BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 KOMPOSIT Pengertian Komposit Bahan komposit menunjukkan artian bahwa dua atau lebih material digabung pada skala makroskopis untuk membentuk material ketiga yang berbeda. Material-material yang berbeda dapat digabung dalam skala mikroskopis seperti memadukan logam. Bila suatu komposit dirancang dengan baik maka akan memberikan kualitas yang bagus daripada komponen atau konstituen penyusunnya. Beberapa sifat yang dapat dikembangkan dengan membentuk bahan komposit yaitu [1] : kekuatan (strength), kekakuan (stiffness), tahanan korosi (corrosion resistance), tahanan aus (wear resistance), daya pikat (attractiveness), berat, perioda lelah (fatigue life), sifat ketergantungan suhu (temperaturedependent behavior), insulasi termal, konduktivitas termal, dan insulasi akustik (acoustical insulation). Secara umum, tidak semua sifat-sifat di atas dikembangkan pada waktu yang bersamaan karena dikhawatirkan malah akan mengganggu sifat material itu sendiri misalnya insulasi termal dan konduktivitas termal. Tujuan pembentukan bahan komposit itu sendiri yaitu untuk membentuk suatu bahan baru yang memiliki sifat khusus untuk keperluan tertentu pula. Bahan komposit memiliki sejarah penggunaan yang sangat panjang. Penggunaan komposit untuk pertama sekali tidak diketahui tetapi beberapa sejarah menunjukkan bahwa bahan komposit telah digunakan. Misalnya penggunaan jerami untuk meningkatkan kekuatan bata. Plywood yang dapat digunakan sebagai bahan pengganti kayu karena memiliki kekuatan dan tahanan termal yang baik. Dewasa ini, bahan komposit matriks-resin dengan penguat serat memiliki perbandingan kekuatan dan kekakuan terhadap berat yang sangat tinggi telah menjadi salah satu permasalahan yang dihadapi dalam industri mobil dan penerbangan [1]. 5

2 2.1.2 Klasifikasi Bahan Komposit Secara garis besar bahan komposit terdiri atas dua macam, yaitu bahan komoposit partikel (particulate composite) dan bahan komposit serat (fiber composite) [9] Bahan Komposit Partikel (Particulate Composite) Bahan komposit yang bahan penguatnya terdiri dari partikel-partikel disebut bahan komposit partikel (particulate composite). Partikel, secara definisi adalah bukan serat, karena tidak mempunyai ukuran panjang. Bahan komposit partikel pada umumnya lebih lemah dan keliatannya (fracture toughness) lebih rendah dibanding bahan komposit serat panjang. Tetapi dari segi lain, bahan ini sering lebih unggul, seperti ketahanan terhadap aus. Partikel partikel ini umumnya digunakan sebagai pengisi dan penguat bahan komposit bermatriks keramik (ceramic matrix composite). Bahan komposit keramik dan metal banyak digunakan untuk perkakas potong berkecepatan tinggi (high speed cutting tool), pipa proteksi termokopel dan piranti piranti lain yang membutuhkan temperatur tinggi dan tahan aus (abrasi) Bahan Komposit Serat (Fiber Composite) Bahan komposit serat adalah jenis bahan komposit yang umum dikenal, paling banyak dipakai dan dibicarakan. Komposit serat ini juga merupakan jenis komposit yang hanya terdiri dari satu laminat atau satu lapisan yang menggunakan penguat berupa serat/fiber. Fiber yang digunakan bisa berupa glass fibers, carbon fibers, aramid fibers (polyaramid) dan sebagainya. Fiber ini bisa disusun secara acak maupun dengan orientasi tertentu bahkan bisa dengan bentuk yang lebih komplek seperti anyaman. Ada dua hal yang membuat serat dapat menahan gaya dengan efektif, yaitu jika : a) Perekatan (bonding) antara serat dan matriks sangat baik dan kuat, sehingga serat tidak mudah lepas dari matriks (debonding). b) Aspect ratio, yaitu perbandingan antara panjang dan diameter serat harus cukup besar. Hal ini disyaratkan agar tegangan geser yang terjadi pada permukaan antara serat dan matriks kecil. 6

3 2.1.3 MATRIKS Matrik dalam struktur komposit dapat berasal dari bahan polimer, logam, maupun keramik [9]. Syarat pokok matrik yang digunakan dalam komposit adalah matrik harus bisa meneruskan beban, sehinga serat harus bisa melekat pada matrik dan kompatibel antara serat dan matrik. Umumnya matrik dipilih yang mempunyai ketahanan panas yang tinggi [10]. Matrik yang digunakan dalam komposit adalah harus mampu meneruskan beban sehingga serat harus bisa melekat pada matrik dan kompatibel antara serat dan matrik artinya tidak ada reaksi yang mengganggu. Bahan komposit matrik mempunyai kegunaan yaitu sebagai berikut [10] : a) Matrik memegang dan mempertahankan serat pada posisinya. b) Pada saat pembebanan, merubah bentuk dan mendistribusikan tegangan ke unsur utamanya yaitu serat. c) Memberikan sifat tertentu, misalnya ductility, toughness dan electrical insulation. Bahan matrik yang sering digunakan dalam komposit antara lain [10]: a) Polimer. Polimer merupakan bahan matrik yang paling sering digunakan. Adapun jenis polimer yaitu: Thermoset, adalah plastik atau resin yang tidak bisa berubah karena panas (tidak bisa di daur ulang). Misalnya : epoxy, polyester, phenotic. Termoplastik, adalah plastik atau resin yang dapat dilunakkan terus menerus dengan pemanasan atau dikeraskan dengan pendinginan dan bisa berubah karena panas (bisa didaur ulang). Misalnya : Polyamid, nylon, polysurface, polyether. b) Keramik. Pembuatan komposit dengan bahan keramik yaitu Keramik dituangkan pada serat yang telah diatur orientasinya dan merupakan matrik yang tahan pada temperatur tinggi. Misalnya :SiC dan SiN yang sampai tahan pada temperatur 1650 C. 7

4 c) Karet. Karet adalah polimer bersistem cross linked yang mempunyai kondisi semi kristalin dibawah temperatur kamar. d) Matrik logam Matrik cair dialirkan kesekeliling sistem fiber, yang telah diatur dengan perekatan difusi atau pemanasan. e) Matrik karbon. Fiber yang direkatkan dengan karbon sehingga terjadi karbonisasi. Pemilihan matrik harus didasarkan pada kemampuan elongisasi saat patah yang lebih besar dibandingkan dengan filler. Selain itu juga perlunya diperhatikan berat jenis, viskositas, kemampuan membasahi filler, tekanan dan suhu curring, penyusutan dan voids. Voids (kekosongan) yang terjadi pada matrik sangatlah berbahaya, karena pada bagian tersebut fiber tidak didukung oleh matriks, sedangkan fiber selalu akan mentransfer tegangan ke matriks. Hal seperti ini menjadi penyebab munculnya crack, sehingga komposit akan gagal lebih awal. Kekuatan komposit terkait dengan void adalah berbanding terbalik yaitu semakin banyak void maka komposit semakin rapuh dan apabila sedikit void komposit semakin kuat. Dalam pembuatan sebuah komposit, matriks berfungsi sebagai pengikat bahan penguat, dan juga sebagai pelindung partikel dari kerusakan oleh faktor lingkungan. Beberapa bahan matriks dapat memberikan sifat-sifat yang diperlukan sebagai keliatan dan ketangguhan. Pada penelitian ini matrik yang digunakan adalah polimer termoset dengan jenis resin polyester. Matriks polyester paling banyak digunakan terutama untuk aplikasi konstruksi ringan, selain itu harganya murah, resin ini mempunyai karakteristik yang khas yaitu dapat diwarnai, transparan, dapat dibuat kaku dan fleksibel, tahan air, tahan cuaca dan bahan kimia. Polyester dapat digunakan pada suhu kerja mencapai 79 0 C atau lebih tergantung partikel resin dan keperluannya. Keuntungan lain matriks polyester adalah mudah dikombinasikan dengan serat dan dapat digunakan untuk semua bentuk penguatan plastik [11]. 8

5 2.2 SERAT Serat dikelaskan dalam dua bagian besar yaitu serat alam dan serat buatan. Serat alam yang utama adalah kapas, wol, sutra, sedangkan serat buatan seperti rayon, poliester, akril, atau nilon. Setiap serat buatan (sintetik) terdiri dari rantai polimer, dan kebanyakan merupakan polimer berkristal, sehingga sifat kimianya bergantung kepada struktur rantai polimer tersebut. Serat mempunyai bentuk tipis dan panjang. Dalam molekul rantai serat, orientasi molekul tersusun dalam arah memanjang menurut arah panjang serat. Tegangan tarik, modulus elastik pada arah memanjang (modulus Young) untuk bahan serat adalah relatif tinggi [12] Ampas Tebu Sebagai Bahan Baku Komposit Partikel Ampas tebu merupakan limbah berserat dari batang tebu setelah melalui proses penghancuran dan ekstraksi. Ampas tebu, seperti halnya biomassa yang lain, terdiri dari tiga penyusun utama, yaitu selulosa, hemiselulosa, lignin dan sisanya unsur penyusun lainnya. Ampas tebu sebagian besar mengandung lignocellulose. Panjang seratnya antara 1,7-2 mm dengan diameter sekitar 20 mikro, sehingga ampas tebu ini dapat memenuhi persyaratan untuk diolah menjadi papan-papan buatan. Bagas mengandung air 48-52%, gula rata-rata 3,3% dan serat rata-rata 47,7%. Serat bagas tidak dapat larut dalam air dan sebagian besar terdiri dari selulosa, pentosan dan lignin [13]. Adapun struktur pembentuk serat ampas tebu terdiri dari Selulosa, Hemiselulosa, Pentosan dan Lignin yang komposisinya pada Tabel 2.1. Tabel 2.1 Struktur Pembentuk Ampas Tebu [6] No. Komponen % Berat Kering 1 Selulosa 26%-43% 2 Hemiselulosa 17-23% 3 Pentosan 20%-33% 4 Lignin 13%-22% Dari komposis diatas serat ampas tebu berpotensi menjadi pengisi dalam komposit karena memiliki kadar selulosa yang tinggi. 9

