BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR

Ukuran: px
Mulai penontonan dengan halaman:

Download "BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR"

Transkripsi

1 BERBAGAI TIPE PEMBANGKIT LISTRIK TENAGANUKLIR RINGKASAN Beberapa tipe Pembangkit Listrik Tenaga Nuklir (PLTN) adalah Reaktor Air Tekan (Pressurized Water Reactor, PWR), Reaktor Air Tekan Rusia (VVER), Reaktor Air Didih (Boiling Water Reactor, BWR), Reaktor Air Berat Pipa Tekan (CANDU), Reaktor Air Berat Pembangkit Uap (Steam Generating Heavy Water Reactor, SGHWR), Reaktor Pendingin Gas (Gas Cooled Reactor, GCR), Reaktor Gas Maju (Advanced Gas Reactor, AGR), Reaktor Gas Suhu Tinggi (High Temperatur Gas Reactor, HTGR), Reaktor Moderator Grafit Pendingin Air Didih (RBMK), Reaktor Pembiak Cepat (Fast Breeder Reactor, FBR). URAIAN 1. Prinsip Kerja PLTN Perbedaan cara kerja pembangkit listrik tenaga uap (PLTU) dengan pembangkit listrik tenaga nuklir (PLTN) ditunjukkan pada Gambar 1. Pada PLTU, di dalam ketel uap (boiler) minyak atau batu bara dibakar untuk membangkitkan uap dengan temperatur dan tekanan tinggi, kemudian uap ini disalurkan ke turbin untuk membangkitkan tenaga listrik. Dalam hal pembangkitan listrik, PLTU dan PLTN mempunyai prinsip yang sama. Panas yang dihasilkan digunakan untuk membangkitkan uap dan kemudian uap disalurkan ke turbin untuk membangkitkan listrik. Yang berbeda dari kedua tipe pembangkit listrik ini adalah mesin pembangkit uapnya, yang satu berupa ketel uap dan yang lainnya berupa reaktor nuklir. Dalam reaktor nuklir PLTN, reaksi fisi berantai dipertahankan kontinuitasnya dalam bahan bakar sehingga bahan bakar menjadi panas. Panas ini kemudian ditransfer ke pendingin reaktor yang kemudian secara langsung atau tak langsung digunakan untuk membangkitkan uap. Pembangkitan uap langsung dilakukan dengan membuat pendingin reaktor (biasanya air biasa, H2O) mendidih dan menghasilkan uap. Pada pembangkitan uap tak langsung, pendingin reaktor (disebut pendingin primer) yang menerima panas dari bahan bakar disalurkan melalui pipa ke perangkat pembangkit uap. Pendingin primer ini kemudian memberikan panas (menembus media dinding pipa) ke pendingin sekunder (air biasa) yang berada di luar pipa perangkat pembangkit uap untuk kemudian panas tersebut mendidihkan pendingin sekunder dan membangkitkan uap. 2. Tipe Reaktor PLTN Beberapa tipe reaktor nuklir serta jenis bahan moderator dan pendingin yang digunakan diperlihatkan pada Tabel 1. Pada umumnya tipe reaktor nuklir dalam PLTN dibedakan berdasarkan komposisi dan konstruksi dari bahan moderator neutron dan bahan pendingin yang digunakan sehingga digunakan sebutan seperti reaktor gas, reaktor air ringan, reaktor air berat (air ringan: H2O; air berat: D2O; D adalah salah satu isotop hidrogen, yaitu deuterium 2H1). Selain itu faktor kondisi air pendingin juga menjadi pertimbangan penggolongan tipe reaktor nuklir dalam PLTN. Jika air pendingin dalam kondisi mendidih disebut reaktor air didih, jika tak mendidih (atau tidak diizinkan mendidih, dengan memberi tekanan secukupnya pada pendingin) disebut reaktor air tekan. Reaktor nuklir dengan temperatur pendingin sangat tinggi (di atas 800 oc) disebut reaktor gas temperatur tinggi. Kecepatan neutron ratarata dalam reaktor yang dihasilkan dari reaksi fisi juga dipakai untuk menggolongkan tipe reaktor. Berdasarkan kecepatan neutron rata-rata dalam teras, ada reaktor cepat dan reaktor termal (neutron dengan kecepatan relatif lambat sering disebut sebagai neutron termal). Dalam Tabel 2 diperlihatkan beberapa PLTN yang beroperasi di dunia dengan penggolongan tipe reaktornya. 3. Reaktor Air Ringan (Light Water Reactor, LWR) Di antara PLTN yang masih beroperasi di dunia, 80 % adalah PLTN tipe Reaktor Air Ringan (LWR). Reaktor ini pada awalnya dirancang untuk tenaga penggerak kapal selam angkatan laut Amerika. Dengan modifikasi secukupnya dan peningkatan daya seperlunya kemudian digunakan dalam PLTN. PLTN tipe ini dengan daya terbesar yang masih beroperasi pada saat ini (tahun 2003) adalah PLTN Chooz dan Civaux di Perancis yang mempunyai daya 1500 MWe, dari kelas N-4 Perancis. Reaktor Air Ringan dapat dibedakan menjadi dua golongan yaitu Reaktor Air Didih dan Reaktor Air Tekan (pendingin tidak mendidih), kedua golongan ini menggunakan air ringan sebagai bahan pendingin dan moderator. Pada tipe reaktor air ringan sebagai bahan bakar digunakan uranium dengan pengayaan rendah sekitar 2% - 4%; Ensiklopedi Teknologi Nuklir -BATAN l 1/15

