 1 ini adalah untuk 2 modul reaktor. Luas area untuk dua modul reaktor sekitar m2 [4]. Berbeda dengan PWR yang biasanya, desain mpower meletakkan semua reaktor dan gedung pengungkung reaktor di bawah tanah, dan bagian lainnya di atas tanah. Penempatan reaktor dan gedung pengungkung reaktor memiliki keuntungan yaitu hilangnya potensi bahaya eksternal, dan juga ketahanan seismik. 137

3 Sistem mpower dan Prospek Pemanfaatannya di Indonesia (Sudi Ariyanto) Gambar 1. Tata Letak mpower untuk 2 Unit Reaktor Integral Desain mpower memiliki ciri penggunaan reaktor integral, yaitu penempatan pompa pendingin, pembangkit uap, pressurizer, teras reaktor di dalam bejana tekan reaktor. Gambar 3 menunjukkan skema reaktor integral untuk kapasitas 160MWe [5]. Gambar 5 juga menunjukkan arah aliran pendingin dan uap. Berdasarkan desain reaktor integral ini dapat dikatakan mpower memiliki ciri: Gambar 2. Skema Reaktor Integral [5] 138

4 Jurnal Pengembangan Energi Nuklir Vol. 14 No. 2, Desember Komponen sistem suplai uap utama (NSSS), baik sistem pendingin primer maupun sekunder berada di dalam bejana tekan. 2. Menggunakan satu pembangkit uap sistem sekali-lewat. Sistem pendingin primer melewati bagian tengah dalam pembangkit uap, dan sistem sekunder di luarnya. 3. Teras reaktor berada di bagian bawah bejana tekan untuk memudahkan isi ulang bahan bakar. Air pendingin masuk melalui bagian bawah reaktor. Salah satu perbedaan antara mpower dengan PWR konvensional ada pada konfigurasi unit pembangkit uap. Pada PWR konvensional, pendingin primer mengalir di dalam tabung, sedangkan pendingin sekunder mengalir di luar tabung. Pada mpower pendingin primer mengalir di luar tabung, sedangkan pendingin sekunder mengalir di dalam tabung [4]. Terdapat sedikit perbedaan posisi pompa pendingin dalam bejana tekan reaktor untuk kapasitas 160 Mwe dengan kapasitas 125MWe. Posisi pompa pendingin untuk kapasitas 125MWe berada di posisi tengah secara aksial [6]. Desain reaktor integral ini tidak memiliki sistem perpipaan antara pipa dengan pembangkit uap seperti sistem PWR saat ini. Selain itu juga tidak terdapat sistem perpipaan antara sistem pendingin primer dan sekunder. Parameter utama terkait desain reaktor dapat dilihat pada Tabel 1. Tabel 1. Parameter utama desain reactor mpower Desain Teras Teras reaktor berisi 69 perangkat bahan bakar dengan tipe seperti PWR namun lebih pendek. Bahan bakar adalah UO2 dengan pengayaan di bawah 5%. Tidak ada boton-terlarut (soluble boron) untuk pengendalian reaktivitas. Terdapat racun dapat bakar yang memiliki variasi secara aksial. Juga terdapat batang berisi Gd2O3. Batang kendali dengan bahan AIC dan B4C. Konfigurasi teras adalah 17x17 seperti PWR. Gambar 5 menunjukkan perangkat bahan bakar yang digunakan mpower. Di tiap perangkat bahan bakar terdapat satu batang kendali[4]. Setiap perangkat bahan bakar bisa digunakan selama 4 tahun atau lebih, lebih lama dibandingkan dengan PWR konvensional yang dibakar selama 3 tahun. Untuk itu bahan bakar harus memiliki reaktivitas lebih besar daripada tipe PWR. Pada masa akhir pemakaian bahan bakar, seluruh bahan bakar dalam teras reaktor dikeluarkan dan dilakukan pengisian ulang. Waktu yang diperlukan untuk pengisian ulang sekitar 1 minggu. Bahan bakar bekas disimpan di kolam penyimpan bahan bakar bekas dengan kapasitas mampu menampung 12 kali jumlah bahan bakar dalam satu teras [4].Artinya, kolam dapat menampung bahan bakar bekas selama 60 tahun operasi. 139

5 Sistem mpower dan Prospek Pemanfaatannya di Indonesia (Sudi Ariyanto) Gambar 5. Perangkat bahan bakar Pengungkung [5] Reaktor dan bangunan reaktor atau bangunan pengungkung seluruhnya berada di bawah tanah seperti terlihat pada Gambar 5. Selain itu penyimpan bahan bakar dan ultimate heat sink juga di bawah tanah. Bejana pengungkung terbuat dari logam. Pada saat bersamaan dapat dilakukan pengisian ulang bahan bakar dan pemeriksaan atau pemiliharaan sistem suplai uap. Gambar 5. Sistem Pengungkung 140

6 Jurnal Pengembangan Energi Nuklir Vol. 14 No. 2, Desember 2012 Ciri Keselamatan Melekat [5] Desain mpower memiliki ciri keselamatan melekat sebagai berikut: 1. Core Linear Heat Rate rendah. 2. Kerapatan daya yang rendah sehingga mengurangi temperatur bahan bakar dan kelongsong bahan bakar saat kecelakaan. 3. Kerapatan daya yang rendah juga memungkinkan laju alir pendingin yang lebih rendah sehingga meminimalkan efek vibrasi akibat aliran pendingin. 4. Sistem pendingin reaktor bervolume besar memberikan waktu yang lebih lama untuk respons sistem keselamatan pada saat terjadi kecelakaan. 5. Sistem pendingin reaktor bervolume besar juga merupakan sediaan pendingin yang lebih banyak sehingga memberikan pendinginan secara kontinu saat terjadi small break LOCA. 6. Hanya ada sedikit penetrasi perpipaan pada posisi yang lebih tinggi. Selain itu sistem pasif digunakan untuk ECCS dengan memanfaatkan sistem sirkulasi alam dan gravitasi tanpa membutuhkan daya listrik. Hal ini akan mengurangi kegagalan pendinginan saat tidak tersedia daya listrik. Balance of Plant Desain mpower memisahkan nuclear island dari turbine island (balance of plant). Uap yang keluar dari reaktor mengalir menuju turbin tekanan tinggi lalu menuju pemisah air sebelum masuk ke turbin tekanan rendah. Setelah melalui sistem turbin, uap mengalir menuju kondensor. Di dalam kondensor, uap didinginkan dengan udara. Namun pendinginan juga bisa dilakukan dengan menggunakan air. Air kodensasi kemudian dialirkan dengan pipa menuju teras reaktor. Secara skematik ditunjukkan pada Gambar 6. Gambar 6. Balance of Plant [6] 141