6 2.3 EPOKSI Resin epoksi termasuk ke dalam golongan thermosetting, sehingga dalam pencetakan perlu diperhatikan hal-hal sebagai berikut [14] : 1. Mempunyai penyusutan yang kecil pada pengawetan. 2. Dapat diukur dalam temperatur kamar dalam waktu yang optimal. 3. Memiliki viskositas yang rendah disesuaikan dengan material penyangga. 4. Memiliki kelengketan yang baik dengan material penyangga. Resin epoksi mengandung struktur epoksi atau oxirene. Resin ini berbentuk cairan kental atau hampir padat, yang digunakan untuk material ketika hendak dikeraskan. Resin epoksi jika direaksikan dengan hardener yang akan membentuk polimer crosslink. Hardener untuk sistem curing pada temperatur ruang dengan resin epoksi pada umumnya adalah senyawa poliamid yang terdiri dari dua atau lebih grup amina. Curing time sistem epoksi bergantung pada kereaktifan atom hidrogen dalam senyawa amina [14]. Reaksi curing pada sistem resin epoksi secara eksotermis, berarti dilepaskan sejumlah kalor pada proses curing berlangsung. Laju kecepatan proses curing bergantung pada temperatur ruang. Untuk kenaikan temperatur setiap 10 o C, maka laju kecepatan curing akan menjadi dua kali lebih cepat, sedangkan untuk penurunan temperaturnya dengan besar yang sama, maka laju kecepatan curing akan turun menjadi setengah dari laju kecepatan curing sebelumnya. Epoksi memiliki ketahanan korosi yang lebih baik dari pada polyester pada keadaan basah, namun tidak tahan terhadap asam. Epoksi memiliki sifat mekanik, listrik, kestabilan dimensi dan penahan panas yang baik [14]. 2.4 ALKALISASI Alkalisasi pada serat merupakan proses modifikasi permukaan serat dengan cara perendaman serat ke dalam basa alkali. Reaksi berikut menggambarkan proses yang terjadi saat perlakuan alkali pada serat: Fiber OH + NaOH Fiber-O-Na + +H 2 O Tujuan dari proses alkalisasi adalah mengurangi komponen penyusun serat yang kurang efektif dalam menentukan kekuatan antarmuka yaitu hemiselulosa, lignin atau pektin. Dengan pengurangan komponen lignin dan hemiselulosa, akan 10

7 menghasilkan struktur permukaan serat yang lebih baik dan lebih mudah dibasahi oleh resin, sehingga menghasilkan mechanical interlocking yang lebih baik.[15]. 2.5 PROSES PABRIKASI KOMPOSIT Material komposit dapat diproduksi dengan berbagai macam metode proses pabrikasi. Metode-metode pabrikasi ini disesuaikan dengan jenis matriks penyusun komposit dan bentuk material komposit yang diinginkan sesuai aplikasi selanjutnya [14] antara lain : Open Molding Process (Pencetakan Terbuka) 1. Handlay-up Process Proses ini dilakukan dalam kondisi dingin dan dengan memanfaatkan keterampilan tangan. Serat bahan komposit ditata sedemikian rupa mengikuti bentuk cetakan atau mandril, kemudian dituangkan resin sebagai pengikat antara satu lapisan serat dengan lapisan yang lain. Demikian seterusnya, sehingga sesuai dengan ukuran dan bentuk yang telah ditentukan. Ada dua cara aplikasi resin yaitu [14]: a. Manual Resin Application, proses pengaplikasian antara resin dan fiber dilakukan secara manual dengan tangan. b. Mechanical Resin Application, proses pengaplikasian antara resin dan fiber menggunakan bantuan mesin dan berlangsung secara kontinu. 2. Chopped Laminate Process Proses ini menggunakan alat pemotong fiber yang biasanya serat panjang membentuk serat menjadi lebih pendek [14]. a. Atomized Spray-Up, pada teknik pabrikasinya sistem pada metode ini tidak kontinu, biasanya digunakan untuk membuat material komposit dengan ukuran yang lebih kecil. b. Non Atomized Application, untuk metode ini pada pengaplikasiannya menggunakan mesin potong fiber, pelaminasi resin dan tekanan dari roller yang berjalan kontinu. Metode ini lebih menguntungkan bila digunakan untuk pabrikasi material 11

8 komposit yang berdimensi besar mengingat prosesnya yang kontinu. 3. Filament Winding Process Proses ini melalui metode yang memanfaatkan sistem gulungan benang pada sebuah sumbu putar. Serat komposit dibuat dalam bentuk benang digulung pada sebuah mandril yang dibentuk sesuai dengan bentuk rancangan benda teknik, misalnya berbentuk tabung, kemudian resin yang berfungsi sebagai matriks dituangkan bersamaan dengan proses penggulungan serat tersebut, sehingga keduanya merekat dan saling mengikat antara satu lapisan gulungan dengan gulungan berikutnya, sampai membentuk benda teknik yang direncanakan [14] Close Molding Process (Pencetakan Tertutup) 1. Compression molding Metode ini menggunakan cetakan yang ditekan pada tekanan tinggi sampai mencapai 1000 Psi. Di awali dengan mengalirkan resin dan reinforcement dengan viskositas yang tinggi ke dalam cetakan dengan suhu o F, kemudian mold ditutup dan penekanan terhadap material komposit tersebut, sehingga terjadi perubahan kimia yang menyebabkan mengerasnya material komposit secara permanen mengikuti bentuk cetakan [14]. 2. Pultrusion Pada metode ini pembentukan material komposit yang menggabungkan antara resin dan fiber berlangsung secara kontinu. Proses pultrusi digunakan pada pabrikasi komposit yang berprofil penampang lintang tetap, seperti padaberbagai macam rods, bar section, ladder side rails, tool handles dan komponen elektrikal kabel. Reinforcement yang digunakan seperti roving, mat diletakkan pada tempat yang khusus dengan menggunakan performing shapers atau guides untuk membentuk karakteristiknya. Proses penguatan dilakukan melalui resin bath atau wet out yaitu tempat material diselubungi dengan cairan resin. Adanya panas 12

9 akan mengaktifkan sistem curing sehingga akan mengubah fasa resin menjadi padat [14]. 3. Resin Transfer Molding (RTM) Pada proses ini resin ditransfer atau diinjeksikan ke dalam suatu tempat yang berisi fiberglass reinforcement. Metode ini termasuk closed mold process dimana reinforcement diletakkan di antara dua permukaan cetakan yang terdiri dari dua bagian yang satu disebut bagian female dan yang lainnya disebut male. Pasangan cetakan tersebut lalu ditutup, diberi klem, lalu resin termoset berviskositas rendah diinjeksikan pada tekanan psi ke dalam lubang cetakan melalui port injeksi. Resin diinjeksikan sampai memenuhi seluruh rongga cetakan hingga meresap dan membasahi seluruh material reinforcement [14]. 4. Vacuum Bag Molding Metode ini merupakan pengembangan metode close mold yang bertujuan untuk meningkatkan sifat mekanik dengan cara meminimalisasi jumlah udara yang terperangkap dalam proses pembuatannya. Selain itu dengan berkurangnya tekanan di dalam vacuum bag molding maka tekanan udara atmosferik dari luar akan digunakan sebagai gaya untuk menghilangkan kelebihan resin yang ada dalam laminasi sehingga menghasilkan kandungan fiber reinforcement yang tinggi. Bentuk cetakan yang digunakan disesuaikan dengan bentuk produk yang ingin dibuat [14]. 5. Wet Lay-Up Metode ini reinforcement digabungkan dengan menggunakan tangan seperti metode hand lay-up untuk kemudian ditaruh ke dalam cetakan vacuum bag untuk mempercepat proses laminasi dan menghilangkan udara yang terperangkap yang dapat menimbulkan adanya void dalam produk komposit yang dicetak [14]. 6. Prepreg Metode ini merupakan metode advance dalam pembuatan komposit dengan adanya pemanasan atau cetakan yang diletakan pada autoclave setelah campuran komposit dimasukkan. Hal ini bertujuan untuk meningkatkan gaya tekan dari luar. Teknik menggunakan prepreg-vacuum 13