2 bukan uranium alam karena sifat air yang menyerap neutron. Kemampuan air dalam memoderasi neutron (menurunkan kecepatan/ energi neutron) sangat baik, maka jika digunakan dalam reaktor (sebagai moderator neutron dan pendingin) ukuran teras reaktor menjadi lebih kecil (kompak) bila dibandingkan dengan reaktor nuklir tipe reaktor gas dan reaktor air berat. 3.1 Reaktor Air Tekan (Pressurized Water Reactor, PWR) Pada PLTN tipe PWR, air sistem pendingin primer masuk ke dalam bejana tekan reaktor pada tekanan tinggi dan temperatur lebih kurang 290 oc. Air bertekanan dan bertemperatur tinggi ini bergerak pada sela-sela batang bahan bakar dalam perangkat bahan bakar ke arah atas teras sambil mengambil panas dari batang bahan bakar, sehingga temperaturnya naik menjadi sekitar 320 oc. Air pendingin primer ini kemudian disalurkan ke perangkat pembangkit uap (lewat sisi dalam pipa pada perangkat pembangkit uap), di perangkat ini air pendingin primer memberikan energi panasnya ke air pendingin sekunder (yang ada di sisi luar pipa pembangkit uap) sehingga temperaturnya naik sampai titik didih dan terjadi penguapan. Uap yang dihasilkan dari penguapan air pendingin sekunder tersebut kemudian dikirim ke turbin untuk memutar turbin yang dikopel dengan generator listrik. Perputaran generator listrik akan menghasilkan energi listrik yang disalurkan ke jaringan listrik. Air pendingin primer yang ada dalam bejana reaktor dengan temperatur 320 oc akan mendidih jika berada pada tekanan udara biasa (sekitar satu atmosfer). Agar pendingin primer ini tidak mendidih, maka sistem pendingin primer diberi tekanan hingga 157 atm. Karena adanya pemberian tekanan ini maka bejana reaktor sering disebut sebagai bejana tekan atau bejana tekan reaktor. Pada reaktor tipe PWR, air pendingin primer yang membawa unsur-unsur radioaktif dialirkan hanya sampai ke pembangkit uap, tidak sampai turbin, oleh karena itu pemeriksaan dan perawatan sistem sekunder (komponen sistem sekunder: turbin, kondenser, pipa penyalur, pompa sekunder dll.) menjadi mudah dilakukan. Konstruksi bejana reaktor tipe PWR ditunjukkan pada Gambar 2, dan perubahan teknologi PWR ditunjukkan pada Gambar 3. Pada prinsipnya PWR yang dikembangkan oleh Rusia (disebut VVER) sama dengan PWR yang dikembangkan oleh negara-negara barat. Perbedaan konstruksi terdapat pada bentuk penampang perangkat bahan bakar VVER (berbentuk segi enam) dan letak pembangkit uap VVER (horisontal). Pada reaktor tipe PWR, seperti yang banyak beroperasi saat ini, peralatan sistem primer saling dihubungkan membentuk suatu untai (loop). Jika peralatan sistem primer dihubungkan oleh dua pipa penghubung utama yang diperpendek, dan kemudian dimasukkan dalam bejana reaktor maka sistem seperti ini disebut reaktor setengah terintegrasi (setengah modular). Tetapi jika seluruh sistem primer disatukan dan dimasukkan ke dalam bejana reaktor maka disebut reaktor terintegrasi (modular), lihat Gambar 4. Reaktor setengah modular ataupun modular tidak dikembangkan untuk PLTN berdaya besar. 3.2 Reaktor Air Didih (Boiling Water Reactor, BWR) Karakteristika unik dari reaktor air didih adalah uap dibangkitkan langsung dalam bejana reaktor dan kemudian disalurkan ke turbin pembangkit listrik. Pendingin dalam bejana reaktor berada pada temperatur sekitar 285 oc dan tekanan jenuhnya sekitar 70 atm. Reaktor ini tidak memiliki perangkat pembangkit uap tersendiri, karena uap dibangkitkan di bejana reaktor. Karena itu pada bagian atas bejana reaktor terpasang perangkat pemisah dan pengering uap, akibatnya konstruksi bejana reaktor menjadi lebih rumit. Konstruksi reaktor BWR diperlihatkan pada Gambar 5, sedangkan pada Gambar 6 ditunjukan perkembangan teknologi reaktor BWR. 4. Reaktor Air Berat (Heavy Water Reactor, HWR) Dalam hal kemampuan memoderasi neutron, air berat berada pada urutan berikutnya setelah air ringan, tetapi air berat hampir tidak menyerap neutron. Oleh karena itu jika air berat dipakai sebagai moderator, maka dengan hanya menggunakan uranium alam (tanpa pengayaan) reaktor dapat beroperasi dengan baik. Bejana reaktor (disebut kalandria) merupakan tangki besar yang berisi air berat, di dalamnya terdapat pipa kalandria yang berisi perangkat bahan bakar. Tekanan air berat biasanya berkisar pada tekanan satu atmosfer, dan temperaturnya Ensiklopedi Teknologi Nuklir -BATAN l 2/15

3 dijaga agar tetap di bawah 100 oc. Akan tetapi pendingin dalam pipa kalandria mempunyai tekanan dan temperatur yang tinggi, sehingga konstruksi pipa kalandria berwujud pipa tekan yang tahan terhadap tekanan dan temperatur yang tinggi. 4.1 Reaktor Air Berat Tekan (Pressurized Heavy Water Reactor, PHWR) CANadian Deuterium Uranium Reactor (CANDU) adalah suatu PLTN yang tergolong pada tipe reaktor pendingin air berat tekan dengan pipa tekan. Reaktor ini merupakan reaktor air berat yang banyak digunakan. Bahan bakar yang digunakan adalah uranium alam. Kanada menjadi pelopor penyebaran reaktor tipe ini di seluruh dunia. Gambar konstruksi reaktor CANDU Pickering-1 ditunjukkan pada Gambar Reaktor Air Berat Pendingin Gas (Heavy Water Gas Cooled Reactor, HWGCR) HWGCR atau sering dibalik GCHWR adalah suatu tipe reaktor nuklir yang menggunakan air berat sebagai bahan moderatornya, sehingga pemanfaatan neutronnya optimal. Gas pendingin dinaikkan temperaturnya sampai pada tingkat yang cukup tinggi sehingga efisiensi termal reaktor ini dapat ditingkatkan. Tetapi oleh karena persoalan pengembangan bahan kelongsong yang tahan terhadap temperatur tinggi dan paparan radiasi lama belum terpecahkan hingga sekarang, maka pada akhirnya di dunia hanya terdapat 4 reaktor tipe ini. Di negara Perancis reaktor tipe ini dibangun, tetapi sebagai bahan kelongsong tidak digunakan berilium melainkan stainless steel. 4.3 Reaktor Air Berat Pembangkit Uap (Steam Generated Heavy Water Reactor, SGHWR) Reaktor ini sering disebut Light Water Cooled Heavy Water Reactor (LWCHWR) dan hanya ada di Pusat Penelitian Winfrith Inggris. Reaktor berdaya 100 MWe ini merupakan prototipe reaktor pembangkit daya tipe SGHWR, dan beroperasi dari tahun 1968 sampai tahun Pada waktu itu reaktor SGHWR sempat menjadi suatu fokus pengembangan di Inggris, tetapi oleh karena persoalan ekonomi maka tidak dikembangkan lebih lanjut. Sementara itu Jepang mengembangkan reaktor air berat yang disebut Advanced Thermal Reactor (ATR). Jepang membangun reaktor ATR Fugen berdaya 165 MWe. Keunikan dari reaktor ATR ini adalah, bahan bakar dapat terbuat dari uranium dengan pengayaan rendah atau uranium alam yang diperkaya dengan plutonium. Pada saat bahan bakar terbakar, penyusutan plutonium di bahan bakar sedikit sekali. Reaktor prototipe Fugen dioperasikan sejak tahun 1979, tetapi karena terjadi perubahan kebijakan dari pemerintah, sampai saat ini reaktor ATR komersial belum pernah terwujud. Reaktor Fugen beroperasi hingga tahun 2002 dan pada tahun berikutnya direncanakan untuk didekomisioning. 5. Reaktor Grafit 5.1 Reaktor Pendingin Gas (Gas Cooled Reactor, GCR) Grafit sebagai bahan moderator sudah digunakan oleh ilmuwan Enrico Fermi sejak reaktor nuklir pertama Chicago Pile No.1 (CP 1). Grafit terkenal murah dan dapat diperoleh dalam jumlah besar. Plutonium (Pu-239) yang digunakan pada bom atom yang dijatuhkan pada saat Perang Dunia II dibuat di reaktor grafit. Setelah perang dunia berakhir reaktor GCR adalah salah satu tipe reaktor yang didesain-ulang di Inggris maupun Perancis. Reaktor ini menggunakan bahan bakar logam uranium alam, moderator grafit pendingin gas karbondioksida. Bahan kelongsong terbuat dari paduan magnesium (Magnox), oleh karena itu reaktor ini disebut sebagai reaktor Magnox. Reaktor Magnox mempunyai pembangkitan daya listrik cukup besar dan efisiensi ekonomi yang baik. Raktor tipe modifikasi Magnox pernah dibangun di Jepang pada tahun 1967 sebagai PLTN Tokai. Setelah beroperasi selama 30 tahun reaktor ini ditutup pada tahun Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR) Di Inggris fokus pengembangan teknologi PLTN bergeser ke reaktor berbahan bakar uranium dengan Ensiklopedi Teknologi Nuklir -BATAN l 3/15