7 Sistem mpower dan Prospek Pemanfaatannya di Indonesia (Sudi Ariyanto) 3. PEMBAHASAN Reaktor mpower tergolong ke dalam reaktor berdaya kecil-menengah (SMR), oleh karena itu memiliki semua keuntungan yang dimiliki oleh SMR. Desain mpower dikembangkan dari reaktor Otto-Hahn yang digunakan pada kapal yang digunakan untuk mengangkut orang dan barang. Kapal dengan reaktor Otto-Hahn ini adalah satu dari empat kapal dengan reaktor nuklir yang pernah beroperasi. Kapal yang lain adalah Savannah (Amerika), Sevmorput (Rusia), dan Mutsu (Jepang). Kapal Otto-Hahn mendapatkan daya dari reaktor tunggal berdaya 38MWe dan mencapai kondisi kekritisan pada tahun Pertama kali berlayar pada tahun 1970 dan beroperasi hingga tahun Selama 9 tahun kapal ini telah berlabuh di 33 pelabuhan di 22 negara [7]. Berdasarkan pengalaman pemanfaatan jenis reaktor pada kapal, maka dapat dikatakan bahwa sistem reaktor ini sudah terbukti andal dan aman. Perbedaannya adalah bahwa pompa pendingin pada desain mpower berada di dalam bejana tekan, sedangkan pada reaktor Otto-Hahn ada di luar [3]. Dengan mengggunakan perangkat bahan bakar bertipe PWR, maka tidak diperlukan suatu pengembangan atau pengujian lagi karena tipe bahan bakar ini telah digunakan di banyak reaktor yang beroperasi. Tidak digunakannya soluble boron membuat pengoperasian reaktor lebih sederhana, selain mengurangi kemungkinan korosi akibat pendingin yang bersifat asam. Dimungkinkannya isi-ulang bahan bakar dan inspeksi sistem NSSS pada saat yang bersamaan bisa memperpendek waktu yang dibutuhkan untuk pemeliharaan. Waktu isi-ulang hanya sekitar 1 minggu [4] sangat mempersingkat waktu tidak beroperasinya reaktor. Semua sistem dan komponen nuclear island berada di bawah tanah. Hal ini sangat baik dari segi potensi gangguan akibat gempa, karena energi akan terdisipasi melewati gedung reaktor dan mengurangi goyangan pada bangunan. Gedung yang dibuat kedap air membuat sistem tahan terhadap gangguan karena banjir. Selain ini, bangunan di bawah tanah ini akan sangat meminimalkan adanya gangguan eksternal, dan juga mengurangi kemungkinan lepasan bahan radioaktif ke lingkungan udara. Tersedianya sistem pendingin dengan volume yang besar dan penggunaan sistem keselamatan pasif juga memungkinkan proses pendinginan dalam waktu yang cukup lama. Hal ini memberikan waktu tambahan untuk melakukan respons terhadap kecelakaan, dan juga menghindarkan kecelakaan hilangnya pendinginan seperti yang terjadi di Fukushima Dai 2. Waktu pembangunan hanya 3 tahun [5][6] sangat menarik secara ekonomi. Hal ini dimungkinkan karena pembangunan gedung dapat dilakukan secara paralel dengan pembuatan bejana reaktor dan isinya. Bejana reaktor dibuat secara modular di pabrik, dan diangkut untuk dipasang di tapak. Adanya sistem modular ini memungkinkan penambahan inkremental sesuai dengan kapasitas per modul reaktor. Jenis reaktor ini sangat cocok untuk beberapa pulau di Indonesia yang memiliki kapasitas jaringan yang kecil. Berdasarkan kapasitas reaktor per modul, maka reaktor ini memiliki potensi untuk dimanfaatkan di Kalimantan, Sumatra, dan juga pulau Jawa. Penambahan kapasitas pembangkitan bisa dilakukan dengan penambahan modul. Waktu pembangunan yang singkat juga memungkinkan pemanfaatan secara lebih cepat. Untuk wilayah Indonesia yang lain, diperlukan reaktor dengan daya yang lebih rendah karena keterbatasan kapasitas jaringan. Pendesain merencakan pengoperasian mpower pada tahun 2020, sehingga jenis ini dapat dibangun di Indonesia pada periode tahun untuk pengoperasian komersial pada tahun 2026 dan seterusnya. 142

8 Jurnal Pengembangan Energi Nuklir Vol. 14 No. 2, Desember KESIMPULAN Setelah mengkaji sistem mpower, maka dapat disimpulkan sebagai berikut: 1. Sistem mpower dengan reaktor integral menghilangkan sistem perpipaan yang biasanya ada di sistem PWR selama ini, dan ini sangat meminimalkan kemungkinan terjadinya LOCA dan juga memiliki potensi penghematan. 2. Sistem modular memungkinkan pembangunan secara paralel antara bejana reaktor dan gedung fasilitas lain. 3. Desain gedung nuclear island di bawah tanah mengurangi potensi bahaya eksternal, bahaya seismik, dan mengurangi kemungkinan lepasan bahan radioaktif ke lingkungan udara. 4. Sistem keselematan melekat dan pengguanaan sistem pasif serta besarnya volume pendingin menghindarkan mpower dari kemungkinan kecelakaan seperti yang terjadi di Fukusima. 5. Reaktor mpower memiliki potensi untuk dimanfaatkan di Kalimantan, Sumatra dan Jawa-Madura-Bali pada rentang tahun DAFTAR PUSTAKA [1]. Kemenristek, Penelitian, Pengembangan dan Penerapan Ilmu Pengetahuan dan Teknologi Bidang Sumber Energi Baru dan Terbarukan untuk Mendukung Keamanan Ketersediaan Energi Tahun 2025, Buku Putih, Jakarta [2]., Status of Small and Medium Sized Reactor Designs, IAEA, p.16, Vienna, September [3]., [4]., B&W mpower Reactor Design Overview, Technical Report, (NP), p.9, May 2010, diunduh dari [5]. PAPARUSSO, L., RICOTTI, M.E.,SUMINI, M., World status of the SMR projects, CERSE POLIMI RL 1351/2011, p.14-15, Milano, September [6]. LEE, D.' mpower, IAEA SMR Technology Workshop, Vienna, December 6, [7]. LEE, D., Introduction to B&W mpower Program, IAEA Interregional Workshop, Vienna, July 7, [8]., Diakses November