10 bag-autoclave banyak dimanfaatkan untuk pembuatan peralatan pesawat terbang dan perlengkapan militer [14]. 7. Vacuum Infusion Processing Metode ini adalah variasi dari vacuum bag molding dimana resin yang dituang dalam ruang hampa masuk ke dalam cetakan dan membentuk laminasi. Pada metode ini tekanan dalam rongga cetakan lebih rendah dibandingkan tekanan atmosferik udara. Setelah cetakan dipenuhi resin kemudian dilapisi dengan fiber reinforcement dapat menggunakan tangan yang disebut dengan istilah lay-up dry, kemudian resin diinfusikan kembali ke dalam cetakan untuk menyempurnakan sistem laminasi komposit sehingga tidak terdapat ruang untuk kelebihan resin. Rasio resin yang sangat tinggi terhadap fiber glass yang digunakan memungkinkan penggunaan metode vacuum Infusion yang menghasilkan sifat mekanik sistem laminasi yang sangat baik. Vacuum InfusionProcessing dapat digunakan untuk pencetakan dengan struktur yang besar dan tidak dianjurkan untuk proses dengan volume yang rendah [14]. Pada penelitian ini, penulis menggunakan metode Open Molding Process dengan metode Handlay-up Process. Metode ini digunakan karena komposit yang akan dicetak memerlukan keterampilan tangan untuk mencetaknya sesuai dengan bentuk cetakan dari masing-masing uji yang akan dilakukan. 2.6 PENGUJIAN KOMPOSIT Pengujian Kekuatan Tarik (Tensile Strength) ASTM D 638 Uji tarik adalah salah satu uji stress-strain mekanik yang bertujuan mengetahui kekuatan bahan terhadap gaya tarik. Dengan melakukan uji tarik kita mengetahui bagaimana bahan tersebut bereaksi terhadap tenaga tarikan dan mengetahui sejauh mana material bertambah panjang. Bila kita terus menarik suatu bahan sampai putus, kita akan mendapatkan profil tarikan yang lengkap berupa kurva. Kurva ini menunjukkan hubungan antara gaya tarikan dengan perubahan panjang. Dengan melakukan uji tarik kita mengetahui bagaimana bahan tersebut bereaksi terhadap tenaga tarikan dan mengetahui sejauh mana material bertambah panjang. Bila kita terus menarik suatu bahan sampai putus, kita akan mendapatkan 14

11 profil tarikan yang lengkap berupa kurva. Kurva ini menunjukkan hubungan antara gaya tarikan dengan perubahan panjang. Gambar 2.1 Uji Tarik ASTM D 638 [16] Adapun yang menjadi perhatian dalam gambar tersebut adalah kemampuan maksimum bahan dalam menahan beban. Kemampuan ini umumnya disebut Ultimate Tensile Strength disingkat dengan UTS. Untuk semua bahan, pada tahap sangat awal uji tarik, hubungan antara beban atau gaya yang diberikan berbanding lurus dengan perubahan panjang bahan tersebut. Ini disebut daerah linier atau linear zone. Di daerah ini, kurva pertambahan panjang vs beban mengikuti aturan Hooke, yaitu rasio tegangan (stress) dan regangan (strain) adalah konstan [16]. Pengujian dilakukan sampai sampel uji patah, maka pada saat yang sama diamati pertambahan panjang yang dialami sampel uji. Kekuatan tarik atau tekan diukur dari besarnya beban maksimum (F maks ) yang digunakan untuk memutuskan/mematahkan spesimen bahan dengan luas awal A 0. Hasil pengujian adalah grafik beban versus perpanjangan (elongasi) [16]. Enginering Stess (σ) : ζ = dimana : F maks = Beban yang diberikan terhadap penampangspesimen (N) (2.1) A 0 = Luas penampang awal spesimen sebelum diberikan pembebanan (m 2 ) ζ = Enginering Stress (Nm -2 ) Enginering Strain (ε): 15

12 ε = (2.2) dimana : ε = Enginering Strain l 0 Δl = Panjang mula-mula spesimen sebelum pembebanan = Pertambahan panjang Hubungan antara stress dan strain dirumuskan: E = (2.3) dimana : E = Modulus Elastisitas atau Modulus Young(Nm -2 ) ζ = Enginering Stress (Nm -2 ) ε = Enginering Strain Dari gambar kurva hubungan antara gaya tarikan dan pertambahan panjang kita dapat membuat hubungan antara tegangan dan regangan (stress vs strain). Selanjutnya kita dapat gambarkan kurva standar hasil eksperimen uji tarik [16]. Gambar 2.2 Kurva Tegangan dan Regangan Hasil Uji Tarik Pengujian Kekuatan Lentur (Bending Strength) ASTM D 790 Material komposit mempunyai sifat tekan yang lebih baik dibanding sifat tariknya. Kekuatan tarik di pengaruhi oleh ikatan molekul material penyusunnya. Pada pengujian bending ini bertujuan untuk mengetahui besarnya kekuatan lentur dari material komposit. Pengujian dilakukan dengan jalan memberi beban lentur 16

13 secara perlahan-lahan sampai spesimen mencapai titik lelah. Pada perlakuan uji bending bagian atas spesimen mengalami proses penekanan dan bagian bawah mengalami proses tarik sehingga akibatnya spesimen mengalami patah bagian bawah karena tidak mampu menahan tegangan tarik. Dimensi balok dapat kita lihat pada gambar berikut ini [11]: Gambar 2.3 Penampang Uji Bengkok [11] Momen bending yang terjadi pada komposit dapat dihitung dengan persamaan : M = x (2.4) Menentukan kekuatan bending menggunakan persamaan [11] : ζ b = (2.5) Sedangkan untuk menentukan modulus elastisitas bending menggunakan rumus sebagai berikut [11] : Eb = (2.6) dimana: M = momen bending ζ b P L b d δ Eb = kekuatan bending (MPa) = beban yang diberikan(n) = jarak antara titik tumpuan (mm) = lebar spesimen (mm) = tebal spesimen (mm) = defleksi (mm) = modulus elastisitas (MPa) Sedangkan kekakuan dapat dicari dengan persamaan [11] : (2.7) 17

14 (2.8) dimana : D : kekakuan (N/mm 2 ) E : modulus elastisitas (N/mm 2 ) I : momen inersia (mm 4 ) b : lebar (mm) d : tinggi (mm) Pengujian Kekuatan Bentur (Impact Strength) ASTM D Pengujian impak dilakukan untuk mengetahui karakteristik patah dari bahan.pengujian ini biasanya mengikuti dua metode yaitu metode Charpy dan Izod yang dapat digunakan untuk mengukur kekuatan impak, yang kadang juga disebut seabgai ketangguhan ketok (notch toughness).untuk metode Charpy dan Izod, spesimen berupa dalam bentuk persegi dimana terdapat bentuk V-notch (Gambar 2.4). Gambar 2.4 Spesimen V-Notch Metoda Charpy dan Izod [17] Spesimen Charpy berbentuk batang dengan penampang lintang bujur sangkar dengan takikan V oleh proses permesinan (gambar 2.4). Mesin pengujian impact diperlihatkan secara skematik dengan (gambar 2.5). Beban didapatkan dari tumbukan oleh palu pendulum yang dilepas dari posisi ketinggian h. Spesimen diposisikan pada dasar seperti pada (gambar 2.5) tersebut. Ketika dilepas, ujung pisau pada palu pendulum akan menabrak dan mematahkan spesimen ditakikannya yang bekerja sebagai titik konsentrasi tegangan untuk pukulan impact kecepatan tinggi. Palu pendulum akan melanjutkan ayunan untuk 18

15 mencapai ketinggian maksimum h yang lebih rendah dari h. Energi yang diserap dihitung dari perbedaan h dan h (mgh mgh ), adalah ukuran dari energi impact. Posisi simpangan lengan pendulum terhadap garis vertikal sebelum dibenturkan adalah α dan posisi lengan pendulum terhadap garis vertikal setelah membentur spesimen adalah β. Dengan mengetahui besarnya energi potensial yang diserap oleh material maka kekuatan impact benda uji dapat dihitung (ASTM D256). Es = energi awal energi yang tersisa = m.g.h m.g.h (2.9) = m.g(r Rcos α) m.g(r Rcos β) (2.10) Es = m.g.r(cos β cos α), (2.11) dimana : Esrp : energi serap (J) m : berat pendulum (kg) = 20 kg g : percepatan gravitasi (m/s2) = 10 m/s 2 R : panjang lengan (m) = 0,8 m α : sudut pendulum sebelum diayunkan = 30 o β : sudut ayunan pendulum setelah mematahkan spesimen Harga impact dapat dihitung dengan : (2.12) dimana : HI : Harga Impact (J/mm 2 ) Esrp : energi serap (J) Ao : Luas penampang (mm 2 ) 19

16 Gambar 2.5 Peralatan Uji Bentur [17] Keretakan akibat uji benturada tiga bentuk [11], yaitu : 1. Patahan getas Permukaan patahan terlihat rata dan mengkilap, kalaupotonganpotongannya kita sambungkan lagi, ternyatakeretakannya tidak disertai dengan deformasinya bahan.patahan jenis ini mempunyai harga impactyang rendah. 2. Patahan liat Permukaan patahan ini tidak rata, nampak seperti buram danberserat, tipe ini mempunyai harga impactyang tinggi. 3. Patahan campuran Patahan yang terjadi merupakan campuran dari patahangetas dan patahan liat. Patahan ini paling banyak terjadi. Semakin besar posisi sudut β akan semakin getas, demikian sebaliknya. Artinya pada material getas, energi untuk mematahkan material cenderung semakin kecil, demikian sebaliknya [11]. 20