4 pengayaan rendah, yang memiliki kerapatan daya dan efisiensi termal yang tinggi. Unjuk kerja reaktor ini terbukti dapat diperbaiki. Di Inggris reaktor ini hanya sempat dibangun sebanyak 14 buah saja, karena setelah pertengahan tahun 1980 kebijakan Pemerintah Inggris berubah. 5.3 Reaktor Pendingin Gas Suhu Tinggi (High Temperatur Gas-cooled Reactor, HTGR) Reaktor ini menggunakan gas helium sebagai pendingin. Karakteristika menonjol yang unik dari reaktor HTGR ini adalah konstruksi teras didominasi bahan moderator grafit, temperatur operasi dapat ditingkatkan menjadi tinggi dan efisiensi pembangkitan listrik dapat mencapai lebih dari 40 %. Terdapat 3 bentuk bahan bakar dari HTGR, yaitu dapat berupa: (a) Bentuk batang seperti reaktor air ringan (dipakai di reaktor Dragon dan Peach Bottom); (b) Bentuk blok, di mana di dalam lubang blok grafit yang berbentuk segi enam di masukkan batang bahan bakar (dipakai di reaktor Fort St. Vrain (lihat Gambar 8), MHTGR, HTTR); (c) Bentuk bola (peble bed), di mana butir bahan bakar bersalut didistribusikan dalam bola grafit (dipakai di reaktor AVR, THTR-300). 5.4 Reaktor Pipa Tekan Air Didih Moderator Grafit (Light Water Gas-cooled Reactor, LWGR) RBMK adalah reaktor tipe ini yang hanya dikembangkan di Rusia. Reaktor ini tidak menggunakan tangki kalandria (berisi air berat) seperti reaktor tipe SGHWR tetapi menggunakan grafit sebagai moderator, oleh karena itu dimensi reaktor menjadi besar. Sekitar 1700 buah pipa tekan menembus susunan blok grafit. Di dalam pipa tekan diisi batang bahan bakar di mana di sekelilingnya mengalir air ringan yang mengambil panas dari batang bahan bakar sehingga mendidih. Uap yang terbentuk dikirim ke turbin pembangkit listrik untuk memutar turbin dan membangkitkan listrik. Salah satu reaktor tipe ini yang terkenal karena mengalami kecelakaan adalah reaktor Chernobyl No.4 yang merupakan reaktor tipe RBMK Salah satu kegagalan desain pada reaktor tipe RBMK yang dianggap sebagai kambing hitam terjadinya kecelakaan Chernobyl adalah tidak tersedianya bejana pengungkung reaktor. 6. Reaktor Cepat (Fast Reactor, FR), Reaktor Pembiak Cepat (Liquid Metal Fast Breeder Reactor, LMFBR) Seperti tersirat dalam nama tipe reaktor ini, neutron cepat yang dihasilkan dari reaksi fisi dengan kecepatan tinggi dikondisikan sedemikian rupa sehingga diserap oleh uranium-238 menghasilkan plutonium-239. Dengan kata lain di dalam reaktor dapat dibiakkan (dibuat) unsur plutonium. Rapat daya dalam teras reaktor cepat sangat tinggi, oleh karena itu sebagai pendingin biasanya digunakan bahan logam natrium cair atau logam cair campuran natrium dan kalium (NaK) yang mempunyai kemampuan tinggi dalam mengambil panas dari bahan bakar. Konstruksi reaktor pembiak cepat terdiri dari pendingin primer yang berupa bahan logam cair mengambil panas dari bahan bakar dan kemudian mengalir ke alat penukar panas-antara (intermediate heat exchanger), selanjutnya energi panas ditransfer ke pendingin sekunder dalam alat penukar panas-antara ini. Kemudian pendingin sekunder (bahan pendingin adalah natrium cair atau logam cair natrium) yang tidak mengandung bahan radioaktif akan mengalir membawa panas yang diterima dari pendingin primer menuju ke perangkat pembangkit uap, dan memberikan panas ke pendingin tersier (air ringan) sehingga temperaturnya meningkat dan mendidih (proses pembangkitan uap). Uap yang dihasilkan selanjutnya dialirkan ke turbin untuk memutar generator listrik yang dikopel dengan turbin. Komponen sistem primer dari reaktor pembiak cepat terdiri dari bejana reaktor, pompa sirkulasi primer, alat penukar panas-antara. Komponen ini dirangkai oleh pipa penyalur pendingin membentuk suatu untai (loop), karena itu reaktor seperti ini digolongkan dalam kelas reaktor untai. Apabila seluruh komponen sistem primer di atas semuanya dimasukkan ke dalam bejana reaktor, maka reaktor pembiak cepat seperti ini digolongkan dalam kelas reaktor tangki atau reaktor kolam. Contoh reaktor pembiak cepat tipe reaktor untai adalah reaktor prototipe Monju di Jepang, sedangkan untuk tipe reaktor kolam adalah reaktor Super Phenix di Perancis yang sudah menjadi reaktor komersial (lihat Gambar 9). Reaktor Cepat Eropa (Europian Fast Reactor, EFR) yang secara intensif dikembangkan oleh negara-negara Eropa diharapkan akan mulai masuk pasar komersial pada tahun TABEL DAN GAMBAR: Ensiklopedi Teknologi Nuklir -BATAN l 4/15

5 Tabel 1. Komposisi pendingin dan moderator reaktor pada suatu reaktor prototipe Ensiklopedi Teknologi Nuklir -BATAN l 5/15

6 Tabel 2. Kontribusi berbagai tipe reaktor yang beroperasi di dunia Ensiklopedi Teknologi Nuklir -BATAN l 6/15

7 Gambar 1. Perbedaan prinsip kerja PLTU dan PLTN Gambar 2. Diskripsi konstruksi dalam bejana tekan PWR Ensiklopedi Teknologi Nuklir -BATAN l 7/15

8 Ensiklopedi Teknologi Nuklir -BATAN l 8/15

9 Gambar 3. Transisi perkembangan teknologi PWR Ensiklopedi Teknologi Nuklir -BATAN l 9/15

10 Gambar 4. Prototipe PWR: tipe untai, tipe setengah modular, tipe modular Ensiklopedi Teknologi Nuklir -BATAN l 10/15

11 Gambar 5. Diskripsi konstruksi di dalam bejana tekan BWR Ensiklopedi Teknologi Nuklir -BATAN l 11/15

12 Gambar 6. Transisi teknologi BWR Ensiklopedi Teknologi Nuklir -BATAN l 12/15

13 Gambar 7. Diskripsi konstruksi reaktor CANDU (diwakili oleh reaktor Pickering-1) Ensiklopedi Teknologi Nuklir -BATAN l 13/15