BAB I PENDAHULUAN I. 1. Latar Belakang

BAB I PENDAHULUAN I. 1. Latar Belakang BAB I PENDAHULUAN I. 1. Latar Belakang Pengembangan pemanfaatan energi nuklir dalam berbagai sektor saat ini kian pesat. Hal ini dikarenakan energi nuklir dapat menghasilkan daya dalam jumlah besar secara

Lebih terperinci

STUDI PROSPEK PLTN DAYA KECIL NUSCALE DI INDONESIA

STUDI PROSPEK PLTN DAYA KECIL NUSCALE DI INDONESIA Studi Prospek PLTN Daya Kecil NUSCALE di Indonesia (Rr. Arum Puni Rijanti, Sahala M. Lumbanraja) STUDI PROSPEK PLTN DAYA KECIL NUSCALE DI INDONESIA Rr. Arum Puni Rijanti, Sahala M. Lumbanraja Pusat Pengembangan

Lebih terperinci

KAJIAN PENERAPAN REAKTOR SMART DI INDONESIA

KAJIAN PENERAPAN REAKTOR SMART DI INDONESIA KAJIAN PENERAPAN REAKTOR SMART DI INDONESIA Yohanes Dwi Anggoro ¹, Sahala M. Lumbanraja², Rr. Arum Puni Rijanti S³ (PPEN) BATAN Jl. Kuningan Barat, Mampang Prapatan Jakarta 12710 Telp/Fax : (021)5204243

Lebih terperinci

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) RINGKASAN Reaktor Air Didih adalah salah satu tipe reaktor nuklir yang digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN). Reaktor tipe ini menggunakan

Lebih terperinci

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) RINGKASAN Reaktor Grafit Berpendingin Gas (Gas Cooled Reactor, GCR) adalah reaktor berbahan bakar uranium alam dengan moderator grafit dan berpendingin

Lebih terperinci

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun BAB I PENDAHULUAN 1.1 Latar Belakang Listrik merupakan energi paling cocok dan nyaman bagi rumah tangga dan berbagai bidang industri karena selain energi llistrik itu tidak menimmbulkan bising energi listrik

Lebih terperinci

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RINGKASAN Apabila ada sistem perpipaan reaktor pecah, sehingga pendingin reaktor mengalir keluar, maka kondisi ini disebut kecelakaan

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

ANALISIS DESAIN ECCS TERHADAP FREKUENSI KERUSAKAN TERAS PADA PWR

ANALISIS DESAIN ECCS TERHADAP FREKUENSI KERUSAKAN TERAS PADA PWR ANALISIS DESAIN ECCS TERHADAP FREKUENSI KERUSAKAN TERAS PADA PWR D. T. Sony Tjahyani, Surip Widodo Bidang Pengkajian dan Analisis Keselamatan Reaktor Pusat Teknologi Reaktor dan Keselamatan Nuklir BATAN

Lebih terperinci

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION Puradwi I.W. Bidang Analisis Risiko dan Mitigasi Sistem P2TKN-BATAN NATIONAL BASIC PROFESSIONAL TRAINING COURSE ON NUCLEAR SAFETY PUSAT PENDIDIKAN DAN PELATIHAN

Lebih terperinci

STUDI TEKNO-EKONOMI REAKTOR MAJU APWR- MITSUBISHI

STUDI TEKNO-EKONOMI REAKTOR MAJU APWR- MITSUBISHI STUDI TEKNO-EKONOMI REAKTOR MAJU APWR- MITSUBISHI Bandi Parapak, Sahala M. Lumbanraja Pusat Pengembangan Energi Nuklir-Badan Tenaga Nuklir Nasional Jl. Kuningan Barat Jakarta Selatan Telp/Fax: (021) 5204243,

Lebih terperinci

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok

Lebih terperinci

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA - 2 - CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Nuklir (PLTN) didesain berdasarkan 3 (tiga) prinsip yaitu mampu dipadamkan dengan aman (safe shutdown), didinginkan serta mengungkung produk

Lebih terperinci

STUDI UNJUK KERJA SISTEM PROTEKSI PADA PEMBANGKIT LISTRIK TENAGA NUKLIR TIPE APR 1400

STUDI UNJUK KERJA SISTEM PROTEKSI PADA PEMBANGKIT LISTRIK TENAGA NUKLIR TIPE APR 1400 STUDI UNJUK KERJA SISTEM PROTEKSI PADA PEMBANGKIT LISTRIK TENAGA NUKLIR TIPE APR 1400 Nafi Feridian, Sriyana Pusat Pengembangan Energi Nuklir (PPEN) BATAN Jl. Kuningan Barat, Mampang Prapatan, Jakarta

Lebih terperinci

REAKTOR PEMBIAK CEPAT

REAKTOR PEMBIAK CEPAT REAKTOR PEMBIAK CEPAT RINGKASAN Elemen bakar yang telah digunakan pada reaktor termal masih dapat digunakan lagi di reaktor pembiak cepat, dan oleh karenanya reaktor ini dikembangkan untuk menaikkan rasio

Lebih terperinci

REAKTOR AIR BERAT KANADA (CANDU)

REAKTOR AIR BERAT KANADA (CANDU) REAKTOR AIR BERAT KANADA (CANDU) RINGKASAN Setelah perang dunia kedua berakhir, Kanada mulai mengembangkan PLTN tipe reaktor air berat (air berat: D 2 O, D: deuterium) berbahan bakar uranium alam. Reaktor

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fase merupakan keadaan dari suatu zat, dapat berupa padat, gas maupun cair. Dalam kehidupan sehari-hari selain aliran satu fase, kita juga temukan aliran multi fase.