17 2.6.4 Analisa Penyerapan Air (Water Adsorption) ASTM D 570 Penyerapan air (water absorption) dalam komposit merupakan kemampuan komposit dalam menyerap uap air dalam waktu tertentu. Penyerapan air pada komposit merupakan salah satu masalah terutama dalam penggunaan komposit di luar ruangan. Semua komposit polimer akan menyerap air jika berada di udara lembab atau ketika polimer tersebut dicelupkan di dalam air. Penyerapan air pada komposit berpenguat serat alami memiliki beberapa pengaruh yang merugikan dalam sifatnya dan mempengaruhi kemampuannya dalam jangka waktu yang lama juga penurunan secara perlahan dari ikatan interface komposit serta menurunkan sifat mekanis komposit seperti kekuatan tariknya. Penurunan ikatan antarmuka komposit menyebabkan penurunan sifat mekanis komposit tersebut. Karena itu, pengaruh dari penyerapan air sangat vital untuk penggunaan komposit berpenguat serat alami di lingkungan terbuka [18] Karakteristik Fourier Transform Infra Red (FT-IR) Spektrofotometer infra merah terutama ditujukan untuk senyawa organik yaitu menentukan gugus fungsional yang dimiliki senyawa tersebut. Pola pada daerah sidikjadi sangat berbeda satu dengan yang lain, karenanya hal ini dapat digunakan untuk mengidentifikasi senyawa tersebut. Penetapan secara kualitatif dapat dilakukan dengan membandingkan tinggi peak (transmitansi) pada panjang gelombang tertentu yang dihasilkan oleh zat yang diuji dan zat yang standar. Dalam ilmu material analisa ini digunakan untuk mengetahui ada tidaknya reaksi atau interaksi antara bahan-bahan yang dicampurkan. Selain itu, nilai intensitas gugus yang terdeteksi dapat menentukan jumlah bahan yang bereaksi atau yang terkandung dalam suatu campuran [19] Analisa Scanning Electron Microscopy (SEM) Analisa Scanning Electron Microscopy (SEM) digunakan untuk mengkarakterisasi morfologi permukaan sampel dengan menggunakan metode Secondary Electron Image (SEI). Hasil yang didapat adalah foto polaroid dan mampu memfoto dengan perbesaran dari 35x sampai 10000x. Sampel yang difoto 21

18 berukuran kecil, yaitu 5 mm x 5 mm untuk luas permukaan dan sampel dalam keadaan kering. Untuk sampel yang tidak bersifat konduktif, sampel harus dilapisi terlebih dahulu dengan bahan yang bersifat konduktif. Ion sputtering, alat yang digunakan untuk melapisi sampel ini tersedia juga di Laboratorium Uji Polimer (LUP). Bahan pelapisnya adalah emas (Au) [16]. 2.7 APLIKASI KOMPOSIT EPOKSI Penggunaan serat alam (organik) seperti serat ampas tebu memiliki potensi untuk digunakan sebagai pengganti fiberglass ataupun pengisi lainnya pada material komposit diperkuat serat (Abrao,2006). Potensi serat alam ini didukung oleh beberapa keunggulan serat organik, antara lain : densitas yang rendah, ramah lingkungan, ketersediaan yang melimpah, ketangguhan yang tinggi, proses penyiapan yang relatif mudah, harga bahan baku yang relatif murah, dan mengurangi konsumsi energi pabrikasi. Dari Tabel 2.4 dapat dilihat bahwa beberapa serat alam seperti kayu dan flax memiliki harga yang jauh lebih murah dibandingkan serat gelas [35]. Tabel 2.2 Perbandingan Harga antara Serat Alam dan Serat Sintetik [35] Harga Spesifik Graviti Harga Serat $/m 3 kg/m 3 $/kg Kayu ,26 Flax ,40 Gelas ,87 Serat Ampas Tebu* 0,01 0,125 0,08 *Untuk penelitian ini Material komposit dapat digunakan dalam berbagai macam aplikasi, bahan ini dapat digunakan dalam sektor aksesoris otomotif, beberapa diantaranya kaca spion, pengisi jok mobil, bamper mobil, dll. Dalam proses pabrikasi aksesoris tersebut biasanya menggunakan metode hand lay up. Adapun industri otomotif yang menggunakan resin epoksi sebagai matriks dalam pembuatan aksesoris mobil sudah dijumpai pada tahun 1955 yaitu oleh perusahaan otomotif amerika yang memproduksi leaf spring yang digunakan pada mobil sports. 22

19 Gambar 2.6 Jenis Mobil Sports Yang Menggunakan Komponen Leaf Spring Dari Komposit Epoksi. Penggunaan lain dari komposit serat alam tidak hanya sebatas pada industri automotif tetapi juga pada aplikasi lain seperti yang ditunjukkan pada Gambar 2.7. Gambar 2.7 Aplikasi Lain Penggunaan Komposit Serat Alam 2.8 ANALISIS BIAYA Dalam penelitian ini, dilakukan suatu analisa biaya terhadap pembuatan komposit epoksi berpengisi serat ampas tebu. Rincian biaya diberikan dalam Tabel 2.6 berikut. 23

20 Tabel 2.3 Rincian Biaya Pembuatan Komposit Epoksi Berpengisi Ampas Tebu Bahan dan Peralatan Jumlah Harga (Rp) Biaya Total (Rp) Resin Epoksi dan Hardener 2 kg Rp /kg ,- LilinCetakan (Malam) 4 buah Rp 5.000/buah ,- Serat ampas tebu 1 kg Rp 1000/kg 1.000,- Plastik Transparan 10 lembar Rp 500/lembar 5.000,- Analisa Sifat Mekanik Uji kekuatan bentur 36 sampel Rp /sampel ,- Uji kekuatan lentur 36 sampel Rp /sampel ,- Uji kekuatan tarik 36 sampel Rp /sampel ,- Analisa Fourier Transform 3 sampel Rp /sampel ,- Infra-Red (FTIR) Analisa Scanning Electron 3 sampel Rp / sampel ,- Microscopy (SEM) Total ,- Produk yang dihasilkan nantinnya akan memiliki sifat ketahanan termal yang tinggi oleh karena itu maka sasaran produk yang ingin dihasilkan dapat berupa produk barang pecah belah yang memiliki ketahanan termal tinggi. Diasumsikan bahwa pembuatan produk menggunakan basis 1 set epoksi (2kg epoksi+hardener) dengan rasio epoksi dan serat ampas tebu 70:30, maka perkiraan produk yang dapat dibuat sekitar 10 buah pelat. Tabel 2.4 Perkiraan Rincian Biaya Pembuatan Produk Bahan dan Peralatan Jumlah yang Biaya Total (Rp) diperlukan Resin Epoksi dan Hardener 2 kg ,- Ampas tebu 100 g 100,- Biaya Tambahan ,- Total Rp ,- 24

21 Total biaya yang diperkirakan untuk membuat 10 buah pelat produk yaitu sebesar Rp ,-. Bila harga ini dibagi per buah pelat satu buah pelat produk memiliki harga Rp ,- ~ Rp Adapun harga produk sejenis di pasaran memiliki rentang harga Rp ,- s/d Rp ,-. Oleh karena itu, maka produk ini memiliki potensi untuk dipasarkan dan bersaing dengan produk lainnya yang sejenis. 25

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Material untuk rekayasa struktur terbagi menjadi empat jenis, diantaranya logam, keramik, polimer, dan komposit (Ashby, 1999). Material komposit merupakan alternatif

Lebih terperinci

PENGARUH KEKUATAN BENDING DAN TARIK BAHAN KOMPOSIT BERPENGUAT SEKAM PADI DENGAN MATRIK UREA FORMALDEHIDE

PENGARUH KEKUATAN BENDING DAN TARIK BAHAN KOMPOSIT BERPENGUAT SEKAM PADI DENGAN MATRIK UREA FORMALDEHIDE PENGARUH KEKUATAN BENDING DAN TARIK BAHAN KOMPOSIT BERPENGUAT SEKAM PADI DENGAN MATRIK UREA FORMALDEHIDE Harini Program Studi Teknik Mesin Universitas 17 agustus 1945 Jakarta yos.nofendri@uta45jakarta.ac.id

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi rekayasa material serta berkembangnya isu lingkungan hidup menuntut terobosan baru dalam menciptakan material yang berkualitas tinggi dan ramah lingkungan.

Lebih terperinci

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah

BAB I PENDAHULUAN. Salah satu material yang sangat penting bagi kebutuhan manusia adalah 1 BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu material yang sangat penting bagi kebutuhan manusia adalah logam. Seiring dengan jaman yang semakin maju, kebutuhan akan logam menjadi semakin tinggi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Menurut penelitian Hartanto (2009), serat rami direndam pada NaOH 5%

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI. Menurut penelitian Hartanto (2009), serat rami direndam pada NaOH 5% BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Menurut penelitian Hartanto (2009), serat rami direndam pada NaOH 5% selama 2 jam, 4 jam, 6 jam dan 8 jam. Hasil pengujian didapat pengaruh

Lebih terperinci

BAB IV DATA HASIL PENELITIAN

BAB IV DATA HASIL PENELITIAN BAB IV DATA HASIL PENELITIAN 4.1 PEMBUATAN SAMPEL 4.1.1 Perhitungan berat komposit secara teori pada setiap cetakan Pada Bagian ini akan diberikan perhitungan berat secara teori dari sampel komposit pada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Komposit adalah suatu material yang tersusun dari dua material yang disebut matriks dan penguat (reinforcement) yang dikombinasikan secara makroskopik [1]. Secara lebih

Lebih terperinci

Kekuatan tarik komposit lamina berbasis anyaman serat karung plastik bekas (woven bag)

Kekuatan tarik komposit lamina berbasis anyaman serat karung plastik bekas (woven bag) Jurnal Kompetensi Teknik Vol. 8, No.2, Mei 2017 1 Kekuatan tarik komposit lamina berbasis anyaman serat karung plastik bekas (woven bag) Heri Yudiono 1, Rusiyanto 2, dan Kiswadi 3 1,2 Teknik Mesin, Fakultas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3. 1. DIAGRAM ALIR PENELITIAN Dikeringkan, Dipotong sesuai cetakan Mixing Persentase dengan Rami 15,20,25,30,35 %V f Sampel Uji Tekan Sampel Uji Flexural Sampel Uji Impak Uji

Lebih terperinci

BAB I PENDAHULUAN. saat ini belum dimanfaatkan secara optimal dalam membuat berbagai