14 Gambar 8. Gambar potongan tampang lintang reaktor FSV Ensiklopedi Teknologi Nuklir -BATAN l 14/15

15 Gambar 9. Konstruksi dari FBR komersial Super Phenix Ensiklopedi Teknologi Nuklir -BATAN l 15/15

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI

TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI TUGAS 2 MATA KULIAH DASAR KONVERSI ENERGI Dosen : Hasbullah, S.Pd., MT. Di susun oleh : Umar Wijaksono 1101563 PROGRAM STUDI S1 TEKNIK ELEKTRO JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS PENDIDIKAN TEKNOLOGI

Lebih terperinci

2. Prinsip kerja dan Komponen Utama PLTN

2. Prinsip kerja dan Komponen Utama PLTN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) DAN JENIS-JENIS REAKTOR PLTN (Yopiter L.A.Titi, NRP:1114201016, PascaSarjana Fisika FMIPA Institut Teknologi Sepuluh November (ITS Surabaya) 1. Pendahuluan Nuklir

Lebih terperinci

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR)

REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) REAKTOR GRAFIT BERPENDINGIN GAS (GAS COOLED REACTOR) RINGKASAN Reaktor Grafit Berpendingin Gas (Gas Cooled Reactor, GCR) adalah reaktor berbahan bakar uranium alam dengan moderator grafit dan berpendingin

Lebih terperinci

Definisi PLTN. Komponen PLTN

Definisi PLTN. Komponen PLTN Definisi PLTN PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik

Lebih terperinci

REAKTOR AIR BERAT KANADA (CANDU)

REAKTOR AIR BERAT KANADA (CANDU) REAKTOR AIR BERAT KANADA (CANDU) RINGKASAN Setelah perang dunia kedua berakhir, Kanada mulai mengembangkan PLTN tipe reaktor air berat (air berat: D 2 O, D: deuterium) berbahan bakar uranium alam. Reaktor

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

REAKTOR PENDINGIN GAS MAJU

REAKTOR PENDINGIN GAS MAJU REAKTOR PENDINGIN GAS MAJU RINGKASAN Reaktor Pendingin Gas Maju (Advanced Gas-cooled Reactor, AGR) adalah reaktor berbahan bakar uranium dengan pengkayaan rendah, moderator grafit dan pendingin gas yang

Lebih terperinci

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK)

REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) REAKTOR PIPA TEKAN PENDINGIN AIR DIDIH MODERATOR GRAFIT (RBMK) RINGKASAN RBMK berasal dari bahasa Rusia "Reaktory Bolshoi Moshchnosti Kanalynye" (hi-power pressure-tube reactors: Reaktor pipa tekan berdaya

Lebih terperinci

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR

PEMBANGKIT PENGENALAN (PLTN) L STR KTENAGANUKLTR PENGENALAN (PLTN) PEMBANGKIT L STR KTENAGANUKLTR I _ Sampai saat ini nuklir khususnya zat radioaktif telah dipergunakan secara luas dalam berbagai bidang seperti industri, kesehatan, pertanian, peternakan,

Lebih terperinci

REAKTOR PEMBIAK CEPAT

REAKTOR PEMBIAK CEPAT REAKTOR PEMBIAK CEPAT RINGKASAN Elemen bakar yang telah digunakan pada reaktor termal masih dapat digunakan lagi di reaktor pembiak cepat, dan oleh karenanya reaktor ini dikembangkan untuk menaikkan rasio

Lebih terperinci

Nomor 36, Tahun VII, April 2001

Nomor 36, Tahun VII, April 2001 Nomor 36, Tahun VII, April 2001 Mengenal Proses Kerja dan Jenis-Jenis PLTN Di dalam inti atom tersimpan tenaga inti (nuklir) yang luar biasa besarnya. Tenaga nuklir itu hanya dapat dikeluarkan melalui

Lebih terperinci

PENGENALAN DAUR BAHAN BAKAR NUKLIR

PENGENALAN DAUR BAHAN BAKAR NUKLIR PENGENALAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Daur bahan bakar nuklir merupakan rangkaian proses yang terdiri dari penambangan bijih uranium, pemurnian, konversi, pengayaan uranium dan konversi ulang menjadi

Lebih terperinci

NUCLEAR CHEMISTRY & RADIOCHEMISTRY

NUCLEAR CHEMISTRY & RADIOCHEMISTRY Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sebelas Maret, Surakarta Lecture Presentation NUCLEAR CHEMISTRY & RADIOCHEMISTRY By : NANIK DWI NURHAYATI, S,Si, M.Si Program Studi Pendidikan Kimia Jurusan

Lebih terperinci

MODEL REAKTOR PEMBIAK CEPAT

MODEL REAKTOR PEMBIAK CEPAT MODEL REAKTOR PEMBIAK CEPAT RINGKASAN Terdapat dua model reaktor pembiak cepat, yakni model untai (loop) dan model tangki. Pada model untai, teras reaktor dikungkung oleh bejana reaktor, sedangkan pompa

Lebih terperinci

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. AFRI YAHDI : 2013110067 2. M.RAZIF : 2013110071 3. SYAFA RIDHO ILHAM : 2013110073 4. IKMARIO : 2013110079 5. CAKSONO WIDOYONO : 2014110003

Lebih terperinci

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar

2. Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. 3. Reaktor subkritis menggunakan sumber neutron luar - Pembangkit Listrik Tenaga Nuklir (PLTN) merupakan stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. - PLTN dikelompokkan

Lebih terperinci

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR)

REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) REAKTOR AIR DIDIH (BOILING WATER REACTOR, BWR) RINGKASAN Reaktor Air Didih adalah salah satu tipe reaktor nuklir yang digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN). Reaktor tipe ini menggunakan

Lebih terperinci

235 U + n 148 La + 85 Br + 3n

235 U + n 148 La + 85 Br + 3n 1 A. Definisi dan Sejarah Reaktor Nuklir Reaktor nuklir adalah alat yang didesain untuk mempertahankan reaksi berantai, di mana aliran neutron yang stabil dan terkontrol dihasilkan dari reaksi fisi suatu

Lebih terperinci

PENTINGNYA REAKTOR PEMBIAK CEPAT

PENTINGNYA REAKTOR PEMBIAK CEPAT PENTINGNYA REAKTOR PEMBIAK CEPAT RINGKASAN Reaktor pembiak cepat (Fast Breeder Reactor/FBR) adalah reaktor yang memiliki kemampuan untuk melakukan "pembiakan", yaitu suatu proses di mana selama reaktor

Lebih terperinci

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA

SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA SYNOPSIS REAKTOR NUKLIR DAN APLIKASINYA PENDAHULUAN Disamping sebagai senjata nuklir, manusia juga memanfaatkan energi nuklir untuk kesejahteraan umat manusia. Salah satu pemanfaatan energi nuklir secara

Lebih terperinci

REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR)

REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR) REAKTOR AIR TEKAN (PRESSURIZED WATER REACTOR, PWR) RINGKASAN Dalam PLTN tipe Reaktor Air Tekan, air ringan digunakan sebagai pendingin dan medium pelambat neutron (moderator neutron). Teras reaktor diletakkan

Lebih terperinci

KATA PENGANTAR. Palembang, Juni Penyusun

KATA PENGANTAR. Palembang, Juni Penyusun KATA PENGANTAR Alhamdulillahi Robbil Alamin, saya panjatkan puji syukur kepada allah SWT, karena atas izin dan rahmat-nya sehingga makalah Termodinamika nuklir ini dapat saya selesaikan. Dalam penyusunan