Lebih terperinci

REAKTOR AIR TEKAN TIPE RUSIA (VVER)

REAKTOR AIR TEKAN TIPE RUSIA (VVER) REAKTOR AIR TEKAN TIPE RUSIA (VVER) RINGKASAN Kepanjangan VVER dalam bahasa Rusia adalah VODO-VODYANOI ENERGETICHESKY REAKTOR VVER, Jika diartikan dalam bahasa Inggris adalah WATER-WATER POWER REACTOR

Lebih terperinci

Reactor Safety System and Safety Classification BAB I PENDAHULUAN

Reactor Safety System and Safety Classification BAB I PENDAHULUAN DAFTAR ISI BAB I PENDAHULUAN... 1 1.1. Tujuan Keselamatan... 3 1.2. Fungsi Keselamatan Dasar... 3 1.3. Konsep Pertahanan Berlapis... 6 BAB II SISTEM KESELAMATAN REAKTOR DAYA PWR DAN BWR... 1 2.1. Pendahuluan...

Lebih terperinci

REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR)

REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR) REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR) RINGKASAN Dalam PLTN tipe Reaktor Air Tekan, air ringan digunakan sebagai pendingin dan medium pelambat neutron (moderator neutron). Teras reaktor diletakkan

Lebih terperinci

REAKTOR PENDINGIN GAS MAJU

REAKTOR PENDINGIN GAS MAJU REAKTOR PENDINGIN GAS MAJU RINGKASAN Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR) adalah reaktor berbahan bakar uranium dengan pengkayaan rendah, moderator grafit dan pendingin gas yang

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2011 TENTANG DESAIN SISTEM CATU DAYA DARURAT UNTUK REAKTOR DAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2011 TENTANG DESAIN SISTEM CATU DAYA DARURAT UNTUK REAKTOR DAYA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2011 TENTANG DESAIN SISTEM CATU DAYA DARURAT UNTUK REAKTOR DAYA DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR, Menimbang

Lebih terperinci

DAFTAR STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN TENAGA NUKLIR

DAFTAR STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN TENAGA NUKLIR DAFTAR STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN TENAGA NUKLIR BADAN TENAGA NUKLIR NASIONAL 2010 DAFTAR ISI SUB BIDANG OPERASI LEVEL 1 Kode Unit : KTL.PO.28.101.01 Judul Unit

Lebih terperinci

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR

BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR RINGKASAN Beberapa tipe Pembangkit Listrik Tenaga Nuklir (PLTN) adalah Reaktor Air Tekan (Pressurized Water Reactor, PWR), Reaktor Air Tekan Rusia (VVER),

Lebih terperinci

EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA

EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA EVALUASI KESELAMATAN REAKTOR TIPE PWR PADA KECELAKAAN PUTUSNYA JALUR UAP UTAMA Oleh Andi Sofrany Ekariansyah Pusat Teknologi Reaktor Keselamatan Nuklir BATAN ABSTRAK EVALUASI KESELAMATAN REAKTOR TIPE PWR

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan ekonomi yang cepat di dunia. Saat ini Indonesia merupakan negara dengan ekonomi terbesar ke 16 di dunia dan dalam

Lebih terperinci

KRITERIA PENERIMAAN UNTUK KECELAKAAN INSERSI REAKTIVITAS PADA REAKTOR DAYA

KRITERIA PENERIMAAN UNTUK KECELAKAAN INSERSI REAKTIVITAS PADA REAKTOR DAYA Kriteria Penerimaan Untuk Kecelakaan ISSN : 0854-2910 Budi Rohman P2STPIBN-BAPETEN KRITERIA PENERIMAAN UNTUK KECELAKAAN INSERSI REAKTIVITAS PADA REAKTOR DAYA Budi Rohman Pusat Pengkajian Sistem dan Teknologi

Lebih terperinci

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA

LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR DAYA - 2 - KEJADIAN AWAL TERPOSTULASI (PIE) 1.1. Lampiran ini menjelaskan definisi

Lebih terperinci

PENGENALAN DAUR BAHAN BAKAR NUKLIR

PENGENALAN DAUR BAHAN BAKAR NUKLIR PENGENALAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Daur bahan bakar nuklir merupakan rangkaian proses yang terdiri dari penambangan bijih uranium, pemurnian, konversi, pengayaan uranium dan konversi ulang menjadi

Lebih terperinci

Badan Tenaga Nuklir Nasional 2012

Badan Tenaga Nuklir Nasional 2012 BATAN B.38 ANALISIS KONSEKUENSI KECELAKAAN PARAH PRESSURIZED WATER REACTOR DENGAN BACKWARDS METHOD Dr. Ir. Pande Made Udiyani Dr. Jupiter Sitorus Pane, M.Sc Drs. Sri Kuntjoro Ir. Sugiyanto Ir. Suharno,

Lebih terperinci

ANALISIS DAN KRITERIA PENERIMAAN

ANALISIS DAN KRITERIA PENERIMAAN SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI BAHAYA INTERNAL SELAIN KEBAKARAN DAN

Lebih terperinci

TINJAUAN SISTEM KESELAMATAN REAKTOR DAYA TIPE PWR

TINJAUAN SISTEM KESELAMATAN REAKTOR DAYA TIPE PWR TINJAUAN SISTEM KESELAMATAN REAKTOR DAYA TIPE PWR Oleh : Suharno Pusat Teknologi Reaktor dan Keselamatan Nuklir BATAN ABSTRAK TINJAUAN SISTEM KESELAMATAN REAKTOR DAYA TIPE PWR. Tinjauan sistem keselamatan

Lebih terperinci

MODEL REAKTOR PEMBIAK CEPAT

MODEL REAKTOR PEMBIAK CEPAT MODEL REAKTOR PEMBIAK CEPAT RINGKASAN Terdapat dua model reaktor pembiak cepat, yakni model untai (loop) dan model tangki. Pada model untai, teras reaktor dikungkung oleh bejana reaktor, sedangkan pompa

Lebih terperinci

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. Nur imam (2014110005) 2. Satria Diguna (2014110006) 3. Boni Marianto (2014110011) 4. Ulia Rahman (2014110014) 5. Wahyu Hidayatul

Lebih terperinci

ANALISIS KEANDALAN KOLAM PENYIMPAN BAHAN BAKAR BEKAS PADA PWR AP1000

ANALISIS KEANDALAN KOLAM PENYIMPAN BAHAN BAKAR BEKAS PADA PWR AP1000 ANALISIS KEANDALAN KOLAM PENYIMPAN BAHAN BAKAR BEKAS PADA PWR AP1000 D. T. Sony Tjahyani Pusat Teknologi Reaktor dan Keselamatan Nuklir BATAN Kawasan Puspiptek Gd. 80, Serpong, Tangerang 15310 Telp/Fax:

Lebih terperinci

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA PENDAHULUAN Disamping sebagai senjata nuklir, manusia juga memanfaatkan energi nuklir untuk kesejahteraan umat manusia. Salah satu pemanfaatan energi nuklir secara

Lebih terperinci

BADAN TENAGA NUKLIR NASIONAL 2012

BADAN TENAGA NUKLIR NASIONAL 2012 BATAN B.41 ANALISIS KECELAKAAN PARAH REAKTOR DAYA PRESSURIZED WATER REACTOR MAJU BELAJAR DARI KEJADIAN FUKUSHIMA MENGGUNAKAN RELAP/SCDAPSIM 1. Ir. Surip Widodo, M.IT 2. Dipl.Ing. (FH) Andi Sofrany Ekariansyah

Lebih terperinci

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK BAHAN BAKAR

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK BAHAN BAKAR RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK BAHAN BAKAR RINGKASAN Meskipun terjadi kecelakaan kehilangan air pendingin ( Loss Of Coolant Accident, LOCA), seandainya bundel bahan bakar dapat

Lebih terperinci

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR PENGENALAN (PLTN) PEMBANGKIT L STR KTENAGANUKLTR I _ Sampai saat ini nuklir khususnya zat radioaktif telah dipergunakan secara luas dalam berbagai bidang seperti industri, kesehatan, pertanian, peternakan,

Lebih terperinci

Definisi PLTN. Komponen PLTN

Definisi PLTN. Komponen PLTN Definisi PLTN PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik

Lebih terperinci

MITIGASI DAMPAK KEBAKARAN

MITIGASI DAMPAK KEBAKARAN LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2012 TENTANG KETENTUAN DESAIN SISTEM PROTEKSI KEBAKARAN DAN LEDAKAN INTERNAL PADA REAKTOR DAYA MITIGASI DAMPAK KEBAKARAN III.1.

Lebih terperinci

KOMPARASI ASPEK EKONOMI TEKNIK SC (STEEL PLATE REINFORCED CONCRETE) DAN RC (REINFORCED CONCRETE) PADA KONSTRUKSI DINDING PENGUNGKUNG REAKTOR

KOMPARASI ASPEK EKONOMI TEKNIK SC (STEEL PLATE REINFORCED CONCRETE) DAN RC (REINFORCED CONCRETE) PADA KONSTRUKSI DINDING PENGUNGKUNG REAKTOR KOMPARASI ASPEK EKONOMI TEKNIK SC (STEEL PLATE REINFORCED CONCRETE) DAN RC (REINFORCED CONCRETE) PADA KONSTRUKSI DINDING PENGUNGKUNG REAKTOR Yuliastuti, Sriyana Pusat Pengembangan Energi Nuklir BATAN Jl.

Lebih terperinci

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) Bab 2 Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) 2.1 Pembangkit Listrik Tenaga Nuklir Prinsip kerja dari pembangkit listrik tenaga nuklir secara umum tidak berbeda dengan pembangkit listrik

Lebih terperinci

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI Dosen : Hasbullah, S.Pd., MT. Di susun oleh : Umar Wijaksono 1101563 PROGRAM STUDI S1 TEKNIK ELEKTRO JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Skema pressurized water reactor (http://www.world-nuclear.org/, September 2015)

BAB I PENDAHULUAN. Gambar 1.1 Skema pressurized water reactor (http://www.world-nuclear.org/, September 2015) BAB I PENDAHULUAN 1.1. Latar Belakang Aliran multifase merupakan salah satu fenomena penting yang banyak ditemukan dalam kegiatan industri. Kita bisa menemukannya di dalam berbagai bidang industri seperti

Lebih terperinci

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi.

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi. 1 I. PENDAHULUAN A. Latar Belakang Masalah energi merupakan salah satu hal yang sedang hangat dibicarakan saat ini. Di Indonesia, ketergantungan kepada energi fosil masih cukup tinggi hampir 50 persen

Lebih terperinci

STUDI SISTEM KESELAMATAN TEKNIS REAKTOR SMART

STUDI SISTEM KESELAMATAN TEKNIS REAKTOR SMART STUDI SISTEM KESELAMATAN TEKNIS REAKTOR SMART Siti Alimah 1, Erlan Dewita 1, Sriyono 2 1 Pusat Pengembangan Energi Nuklir (PPEN)-BATAN 2 Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN-BATAN) Jl.

Lebih terperinci

PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam. Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo

PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam. Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR SEKUNDER 750 l/jam Sutrisno, Saleh Hartaman, Asnul Sufmawan, Pardi dan Sapto Prayogo ABSTRAK PENGUJIAN IRADIASI KELONGSONG PIN PRTF DENGAN LAJU ALIR

Lebih terperinci

STUDI BANDING TATA LETAK TIPE-T dan TIPE-I PLTN PWR

STUDI BANDING TATA LETAK TIPE-T dan TIPE-I PLTN PWR Studi Banding Tata Letak Tipe-T dan Tipe-I PLTN PWR (Eko Rudi I, Siti Alimah) STUDI BANDING TATA LETAK TIPE-T dan TIPE-I PLTN PWR Eko Rudi Iswanto, Siti Alimah Pusat Pengembangan Energi Nuklir (PPEN) -

Lebih terperinci

ANALISIS KECELAKAAN KEHILANGAN PENDINGIN SEKUNDER REAKTOR TIPE PIUS MENGGUNAKAN RELAP5/MOD2. Ign. Djoko Irianto*

ANALISIS KECELAKAAN KEHILANGAN PENDINGIN SEKUNDER REAKTOR TIPE PIUS MENGGUNAKAN RELAP5/MOD2. Ign. Djoko Irianto* ANALISIS KECELAKAAN KEHILANGAN PENDINGIN SEKUNDER REAKTOR TIPE PIUS MENGGUNAKAN RELAP5/MOD2 Ign. Djoko Irianto* ABSTRACT ID990000033 LOSS OF SECONDARY COOLANT ACCIDENT ANALYSIS FOR PIUS TYPE REACTOR USING