BAB I PENDAHULUAN. saat ini belum dimanfaatkan secara optimal dalam membuat berbagai 1 BAB I PENDAHULUAN 1.1. Latar Belakang Serat alam khususnya pisang yang berlimpah di Indonesia sampai saat ini belum dimanfaatkan secara optimal dalam membuat berbagai produk manufaktur. Berbagai jenis

Lebih terperinci

BAB I PENDAHULUAN. Penggunaan sambungan material komposit yang telah. banyak menggunakan jenis sambungan mekanik dan

BAB I PENDAHULUAN. Penggunaan sambungan material komposit yang telah. banyak menggunakan jenis sambungan mekanik dan BAB I PENDAHULUAN 1.1 Latar Belakang Penggunaan sambungan material komposit yang telah dilakukan banyak menggunakan jenis sambungan mekanik dan sambungan ikat, tetapi pada zaman sekarang para rekayasawan

Lebih terperinci

BAB I PENDAHULUAN. Dengan perkembangan dunia industri sekarang ini. Kebutuhan. material untuk sebuah produk bertambah seiring penggunaan material

BAB I PENDAHULUAN. Dengan perkembangan dunia industri sekarang ini. Kebutuhan. material untuk sebuah produk bertambah seiring penggunaan material BAB I PENDAHULUAN 1.1. Latar Belakang Dengan perkembangan dunia industri sekarang ini. Kebutuhan material untuk sebuah produk bertambah seiring penggunaan material logam pada berbagai komponen produk semakin

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Pada zaman sekarang ini, penelitian tentang bahan polimer sedang berkembang. Hal ini dikarenakan bahan polimer memiliki beberapa sifat yang lebih unggul jika dibandingkan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ampas tebu atau yang umum disebut bagas diperoleh dari sisa pengolahan tebu (Saccharum officinarum) pada industri gula pasir. Subroto (2006) menyatakan bahwa pada

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 LATAR BELAKANG Penggunaan polimer dan komposit dewasa ini semakin meningkat di segala bidang. Komposit berpenguat serat banyak diaplikasikan pada alat-alat yang membutuhkan material

Lebih terperinci

I. PENDAHULUAN. Dewasa ini penggunaan komposit semakin berkembang, baik dari segi

I. PENDAHULUAN. Dewasa ini penggunaan komposit semakin berkembang, baik dari segi I. PENDAHULUAN A. Latar Belakang Dewasa ini penggunaan komposit semakin berkembang, baik dari segi penggunaan, maupun teknologinya. Penggunaannya tidak terbatas pada bidang otomotif saja, namun sekarang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Dengan berkembangnya teknologi pembuatan komposit polimer yaitu dengan merekayasa material pada saat ini sudah berkembang pesat. Pembuatan komposit polimer tersebut

Lebih terperinci

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) F 196 Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester

Lebih terperinci

Jurusan Teknik Mesin, Universitas Brawijaya Jl. MT Haryono 167, Malang

Jurusan Teknik Mesin, Universitas Brawijaya Jl. MT Haryono 167, Malang Karakteristik Kekuatan Bending dan Impact akibat Variasi Unidirectional Pre-Loading pada serat penguat komposit Polyester Tjuk Oerbandono*, Agustian Adi Gunawan, Erwin Sulistyo Jurusan Teknik Mesin, Universitas

Lebih terperinci

I. PENDAHULUAN. alami dan harga serat alam pun lebih murah dibandingkan serat sintetis. Selain

I. PENDAHULUAN. alami dan harga serat alam pun lebih murah dibandingkan serat sintetis. Selain 1 I. PENDAHULUAN 1.1. Latar Belakang Perkembangan komposit tidak hanya komposit sintetis saja tetapi juga mengarah ke komposit natural dikarenakan keistimewaan sifatnya yang dapat didaur ulang (renewable)

Lebih terperinci

I. PENDAHULUAN. mempunyai sifat lebih baik dari material penyusunnya. Komposit terdiri dari penguat (reinforcement) dan pengikat (matriks).

I. PENDAHULUAN. mempunyai sifat lebih baik dari material penyusunnya. Komposit terdiri dari penguat (reinforcement) dan pengikat (matriks). 1 I. PENDAHULUAN A. Latar Belakang Komposit merupakan hasil penggabungan antara dua atau lebih material yang berbeda secara fisis dengan tujuan untuk menemukan material baru yang mempunyai sifat lebih

Lebih terperinci

LOGO KOMPOSIT SERAT INDUSTRI KREATIF HASIL PERKEBUNAN DAN KEHUTANAN

LOGO KOMPOSIT SERAT INDUSTRI KREATIF HASIL PERKEBUNAN DAN KEHUTANAN LOGO KOMPOSIT SERAT INDUSTRI KREATIF HASIL PERKEBUNAN DAN KEHUTANAN PENDAHULUAN Komposit adalah suatu material yang terbentuk dari kombinasi dua atau lebih material, dimana akan terbentuk material yang

Lebih terperinci

SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius)

SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius) SINTESIS DAN KARAKTERISASI SIFAT MEKANIK SERTA STRUKTUR MIKRO KOMPOSIT RESIN YANG DIPERKUAT SERAT DAUN PANDAN ALAS (Pandanus dubius) Citra Mardatillah Taufik, Astuti Jurusan Fisika FMIPA Universitas Andalas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Material komposit merupakan suatu materi yang dibuat dari variasi penggunaan matrik polimer dengan suatu substrat yang dengan sengaja ditambahkan atau dicampurkan untuk

Lebih terperinci

BAB 1 PENDAHULUAN. Perkembangan teknologi pada era globalisasi mengalami. perkembangan yang sangat pesat dengan berbagai inovasi yang

BAB 1 PENDAHULUAN. Perkembangan teknologi pada era globalisasi mengalami. perkembangan yang sangat pesat dengan berbagai inovasi yang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi pada era globalisasi mengalami perkembangan yang sangat pesat dengan berbagai inovasi yang digunakan untuk memudahkan dalam pembuatan produk.

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Teknologi Material, Laboratorium

BAB III METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Teknologi Material, Laboratorium BAB III METODOLOGI PENELITIAN A. Metode Penelitian Penelitian ini dilakukan di Laboratorium Teknologi Material, Laboratorium Metrologi Industri Teknik Mesin serta Laboratoium Kimia Teknik Kimia Universitas

Lebih terperinci

ANALISA PENGARUH KETEBALAN INTI (CORE) TERHADAP KEKUATAN BENDING KOMPOSIT SANDWICH

ANALISA PENGARUH KETEBALAN INTI (CORE) TERHADAP KEKUATAN BENDING KOMPOSIT SANDWICH Tugas Akhir TM091486 ANALISA PENGARUH KETEBALAN INTI (CORE) TERHADAP KEKUATAN BENDING KOMPOSIT SANDWICH Rifki Nugraha 2108 100 704 Dosen Pembimbing : Putu Suwarta, ST. M.Sc Latar Belakang Komposit Material

Lebih terperinci

14.1 Proses Pembuatan Komposit Material Plastik yang Diperkuat Serat Proses Pencetakan Terbuka (Open-Mold Processes)

14.1 Proses Pembuatan Komposit Material Plastik yang Diperkuat Serat Proses Pencetakan Terbuka (Open-Mold Processes) 14.1 Proses Pembuatan Komposit Material Plastik yang Diperkuat Serat. 14.1.1 Proses Pencetakan Terbuka (Open-Mold Processes) Terdapat beberapa metode cetakan terbuka untuk membuat material komposit plastik

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN 34 BAB IV ANALISA DAN PEMBAHASAN 4.1. Sifat Mekanis Komposit Sandwich. 4.1.1. Pengujian Bending. Uji bending ialah pengujian mekanis secara statis dimana benda uji lengkung ditumpu dikedua ujung dengan

Lebih terperinci

PENGARUH UKURAN PARTIKEL DAN KOMPOSISI TERHADAP SIFAT KEKUATAN BENTUR KOMPOSIT EPOKSI BERPENGISI SERAT DAUN NANAS

PENGARUH UKURAN PARTIKEL DAN KOMPOSISI TERHADAP SIFAT KEKUATAN BENTUR KOMPOSIT EPOKSI BERPENGISI SERAT DAUN NANAS PENGARUH UKURAN PARTIKEL DAN KOMPOSISI TERHADAP SIFAT KEKUATAN BENTUR KOMPOSIT EPOKSI BERPENGISI SERAT DAUN NANAS Syahrinal Anggi Daulay, Fachry Wirathama, Halimatuddahliana Departemen Teknik Kimia, FakultasTeknik,Universitas

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN BAB IV HASIL PENGUJIAN DAN PEMBAHASAN 4.1. Diameter Serat Diameter serat adalah diameter serat ijuk yang diukur setelah mengalami perlakuan alkali, karena pada dasarnya serat alam memiliki dimensi bentuk

Lebih terperinci

PENGARUH PENAMBAHAN PROSENTASE FRAKSI VOLUME HOLLOW GLASS MICROSPHERE KOMPOSIT HIBRIDA SANDWICH TERHADAP KARAKTERISTIK TARIK DAN BENDING

PENGARUH PENAMBAHAN PROSENTASE FRAKSI VOLUME HOLLOW GLASS MICROSPHERE KOMPOSIT HIBRIDA SANDWICH TERHADAP KARAKTERISTIK TARIK DAN BENDING PENGARUH PENAMBAHAN PROSENTASE FRAKSI VOLUME HOLLOW GLASS MICROSPHERE KOMPOSIT HIBRIDA SANDWICH TERHADAP KARAKTERISTIK TARIK DAN BENDING Sandy Noviandra Putra 2108 100 053 Dosen Pembimbing : Prof. Dr.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Berdasarkan data statistik Kehutanan (2009) bahwa hingga tahun 2009 sesuai dengan ijin usaha yang diberikan, produksi hutan tanaman mencapai 18,95 juta m 3 (HTI)

Lebih terperinci

BAB II DASAR TEORI. 2.1 Komposit Pengertian Komposit. commit to user

BAB II DASAR TEORI. 2.1 Komposit Pengertian Komposit. commit to user BAB II DASAR TEORI 2.1 Komposit 2.1.1 Pengertian Komposit Material komposit merupakan material yang terbentuk dari kombinasi antara dua atau lebih material pembentuknya, melalui pencampuran yang tidak

Lebih terperinci

I. PENDAHULUAN. komposit alternatif yang lain harus ditingkatkan, guna menunjang permintaan

I. PENDAHULUAN. komposit alternatif yang lain harus ditingkatkan, guna menunjang permintaan I. PENDAHULUAN A. Latar Belakang Perkembangan industri komposit di Indonesia dengan mencari bahan komposit alternatif yang lain harus ditingkatkan, guna menunjang permintaan komposit di Indonesia yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Konstruksi dari beton banyak memiliki keuntungan yakni beton termasuk tahan aus dan tahan terhadap kebakaran, beton sangat kokoh dan kuat terhadap beban gempa bumi, getaran,

Lebih terperinci

Kata kunci : Serat batang pisang, Epoxy, Hand lay-up, perbahan temperatur.