Lebih terperinci

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong

I. PENDAHULUAN. Telah dilakukan beberapa riset reaktor nuklir diantaranya di Serpong I. PENDAHULUAN 1.1 Latar Belakang Kebutuhan listrik di Indonesia semakin meningkat, sedangkan bahan bakar fosil akan segera habis. Oleh karena itu dibutuhkan pembangkit listrik yang dapat digunakan sebagai

Lebih terperinci

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi

BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi BAB III KARAKTERISTIK DESAIN HTTR BAB III KARAKTERISTIK DESAIN HTTR DAN PENDINGIN Pb-Bi 3.1 Konfigurasi Teras Reaktor Spesifikasi utama dari HTTR diberikan pada tabel 3.1 di bawah ini. Reaktor terdiri

Lebih terperinci

Makalah Fisika Modern. Pembangkit Listrik Tenaga Nuklir (PLTN) Dosen pengampu : Dr.Parlindungan Sinaga, M.Si

Makalah Fisika Modern. Pembangkit Listrik Tenaga Nuklir (PLTN) Dosen pengampu : Dr.Parlindungan Sinaga, M.Si Makalah Fisika Modern Pembangkit Listrik Tenaga Nuklir (PLTN) Disusun untuk memenuhi salah satu tugas mata kuliah Fisika Modern Dosen pengampu : Dr.Parlindungan Sinaga, M.Si Disusun Oleh : Iif Latifah

Lebih terperinci

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) TUGAS MAKALAH PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Di Susun Oleh: 1. Nur imam (2014110005) 2. Satria Diguna (2014110006) 3. Boni Marianto (2014110011) 4. Ulia Rahman (2014110014) 5. Wahyu Hidayatul

Lebih terperinci

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN

TUGAS. Di Susun Oleh: ADRIAN. Kelas : 3 IPA. Mengenai : PLTN TUGAS Mengenai : PLTN Di Susun Oleh: ADRIAN Kelas : 3 IPA MADRASAH ALIYAH ALKHAIRAT GALANG TAHUN AJARAN 2011-2012 BAB I PENDAHULUAN 1.1. Latar Belakang Masyarakat pertama kali mengenal tenaga nuklir dalam

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Nuklir (PLTN) didesain berdasarkan 3 (tiga) prinsip yaitu mampu dipadamkan dengan aman (safe shutdown), didinginkan serta mengungkung produk

Lebih terperinci

Energi Nuklir dan Kebutuhan Energi Masa Depan (Era Renaisans Energi Nuklir Dunia dan Energi Nuklir Indonesia)

Energi Nuklir dan Kebutuhan Energi Masa Depan (Era Renaisans Energi Nuklir Dunia dan Energi Nuklir Indonesia) UTAMA INOVASI Vol.5/XVII/November 2005 Energi Nuklir dan Kebutuhan Energi Masa Depan (Era Renaisans Energi Nuklir dan Energi Nuklir Indonesia) Sidik Permana Research Laboratory for Nuclear Reactors, Tokyo

Lebih terperinci

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian

Lebih terperinci

REAKTOR AIR TEKAN TIPE RUSIA (VVER)

REAKTOR AIR TEKAN TIPE RUSIA (VVER) REAKTOR AIR TEKAN TIPE RUSIA (VVER) RINGKASAN Kepanjangan VVER dalam bahasa Rusia adalah VODO-VODYANOI ENERGETICHESKY REAKTOR VVER, Jika diartikan dalam bahasa Inggris adalah WATER-WATER POWER REACTOR

Lebih terperinci

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK

RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RISET KECELAKAAN KEHILANGAN AIR PENDINGIN: KARAKTERISTIK TERMOHIDRAULIK RINGKASAN Apabila ada sistem perpipaan reaktor pecah, sehingga pendingin reaktor mengalir keluar, maka kondisi ini disebut kecelakaan

Lebih terperinci

FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN)

FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN) PERTANYAAN : FAQ tentang Pembangkit Listrik Tenaga Nuklir (PLTN) BAGAIMANAKAH HUBUNGAN ANTARA ENERGI NUKLIR DENGAN FENOMENAPEMANASAN AKIBAT GAS KARBONDIOKSIDA (CO 2 ) JAWABAN RINGKAS Strategi pengurangan

Lebih terperinci

PEMANFAATAN ENERGI NUKLIR

PEMANFAATAN ENERGI NUKLIR MAKALAH SUMBER DAYA ENERGI PEMANFAATAN ENERGI NUKLIR OLEH : Noor Padya Rahmi 9228.0023 Muhammad Rusman 9228.0025 Muhammad Syahrul 9228.0026 JURUSAN TEKNIK KIMIA UNIVERSITAS MUSLIM INDONESIA MAKASSAR 2011

Lebih terperinci

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi.

I. PENDAHULUAN. hampir 50 persen dari kebutuhan, terutama energi minyak dan gas bumi. 1 I. PENDAHULUAN A. Latar Belakang Masalah energi merupakan salah satu hal yang sedang hangat dibicarakan saat ini. Di Indonesia, ketergantungan kepada energi fosil masih cukup tinggi hampir 50 persen

Lebih terperinci

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya

BAB I PENDAHULUAN. Semakin maraknya krisis energi yang disebabkan oleh menipisnya BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan Semakin maraknya krisis energi yang disebabkan oleh menipisnya cadangan minyak bumi, gas dan batubara di Indonesia,membuat kita harus segera memikirkan

Lebih terperinci

KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH

KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH KONSEP DESAIN NEUTRONIK REAKTOR AIR TEKAN BERBAHAN BAKAR PLUTONIUM-URANIUM OKSIDA (MOX) DENGAN INTERVAL PENGISIAN BAHAN BAKAR PANJANG ASIH KANIASIH DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Reaktor Nuklir dan PLTN BAB I PENDAHULUAN

Reaktor Nuklir dan PLTN BAB I PENDAHULUAN BAB I PENDAHULUAN Reaktor nuklir adalah tempat terjadinya reaksi pembelahan inti (nuklir) atau dikenal dengan reaksi fisi berantai yang terkendali. Bagian utama dari reaktor nuklir yaitu: elemen bakar,

Lebih terperinci

POTENSI ENERGI NUKLIR

POTENSI ENERGI NUKLIR POTENSI ENERGI NUKLIR ABSTRACT Energi nuklir adalah sebuah energi alternatif yang relatif besar potensinya untuk menggantikan energi fosil. Saat ini, tanpa memperhitungkan eksplorasi baru, cadangan uranium

Lebih terperinci

BAB I PENDAHULUAN I. 1. Latar Belakang

BAB I PENDAHULUAN I. 1. Latar Belakang BAB I PENDAHULUAN I. 1. Latar Belakang Pengembangan pemanfaatan energi nuklir dalam berbagai sektor saat ini kian pesat. Hal ini dikarenakan energi nuklir dapat menghasilkan daya dalam jumlah besar secara

Lebih terperinci

KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR

KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR KONSEP DAN TUJUAN DAUR BAHAN BAKAR NUKLIR RINGKASAN Penggunaan uranium sebagai bahan bakar pada Pembangkit Listrik Tenaga Nuklir (PLTN) selain menghasilkan tenaga listrik dapat juga menghasilkan bahan

Lebih terperinci

ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI

ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI ASPEK KESELAMATAN TERHADAP BAHAYA RADIASI NUKLIR, LIMBAH RADIOAKTIF DAN BENCANA GEMPA PADA PLTN DI INDONESIA SKRIPSI Oleh NAUSA NUGRAHA SP. 04 02 02 0471 DEPARTEMEN TEKNIK MESIN PROGRAM STUDI TEKNIK MESIN