Lebih terperinci

PENGUJIAN KEANDALAN PEMBANGKIT UAP

PENGUJIAN KEANDALAN PEMBANGKIT UAP PENGUJIAN KEANDALAN PEMBANGKIT UAP RINGKASAN Pengujian keandalan pembangkit uap telah dilakukan selama 6 tahun sejak tahun 1975 dan dilanjutkan pada tahun 1993 sampai 1997. Natrium Phosphat yang digunakan

Lebih terperinci

MANAJEMEN KESELAMATAN PLTN PASCA KECELAKAAN FUKUSHIMA DAIICHI UNIT 1~4

MANAJEMEN KESELAMATAN PLTN PASCA KECELAKAAN FUKUSHIMA DAIICHI UNIT 1~4 MANAJEMEN KESELAMATAN PLTN PASCA KECELAKAAN FUKUSHIMA DAIICHI UNIT 1~4 Sahala M. Lumbanraja, Rr. Arum Puni Riyanti, Yohanes Dwi Anggoro Pusat Pengembangan Energi Nuklir-BATAN Jl. Kuningan Barat Mampang

Lebih terperinci

Nomor 36, Tahun VII, April 2001

Nomor 36, Tahun VII, April 2001 Nomor 36, Tahun VII, April 2001 Mengenal Proses Kerja dan Jenis-Jenis PLTN Di dalam inti atom tersimpan tenaga inti (nuklir) yang luar biasa besarnya. Tenaga nuklir itu hanya dapat dikeluarkan melalui

Lebih terperinci

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K Sri Sudadiyo Pusat Teknologi Reaktor dan Keselamatan Nuklir ABSTRAK ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K.

Lebih terperinci

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian

Lebih terperinci

RISET PROSES PELELEHAN TERAS SAAT KECELAKAAN PARAH

RISET PROSES PELELEHAN TERAS SAAT KECELAKAAN PARAH RISET PROSES PELELEHAN TERAS SAAT KECELAKAAN PARAH RINGKASAN Kecelakaan yang terjadi pada reaktor Three Mile Island No.2 (TMI-2) di Amerika Serikat pada bulan Maret 1979, telah mengakibatkan sekitar separuh

Lebih terperinci

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN TUGAS Mengenai : PLTN Di Susun Oleh: ADRIAN Kelas : 3 IPA MADRASAH ALIYAH ALKHAIRAT GALANG TAHUN AJARAN 2011-2012 BAB I PENDAHULUAN 1.1. Latar Belakang Masyarakat pertama kali mengenal tenaga nuklir dalam

Lebih terperinci

ANALISIS PROBABILISTIK KECELAKAAN PARAH PWR SISTEM PASIF UNTUK MENINGKATKAN MANAJEMEN KECELAKAAN

ANALISIS PROBABILISTIK KECELAKAAN PARAH PWR SISTEM PASIF UNTUK MENINGKATKAN MANAJEMEN KECELAKAAN ANALISIS PROBABILISTIK KECELAKAAN PARAH PWR SISTEM PASIF UNTUK MENINGKATKAN MANAJEMEN KECELAKAAN D. T. Sony Tjahyani, Andi Sofrany Ekariansyah Pusat Teknologi Reaktor dan Keselamatan Nuklir-BATAN Kawasan

Lebih terperinci

ANALISIS PENGARUH TINGKAT KOMPONEN DALAM NEGERI TERHADAP KEEKONOMIAN PLTN

ANALISIS PENGARUH TINGKAT KOMPONEN DALAM NEGERI TERHADAP KEEKONOMIAN PLTN ANALISIS PENGARUH TINGKAT KOMPONEN DALAM NEGERI TERHADAP KEEKONOMIAN PLTN Sriyana *, Sahala LR *, Priyanto *, Imam Bastori *, Yuliastuti *, B. Suprawoto *, Refrison ** Pusat Pengembangan Energi Nuklir

Lebih terperinci

DASAR ANALISIS KESELAMATAN

DASAR ANALISIS KESELAMATAN Modul 1 DASAR ANALISIS KESELAMATAN Anhar R. Antariksawan Bidang Analisis Risiko dan Mitigasi Kecelakaan (BARMiK) P2TKN BATAN anharra@centrin.net.id 20-10-03 antariksawan 1 Tujuan Mengetahui metodologi

Lebih terperinci

EVALUASI KESELAMATAN REAKTOR AIR MENDIDIH (BWR) DALAM PENGAWASAN REAKTOR DAYA

EVALUASI KESELAMATAN REAKTOR AIR MENDIDIH (BWR) DALAM PENGAWASAN REAKTOR DAYA EVALUASI KESELAMATAN REAKTOR AIR MENDIDIH (BWR) DALAM PENGAWASAN REAKTOR DAYA Oleh: Budi Rohman Pusat Pengkajian Sistem dan Teknologi Pengawasan Instalasi dan Bahan Nuklir Badan Pengawas Tenaga Nuklir

Lebih terperinci

STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O

STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O Berkala Fisika ISSN : 1410-9662 Vol. 18, No. 3, Juli 2015, hal 95-100 STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O Very Richardina 1*, Wahyu Setia Budi 1 dan Tri

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Konsumsi energi listrik dunia dari tahun ke tahun terus meningkat. Dalam hal ini industri memegang peranan penting dalam kenaikan konsumsi listrik dunia. Di Indonesia,

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 3 TAHUN 2009 TENTANG BATASAN DAN KONDISI OPERASI DAN PROSEDUR OPERASI REAKTOR DAYA DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR,

Lebih terperinci

STUDI PERENCANAAN PENGEMBANGAN PEMBANGKIT WILAYAH BANGKA BELITUNG DENGAN OPSI NUKLIR

STUDI PERENCANAAN PENGEMBANGAN PEMBANGKIT WILAYAH BANGKA BELITUNG DENGAN OPSI NUKLIR STUDI PERENCANAAN PENGEMBANGAN PEMBANGKIT WILAYAH BANGKA BELITUNG DENGAN OPSI NUKLIR Rizki Firmansyah Setya Budi, Suparman (PPEN) BATAN Jl. Kuningan Barat, Mampang Prapatan, Jakarta 12710 Telp./Fax: (021)