Kata kunci : Serat batang pisang, Epoxy, Hand lay-up, perbahan temperatur. KARAKTERISTIK EFEK PERUBAHAN TEMPERATUR PADA KOMPOSIT SERAT BATANG PISANG DENGAN PERLAKUAN NaOH BERMETRIK EPOXY Ngafwan 1, Muh. Al-Fatih Hendrawan 2, Kusdiyanto 3, Jurusan Teknik Mesin Fakultas Teknik

Lebih terperinci

STUDI SIFAT MEKANIK DAN MORFOLOGI KOMPOSIT SERAT DAUN NANAS-EPOXY DITINJAU DARI FRAKSI MASSA DENGAN ORIENTASI SERAT ACAK

STUDI SIFAT MEKANIK DAN MORFOLOGI KOMPOSIT SERAT DAUN NANAS-EPOXY DITINJAU DARI FRAKSI MASSA DENGAN ORIENTASI SERAT ACAK STUDI SIFAT MEKANIK DAN MORFOLOGI KOMPOSIT SERAT DAUN NANAS-EPOXY DITINJAU DARI FRAKSI MASSA DENGAN ORIENTASI SERAT ACAK Sri Hastuti Firman 1, Muris, dan Subaer Jurusan Fisika Fakultas MIPA Universitas

Lebih terperinci

Fajar Nugroho Sekolah Tinggi Teknologi Adisutjipto, Yogyakarta. Jl. Janti Blok R Lanud Adisutjipto

Fajar Nugroho Sekolah Tinggi Teknologi Adisutjipto, Yogyakarta. Jl. Janti Blok R Lanud Adisutjipto Seminar SENATIK Nasional Vol. II, 26 Teknologi November Informasi 2016, ISSN: dan 2528-1666 Kedirgantaraan (SENATIK) Vol. II, 26 November 2016, ISSN: 2528-1666 MdM- 41 STUDI PENGARUH PROSES MANUFAKTUR

Lebih terperinci

Jurnal Einstein 3 (2) (2015): Jurnal Einstein. Available online

Jurnal Einstein 3 (2) (2015): Jurnal Einstein. Available online Jurnal Einstein Available online http://jurnal.unimed.ac.id/2012/index.php/einstein PENGARUH PERENDAMAN FILLER SERAT AMPAS TEBU DENGAN VARIASI KONSENTRASI NaOH TERHADAPSIFAT MEKANIK KOMPOSIT RESIN POLYESTER

Lebih terperinci

Bahan yang digunakan pada pembuatan panel kayu sengon laut ini adalah:

Bahan yang digunakan pada pembuatan panel kayu sengon laut ini adalah: 25 BAB III METODOLOGI PENELITIAN 3.1. Alat dan Bahan 3.1.1. Alat-alat yang digunakan Alat yang digunakan dalam penelitian ini adalah sebagai berikut: 1. Gerenda potong 2. Spidol/pensil 3. Kuas 4. Sarung

Lebih terperinci

PRAKTIKUM UJI KETANGGUHAN BAHAN

PRAKTIKUM UJI KETANGGUHAN BAHAN Sub Modul Praktikum PRAKTIKUM UJI KETANGGUHAN BAHAN Tim Penyusun Herdi Susanto, ST, MT NIDN :0122098102 Joli Supardi, ST, MT NIDN :0112077801 Mata Kuliah FTM 006 Material Teknik + Praktikum JURUSAN TEKNIK

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. A. Kekuatan Tarik Komposit Partikel Tempurung Kelapa

IV. HASIL DAN PEMBAHASAN. A. Kekuatan Tarik Komposit Partikel Tempurung Kelapa IV. HASIL DAN PEMBAHASAN A. Kekuatan Tarik Komposit Partikel Tempurung Kelapa Untuk mengetahui nilai kekuatan tarik dari komposit maka perlu di lakukan pengujian kekuatan tarik pada komposit tersebut.

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi komposit saat ini sudah mengalami pergeseran dari bahan komposit berpenguat serat sintetis menjadi bahan komposit berpenguat serat alam. Teknologi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Kebutuhan material di dunia industri khususnya manufaktur semakin lama semakin meningkat. Material yang memiliki karakteristik tertentu seperti kekuatan, keuletan,

Lebih terperinci

PENGARUH ARAH SERAT GELAS DAN BAHAN MATRIKS TERHADAP KEKUATAN KOMPOSIT AIRFOIL PROFILE FAN BLADES

PENGARUH ARAH SERAT GELAS DAN BAHAN MATRIKS TERHADAP KEKUATAN KOMPOSIT AIRFOIL PROFILE FAN BLADES C.9. Pengaruh arah serat gelas dan bahan matriks (Carli, dkk.) PENGARUH ARAH SERAT GELAS DAN BAHAN MATRIKS TERHADAP KEKUATAN KOMPOSIT AIRFOIL PROFILE FAN BLADES Carli *1), S. A. Widyanto 2), Ismoyo Haryanto

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Penggunaan material komposit dalam bidang teknik semakin meningkat seiring meningkatnya pengetahuan karakteristik material ini. Material komposit mempunyai banyak keunggulan

Lebih terperinci

PENINGKATAN KEKUATAN TARIK DAN IMPAK PADA REKAYASA DAN MANUFAKTUR BAHAN KOMPOSIT HYBRID

PENINGKATAN KEKUATAN TARIK DAN IMPAK PADA REKAYASA DAN MANUFAKTUR BAHAN KOMPOSIT HYBRID C.1 PENINGKATAN KEKUATAN TARIK DAN IMPAK PADA REKAYASA DAN MANUFAKTUR BAHAN KOMPOSIT HYBRID BERPENGUAT SERAT E-GLASS DAN SERAT KENAF BERMATRIK POLYESTER UNTUK PANEL INTERIOR AUTOMOTIVE Agus Hariyanto Jurusan

Lebih terperinci

PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR DAN WAKTU POST-CURING TERHADAP KARAKTERISTIK TARIK KOMPOSIT POLYESTER PARTIKEL HOLLOW GLASS MICROSPHERES

PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR DAN WAKTU POST-CURING TERHADAP KARAKTERISTIK TARIK KOMPOSIT POLYESTER PARTIKEL HOLLOW GLASS MICROSPHERES PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR DAN WAKTU POST-CURING TERHADAP KARAKTERISTIK TARIK KOMPOSIT POLYESTER PARTIKEL HOLLOW GLASS MICROSPHERES Irwan Nugraha Saputra 2109100100 Dosen Pembimbing : Putu

Lebih terperinci

BAB 4 HASIL PENELITIAN DAN PEMBAHASAN

BAB 4 HASIL PENELITIAN DAN PEMBAHASAN BAB 4 HASIL PENELITIAN DAN PEMBAHASAN 4.1. Sifat Mekanik 4.1.1. Kekuatan Logam Sampel logam yang diambil dari potongan pipa standar API 5L Grade B yang telah diuji dan dilakukan perbandingan data dengan

Lebih terperinci

Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas

Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas Andi Saidah, Helmi Wijanarko Program Studi Teknik Mesin,Fakultas Teknik, Universitas 17

Lebih terperinci

PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS

PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS PRESENTASI TUGAS AKHIR PENGARUH SIFAT MEKANIK TERHADAP PENAMBAHAN BUBBLE GLASS, CHOPPED STRAND MAT DAN WOVEN ROVING PADA KOMPOSIT BENTUK POROS Oleh : EDI ARIFIYANTO NRP. 2108 030 066 Dosen Pembimbing Ir.