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada masa mendatang penggunaan bahan bakar berbasis minyak bumi harus dikurangi karena semakin menipisnya cadangan minyak bumi dan dampak

Lebih terperinci

I. PENDAHULUAN. penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012),

I. PENDAHULUAN. penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012), 1 I. PENDAHULUAN A. Latar Belakang Seiring dengan perkembangan zaman dan semakin meningkatnya jumlah penduduk dunia yaitu sekitar 7 miliar pada tahun 2011 (Worldometers, 2012), maka peningkatan kebutuhan

Lebih terperinci

MAKALAH FISIKA DAN KIMIA DASAR 2B DAMPAK MASALAH LINGKUNGAN LEDAKAN REAKTOR NUKLIR FUKUSHIMA

MAKALAH FISIKA DAN KIMIA DASAR 2B DAMPAK MASALAH LINGKUNGAN LEDAKAN REAKTOR NUKLIR FUKUSHIMA MAKALAH FISIKA DAN KIMIA DASAR 2B DAMPAK MASALAH LINGKUNGAN LEDAKAN REAKTOR NUKLIR FUKUSHIMA Anggota Kelompok: Pratama Arief Ramadhan (55415378) Danando Syah Putra (51415559) Kelas 1IA07 Jurusan Teknik

Lebih terperinci

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR)

Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) Bab 2 Analisis Termal Hidrolik Gas Cooled Fast Reactor (GCFR) 2.1 Pembangkit Listrik Tenaga Nuklir Prinsip kerja dari pembangkit listrik tenaga nuklir secara umum tidak berbeda dengan pembangkit listrik

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Konsumsi energi listrik dunia dari tahun ke tahun terus meningkat. Dalam hal ini industri memegang peranan penting dalam kenaikan konsumsi listrik dunia. Di Indonesia,

Lebih terperinci

BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM

BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM BAB III DAUR ULANG PLUTONIUM DAN AKTINIDA MINOR PADA BWR BERBAHAN BAKAR THORIUM 3.1. Siklus Bahan Bakar Nuklir Siklus bahan bakar nuklir (nuclear fuel cycle) adalah rangkaian kegiatan yang meliputi pemanfaatan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Reaktor nuklir membutuhkan suatu sistem pendingin yang sangat penting dalam aspek keselamatan pada saat pengoperasian reaktor. Pada umumnya suatu reaktor menggunakan

Lebih terperinci

II. TINJAUAN PUSTAKA. mekanisme yang banyak digunakan untuk menghasilkan energi nuklir melalui

II. TINJAUAN PUSTAKA. mekanisme yang banyak digunakan untuk menghasilkan energi nuklir melalui 7 II. TINJAUAN PUSTAKA A. Konsep Dasar Reaktor Secara umum, energi nuklir dapat dihasilkan melalui dua macam mekanisme, yaitu pembelahan inti atau reaksi fisi dan penggabungan beberapa inti melalui reaksi

Lebih terperinci

EFISIENSI MATERIAL PADA PEMBANGKIT LISTRIK TENAGA NUKLIR LWR (LIGHT WATER REACTOR) DAN PHWR (PRESSURIZED HEAVY WATER REACTOR)

EFISIENSI MATERIAL PADA PEMBANGKIT LISTRIK TENAGA NUKLIR LWR (LIGHT WATER REACTOR) DAN PHWR (PRESSURIZED HEAVY WATER REACTOR) EFISIENSI MATERIAL PADA PEMBANGKIT LISTRIK TENAGA NUKLIR LWR (LIGHT WATER REACTOR) DAN PHWR (PRESSURIZED HEAVY WATER REACTOR) Mochammad Ahied Program Studi Pendidikan IPA, Universitas Trunojoyo Madura

Lebih terperinci

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun

BAB I PENDAHULUAN. bising energi listrik juga memiliki efisiensi yang tinggi, yaitu 98%, Namun BAB I PENDAHULUAN 1.1 Latar Belakang Listrik merupakan energi paling cocok dan nyaman bagi rumah tangga dan berbagai bidang industri karena selain energi llistrik itu tidak menimmbulkan bising energi listrik

Lebih terperinci

Analisis netronik 3-D tentang Skenario SUPEL pada BWR

Analisis netronik 3-D tentang Skenario SUPEL pada BWR 1 DESKRIPSI RISET I (Daur Ulang Secara Langsung Limbah Nuklir dengan Metode SUPEL Menuju Zero Release Waste) 1.1 Deskripsi singkat Kebutuhan energi global yang terus meningkat menjadi salah satu pendorong

Lebih terperinci

Simposium Nasional Teknologi Terapan (SNTT) ISSN X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA

Simposium Nasional Teknologi Terapan (SNTT) ISSN X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA Simposium Nasional Teknologi Terapan (SNTT) ISSN 2339-028X STUDI LITERATUR PENGEMBANGAN NANOFLUIDA UNTUK APLIKASI PADA BIDANG TEKNIK DI INDONESIA Anwar Ilmar Ramadhan 1*, Ery Diniardi 1, Cahyo Sutowo 1

Lebih terperinci

BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor

BAB I PENDAHULUAN di Bandung dan Reaktor Kartini yang berada di Yogyakarta. Ketiga reaktor 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Seiring dengan berkembangnya teknologi dan peradabaan manusia, kebutuhan terhadap energi mengalami peningkatan yang cukup tinggi. Untuk mencukupi kebutuhan-kebutuhan

Lebih terperinci

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK GLOSSARY GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG JASA PENDIDIKAN DAN PELATIHAN TENAGA LISTRIK Ash Handling Adalah penanganan bahan sisa pembakaran dan terutama abu dasar yang

Lebih terperinci

MODUL 2 ANALISIS KESELAMATAN PLTN

MODUL 2 ANALISIS KESELAMATAN PLTN MODUL 2 ANALISIS KESELAMATAN PLTN Muhammad Ilham, Annisa Khair, Mohamad Yusup, Praba Fitra Perdana, Nata Adriya, Rizki Budiman 121178, 12115, 121177, 121118, 12116, 12114 Program Studi Fisika, Institut

Lebih terperinci

BAB II PEMBAHASAN. perpindahan panas.