Lebih terperinci

IDENTIFIKASI SKEMA OPTIMUM EKSTRASI UAP UNTUK INSTALASI DESALINASI PADA SISTEM KOGENERASI PLTN PWR

IDENTIFIKASI SKEMA OPTIMUM EKSTRASI UAP UNTUK INSTALASI DESALINASI PADA SISTEM KOGENERASI PLTN PWR Identifikasi Skema Optimum Ekstrasi Uap untuk Instalasi Desalinasi pada Sistem Kogenerasi PLTN PWR (Dedy Priambodo, Erlan Dewita, Sudi Ariyanto) IDENTIIKASI SKEMA OPTIMUM EKSTRASI UAP UNTUK INSTALASI DESALINASI

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. AFRI YAHDI : 2013110067 2. M.RAZIF : 2013110071 3. SYAFA RIDHO ILHAM : 2013110073 4. IKMARIO : 2013110079 5. CAKSONO WIDOYONO : 2014110003

Lebih terperinci

I. PENDAHULUAN. 1.1 Latar Belakang

I. PENDAHULUAN. 1.1 Latar Belakang I. PENDAHULUAN 1.1 Latar Belakang Energi merupakan faktor yang sangat penting dalam pembangunan ekonomi, sosial maupun peningkatan kualitas hidup. Oleh karena itu kecukupan persediaan energi secara berkelanjutan

Lebih terperinci

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

Lebih terperinci

KONTRIBUSI PLTN DALAM MENGURANGI EMISI GAS CO2 PADA STUDI OPTIMASI PENGEMBANGAN SISTEM PEMBANGKITAN LISTRIK SUMATERA

KONTRIBUSI PLTN DALAM MENGURANGI EMISI GAS CO2 PADA STUDI OPTIMASI PENGEMBANGAN SISTEM PEMBANGKITAN LISTRIK SUMATERA Kontribusi PLTN dalam Mengurangi Emisi Gas CO2 Pada Studi Optimasi Pengembangan Sistem KONTRIBUSI PLTN DALAM MENGURANGI EMISI GAS CO2 PADA STUDI OPTIMASI PENGEMBANGAN SISTEM PEMBANGKITAN LISTRIK SUMATERA

Lebih terperinci

FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN)

FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN) PERTANYAAN : FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN) BAGAIMANAKAH HUBUNGAN ANTARA ENERGI NUKLIR DENGAN FENOMENAPEMANASAN AKIBAT GAS KARBONDIOKSIDA (CO 2 ) JAWABAN RINGKAS Strategi pengurangan

Lebih terperinci

Aplikasi Sistem Keselamatan Pasif pada Reaktor Nuklir

Aplikasi Sistem Keselamatan Pasif pada Reaktor Nuklir Prosiding Pertemuan Ilmiah XXV HFI Jateng & DIY 43 Aplikasi Sistem Keselamatan Pasif pada Reaktor Nuklir Nur Syamsi Syam, Anggoro Septilarso Badan Pengawas Tenaga Nuklir (BAPETEN) Jakarta n.syam@bapeten.go.id,

Lebih terperinci

OCEAN ENERGY (ENERGI SAMUDERA)

OCEAN ENERGY (ENERGI SAMUDERA) OCEAN ENERGY (ENERGI SAMUDERA) HASBULLAH, S.Pd.MT Electrical Engineering Dept. TEKNIK ELEKTRO FPTK UPI 2008 FPTK UPI 2009 ENERGI GELOMBANG SAMUDERA Energi gelombang laut adalah satu potensi laut dan samudra

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang

BAB I PENDAHULUAN. I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Memperoleh energi yang terjangkau untuk rumah tangga dan industri adalah aktivitas utama pada masa ini dimana fisi nuklir memainkan peran yang sangat penting. Para

Lebih terperinci

2. Prinsip kerja dan Komponen Utama PLTN

2. Prinsip kerja dan Komponen Utama PLTN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) DAN JENIS-JENIS REAKTOR PLTN (Yopiter L.A.Titi, NRP:1114201016, PascaSarjana Fisika FMIPA Institut Teknologi Sepuluh November (ITS Surabaya) 1. Pendahuluan Nuklir

Lebih terperinci

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM Ign. Djoko Irianto Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) BATAN ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi menjadi peran penting dalam menunjang kehidupan manusia. Ketersediaan energi Indonesia saat ini masih didominasi oleh energi fosil. Energi fosil Indonesia jumlahnya

Lebih terperinci

Analisis Pohon Kejadian (ETA)

Analisis Pohon Kejadian (ETA) Analisis Pohon Kejadian (ETA) Analisis induktif : Suatu analisis diawali dengan kejadian awal dan diikuti dengan bekerja atau tidaknya sistem-sistem keselamatan/mitigasi Hal yang penting : Menghubungkan

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Laju konsumsi energi dunia terus mengalami kenaikan. Laju konsumsi energi primer (pemanfaatan sumber daya energi) total dunia pada tahun 2004 kurang lebih 15 TW sebesar

Lebih terperinci

AKTIVITAS SDM UJI TAK RUSAK-PTRKN UNTUK MENYONGSONG PLTN PERTAMA DI INDONESIA

AKTIVITAS SDM UJI TAK RUSAK-PTRKN UNTUK MENYONGSONG PLTN PERTAMA DI INDONESIA AKTIVITAS SDM UJI TAK RUSAK-PTRKN UNTUK MENYONGSONG PLTN PERTAMA DI INDONESIA SRI NITISWATI, ROZIQ HIMAWAN Pusat Teknologi Reaktor dan Keselamatan Nuklir-BATAN Kawasan Puspitek Serpong, Tangerang 15310,

Lebih terperinci

BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM

BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM 3.1. Siklus Bahan Bakar Nuklir Siklus bahan bakar nuklir (nuclear fuel cycle) adalah rangkaian kegiatan yang meliputi pemanfaatan

Lebih terperinci

Diterima editor 27 Agustus 2014 Disetujui untuk publikasi 30 September 2014

Diterima editor 27 Agustus 2014 Disetujui untuk publikasi 30 September 2014 ANALISIS SKENARIO KEGAGALAN SISTEM UNTUK MENENTUKAN PROBABILITAS KECELAKAAN PARAH AP1000 D. T. Sony Tjahyani, Julwan Hendry Purba Pusat Teknologi dan Keselamatan Reaktor Nuklir E-mail: dtsony@batan.go.id;

Lebih terperinci

PERHITUNGAN LAJU ALIR PENDINGIN AIR SISI PRIMER PADA UNTAI UJI BETA UNTUK EKSPERIMEN SISTEM PASIF

PERHITUNGAN LAJU ALIR PENDINGIN AIR SISI PRIMER PADA UNTAI UJI BETA UNTUK EKSPERIMEN SISTEM PASIF PERHITUNGAN LAJU ALIR PENDINGIN AIR SISI PRIMER PADA UNTAI UJI BETA UNTUK EKSPERIMEN SISTEM PASIF Defri Sulaeman 1, Surip Widodo 2, Mulya Juarsa 1,2 1 Lab. Riset Engineering Development for Energy Conversion

Lebih terperinci

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar - Pembangkit Listrik Tenaga Nuklir (PLTN) merupakan stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. - PLTN dikelompokkan

Lebih terperinci

EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN.

EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN. EVALUASI TINGKAT KESELAMATAN HIGH TEMPERATURE REACTOR 10 MW DITINJAU DARI NILAI SHUTDOWN MARGIN Rizki Budi Rahayu 1, Riyatun 1, Azizul Khakim 2 1 Prodi Fisika, FMIPA, Universitas Sebelas Maret, Surakarta

Lebih terperinci

Bab 2 PENDEKATAN TERHADAP PERTAHANAN BERLAPIS

Bab 2 PENDEKATAN TERHADAP PERTAHANAN BERLAPIS Bab 2 PENDEKATAN TERHADAP PERTAHANAN BERLAPIS 15. Pertahanan berlapis merupakan penerapan hierarkis berbagai lapisan peralatan dan prosedur untuk menjaga efektivitas penghalang fisik yang ditempatkan di

Lebih terperinci

EVALUASI DESAIN TERAS REAKTOR DAYA TIPE PWR PERTAMA INDONESIA

EVALUASI DESAIN TERAS REAKTOR DAYA TIPE PWR PERTAMA INDONESIA EVALUASI DESAIN TERAS REAKTOR DAYA TIPE PWR PERTAMA INDONESIA Endiah Puji Hastuti Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) -BATAN Gedung 80 Kawasan PUSPIPTEK, Serpong,Tangerang 15310 e-mail:

Lebih terperinci

2 instalasi nuklir adalah instalasi radiometalurgi. Instalasi nuklir didesain, dibangun, dan dioperasikan sedemikian rupa sehingga pemanfaatan tenaga

2 instalasi nuklir adalah instalasi radiometalurgi. Instalasi nuklir didesain, dibangun, dan dioperasikan sedemikian rupa sehingga pemanfaatan tenaga TAMBAHAN LEMBARAN NEGARA RI (Penjelasan Atas Lembaran Negara Republik Indonesia Tahun 2012 Nomor 107) PENJELASAN ATAS PERATURAN PEMERINTAH NOMOR 54 TAHUN 2012 TENTANG KESELAMATAN DAN KEAMANAN INSTALASI

Lebih terperinci

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR

LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 4 TAHUN 2014 TENTANG BATASAN DAN KONDISI OPERASI INSTALASI NUKLIR NONREAKTOR PARAMETER

Lebih terperinci

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN II PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI BAHAYA INTERNAL SELAIN KEBAKARAN DAN

Lebih terperinci

Kata kunci: analisis transient aliran, SSSR, aliran sirkulasi alam, loop primer, kondisi normal.

Kata kunci: analisis transient aliran, SSSR, aliran sirkulasi alam, loop primer, kondisi normal. J. Tek. Reaktor. Nukl. Vol. 10 No. 3, Oktober 2008, Hal. 126-135 ISSN 1411 240X ANALISIS TRANSIEN ALIRAN PENDINGIN SMALL SIMPLE AND SAFE REACTOR TANPA POSTULASI KECELAKAAN Enjang Ruhiat, Andang Widi Harto,

Lebih terperinci

BAB 1 AB I PENDAHULUAN

BAB 1 AB I PENDAHULUAN BAB I 1 PENDAHULUAN 1.1 Latar Belakang Generator uap air merupakan unit plant yang banyak digunakan dalam dunia industri. Plant ini biasanya terdapat pada pembangkit listrik baik itu pembangkit listrik

Lebih terperinci

BAB III 1 METODE PENELITIAN

BAB III 1 METODE PENELITIAN 17 BAB III 1 METODE PENELITIAN 1.1 Prosedur Penelitian Prosedur yang dilakukan dalam penelitian ini terdiri dari beberapa langkah. Langkah pertama, yaitu melakukan studi literatur dari berbagi sumber terkait.

Lebih terperinci

LAMPIRAN I METODE DAN PENDEKATAN ANALISIS KESELAMATAN

LAMPIRAN I METODE DAN PENDEKATAN ANALISIS KESELAMATAN LAMPIRAN I METODE DAN PENDEKATAN ANALISIS KESELAMATAN I-101. Lampiran I berisi beberapa pertimbangan yang mungkin bermanfaat dalam melakukan analisis keselamatan untuk suatu reaktor penelitian. Pendekatan

Lebih terperinci

BAB I. PENDAHULUAN Latar Belakang

BAB I. PENDAHULUAN Latar Belakang BAB I. PENDAHULUAN 1.1. Latar Belakang Aliran dua fasa berlawanan arah, banyak dijumpai pada aplikasi reaktor nuklir, jaringan pipa, minyak dan gas. Aliran dua fasa ini juga memiliki karakteristik yang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Listrik merupakan salah satu energi yang sangat dibutuhkan oleh manusia pada era modern ini. Tak terkecuali di Indonesia, negara ini sedang gencargencarnya melakukan

Lebih terperinci

SISTEM DETEKSI DAN PEMADAMAN KEBAKARAN

SISTEM DETEKSI DAN PEMADAMAN KEBAKARAN LAMPIRAN II PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2012 TENTANG KETENTUAN DESAIN SISTEM PROTEKSI KEBAKARAN DAN LEDAKAN INTERNAL PADA REAKTOR DAYA SISTEM DETEKSI DAN PEMADAMAN KEBAKARAN

Lebih terperinci

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI TERHADAP BAHAYA INTERNAL

PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI TERHADAP BAHAYA INTERNAL SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI TERHADAP BAHAYA INTERNAL SELAIN KEBAKARAN DAN LEDAKAN

Lebih terperinci