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan secara garis besar pengetahuan teori yang menunjang dalam penelitian yang akan dilakukan. A. Batu Marmer Marmer adalah batuan kristalin yang berasal dari

Lebih terperinci

KAJIAN PERLAKUAN SERAT SABUT KELAPA TERHADAP SIFAT MEKANIS KOMPOSIT EPOKSI SERAT SABUT KELAPA

KAJIAN PERLAKUAN SERAT SABUT KELAPA TERHADAP SIFAT MEKANIS KOMPOSIT EPOKSI SERAT SABUT KELAPA KAJIAN PERLAKUAN SERAT SABUT KELAPA TERHADAP SIFAT MEKANIS KOMPOSIT EPOKSI SERAT SABUT KELAPA Indra Mawardi 1, Azwar 2, Amir Rizal 3 1,2,3 Jurusan Teknik Mesin, Politeknik Negeri Lhokseumawe Jl. Banda

Lebih terperinci

Kategori Sifat Material

Kategori Sifat Material 1 TIN107 Material Teknik Kategori Sifat Material 2 Fisik Mekanik Teknologi Kimia 6623 - Taufiqur Rachman 1 Sifat Fisik 3 Kemampuan suatu bahan/material ditinjau dari sifat-sifat fisikanya. Sifat yang dapat

Lebih terperinci

Studi Eksperimental Pengaruh Jumlah Lapisan Stainless Steel Mesh dan Posisinya Terhadap Karakteristik Tarik dan Bending Komposit Serat Kaca Hibrida

Studi Eksperimental Pengaruh Jumlah Lapisan Stainless Steel Mesh dan Posisinya Terhadap Karakteristik Tarik dan Bending Komposit Serat Kaca Hibrida LOGO Sidang Tugas Akhir Studi Eksperimental Pengaruh Jumlah Lapisan Stainless Steel Mesh dan Posisinya Terhadap Karakteristik Tarik dan Bending Komposit Serat Kaca Hibrida Oleh : Tamara Ryan Septyawan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah 1.1 Latar Belakang Masalah BAB I PENDAHULUAN Kayu merupakan material struktural dan banyak disediakan oleh alam dan diminati di beberapa daerah di Indonesia. Material utama pada bangunan tradisional Indonesia

Lebih terperinci

III.METODOLOGI PENELITIAN. 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di

III.METODOLOGI PENELITIAN. 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di III.METODOLOGI PENELITIAN A. Tempat Penelitian Tempat penelitian ini dilakukan adalah: 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di lakukan di Laboratium Material Teknik, Universitas

Lebih terperinci

PEMBUATAN POLIMER KOMPOSIT RAMAH LINGKUNGAN UNTUK APLIKASI INDUSTRI OTOMOTIF DAN ELEKTRONIK

PEMBUATAN POLIMER KOMPOSIT RAMAH LINGKUNGAN UNTUK APLIKASI INDUSTRI OTOMOTIF DAN ELEKTRONIK PEMBUATAN POLIMER KOMPOSIT RAMAH LINGKUNGAN UNTUK APLIKASI INDUSTRI OTOMOTIF DAN ELEKTRONIK Teuku Rihayat dan Suryani Jurusan Teknik Kimia, Politeknik Negeri Lhokseumawe ABSTRAK Serat daun nenas adalah

Lebih terperinci

BAB 3 METODE PENELITIAN. 3.1 Alat Alat Adapun alat-alat yang digunakan pada penelitian ini adalah: Alat-alat Gelas.

BAB 3 METODE PENELITIAN. 3.1 Alat Alat Adapun alat-alat yang digunakan pada penelitian ini adalah: Alat-alat Gelas. 18 BAB 3 METODE PENELITIAN 3.1 Alat Alat Adapun alat-alat yang digunakan pada penelitian ini adalah: Nama Alat Merek Alat-alat Gelas Pyrex Gelas Ukur Pyrex Neraca Analitis OHaus Termometer Fisher Hot Plate

Lebih terperinci

BAB I PENDAHULUAN. endemik. Bambu merupakan jenis rumput rumputan yang beruas. yang tinggi. Beberapa jenis bambu mampu tumbuh hingga sepanjang

BAB I PENDAHULUAN. endemik. Bambu merupakan jenis rumput rumputan yang beruas. yang tinggi. Beberapa jenis bambu mampu tumbuh hingga sepanjang BAB I PENDAHULUAN 1.1 Latar Belakang Di Indonesia terdapat berbagai jenis bambu diperkirakan sekitar 159 spesies dari total 1.250 jenis bambu yang terdapat di dunia. Bahkan sekitar 88 jenis bambu yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Pada saat ini kebutuhan akan material yang memiliki sifat mekanik yang baik sangat banyak. Selain itu juga dibutuhkan material dengan massa jenis yang kecil serta

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan rekayasa teknologi saat ini tidak hanya bertujuan untuk membantu umat manusia, namun juga harus mempertimbangkan aspek lingkungan. Segala hal yang berkaitan

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Kemajuan ilmu pengetahuan dan teknologi yang berkembang saat ini mendorong para peneliti untuk menciptakan dan mengembangkan suatu hal yang telah ada maupun menciptakan

Lebih terperinci

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN

Momentum, Vol. 10, No. 2, Oktober 2014, Hal ISSN Momentum, Vol. 10, No. 2, Oktober 2014, Hal. 42-47 ISSN 0216-7395 ANALISIS KEKUATAN TARIK DAN STRUKTUR KOMPOSIT BERPENGUAT SERAT ALAM SEBAGAI BAHAN ALTERNATIVE PENGGANTI SERAT KACA UNTUK PEMBUATAN DASHBOARD

Lebih terperinci

bermanfaat. sifat. berubah juga pembebanan siklis,

bermanfaat. sifat. berubah juga pembebanan siklis, SIFAT MEKANIK BAHAN Sifat (properties) dari bahan merupakan karakteristik untuk mengidentifikasi dan membedakan bahan-bahan. Semua sifat dapat diamati dan diukur. Setiap sifat bahan padat, khususnya logam,berkaitan

Lebih terperinci

PERBANDINGAN KARAKTERISTIK SERAT KARBON ANTARA METODE MANUAL LAY- UP DAN VACUUM INFUSION DENGAN PENGGUNAAN FRAKSI BERAT SERAT 60%

PERBANDINGAN KARAKTERISTIK SERAT KARBON ANTARA METODE MANUAL LAY- UP DAN VACUUM INFUSION DENGAN PENGGUNAAN FRAKSI BERAT SERAT 60% PERBANDINGAN KARAKTERISTIK SERAT KARBON ANTARA METODE MANUAL LAY- UP DAN VACUUM INFUSION DENGAN PENGGUNAAN FRAKSI BERAT SERAT 60% Gatot Eka Pramono 1, Setya Permana Sutisna 2 1,2 Program Studi Teknik Mesin,

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 14 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Uji tarik adalah suatu metode yang digunakan untuk menguji kekuatan suatu bahan/material dengan cara memberikan beban gaya yang sesumbu (Askeland, 1985). Hasil

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin,

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin, III. METODOLOGI PENELITIAN A. Tempat Penelitian Penelitian ini dilakukan di Laboratorium Material Teknik Jurusan Teknik Mesin, Laboratorium Mekanik Politeknik Negeri Sriwijaya. B. Bahan yang Digunakan

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Penggunaan material komposit dengan filler serat alam mulai banyak dikenal dalam industri manufaktur. Material yang ramah lingkungan, mampu didaur ulang, serta mampu

Lebih terperinci

III. METODOLOGI PENELITIAN. 1. Pemilihan panjang serat rami di Laboratorium Material Teknik Jurusan

III. METODOLOGI PENELITIAN. 1. Pemilihan panjang serat rami di Laboratorium Material Teknik Jurusan III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian 1. Pemilihan panjang serat rami di Laboratorium Material Teknik Jurusan Teknik Mesin Universitas Lampung. 2. Pengujian Sifat Mekanik (Kekuatan

Lebih terperinci

Impact Toughness Test. Sigit Ngalambang

Impact Toughness Test. Sigit Ngalambang Impact Toughness Test Sigit Ngalambang Definisi Ketangguhan (Toughness) Dalam ilmu material dan metalurgi, ketangguhan adalah kemampuan suatu material untuk menyerap energi pembebanan dari material tanpa

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan 5 BAB II TINJAUAN PUSTAKA 2.1. Material Amorf Salah satu jenis material ini adalah gelas atau kaca. Berbeda dengan jenis atau ragam material seperti keramik, yang juga dikelompokan dalam satu definisi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. (a) (b) (c) (d) Gambar 4.1 Tampak Visual Hasil Rheomix Formula : (a) 1, (b) 2, (c) 3, (d) 4

BAB IV HASIL DAN PEMBAHASAN. (a) (b) (c) (d) Gambar 4.1 Tampak Visual Hasil Rheomix Formula : (a) 1, (b) 2, (c) 3, (d) 4 BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Preparasi Sampel Pada proses preparasi sampel terdapat tiga tahapan utama, yaitu proses rheomix, crushing, dan juga pembentukan spesimen. Dari hasil pencampuran dengan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir (flow chart) Mulai Study Literatur dan Observasi Lapangan Persiapan Proses pembuatan spesien Komposit sandwich : a. Pemotongan serat (bambu) b. Perlakuan

Lebih terperinci

PERBANDINGAN KOMPOSIT SERAT ALAM DAN SERAT SINTETIS MELALUI UJI TARIK DENGAN BAHAN SERAT JUTE DAN E-GLASS

PERBANDINGAN KOMPOSIT SERAT ALAM DAN SERAT SINTETIS MELALUI UJI TARIK DENGAN BAHAN SERAT JUTE DAN E-GLASS http://jurnal.untirta.ac.id/index.php/gravity ISSN 2442-515x, e-issn 2528-1976 GRAVITY Vol. 2 No. 1 (2016) PERBANDINGAN KOMPOSIT SERAT ALAM DAN SERAT SINTETIS MELALUI UJI TARIK DENGAN BAHAN SERAT JUTE

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka digilib.uns.ac.id BAB II DASAR TEORI 2.1. Tinjauan Pustaka Serat alam sekarang telah menjadi bahan alternatif lain sebagai penguat dalam pembuatan komposit polimer. Serat alam sebagai bahan alternatif

Lebih terperinci

BAB I PENDAHULUAN. penduduknya menjadikan beras sebagai makanan pokoknya, serta. produksi berasnya merata di seluruh tanah air.

BAB I PENDAHULUAN. penduduknya menjadikan beras sebagai makanan pokoknya, serta. produksi berasnya merata di seluruh tanah air. BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia sebagai negara agraris yang mayoritas penduduknya menjadikan beras sebagai makanan pokoknya, serta produksi berasnya merata di seluruh tanah air. Berdasarkan

Lebih terperinci

KEKUATAN IMPAK KOMPOSIT HIBRID UNSATURATED POLYESTER / CLAY / SERAT GELAS Husaini Program Studi Teknik Sipil Fakultas Teknik Universitas Almuslim

KEKUATAN IMPAK KOMPOSIT HIBRID UNSATURATED POLYESTER / CLAY / SERAT GELAS Husaini Program Studi Teknik Sipil Fakultas Teknik Universitas Almuslim KEKUATAN IMPAK KOMPOSIT HIBRID UNSATURATED POLYESTER / CLAY / SERAT GELAS Husaini Program Studi Teknik Sipil Fakultas Teknik Universitas Almuslim ABSTRAK Pengujian kekuatan impak digunakan untuk mengukur

Lebih terperinci

ek SIPIL MESIN ARSITEKTUR ELEKTRO

ek SIPIL MESIN ARSITEKTUR ELEKTRO ek SIPIL MESIN ARSITEKTUR ELEKTRO EFEK WAKTU PERLAKUAN PANAS TEMPER TERHADAP KEKUATAN TARIK DAN KETANGGUHAN IMPAK BAJA KOMERSIAL Bakri* dan Sri Chandrabakty * Abstract The purpose of this paper is to analyze

Lebih terperinci

JURNAL FEMA, Volume 1, Nomor 3, Juli 2013 PENGARUH PANJANG SERAT TERHADAP KEKUATAN TARIK KOMPOSIT BERPENGUAT SERAT IJUK DENGAN MATRIK EPOXY

JURNAL FEMA, Volume 1, Nomor 3, Juli 2013 PENGARUH PANJANG SERAT TERHADAP KEKUATAN TARIK KOMPOSIT BERPENGUAT SERAT IJUK DENGAN MATRIK EPOXY JURNAL FEMA, Volume 1, Nomor 3, Juli 2013 PENGARUH PANJANG SERAT TERHADAP KEKUATAN TARIK KOMPOSIT BERPENGUAT SERAT IJUK DENGAN MATRIK EPOXY Efri Mahmuda 1), Shirley Savetlana 2) dan Sugiyanto 2) 1) Mahasiswa

Lebih terperinci

III.METODOLOGI PENELITIAN. Tempat penelitian ini dilakukan adalah: 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di

III.METODOLOGI PENELITIAN. Tempat penelitian ini dilakukan adalah: 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di III.METODOLOGI PENELITIAN A. Tempat Penelitian Tempat penelitian ini dilakukan adalah: 1. Persiapan serat dan pembuatan komposit epoxy berpenguat serat ijuk di lakukan di Laboratium Material Teknik, Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan dan pemanfaatan karet sekarang ini semakin berkembang. Karet merupakan bahan atau material yang tidak bisa dipisahkan dari kehidupan manusia, sebagai bahan

Lebih terperinci

BAB I PENDAHULUAN 1. 1 Latar Belakang

BAB I PENDAHULUAN 1. 1 Latar Belakang BAB I PENDAHULUAN 1. 1 Latar Belakang Perkembangan bidang ilmu pengetahuan dan teknologi dalam industri mulai menyulitkan bahan konvensional seperti logam untuk memenuhi keperluan aplikasi baru. Penggunaan

Lebih terperinci

KONSEP TEGANGAN DAN REGANGAN NORMAL

KONSEP TEGANGAN DAN REGANGAN NORMAL KONSEP TEGANGAN DAN REGANGAN NORMAL MATERI KULIAH KALKULUS TEP FTP UB RYN - 2012 Is This Stress? 1 Bukan, Ini adalah stress Beberapa hal yang menyebabkan stress Gaya luar Gravitasi Gaya sentrifugal Pemanasan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Serat sebagai elemen penguat menentukan sifat mekanik dari komposit karena meneruskan beban yang diteruskan oleh matrik. Orientasi, ukuran, dan bentuk serta material

Lebih terperinci

BAB I PENDAHULUAN. material logam mendominasi dalam bidang industri (Basuki, 2008). Namun,

BAB I PENDAHULUAN. material logam mendominasi dalam bidang industri (Basuki, 2008). Namun, BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan ilmu pengetahuan dan teknologi saat ini cukup maju, baik dalam bidang logam maupun non logam. Selama ini pemanfaatan material logam mendominasi

Lebih terperinci

Pengaruh Penambahan Prosentase Fraksi Volume Hollow Glass Microsphere Komposit Hibrid Sandwich Terhadap Karakteristik Tarik dan Bending

Pengaruh Penambahan Prosentase Fraksi Volume Hollow Glass Microsphere Komposit Hibrid Sandwich Terhadap Karakteristik Tarik dan Bending JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 Pengaruh Penambahan Prosentase Fraksi Volume Hollow Glass Microsphere Komposit Hibrid Sandwich Terhadap Karakteristik Tarik

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Uji Tarik Serat Tunggal Hasil uji tarik serat tunggal pada rami bertujuan untuk mengetahui tegangan maksimal pada setiap perendaman NaOH 5 % mulai dari 0, 2, 4, dan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Fly Ash Fly ash merupakan limbah hasil pembakaran batubara, bersifat non plastis, tidak berkohesi, berbutir halus, berukuran seperti lanau, ringan dan mengandung silica yang sangat

Lebih terperinci

Gambar 3.1. Tahapan proses penelitian

Gambar 3.1. Tahapan proses penelitian BAB 3 METODOLOGI PENELITIAN Metode yang dilakukan dalam penelitian ini meliputi beberapa tahapan yang di uraikan sebagai berikut. 3.1. Diagram Alir Penelitian Studi Literatur Pembuatan Sampel Persiapan

Lebih terperinci

BAB V ANALISIS DAN INTERPRETASI HASIL

BAB V ANALISIS DAN INTERPRETASI HASIL BAB V ANALISIS DAN INTERPRETASI HASIL Pada bab ini akan diuraikan analisis terhadap hasil pengolahan data. Pembahasan mengenai analisis hasil pengujian konduktivitas panas, pengujian bending, perhitungan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan rekayasa teknologi saat ini tidak hanya bertujuan untuk membantu umat manusia, namun juga harus mempertimbangkan aspek lingkungan. Segala hal yang berkaitan

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN 4.1 Hasil Pengujian Impak dan Pembahasan Dari hasil pengujian impak yang telah didapat data yaitu energi yang terserap oleh spesimen uji untuk material komposit serat pelepah

Lebih terperinci

PEMBUATAN KOMPOSIT DARI SERAT SABUT KELAPA DAN POLIPROPILENA. Adriana *) ABSTRAK

PEMBUATAN KOMPOSIT DARI SERAT SABUT KELAPA DAN POLIPROPILENA. Adriana *)   ABSTRAK PEMBUATAN KOMPOSIT DARI SERAT SABUT KELAPA DAN POLIPROPILENA Adriana *) email: si_adramzi@yahoo.co.id ABSTRAK Serat sabut kelapa merupakan limbah dari buah kelapa yang pemanfaatannya sangat terbatas. Polipropilena

Lebih terperinci

Kevin Yoga Pradana Dosen Pembimbing: Prof. Dr. Ir. Wajan Berata, DEA

Kevin Yoga Pradana Dosen Pembimbing: Prof. Dr. Ir. Wajan Berata, DEA PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR DAN WAKTU POST-CURING TERHADAP KARAKTERISTIK BENDING KOMPOSIT POLYESTER - PARTIKEL HOLLOW GLASS MICROSPHERES Kevin Yoga Pradana 2109 100 054 Dosen Pembimbing:

Lebih terperinci

Pengaruh Penambahan Mepoxe Terhadap Sifat Mekanik dan Stabilitas Thermal Epoksi sebagai Bahan Adhesif ASTM A-36

Pengaruh Penambahan Mepoxe Terhadap Sifat Mekanik dan Stabilitas Thermal Epoksi sebagai Bahan Adhesif ASTM A-36 Pengaruh Penambahan Mepoxe Terhadap Sifat Mekanik dan Stabilitas Thermal Epoksi sebagai Bahan Adhesif ASTM A-36 Oleh : Delsandy Wega R 2710100109 Dosen Pembimbing Dr.Eng Hosta Ardhyananta, S.T.,M.Sc PENDAHULUAN

Lebih terperinci

KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT DAN TEBAL CORE TERHADAP PENINGKATAN KEKUATAN BENDING DAN IMPAK KOMPOSIT SANDWICH GFRP DENGAN CORE PVC

KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT DAN TEBAL CORE TERHADAP PENINGKATAN KEKUATAN BENDING DAN IMPAK KOMPOSIT SANDWICH GFRP DENGAN CORE PVC KAJIAN OPTIMASI PENGARUH ORIENTASI SERAT DAN TEBAL CORE TERHADAP PENINGKATAN KEKUATAN BENDING DAN IMPAK KOMPOSIT SANDWICH GFRP DENGAN CORE PVC Istanto, Arif Ismayanto, Ratna permatasari PS Teknik Mesin,

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN:

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 PENGARUH PENAMBAHAN PROSENTASE FRAKSI VOLUME HOLLOW GLASS MICRSOSPHERE KOMPOSIT HIBRIDA LAMINA DENGAN PENGUAT SERAT ANYAMAN TERHADAP KARAKTERISTIK

Lebih terperinci