BAB II PEMBAHASAN. perpindahan panas. BAB II PEMBAHASAN 2.1 Pengertian Reaktor 2.1.1 Definisi Reaktor Reaktor adalah satu alat proses tempat terjadinya suatu reaksi berlangsung, baik itu reaksi kimia maupun nuklir. Dengan terjadinya reaksi

Lebih terperinci

BAB II TEORI DASAR. Proses tumbukan dua inti atomik dan partikel penyusunnya, lalu menghasilkan

BAB II TEORI DASAR. Proses tumbukan dua inti atomik dan partikel penyusunnya, lalu menghasilkan BAB II TEORI DASAR 2.1. Reaksi Nuklir 2.1.1. Pendahuluan Proses tumbukan dua inti atomik dan partikel penyusunnya, lalu menghasilkan produk yang berbeda dari partikel awalnya dikenal dengan istilah reaksi

Lebih terperinci

PENGUJIAN KEANDALAN PEMBANGKIT UAP

PENGUJIAN KEANDALAN PEMBANGKIT UAP PENGUJIAN KEANDALAN PEMBANGKIT UAP RINGKASAN Pengujian keandalan pembangkit uap telah dilakukan selama 6 tahun sejak tahun 1975 dan dilanjutkan pada tahun 1993 sampai 1997. Natrium Phosphat yang digunakan

Lebih terperinci

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION

REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION REACTOR SAFETY SYSTEMS AND SAFETY CLASSIFICATION Puradwi I.W. Bidang Analisis Risiko dan Mitigasi Sistem P2TKN-BATAN NATIONAL BASIC PROFESSIONAL TRAINING COURSE ON NUCLEAR SAFETY PUSAT PENDIDIKAN DAN PELATIHAN

Lebih terperinci

STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O

STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O Berkala Fisika ISSN : 1410-9662 Vol. 18, No. 3, Juli 2015, hal 95-100 STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR H 2 O DAN PENDINGIN H 2 O Very Richardina 1*, Wahyu Setia Budi 1 dan Tri

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Ada beberapa kategori power/daya yang digunakan, antara lain backbone power, green power dan mobile power. Backbone power adalah sumber energi primer yang selalu tersedia

Lebih terperinci

Reactor Safety System and Safety Classification BAB I PENDAHULUAN

Reactor Safety System and Safety Classification BAB I PENDAHULUAN DAFTAR ISI BAB I PENDAHULUAN... 1 1.1. Tujuan Keselamatan... 3 1.2. Fungsi Keselamatan Dasar... 3 1.3. Konsep Pertahanan Berlapis... 6 BAB II SISTEM KESELAMATAN REAKTOR DAYA PWR DAN BWR... 1 2.1. Pendahuluan...

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB III TEORI DASAR KONDENSOR

BAB III TEORI DASAR KONDENSOR BAB III TEORI DASAR KONDENSOR 3.1. Kondensor PT. Krakatau Daya Listrik merupakan salah satu anak perusahaan dari PT. Krakatau Steel yang berfungsi sebagai penyuplai aliran listrik bagi PT. Krakatau Steel

Lebih terperinci

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN... TENTANG BATASAN DAN KONDISI OPERASI REAKTOR NONDAYA PARAMETER YANG DIPERTIMBANGKAN SEBAGAI KONDISI BATAS UNTUK OPERASI NORMAL

Lebih terperinci

TINJAUAN PUSTAKA. ditimbulkan oleh semakin berkurangnya sumber energi fosil serta dampak

TINJAUAN PUSTAKA. ditimbulkan oleh semakin berkurangnya sumber energi fosil serta dampak 7 II. TINJAUAN PUSTAKA A. Energi Nuklir Energi nuklir merupakan salah satu energi alternatif atas masalah yang ditimbulkan oleh semakin berkurangnya sumber energi fosil serta dampak lingkungan yang ditimbulkannya

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

RISET KARAKTERISTIK RADIASI PADA PELET BAHAN BAKAR

RISET KARAKTERISTIK RADIASI PADA PELET BAHAN BAKAR RISET KARAKTERISTIK RADIASI PADA PELET BAHAN BAKAR RINGKASAN Selama beropersinya reaktor nuklir, pelet bahan bakar mengalami iradiasi neutron pada suhu tinggi dan memproduksi produk fisi. Akibatnya pelet

Lebih terperinci

INDUSTRI BAHAN BAKAR NUKLIR DI DUNIA

INDUSTRI BAHAN BAKAR NUKLIR DI DUNIA INDUSTRI BAHAN BAKAR NUKLIR DI DUNIA RINGKASAN Seiring dengan perubahan perencanaan pembangunan PLTN baru dan liberalisasi pasar pembangkit listrik di dunia, kecenderungan penggabungan industri-industri

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Listrik merupakan salah satu energi yang sangat dibutuhkan oleh manusia pada era modern ini. Tak terkecuali di Indonesia, negara ini sedang gencargencarnya melakukan

Lebih terperinci

SKRIPSI UPAYA PEMERINTAH JEPANG DALAM PENANGGULANGAN KRISIS ENERGI PASCA BENCANA GEMPA DAN TSUNAMI 2011

SKRIPSI UPAYA PEMERINTAH JEPANG DALAM PENANGGULANGAN KRISIS ENERGI PASCA BENCANA GEMPA DAN TSUNAMI 2011 SKRIPSI UPAYA PEMERINTAH JEPANG DALAM PENANGGULANGAN KRISIS ENERGI PASCA BENCANA GEMPA DAN TSUNAMI 2011 Japanese Government Effort to Overcome Energy Crisis after Earthquake and Tsunami Disaster 2011 Disusun

Lebih terperinci

Dr.Ir. Mohammad Dhandhang Purwadi Pusat Teknologi Reaktor dan Keselamatan Nuklir

Dr.Ir. Mohammad Dhandhang Purwadi Pusat Teknologi Reaktor dan Keselamatan Nuklir TEKNOLOGI REAKTOR Dr.Ir. Mohammad Dhandhang Purwadi Pusat Teknologi Reaktor dan Keselamatan Nuklir Dipresentasikan Oleh : PAMUJI WASKITO R, S.Pd Guru Fisika SMKN 4 Pangkalpinang GO GREEN Sabtu, 10 September

Lebih terperinci

PENGOLAHAN AIR SUNGAI UNTUK BOILER

PENGOLAHAN AIR SUNGAI UNTUK BOILER PENGOLAHAN AIR SUNGAI UNTUK BOILER Oleh Denni Alfiansyah 1031210146-3A JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MALANG MALANG 2012 PENGOLAHAN AIR SUNGAI UNTUK BOILER Air yang digunakan pada proses pengolahan

Lebih terperinci

diajukan oleh : IRMA PERMATA SARI J2D005176

diajukan oleh : IRMA PERMATA SARI J2D005176 STUDI PARAMETER REAKTOR BERBAHAN BAKAR UO 2 DENGAN MODERATOR DAN PENDINGIN D 2 O Skripsi untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 diajukan oleh : IRMA PERMATA SARI J2D005176 JURUSAN

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang

BAB I PENDAHULUAN. I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Memperoleh energi yang terjangkau untuk rumah tangga dan industri adalah aktivitas utama pada masa ini dimana fisi nuklir memainkan peran yang sangat penting. Para

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan ekonomi yang cepat di dunia. Saat ini Indonesia merupakan negara dengan ekonomi terbesar ke 16 di dunia dan dalam

Lebih terperinci

Peningkatan Keselamatan Pembangkit Listrik Tenaga Nuklir Generasi Baru

Peningkatan Keselamatan Pembangkit Listrik Tenaga Nuklir Generasi Baru Peningkatan Keselamatan Pembangkit Listrik Tenaga Nuklir Generasi Baru Pelajaran Berharga dari Chernobyl dan Fukushima Daiichi Energi nuklir digunakan untuk membangkitkan listrik dan terhubung ke jaringan

Lebih terperinci

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan

BAB I PENDAHULUAN. mendirikan beberapa pembangkit listrik, terutama pembangkit listrik dengan BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan kebutuhan energi listrik pada zaman globalisasi ini, Indonesia melaksanakan program percepatan pembangkitan listrik sebesar 10.000 MW dengan mendirikan

Lebih terperinci

I. PENDAHULUAN. kebutuhannya demikian juga perkembangannya, bukan hanya untuk kebutuhan

I. PENDAHULUAN. kebutuhannya demikian juga perkembangannya, bukan hanya untuk kebutuhan I. PENDAHULUAN A. Latar Belakang Pemakaian energi listrik dan energi panas dewasa ini cukup pesat kebutuhannya demikian juga perkembangannya, bukan hanya untuk kebutuhan proses manufaktur, tetapi juga

Lebih terperinci

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang

adukan beton, semen dan airmembentuk pasta yang akan mengikat agregat, yang BAB II TINJAUAN PUSTAKA 2.1 Umum Beton adalah campuran antara semen portland, air, agregat halus, dan agregat kasar dengan atau tanpa bahan-tambah sehingga membentuk massa padat. Dalam adukan beton, semen

Lebih terperinci

ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI ABSTRAK ABSTRACT

ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI ABSTRAK ABSTRACT ANALISIS VISUAL PENDINGINAN ALIRAN DUA FASA MENGGUNAKAN KAMERA KECEPATAN TINGGI Ainur Rosidi, G. Bambang Heru, Kiswanta Pusat Teknologi Reaktor dan Keselamatan Nuklir ABSTRAK ANALISIS VISUAL PENDINGINAN

Lebih terperinci

RISET PROSES PELELEHAN TERAS SAAT KECELAKAAN PARAH

RISET PROSES PELELEHAN TERAS SAAT KECELAKAAN PARAH RISET PROSES PELELEHAN TERAS SAAT KECELAKAAN PARAH RINGKASAN Kecelakaan yang terjadi pada reaktor Three Mile Island No.2 (TMI-2) di Amerika Serikat pada bulan Maret 1979, telah mengakibatkan sekitar separuh

Lebih terperinci

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya

BAB I PENDAHULUAN. Dunia industri dewasa ini mengalami perkembangan pesat. akhirnya akan mengakibatkan bertambahnya persaingan khususnya BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dunia industri dewasa ini mengalami perkembangan pesat. Perkembangan itu ditandai dengan berkembangnya ilmu dan teknologi yang akhirnya akan mengakibatkan

Lebih terperinci

ANALISIS DAN KRITERIA PENERIMAAN

ANALISIS DAN KRITERIA PENERIMAAN SALINAN KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA LAMPIRAN III PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 2 TAHUN 2012 TENTANG DESAIN PROTEKSI BAHAYA INTERNAL SELAIN KEBAKARAN DAN

Lebih terperinci

Gambar 1 menunjukkan komponen-komponen yang menjalankan mobil kriogenik (cryocar) ini. Nitrogen cair yang sangat dingin disimpan dalam tangki

Gambar 1 menunjukkan komponen-komponen yang menjalankan mobil kriogenik (cryocar) ini. Nitrogen cair yang sangat dingin disimpan dalam tangki Mobil Hijau Mobil Hijau? Jangan salah sangka dulu! Mobil-mobil masa depan ini disebut Mobil Hijau bukan karena warnanya. Justru warna mobil-mobil ini bermacam-macam, bukan hanya hijau. Mobil ini disebut

Lebih terperinci

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas

I. PENDAHULUAN. menghasilkan energi listrik. Beberapa pembangkit listrik bertenaga panas I. PENDAHULUAN 1.1. Latar Belakang Energi panas bumi (Geothermal) merupakan sumber energi terbarukan berupa energi thermal (panas) yang dihasilkan dan disimpan di dalam inti bumi. Saat ini energi panas

Lebih terperinci

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal

CONTOH KEJADIAN AWAL TERPOSTULASI. Kejadian Awal Terpostulasi. No. Kelompok Kejadian Kejadian Awal LAMPIRAN I PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 1 TAHUN 2011 TENTANG KETENTUAN KESELAMATAN DESAIN REAKTOR NONDAYA CONTOH KEJADIAN AWAL TERPOSTULASI Kejadian Awal Terpostulasi No. Kelompok

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

Energi yang dihasilkan dari reaksi fisi nuklir terkendali di dalam reaktor nuklir dapat dimanfaatkan untuk membangkitkan listrik yang dikenal sebagai

Energi yang dihasilkan dari reaksi fisi nuklir terkendali di dalam reaktor nuklir dapat dimanfaatkan untuk membangkitkan listrik yang dikenal sebagai PEMANFAATAN KALOR TERBUANG DARI KONDENSOR PADA PLTN REAKTOR DAYA VK-300 TYPE BWR UNTUK DESALINASI Andriyanto / 20406090 Fakultas Teknologi Industri, Jurusan Teknik Mesin ABSTRAKSI Proses desalinasi air

Lebih terperinci

Arif Budiman INDONESIA

Arif Budiman INDONESIA GENERATION OF ELECTRICITY Kelompok 10 Arif Budiman Junedi Ramdoner Muh. Luqman Adha Saut Parulian (0906 602 433) (0806 365 980) (0806 366 144) (0806 366 352) TEKNIK TENAGA LISTRIK DEPARTEMEN ELEKTRO FAKULTAS

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

BAB I PENDAHULUAN. terutama dipenuhi dengan mengembangkan suplai batu bara, minyak dan gas alam.

BAB I PENDAHULUAN. terutama dipenuhi dengan mengembangkan suplai batu bara, minyak dan gas alam. BAB I PENDAHULUAN. Latar Belakang Konsumsi energi dunia tumbuh dua puluh kali lipat sejak tahun 850 sementara populasi dunia tumbuh hanya empat kali lipat. Pada pertumbuhan awal terutama dipenuhi dengan

Lebih terperinci

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS

Pratama Akbar Jurusan Teknik Sistem Perkapalan FTK ITS Pratama Akbar 4206 100 001 Jurusan Teknik Sistem Perkapalan FTK ITS PT. Indonesia Power sebagai salah satu pembangkit listrik di Indonesia Rencana untuk membangun PLTD Tenaga Power Plant: MAN 3 x 18.900

Lebih terperinci

MESIN KONVERSI ENERGI

MESIN KONVERSI ENERGI DIKTAT KULIAH MESIN KONVERSI ENERGI HERRY IRAWANSYAH, ST., M.ENG JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS LAMBUNG MANGKURAT 2017 KATA PENGANTAR Diktat Mesin Konversi Energi ini memaparkan teori

Lebih terperinci

STUDI TEKNO-EKONOMI REAKTOR MAJU APWR- MITSUBISHI

STUDI TEKNO-EKONOMI REAKTOR MAJU APWR- MITSUBISHI STUDI TEKNO-EKONOMI REAKTOR MAJU APWR- MITSUBISHI Bandi Parapak, Sahala M. Lumbanraja Pusat Pengembangan Energi Nuklir-Badan Tenaga Nuklir Nasional Jl. Kuningan Barat Jakarta Selatan Telp/Fax: (021) 5204243,

Lebih terperinci

KESELAMATAN REAKTOR NUKLIR REAKTOR SERBA GUNA G.A. SIWABESSY (RSG-GAS)

KESELAMATAN REAKTOR NUKLIR REAKTOR SERBA GUNA G.A. SIWABESSY (RSG-GAS) KESELAMATAN REAKTOR NUKLIR REAKTOR SERBA GUNA G.A. SIWABESSY (RSG-GAS) Untuk yang tercinta: Annie Mariani, Manda Fermilia, Sobri Al Majid, Ganjar Abdillah Ammar, Bayu Adi Wibowo, Sandra Jati, Husna, dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci