Topik 9. Drainase Permukaan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Topik 9. Drainase Permukaan"

Transkripsi

1 Topik 9. Drainase Permukaan-dkk 1 Topik 9. Drainase Permukaan Pendahuluan Tujuan instruksional khusus: (a) mahasiswa mampu memahami perhitungan modulus drainase, puncak limpasan dan dimensi saluran terbuka; (b) mampu merancang sistim drainase permukaan Bahan Ajar Bahan Ajar terdiri dari; (1) Drainase Permukaan, (2) Pendugaan Puncak Limpasan, (3) Teknik Drainase Permukaan 1. DRAINASE PERMUKAAN 3 DRAINASE PERMUKAAN Oleh Dedi Kusnadi Kalsim Laboratorium Teknik Tanah dan Air, FATETA IPB Po Box 220 Bogor 16002, Tilp (0251) , dedkus@telkom.net 3.1 PENDAHULUAN Berdasarkan peruntukannya drainase dapat dibagi kedalam: (1) Drainase lahan pertanian; (2) Drainase perkotaan; (3) Drainase lapangan terbang; (4) Drainase lapangan olah-raga. Berdasarkan sifatnya diklasifikasikan dalam : (1) Drainase alami (natural drainage) dan (2) Drainase buatan (man-made drainage). Berdasarkan sasaran pengendaliannya, drainase dapat dibedakan dalam (1) drainase permukaan (surface drainage) dan (2) drainase bawah permukaan (sub-surface drainage). Drainase permukaan menitik beratkan pada pengendalian genangan air di atas permukaan tanah, sedangkan drainase bawah-permukaan pada kedalaman air-tanah di bawah permukaan tanah. Pada kuliah ini akan dibahas drainase lahan pertanian, terutama dalam bentuk drainase buatan dengan sebanyak mungkin memanfaatkan drainase alamiah yang ada. Drainase lahan pertanian didefinisikan sebagai pembuatan dan pengoperasian suatu sistem dimana aliran air dalam tanah diciptakan sedemikian rupa sehingga baik genangan maupun kedalaman air-tanah dapat dikendalikan sehingga bermanfaat bagi kegiatan usaha-tani. Definisi lainnya: drainase lahan pertanian adalah suatu usaha membuang kelebihan air secara alamiah atau buatan dari permukaan tanah atau dari dalam tanah untuk menghindari pengaruh yang merugikan terhadap pertumbuhan tanaman. Pada lahan bergelombang drainase lebih berkaitan dengan pengendalian erosi, sedangkan pada lahan rendah (datar) lebih berkaitan dengan pengendalian banjir (flood control). 3.2 ANALISIS PENGARUH DRAINASE TERHADAP PERTANIAN Tujuan Drainase pertanian adalah reklamasi (pembukaan) lahan dan pengawetan tanah untuk pertanian, menaikkan produktivitas tanaman dan produktivitas lahan (menaikkan intensitas tanam dan memungkinkan diversifikasi tanamanan) serta mengurangi ongkos

2 Topik 9. Drainase Permukaan-dkk 2 produksi. Tujuan tersebut di atas dicapai melalui dua macam pengaruh langsung dan sejumlah besar pengaruh tidak langsung (Gambar 1). Pengaruh langsung terutama ditentukan oleh kondisi hidrologi, karakteristik hidrolik tanah, rancangan sistim drainase yakni : a. Penurunan muka air tanah di atas atau di dalam tanah, b. Mengeluarkan sejumlah debit air dari sistim. Pengaruh tak-langsung ditentukan oleh iklim, tanah, tanaman, kultur teknis dan aspek sosial dan lingkungan. Pengaruh tak-langsung ini dibagi kedalam pengaruh berakibat positif dan yang berakibat negatif (berbahaya). Pengaruh tak-langsung dari pembuangan air : a. Pengaruh positif : Pencucian garam atau bahan-bahan berbahaya dari profil tanah Pemanfaatan kembali air drainase b. Pengaruh negatif : Kerusakan lingkungan di sebelah hilir karena tercemari oleh garam Gangguan terhadap infrastruktur karena adanya saluran-saluran Pengaruh tak-langsung dari penurunan muka air tanah : a. Pengaruh positif : Mempertinggi aerasi tanah Memperbaiki struktur tanah Memperbaiki ketersediaan Nitrogen dalam tanah Menambah variasi tanaman yang dapat ditanam Menambah kemudahan kerja alat dan mesin pertanian (Workability) Mempertinggi kapasitas tanah untuk menyimpan air b. Pengaruh negatif : Dekomposisi tanah gambut (peat soil) Penurunan permukaan tanah (Land subsidence) Oksidasi cat-clay Pengaruh positif dan negatif harus dipertimbanghkan dalam evaluasi ekonomi seperti tergambar dalam diagram Gambar 3.1. Untuk melihat secara kuantitatif pengaruh drainase terhadap produksi pertanian, seseorang dapat melakukan suatu percobaan dengan memvariasikan rancangan drainase dan mengukur produksi tanaman. Suatu prosedur langsung seperti ini dapat digambarkan seperti pada Metoda A (Gambar 3.2). Variable keteknikan (engineering) tergantung pada tipe drainase yang digunakan seperti pada Tabel 3.1 di bawah ini. Metoda A hanya berlaku untuk suatu daerah tertentu dan tidak dapat diaplikasikan untuk daerah lainnya karena hubungan A sangat tergantung pada tipe tanah, iklim, hidrologi, topografi, kultur teknis tanaman. Untuk mendapatkan aplikasi yang lebih luas, maka perlu diintrodusir suatu variabel lain seperti pada B dan C.

3 Topik 9. Drainase Permukaan-dkk 3 Tabel 3.1. Contoh variable keteknikan dalam drainase Tipe Drainase Drainase bawah permukaan, gravitasi Drainase bawah permukaan, dengan sumur pompa Drainase permukaan, preventif Parit, kolektor Variabel keteknikan kedalaman, spasing, ukuran pipa kedalaman, spasing, kapasitas pompa panjang dan kemiringan lahan dimensi, kemiringan saluran Hubungan B merupakan pengaruh langsung dari drainase dan merupakan karaktersitik fisik-hidrolik sehingga dapat dikembangkan rumus-rumus untuk memecahkannya dan dapat berlaku secara umum. Hubungan C hanya bersifat regional, tidak dapat diberlakukan secara umum. Untuk mendapatkan aplikasi yang lebih luas hubungan C harus dipecah lagi dengan menambahkan pengaruh tak-langsung dari drainase D dan E (Gambar 3.5). Suatu contoh hubungan C di Inggris adalah data produksi winter wheat pada berbagai kedalaman air tanah pada waktu musim winter seperti pada Gambar 3.4. Dari gambar 3.4 kelihatan bahwa pada kondisi di daerah tersebut suatu rancangan drainase untuk menurunkan air tanah lebih dalam dari 60 cm merupakan drainase yang berlebihan. Untuk mendapatkan aplikasi yang lebih luas maka hubungan C harus dipecah kedalam hubungan lainnya dengan bantuan variabel tambahan untuk menggambarkan pengaruh taklangsung drainase. Prosedur seperti ini digambarkan dalam Gambar 3.5. Hubungan E dispesifikasi lebih rinci pada Gambar 3.6. Dari uraian di atas terlihat bahwa drainase lahan pertanian adalah merupakan interdisiplin dari berbagai ilmu. Pada suatu proyek drainase beberapa aspek berikut ini perlu diperhitungkan : Pedology dan pertanian (kondisi tanah, produktivitas tanaman, operasi usahatani, irigasi) Hidrologi dan Geologi (neraca air permukaan dan bawah permukaan, kondisi aquifer) Hidrolik (aliran air-tanah dan saluran terbuka dalam kaitannya dengan gradient hidrolik) Teknologi (mesin dan bahan) Ekonomi (B/C ratio, pembiayaan) Sosio-Ekonomi (organisasi petani, sikap petani, hukum, distribusi keuntungan dan biaya) Lingkungan (sumber daya alami, ekologi). 3.3 DRAINASE, FISIKA TANAH DAN PERTUMBUHAN TANAMAN Fisika Tanah Aerasi tanah Akar tanaman memerlukan oksigen untuk respirasi dan aktifitas metabolisma lainnya. Ia menyerap air dan hara tanah dan menghasilkan CO 2 yang harus dipertukarkan dengan O 2 dari atmosfir. Proses aerasi terjadi dengan difusi dan aliran massa yang memerlukan ruang pori tanah. Apabila akar berkembang dengan baik maka air dan hara harus tersedia secara bersamaan.

4 Topik 9. Drainase Permukaan-dkk 4 Pori tanah terdiri dari pori kapiler untuk penyimpanan air dan pori non-kapiler untuk pertukaran gas. Pada tanah liat berat meskipun ruang pori sebesar 60% atau lebih, hampir semua ruang pori termasuk pori kapiler. Pori tersebut apabila dalam keadaan jenuh air tidak mudah untuk didrainasekan. Sebaliknya pada tanah berpasir seringkali pori kapiler sangat kecil jumlahnya, sehingga mudah didrainasekan akan tetapi air yang dapat ditahan untuk tanaman sedikit sekali. Pada saat perkecambahan, benih mengabsorbsi air dan akar berkembang sehingga mampu mengabsorbsi air pada kedalaman tanah yang lebih dalam. Apabila selama perkembangannya menemui tanah jenuh air, maka perkembangan akar akan terhambat. Pada situasi muka air tanah yang dangkal maka pertumbuhan akar akan: Perakaran lebih pendek, sistim perakaran menempati volume tanah yang kecil dan kadang- kadang akar berkembang ke arah atas Pembentukan bulu-bulu akar terhambat Laju absorbsi air dan hara dan laju transpirasi akan berkurang. Akibatnya : Daun akan memucat (menguning) Proses reproduktif terhambat, bunga dan buah muda jatuh premature. Aerasi dan kondisi lengas tanah yang baik pada sebagian besar profil tanah akan merangsang pertumbuhan dan perkembangan akar ke semua arah sehingga mampu mengekstrak air dan hara dalam jumlah besar. Suatu gambaran rata-rata penetrasi akar pada kondisi lengas tanah yang optimum dinyatakan pada tabel di bawah ini (van de Goor, 1972). Penyimpangan dari angka rata-rata tersebut seringkali dijumpai karena adanya perbedaan jenis tanah dan varietas tanaman. Volume akar tidak menyebar seragam ke seluruh kedalaman akar, akan tetapi umumnya sekitar 70% dari volume akar terdapat pada lapisan pertama dengan kedalaman 30 cm sampai 60 cm di bawah tanah Struktur Tanah Struktur tanah (agregasi dan penyusunan partikel tanah) yang baik berarti kondisi yang menguntungkan untuk aerasi dan simpanan lengas tanah, dan juga hambatan mekanik pertumbuhan akar akan berkurang dan tercipta stabilitas traksi untuk peralatan pertanian. Drainase mempengaruhi struktur tanah melalui pengaruhnya terhadap level muka air tanah. Tabel 3.2. Rata-rata kedalaman perakaran tanaman pada kondisi lengas tanah optimum (van de Goor, 1972) Tanaman bawang, kubis, kacang-kacangan kentang, terong cabe kelapa, sawit jagung,tebu, melon, jeruk kapas Kedalaman (cm)

5 Topik 9. Drainase Permukaan-dkk Suhu tanah Penurunan lengas tanah dan bertambahnya kandungan udara akibat drainase, menghasilkan penurunan panas spesifik tanah. Air memerlukan panas 5 kali lebih besar untuk menaikkan suhu dari pada tanah kering. Akibatnya tanah basah dengan lengas tanah sekitar 50% akan memerlukan panas sekitar 2,5 kali lebih besar dari pada tanah kering. Untuk perkecambahan benih diperlukan suhu tanah tertentu Kemampuan kerja (workability) dan Daya Sangga (bearing capacity) Untuk pengolahan tanah diperlukan lengas tanah sekitar kapasitas lapang atau sedikit di bawah kapasitas lapang. Pada penggunaan alat/mesin mekanis, jumlah hari kerja operasi alat perlu mendapatkan perhatian. Drainase meningkatkan jumlah hari kerja peralatan. Tergantung pada jenis traktornya umumnya traktor roda empat akan mampu beroperasi di lapang jika daya sangganya lebih dari 5 kg/cm 2. Semakin besar kadar air tanah daya sangganya semakin kecil. Pengalaman di daerah irigasi di Jalur Pantura (Pantai Utara) menunjukkan bahwa karena kurangnya saluran drainase di lahan sawah, maka pengolahan tanah pada waktu MT2 tidak dapat dilakukan lebih awal sesuai dengan jadwal irigasi. Perlu waktu sekitar 1-2 bulan setelah panen MT1, dimana air dapat dibuang sehingga traktor dapat masuk dan bekerja di petakan sawah. Begitu juga 2 minggu menjelang panen, drainase tidak bekerja optimum sehingga tanah masih tetap basah akibatnya Combine Harvester tidak dapat bekerja Penurunan Tanah (subsidence) Penurunan tanah akibat drainase terutama terjadi pada tanah yang baru dibuka (direklamasi). Untuk tanah gambut subsidence terjadi akibat dari drainase yang disebabkan oleh sifat-sifat fisika dan kimia (oksidasi bahan organik). Pada tanah gambut, drainase dapat mempercepat proses pematangan tanah. Tabel 3.3. Produksi berbagai tanaman pada berbagai kedalaman air-tanah (van Hoorn, 1958) Tanaman Jumlah tahun Hasil Relatif (%) pada berbagai kedalaman air-tanah (cm) Hasil (kg/ha) % Gandum Barley Oats Peas Beans Kentang Kimia Tanah Pasok (supply) Hara Berbagai aktifitas mikro-organisma dan bakteri tergantung pada aerasi yang baik. Fiksasi Nitrogen dan Nitrifikasi adalah dua prinsip proses aerobik yang berpengaruh penting pada

6 Topik 9. Drainase Permukaan-dkk 6 pertumbuhan tanaman. Semakin dalam penetrasi akar maka semakin banyak hara yang tersedia untuk tanaman. Dekomposisi bahan organik oleh mikroba akan terjadi pada drainase yang baik sehingga ketersediaan hara akan lebih baik pula. Dalam keadaan anaerobik akan terjadi penumpukan Mn dan Fe yang berbahaya untuk tanaman. Penggenangan terus-terusan pada padi akan menghasilkan akumulasi H 2 S yang berbahaya untuk tanaman. drainase sewaktu-waktu dapat menghindari akumulasi tersebut. Pada tanah dengan muka air tanah dangkal maka daun akan menguning sebagai indikasi kekurangan N. Pengaruh drainase terhadap produksi jagung dapat dilihat pada tabel di bawah ini Salinitas dan Alkalinitas Tanah Salinitas tanah berkaitan dengan konsentrasi tinggi dari garam terlarut dalam lengas tanah pada daerah perakaran. Konsentrasi garam terlarut yang tinggi ini menyebabkan tekanan osmotik yang tinggi sehingga mempengaruhi pertumbuhan tanaman dengan cara menghambat pengisapan air oleh akar. Pada tanah dengan konsentrai Na yang tinggi (alkalinitas) biasanya disertai dengan ph tinggi (ph > 9) juga mempengaruhi kondisi fisik tanah akibat dari dispersi partikel liat. Hasilnya adalah struktur tanah yang jelek. Hal ini akan mengurangi laju infiltrasi dan perkolasi tanah dan juga mengurangi laju difusi gas. Pengaruh utama salinitas pada pertumbuhan dan produksi tanaman adalah : Perkecambahan benih akan terhambat Secara fisiologis tanaman akan kering dan layu Pertumbuhan tanaman terhambat, daun kecil, ruas pendek dan percabangan sedikit. Daun berwarna hijau kebiruan Pembungaan terhambat, biji lebih kecil Sebagai akibatnya produksi juga akan berkurang. Tabel 3.4. Produksi jagung (kg/ha) dalam kaitannya dengan kondisi drainase dan pemupukan Nitrogen (Sumber: Shalhevet dan Zwerman, 1962) Pemupukan Kondisi Drainase Baik Sedang Buruk - NO NH Tanpa Toleransi tanaman terhadap salinitas dinyatakan dengan konduktivitas listrik ekstrak jenuh tanah (ECe dalam mmho/cm) di daerah perakaran tanaman. Berdasarkan percobaan di lapangan beberapa tanaman seperti gandum, padi, oat dan rye tahan pada ECe = 4-8 mmhos/cm. Tanaman lainnya seperti kapas, sayuran, kurma tahan pada ECe = 8-16 mmhos/cm (Tabel 3.5). Beberapa pengarang menyatakan salinitas dalam satuan ds/m (desi Siemens/m). Konversi satuan ini ds/m = ms/cm (mili Siemens/cm = mmhos/cm) Kemasaman (Acidity) Pada tanah yang mengandung pyrite atau disebut juga cat-clay (FeS 2 ) maka dengan drainase akan terjadi oksidasi membentuk H 2 SO 4 sehingga ph tanah kurang dari 3 (masam). Proses tersebut disertai juga dengan terbentuknya Fe ++ dan Al +++ yang mudah

7 Topik 9. Drainase Permukaan-dkk 7 larut (soluble) dan berbahaya pada tanaman. Proses ini terutama terjadi di daerah pasangsurut. Proses tersebut digambarkan dengan reaksi kimia sebagai berikut : FeS /4 O 2 + 7/2 H 2 O Fe(OH) SO4 = + 4 H + Proses pemasaman tanah terjadi, dan pada kondisi masam terjadi pembongkaran kisi-kisi mineral liat sehingga dilepaskan Al 3+ yang bersifat racun bagi tanaman. Lahan bersulfat masam biasanya sering terjadi di daerah pasang-surut, sehingga proses drainase harus dijaga sedemikian rupa supaya oksidasi lapisan pirit ini tidak terjadi. Budidaya padi di mana selalu dalam keadaan tergenang biasanya masih dapat dilakukan di lahan tersebut walaupun hasilnya tidak begitu memuaskan. Drainase permukaan dengan pencucian (leaching) pada musim hujan pada jangka waktu panjang dapat membantu reklamasi lahan sulfat masam. Sebagai tentatif kedalaman air tanah optimum untuk berbagai jenis tanaman pada berbagai jenis tekstur tanah dapat dilihat pada Tabel 3.6 di bawah ini. Tabel 3.5. Toleransi Salinitas Tanah dan ph Pada Berbagai Jenis Tanaman 1 TANAMAN SALINITAS (mmhos/cm) pada pengurangan produksi (%) PH KISARAN OPTIMUM Buncis 1 1,5 2,3 3,6 6,5 5,2-8,2 6,0-7,0 Cabai 1,5 2,2 3,3 5,1 8,5 5,2-8,2 6,0-7,6 Jagung 1,7 2,5 3,8 5,9 10 5,2-8,5 5,8-7,8 Kacang Tanah 3,2 3,5 4,1 4,9 6,5 5,4-8,2 6,0-7,5 Kedelai 5 5,5 6,2 7,5 10 5,2-8,2 5,5-7,5 Kelapa ,5-8,5 5,2-7,5 Nenas 0, ,0-7,8 5,0-6,5 Padi 3 3,8 5,1 7,2 12 4,5-8,2 5,5-7,5 Sawit 0, ,5-7,5 5,0-6,5 Semangka 2,5 3,3 4,4 6,3 10 5,0-8,2 5,6-7,6 Tomat 2,5 3,5 5 7,6 12,5 5,0-8,2 6,0-7,5 Tabel 3.6. Tentatif kedalaman air-tanah optimum Tekstur Tanah Jenis Tanaman Berpasir (sandy) Lempung/debu Liat (clay) (loam/silt) Rumput-rumputan 0,5 0,6 0,7 Biji-bijian, tebu 0,6 0,7 0,8 Tanaman berumbi, serat-seratan, 0,8 0,9 1,0 minyak biji, sayuran Buah-buahan (pohon) 1,0 1,2 1,4 Lahan yang diberakan untuk sementara dengan kenaikan kapiler dari air-tanah yang salin 1,2 1,5 1,3 1 Sumber: Sys C.; E. Van Ranst; J. Debaveye; F. Beernaert, Land Evaluation Part III: Crop Requirements. Agricultural Publications No 7. General Administration for Development Cooperation. Belgium

8 Topik 9. Drainase Permukaan-dkk BIAYA KERUGIAN 8 Hubungan Ekonomi Hubungan Fisik NEGATIF POSITIF Hubungan Sosial- Politik INSTALASI OPERASI DAN PEMELIHARAAN SISTEM DRAINASE MEMBUANG KELEBIHAN AIR MENURUNKAN MUKA AIR-TANAH TUJUAN REKLAMASI KONSERVASI MENAIKKAN HASIL TANAMAN DIVERSIFIKASI TANAMAN MEMUDAHKAN OPERASI MESIN DAN ALAT PERTANIAN Keuntungan ANALISA BIAYA KEUNTUNGAN DAN KERUGIAN NEGATIF POSITIF BIAYA KERUGIAN Gambar 3.1. Diagram pengaruh drainase pada pertanian dan evaluasi ekonomi

9 9 Variasikan variabel engineering Sistem Drainase Gambar 3.2. Metoda A Ukur Produksi Tanaman Hubungan A Engineering Variables B Water-Table Regime C Crop Productivity Gambar 3.3. Pemecahan A menjadi B dan C Gambar 3.4. Hubungan C (Departemen Pertanian Inggris, berdasarkan pengamatan pada tanah liat Drayton selama 5 tahun) C D Karakteristik Tanah Misal: Soil workability; soil subsidence; Irrigation possibility Faktor Pertumbuhan Faktor Pengelolaan E Produktivitas Tanaman Farm Management Biaya Produksi Gambar 3.5. Hubungan C dipecah Menjadi D dan E

10 10 INSTALASI SISTEM DRAINASE B (Pengaruh Langsung) Pengaruh Tak-Langsung Penurunan Muka Air-Tanah dan Pengeringan Tanah D FISIKA TANAH Aerasi Struktur Suhu Stabilitas Workability Subsidence E KIMIA/BIOLOGI Respirasi Akar Kedalaman Perakaran Pasok Hara Keasaman Tanah Alkalinitas Tanah Gulma/Hama/Penyakit HIDROLOGI Evaporasi Infiltrasi Run-off Rembesan Kualitas Air Salinitas Tanah RESPONS TANAMAN & PERUBAHAN SISTEM USAHA-TANI Gambar 3.6. Faktor-faktor dalam hubungan D dan E pada Gambar 3.5 TOLERANSI TANAMAN TERHADAP SALINITAS (Sumber: Sys C. et al., Land Evaluation. Agric.Publ.No 7. Belgium) SALINITAS TANAH (mmhos/cm) NENAS SAWIT BUNCIS CABAI JAGUNG SEMANGKA TOMAT Peng. Prod. 0% Peng. Prod. 10% Peng. Prod. 25% Peng. Prod. 50% Peng. Prod. 100% PADI KACANG TANAH KELAPA KEDELAI

11 11 2. PENDUGAAN PUNCAK LIMPASAN 4 PENDUGAAN PUNCAK LIMPASAN Oleh Dedi Kusnadi Kalsim Laboratorium Teknik Tanah dan Air, FATETA IPB Po Box 220 Bogor 16002, Tilp (0251) , tta@bogor.wasantara.net.id 4.1 Metoda Rasional Metoda rasional menyatakan bahwa puncak limpasan pada suatu DAS akan diperoleh pada intensitas hujan maksimum yang lamanya sama dengan waktu konsentrasi (Tc). Waktu konsentrasi adalah lamanya waktu yang diperlukan untuk pengaliran air dari yang paling ujung dari suatu DAS sampai ke outlet. Apabila lama hujannya kurang dari waktu konsentrasi, maka intensitasnya kemungkinan lebih besar akan tetapi luas DAS yang memberikan kontribusi terhadap debit akan lebih kecil dari total luas DAS (A). Apabila lama waktu hujan lebih besar dari waktu konsentrasi maka luas areal sama dengan total luas DAS (A) tetapi intensitasnya kurang dari intensitas hujan pada lama hujan sama dengan Tc. Rumus metoda Rasional dinyatakan : a. Untuk satuan seragam Q = C. i. A /4.1/ dimana Q : puncak limpasan (L 3 T -1 ); C : koefisien limpasan ( 0 < C <1); i : intensitas hujan maksimum dengan lama hujan sama dengan waktu konsentrasi (L.T -1 ); A: luas DAS (L 2 ). b. Dalam satuan khusus di mana i dalam mm/jam; A dalam hektar dan Q dalam m 3 /det, maka rumus tersebut dinyatakan: Q = C. i. A /4.2/ Untuk pendugaan waktu konsentrasi (Tc) terdapat beberapa metoda : a. Metoda Kirpich (1940) : Tc = L S /4.3/ Tc : waktu konsentrasi (menit); L: maksimum panjang aliran (m); S: gradient DAS (meter perbedaan elevasi dibagi meter panjang (L)) b. Rumus Rhiza T 1 L = (detik) /4.4a/ w 1 w 1 = 20 ( ) h L 0. 6 (m/det) /4.4b/ atau

12 12 T L 2 = w ( jam) /4.4c/ 2 w 2 = 72 ( ) h L 0. 6 (km/jam) /4.4d/ Tabel 4.1. Waktu konsentrasi (menit) untuk DAS kecil (Berdasarkan rumus Kirpich) Panjang aliran max (m) Rata-rata gradient (%) c. Kraven Sama dengan Rhiza hanya kecepatan aliran dinyatakan sebagai berikut : Slope w1 (m/det) > 1/ /100-1/ < 1/ d. California Highway Department (1942) L T =. H /4.5/ T : waktu konsentrasi (jam); L : jarak horizontal (mile); H : beda tinggi (feet). e. Untuk pendugaan intensitas hujan dengan lama hujan kurang dari 24 jam di Jepang digunakan rumus empirik dari Mononobe : r t = R ( ) n 24 t /4.6/ r t : intensitas hujan dengan t jam (mm/jam); R 24 : maksimum hujan 24 jam (mm); n : koefisien yang besarnya antara 1/3-2/3

13 13 Di Indonesia dikenal suatu metoda rasional yang disebut metoda Melchior (1914) dan metoda Der Weduwen (1937). Secara umum metoda Rasional ditulis sebagai : Q = a. b. q. A /4.7/ n n Q n : puncak limpasan (m 3 /det) untuk perioda ulang tertentu; a : koefisien limpasan; b: koefisien pengurangan luas daerah hujan; q n : curah hujan dalam m 3 /(det.km 2 ) dengan perioda ulang tertentu; A : luas DAS (km 2 ). Untuk menghitung Q n ada 2 metoda yang dapat digunakan : (1) Metoda Der Weduwen untuk luas DAS sampai 100 km 2 ( hektar) (2) Metoda Melchior untuk luas DAS lebih besar dari 100 km 2. Kedua metoda tersebut telah menetapkan hubungan empiris a, b dan q n. Waktu konsentrasi dinyatakan sebagai fungsi dari debit puncak, panjang sungai dan kemiringan rata-rata DAS. (1) Metoda Melchior (1914): Curah hujan q n dinyatakan sebagai intensitas hujan rata-rata sampai terjadinya debit puncak yang lamanya sama dengan waktu konsentrasi (T). Curah hujan q n dinyatakan sebagai hujan terpusat (point rainfall) dan dikonversikan ke luas daerah hujan dengan b.q. Dalam Gambar 4.1, luas daerah hujan b.q (m 3 /(det.km 2 )) dinyatakan sebagai fungsi waktu lama hujan (jam) dan luas daerah hujan F (km 2 ) untuk curah hujan sehari sebesar 200 mm. b.q untuk F = 0 dan T = 24 jam, dihitung sebagai berikut : b. q = = m 3 /(det.km 2 ) Bila curah hujan dalam sehari q n berbeda dengan 200 mm, maka harga pada Gambar tersebut akan berubah secara proporsional, misalnya untuk hujan = 240 mm, maka harga b.q n dari F = 0 dan T = 24 jam akan menjadi b.q n = 2.31 x (240/200) = 2.77 m 3 /(det.km 2 ) Variasi luas daerah hujan diperkirakan berbentuk bundar atau elips (Gambar 2). Untuk menemukan luas daerah hujan di suatu DAS, sebuah elips digambar mengelilingi batasbatas DAS. Panjang sumbu yang pendek minimal harus 2/3 dari sumbu terpanjang. Garis elips tersebut mungkin memintas ujung DAS yang memanjang. Luas elips F (π.a.b) digunakan untuk menentukan harga b.q n untuk luas DAS A. Pada Gambar 4.1, diberikan harga-harga b.q untuk masing-masing luas F. Waktu Konsentrasi :

14 14 Melchior menetapkan waktu konsentrasi (Tc) sebagai berikut : T = c L Q I /4.8/ di mana Tc : waktu konsentrasi (jam); L : panjang sungai (km); Q : debit puncak (m 3 /det); I : gradient rata-rata DAS Untuk penentuan gradient DAS, 10 persen bagian hulu dari panjang DAS tidak dihitung. Beda elevasi dan panjang DAS diambil dari suatu titik 0,1 L dari batas hulu DAS (lihat Gambar 4.2). Koefisien Limpasan (C) Koefisien Limpasan C dipengaruhi oleh karaktersitik fisik DAS yakni sifat dan jenis tanah, tata-guna lahan, kemiringan lahan dan sebagainya. Beberapa pustaka koefisien limpasan C adalah seperti sebagai berikut (Tabel 4.2): Gambar 4.1. Luas daerah hujan Melchior

15 15 Tabel 4.2. Koefisien limpasan C untuk metoda Rasional berdasarkan lereng, tanaman penutup tanah dan tekstur tanah 2 Lereng (%) HUTAN Padang Rumput Lahan Pertanian (Arable land) Lempung berpasir (sandy loam) Liat dan debu berlempung (clay and silt loam) Liat berat (tight clay) Gambar 4.2. Penentuan luas daerah hujan F dan gradient I (Melchior) 2 Sumber :Schwab, Frevert and Barnes (1966), Soil and Water Conservation Engineering, Wiley, New York.

16 16 Tabel 4.3. Koefisien C untuk DAS Pertanian (Grup tanah B) No Kondisi penutup dan hidrologi Intensitas hujan (mm/jam) Tanaman dalam barisan, kultur teknis jelek Tanam dalam barisan, kultur teknis bagus Tanaman kacang-kacangan, kultur teknis jelek Tanam kacang-kacangan, kultur teknis bagus Semak dengan dominasi rumput, rotasi baik Rumput makanan ternak, permanen, baik Hutan, matang, baik Tabel 4.4. Grup hidrologi tanah G Keterangan rup A Potensial limpasan rendah, lapisan tanah dalam, pasir dengan sedikit debu dan liat, mudah meloloskan air B Potensial limpasan cukup rendah, lapisan tanah berpasir dengan kedalaman kurang dari A C Potensial Limpasan cukup tinggi, lapisan tanah dangkal dengan kandungan liat dan koloid cukup besar D Potensial limpasan tinggi, lapisn tanah dangkal dengan kandungan liat tinggi, terdapat lapisan kedap dekat permukaan tanah Laju Infiltrasi Akhir (mm/jam) Tabel 4.5. Faktor konversi Grup Tanah 3 Kondisi penutup dan hidroogi Konversi koefisien limpasan dari Grup B ke Grup A Grup C Grup D Sumber : Schwab G.O.;R.K. Prevert; T.W. Edminster; K.K. Barnes (1981) : Soil and Water Conservation Engineering. John Wiley and Sons, New York.

17 17 Tabel 4.6. Koefisien limpasan untuk Metoda Rasional 4 Karakter Permukaan Daerah telah berkembang : Aspal Beton/atap Rerumputan (taman) : Kondisi Jelek (penutupan < 50%): - Datar (0-2%) - Sedang (2-7%) - Curam (>7%) Kondisi Sedang (penutupan 50-70%): - Datar - Sedang - Curam Kondisi baik (penutupan > 70%): - Datar - Sedang - Curam Daerah Belum berkembang: Lahan diusahakan pertanian: - Datar - Sedang - Curam Penggembalaan : - Datar - Sedang - Curam Hutan: - Datar - Sedang - Curam Periode Ulang (tahun) Prosedur pendugaan puncak debit limpasan dengan Metoda Melchior 1. Tentukan besarnya curah hujan maksimum sehari untuk perioda ulang yang dipilih 2. Tentukan a (koefisien limpasan C) yang paling sesuai untuk DAS tersebut 3. Hitung A, F, L dan I untuk DAS tersebut 4. Buat perkiraan harga pertama waktu konsentrasi To berdasarkan Tabel 8 5. Ambil harga Tc = To untuk b.q n dari Gambar 1 dan hitung Q o = a.b.q no A 6. Hitung waktu konsentrasi Tc untuk Qo dengan persamaan /7/ 7. Ulangi langkah-langkah 4 dan 5 untuk harga To baru yang sama dengan Tc sampai waktu konsentrasi yang diperkirakan sama dengan yang dihitung 8. Hitung debit puncak untuk harga ahir T. 4 Digunakan sebagai standard di Austin, Texas, USA. Sumber : Ven Te Chow; D.R. Maidment; L.W. Mays (1988). Applied Hydrology. Mc Graw Hill, Singapore

18 18 Tabel 4.7. Koefisien runoff untuk metoda Rasional 5 Tipe Areal Koefisien C Areal bisnis: - Downtown Neighborhood Perumahan (residential) - Single family Multiunits, detached Multiunits, attached Residential (suburban) Apartment Daerah Industri - Industri Ringan Industri Berat Taman (parks), kuburan (cemetries) Taman bermain (playgrounds) Railroad yard Unimproved Pavement: - Asphal atau concrete Pasangan bata (bricks) Atap rumah (Roofs): Lawns, tekstur tanah berpasir - Datar, 2% Medium 2-7% Curam > 7% Lawns, tekstur tanah liat berat - Datar, 2% Medium 2-7% Curam > 7% Kerikil lintasan kendaraan dan pejalan kaki Tabel 4.8. Perkiraan nilai To F (km 2 ) To (jam) F (km 2 ) To (jam) (2) Metoda Der Weduwen (1937) Persamaan umumnya : Q n = a. b. q n. A /4.7/ Koefisien limpasan a dapat dihitung dengan rumus : Sumber: ASCE and WPCF (1969)

19 19 a = b. q n + 7 /4.9/ Koefisien pengurangan daerah hujan b dihitung dengan rumus: t A b = t + 9 /4.10/ A Curah hujan q n (m 3 /(det.km 2 )) dihitung dengan rumus : q n = Rn t /4.11/ di mana A : luas DAS (km 2 ), R n : maksimum hujan sehari (mm) untuk periode ulang tertentu, t : lamanya curah hujan (jam) yang mempunyai hubungan dengan panjang sungai (L, km), Q (m 3 /det) dan gradient Melchior (I) sebagai berikut : t = L Q I /4.12/ Perlu diingat bahwa t dalam metoda Der Weduwen adalah saat-saat kritis curah hujan yang mengacu pada terjadinya debit puncak. Ini tidak sama dengan waktu konsentrasi dalam metoda Melchior. Prosedur perhitungan : 1. Hitung A, L dan I dari peta topografi DAS. 2. Hitung nilai R n (mm), maksimum hujan sehari untuk perioda ulang tertentu 3. Buatlah harga t = 0 Hitung dengan persamaan q n /4.11/ b /4.10/ a /4.9/ Q n /4.7/ t /4.12/ 4. Gunakan nilai t ini, dan ulangi lagi tahap 3 sampai nilai dugaan sama dengan nilai t hitungan Persamaan /4.12/ dapat disederhanakan dengan mengasumsikan hubungan tetap antara L dengan A : L = 1904 A /4.13/

20 20 Jika disubstitusikan ke persamaan /4.12/, maka menghasilkan : t = Q A I /4.14/ Dengan menggunakan persamaan /4.14/, maka hubungan Q, A dan I untuk nilai Rn tertentu dinyatakan dalam grafik seperti pada Gambar 4.3 sampai dengan 4.7. Untuk DAS yang panjang sungainya (L) lebih besar dari pada persamaan /4.13/, maka Q yang diambil dari grafik akan terlalu besar, dan sebaliknya apabila L lebih kecil dari persamaan /4.13/ maka Q grafik akan terlalu kecil. Contoh perhitungan dengan Metoda Der Weduwen: Luas DAS A = 41 km 2 Panjang sungai = 11 km Elevasi pada ujung DAS = m Elevasi pada 0.1 L = m Elevasi sungai pada bendung = + 50 m Hitung debit puncak dengan perioda ulang 5 tahun? Penyelesaian : Gradient menurut Melchior : (300-50)/(0.9x11x 1000) = atau 2.5%. Misalkan hasil analisis maksimum hujan harian di daerah tersebut adalah sebagai berikut (di Jawa) : Periode ulang (tahun) Hujan sehari (mm) 1/5 61 1/4 67 1/3 75 1/2 86 1/ Jadi untuk periode ulang 5 tahun R n = 160 mm 1. t = 0 Persamaan Hasil 4.11 qn = b = a = Qn =

21 t = t = 2.97 Persamaan Hasil 4.11 qn = b = a = Qn = t = t = 3.46 Persamaan Hasil 4.11 qn = b = a = Qn = t = t = 3.51 Persamaan Hasil 4.11 qn = b = a = Qn = t = 3.51 Dengan demikian Debit puncak dengan perioda ulang 5 tahun = m 3 /det. Apabila menggunakan grafik, maka debit puncak = 200 m 3 /det.

22 22 Gambar 4.3. Grafik Q untuk curah hujan harian Rn = 80 mm

23 23 Gambar 4.4. Grafik Q untuk curah hujan harian Rn = 120 mm

24 24 Gambar 4.5. Grafik Q untuk curah hujan harian Rn = 160 mm

25 25 Gambar 4.6. Grafik Q untuk curah hujan harian Rn = 200 mm

26 26 Gambar 4.7. Grafik Q untuk curah hujan harian Rn = 240 mm

27 27 3. Teknik Drainase Permukaan 5 TEKNIK DRAINASE PERMUKAAN Oleh Dedi Kusnadi Kalsim Laboratorium Teknik Tanah dan Air, FATETA IPB Po Box 220 Bogor 16002, Tilp (0251) , dedkus@telkom.net 5.1 Data Perencanaan Saluran Pembuang Data Topografi a. Peta topografi skala 1: sampai 1: dengan dilengkapi dengan garis kontour selang 0,5 m untuk daerah datar atau 1,0 m untuk daerah berbukit. b. Profil memanjang (longitudinal) dengan skala horizontal 1 : dan skala vertikal 1:200 (atau 1:100 untuk saluran yang kecil jika diperlukan) c. Potongan melintang (cross section) dengan skala 1:200 (atau 1:100 untuk saluran kecil) pada setiap interval 50 m untuk trase yang lurus dan 25 m untuk trase yang melengkung. Penggunaan foto udara dan ortho-foto yang dilengkapi dengan garis ketinggian sangat penting khususnya untuk perencanaan tata-letak Debit Rencana Jaringan Pembuang Pada umumnya jaringan pembuang direncanakan untuk mengalirkan kelebihan air secara gravitasi. Pembuangan kelebihan air dengan pompa biasanya tidak layak dari segi ekonomi. Pembuangan air di daerah datar dan daerah pasang-surut yang dipengaruhi oleh fluktuasi muka air di laut, sangat tergantung pada muka air sungai, saluran atau laut yang merupakan outlet dari pembuang. Muka air di outlet ini sangat penting dalam perencanaan bangunan-bangunan khususnya di lokasi ujung saluran pembuang, misalnya pintu klep otomatis (flape gate) yang menutup selama muka air tinggi untuk mencegah air masuk ke areal drainase dan membuka kembali pada waktu muka air rendah Modulus Drainase untuk Tanaman Padi Sawah Lahan yang ditanami padi umumnya datar atau berteras. Besarnya penurunan hasil yang diakibatkan oleh kelebihan air tergantung pada : Ketinggian genangan Lamanya genangan tersebut berlangsung Tahap pertumbuhan tanaman Varietas padi. Tahapan pertumbuhan tanaman yang paling peka terhadap kelebihan genangan adalah di pesemaian, selama tanam (pemindahan bibit dari pesemaian ke lahan) dan permulaan

28 28 masa berbunga (panicle). Secara umum dapat dikatakan apabila tanaman padi tergenang melebihi saparoh tinggi tanaman selama lebih dari 3 hari berturutan maka akan mengurangi produksi secara nyata. Apabila kurang dari 3 hari maka pengurangan hasil tidak begitu nyata. Sebagai standar untuk perencanaan drainase tanaman padi 6 : (1) Tinggi genangan yang diijinkan di petakan sawah harus kurang dari 30 cm dan lama genangan tidak lebih dari 3 hari (2) Tinggi genangan lebih dari 30 cm harus tidak lebih dari 24 jam (1 hari) Kelebihan genangan di petakan sawah disebabkan oleh: hujan lebat, limpasan air irigasi atau drainase, rembesan dari saluran irigasi. Untuk keperluan drainase tanaman lainnya yakni nenas dan singkong berdasarkan pengalaman petani di Anjir Basarang (Kalimantan Tengah) menunjukkan bahwa tanaman singkong akan mati apabila terendam 1 hari, sedangkan nenas masih bertahan walaupun tergenang selama 2-3 hari berturutan. Tabel 5.1. Taksiran kerusakan padi akibat genangan air berlebihan di Jepang 7 Pengurangan Hasil (%) menurut Lama Hari Genangan Tahap Pertumbuhan Air Jernih Air Berlumpur > > 7 20 hari setelah tanam Pembentukan malai muda, sebagian terrendam Pembentukan malai muda, seluruhnya terendam Pembuahan Pemasakan Penentuan modulus drainase untuk padi dapat dilakukan dengan cara : (1) Memplotkan hujan maksimum untuk beberapa hari berturutan pada berbagai periode ulang dan penentuan tinggi genangan maksimum yang masih diijinkan seperti pada Gambar 5.1. (2) Simulasi tinggi genangan harian dengan neraca air harian di petakan sawah 8. WL i = WL i-1 + R i + IR i + Qin i - P i - ET i - Qo i di mana : WL i : tinggi genangan air di petakan sawah pada hari ke i (mm); R i : hujan hari ke i (mm); Qin : limpasan dari petakan lain (mm); IR: air irigasi yang diberikan (mm); P: perkolasi (mm); ET: evapotranspirasi (mm); Qo : drainase yang dilakukan (mm). Kriteria yang dilakukan dalam perhitungan tinggi genangan : (i) Untuk WL i WLMAX : Jika (WL i - WLMAX) Qo, selanjutnya dipakai WL i = (WL i - Qo) 6 Sumber : Design Drainage Project, Ciujung Sub Project, Final Report vol.1 Main Report, PROSIDA, May Sumber : Fukuda dan Tsutsui (1968) 8 Skripsi Muchtadi F , Penentuan Modulus Drainase untuk Padi Sawah Berdasarkan Perhitungan Neraca Air Harian

29 29 Jika (WL i - WLMAX) < Qo, selanjutnya dipakai WL i = WLMAX (ii) Untuk WLMIN < WL i < WLMAX, selanjutnya dipakai WL i = Wl i a. Tadah hujan : Jika WL i < 0, selanjutnya dipakai WL i = 0 b. Beririgasi : Jika WL i < WLMIN, selanjutnya dipakai WL i = WLOP WLMAX : tinggi genangan maksimum; WLMIN : tinggi genangan minimum; WLOP : tinggi genangan optimum setelah pemberian air irigasi (3) Penentuan modulus drainase untuk padi sawah dapat dilakukan pula dengan metoda: ( ) T D = R + n I ET P S n n n: jumlah hari berturutan; D n : pengeluaran air permukaan selama n hari berturutan (mm); R T n : hujan maksimum n hari berturutan dengan periode ulang T tahun (mm); I: air irigasi (mm/hari); ET: evapotranspirasi (mm/hari); P: perkolasi (mm/hari); S: genangan air maksimum yang diijinkan di petakan sawah (mm). Umumnya nilai n yang dipakai adalah 3 hari berturutan. Di Jepang umumnya digunakan standar modulus drainase selama periode irigasi dan tak irigasi masing-masing sebesar 0,2-0,5 dan 0,05-0,1 m 3.det -1.km Kurva Depth-Duration-Frequency Hujan Harian Hujanl (mm) Hari berturutan (hari) T = 25 T = 10 T = 5 Poly. (T = 5) Poly. (T = 10) Poly. (T = 25) Gambar 5.1. Kedalaman, lama hujan dan frekwensi dalam penentuan Modulus Drainase untuk padi sawah Untuk areal seluas 400 ha, Debit Pembuang Rencana dapat diambil konstan (l.det -1.ha -1 ). Apabila luas areal lebih besar dari 400 ha, maka debit rencana akan berkurang akibat dari menurunnya curah hujan rata-rata dan adanya tampungan

30 30 sementara yang relatif lebih besar. Di Indonesia secara empirik pengaruh luas areal tersebut dinyatakan dengan persamaan : untuk luas areal <= 400 ha, f = 1.0 Q = f. D. A untuk luas areal > 400 ha, f = 1.62 A -0,08 d Q d : debit pembuang rencana (l/det); D m : modulus drainase (l/det.ha); A: luas areal (ha); f: faktor reduksi luas. Faktor pengurangan (f) debit pembuang rencana tersebut dinyatakan dalam Gambar Untuk Daerah Berbukit Untuk areal yang berbukit di mana umumnya tanaman yang diusahakan bukan padi sawah, maka untuk perencanaan saluran pembuang ada dua macam debit yang perlu dipertimbangkan yakni : a. Debit puncak maksimum dalam jangka waktu pendek b. Debit rencana yang dipakai untuk perencanaan saluran pembuang Debit puncak Di Indonesia umunya digunakan metoda rasional der Weduwen untuk areal kurang dari 100 km 2 dan Melchior untuk areal lebih besar dari 100 km 2 (Lihat Pendugaan Debit Puncak Empirik) Debit Rencana Debit rencana didefinisikan sebagai volume limpasan air hujan dalam waktu sehari dari suatu daerah yang akan dibuang airnya yang disebabkan oleh curah hujan sehari yang terjadi di daerah tersebut. Volume limpasan tersebut harus dapat dibuang dalam waktu sehari, sehingga akan dihasilkan debit rencana yang konstan. m USBR (1977) : Q = 0 d, 116. a. f. R( 1) 5. A untuk A 400 ha, f = 1,62 A -0,08 untuk A < 400 ha, f = 1,0 Q d : debit rencana (l.det -1 ); a : koefisien limpasan; R (1)5 : hujan sehari maksimum dengan periode ulang 5 tahun (mm.hari -1 ); A : luas areal drainase (ha) Debit Pembuang Debit rencana akan dipakai untuk merencanakan kapasitas saluran pembuang dan elevasi muka air rencana. Debit pembuang ini terdiri dari : a. Debit pembuang untuk petakan sawah seperti pada b. Debit dari areal perbukitan seperti pada

31 31 Jaringan pembuang direncanakan untuk mengalirkan debit pembuang rencana dari areal sawah dan non-sawah (perbukitan) di dalam maupun di luar areal dengan menggunakan saluran intersepsi (pencegat). Muka air yang dihasilkan tidak boleh menghalangi pembuangan air dari sawah di daerah irigasi. Debit puncak akan dipakai untuk menghitung muka air tertinggi di saluran pembuang. Muka air ini akan digunakan untuk merencanakan pengendalian banjir (misalnya tanggul banjir) dan bangunan-bangunan air lainnya (misalnya jembatan, goronggorong). Selama terjadi debit puncak terhambatnya pembuangan air dari petakan sawah masih dapat diterima karena hanya berlangsung beberapa jam saja. Elevasi muka air pada debit puncak sering melebihi elevasi lahan sehingga diperlukan sarana pengendalian banjir dengan membuat tanggul sepanjang saluran pembuang. Gambar 5.2. Faktor pengurangan debit karena luas areal Periode ulang untuk debit puncak biasanya diambil sebesar 5 tahun untuk saluran pembuang kecil di daerah irigasi atau 25 tahun atau lebih untuk saluran pembuang besar tergantung dari nilai ekonomis sarana yang dilindungi (misalnya di daerah perkotaan). Periode ulang debit rencana biasanya digunakan 5 tahun. Pada pertemuan dua saluran pembuang di mana debit puncak bertemu, maka debit puncak yang tergabung dihitung sebagai berikut : (1) Apabila dua daerah yang akan dibuang airnya luasnya kurang lebih sama (40%-50% dari luas total), maka debit puncak gabungan dihitung sebagai 0,8 kali jumlah kedua debit puncak. (2) Jika luas daerah yang satu lebih kecil dari yang lainnya (kurang dari 20% dari luas total), maka gabungan kedua debit puncak dihitung sebagai luas total (3) Bila persentase luas areal antara 20%-40% dari luas total, maka gabungan debit puncak dihitung dengan interpolasi antara nilai yang didapat dari kasus 1 dan kasus 2. Untuk menghitung debit rencana pada pertemuan dua saluran pembuang, maka debit rencana gabungan dihitung sebagai jumlah debit rencana dari masing-masing saluran pembuang.

32 Data Mekanika Tanah Masalah utama dalam perencanaan saluran pembuang adalah ketahanan tubuh saluran terhadap erosi dan stabilitas talud serta tanggul. Klasifikasi tekstur, indeks plastisitas dan ruang pori di perlukan untuk pertimbangan kecepatan maksimum (Lihat Lampiran) 5.2 Perencanaan Saluran Pembuang Perencanaan Saluran Pembuang yang Stabil Perencanaan saluran pembuang harus memberikan pemecahan dengan biaya pelaksanaan dan pemeliharaan yang terrendah. Ruas-ruas saluran harus stabil terhadap erosi dan sedimentasi harus minimal pada setiap potongan melintang dan harus seimbang. Dengan adanya pembuang, air dari persawahan menjadi lebih bersih dari sedimen. Erosi di saluran pembuang akan merupakan kriteria yang menentukan. Kecepatan aliran rencana hendaknya tidak melebihi kecepatan maksimum yang diijinkan. Kecepatan maksimum yang diijinkan tergantung pada bahan tanah serta kondisinya. Saluran pembuang dirancang di tempat terrendah dan melalui daerah depresi. Kemiringan alamiah lahan dalam trase ini menentukan kemiringan memanjang saluran pembuang tersebut. Apabila kemiringan dasar terlalu curam sehingga kecepatan maksimum akan terlampaui, maka harus dibuat bangunan terjun. Kecepatan rencana sebaiknya diambil sama atau mendekati kecepatan maksimum yang diijinkan, karena debit rencana atau debit puncak tidak sering terjadi maka debit dan kecepatan aliran saluran pembuang akan lebih rendah di bawah kondisi eksploitasi ratarata. Pada debit yang rendah, aliran akan cenderung berkelok-kelok bila dasar salurannya lebar. Oleh karena itu biasanya saluran pembuang dirancang relatif sempit dan dalam dibandingkan dengan saluran irigasi. Variasi tinggi air dengan debit yang berubah-ubah biasanya tidak mempunyai arti penting pada saluran pembuang (lain halnya dengan saluran irigasi). Potongan melintang yang dalam akan memberikan pemecahan yang lebih ekonomis Rumus dan Kriteria Hidrolik Rumus Hidrolik Untuk perencanaan saluran pembuang, aliran dianggap steady dan seragam (uniform) untuk itu diterapkan rumus Strickler-Manning : 2/ 3 1/ 2 V = k di mana : V: kecepatan aliran (m.det -1 ); mr I km : koefisien kehalusan Strickler (km = 1/n, n : koefisien kekasaran Manning); R : jari-jari hidrolis (m) (R = A/P; P :perimeter basah (m); A:luas penampang aliran (m 2 ); I : kemiringan dasar saluran; z = talud (horizontal z : vertikal 1); w = b/h (perbandingan lebar dasar dengan tinggi air) 2 2 A = b. h + z. h = h ( w + z)

33 33 [ ] 2 2 ( ) ( ) P = b + 2. h 1 + z = h. w z R = A = P ( + z) h w w ( z ) ( ) / / / Q = A. k. R. I = k I w + z h m m ( + z) h w 2 w + 2 ( 1 + z ) 2/ 3 misalkan F = ( w + z) 5/ 3 2 [ w + 2 ( 1 + z ) ] 2/ 3 maka : Q h = 1/ 2 F. km I 3/ 8 Nilai b (lebar dasar saluran) yang didapatkan dari perhitungan biasanya harus dibulatkan ke suatu angka yang secara praktis dapat dikerjakan di lapangan. Dengan menambah atau mengurangi nilai b dengan b, maka akan terjadi perubahan h ( h). Dari gambar di bawah ini dapat dilihat bahwa dengan penambahan b, maka luas penampang aliran (A) tidak boleh berubah. b x h = - h x B = - h x (b + 2 z h) = - h (w + 2 z)h h = b ( w + 2z) B FB h 1 z b Gambar 5.3. Geometri saluran

34 34 Faktor-faktor yang mempengaruhi rancangan : maksimum talud kecepatan maksimum yang diijinkan kecepatan minimum lebar dasar minimum untuk mencegah penyumbatan dan kemudahan konstruksi perbandingan b/h B FB h h z 1 b Koefisien kehalusan Strickler Gambar 5.4. Perubahan b dan h Koefisien kehalusan Strickler tergantung kepada sejumlah faktor yakni : Kekasaran dasar dan talud saluran Lebatnya vegetasi Panjang batang vegetasi Ketidak-teraturan dan trase Jari-jari hidrolis dan dalamnya saluran Karena saluran pembuang tidak selalu terisi air, maka vegetasi akan mudah sekali tumbuh dan banyak mengurangi nilai km. Pembabadan rumput yang teratur akan memperkecil pengurangan nilai km. Nilai k m pada tabel di bawah ini umumnya dipakai untuk merancang saluran pembuang dengan mengasumsikan bahwa vegetasi dipotong secara teratur. Tabel 5.1. Koefisien kehalusan Strickler untuk saluran pembuang Kedalaman aliran (m) h > 1,5 h 1,5 k m Untuk saluran irigasi yang terbuat dari galian atau timbunan tanah, nilai k m yang biasa digunakan pada pelbagai nilai Q adalah seperti pada Tabel di bawah ini. Beberapa nilai koefisien kekasaran Manning dapat dilihat pada Tabel 5.3 di bawah ini.

35 Kecepatan Maksimum yang Diijinkan Kecepatan maksimum yang diijinkan adalah kecepatan aliran (rata-rata) maksimum yang tidak menyebabkan erosi di permukaan saluran. Konsep ini didasarkan pada hasil riset USSCS (United State Soil Conservation Services, Design of Open Channel, 1977) yang memerlukan data lapangan yakni klasifikasi tanah (Unified Classification system), Indeks Plastisitas dan angka pori. Tabel 5.2. Koefisien kehalusan Strickler untuk saluran irigasi Q (m 3.det -1 ) Q > 10 5 < Q < 10 1 < Q < 5 Q < 1 K m Kecepatan maksimum yang diijinkan ditentukan dengan dua tahapan : (1) Penetapan kecepatan dasar (V b ) untuk saluran lurus dengan kedalaman air 1 m seperti pada Gambar 5.5. (2) Penentuan faktor koreksi untuk lengkung saluran, berbagai kedalaman air dan angka pori seperti pada Gambar 5.6. V = V A max b B C D di mana,v max : kecepatan maksimum yang diijinkan (m/det); V b : kecepatan dasar (m/det); A: faktor koreksi untuk angka pori tanah permukaan saluran; B: faktor koreksi untuk kedalaman aliran; C: faktor koreksi untuk lengkung saluran; D: faktor koreksi untuk periode ulang banjir rencana (Gambar 5.7). Faktor D ditambahkan apabila dipakai banjir rencana dengan periode ulang yang tinggi lebih dari 10 tahun. Diasumsikan bahwa kelangkaan terjadinya banjir dengan periode ulang di atas 10 tahun menyebabkan sedikit kerusakan akibat erosi. Hal ini dinyatakan dengan menerima V max yang lebih tinggi. Untuk jaringan pembuang internal diasumsikan bahwa airnya bebas sedimen. Sedangkan untuk pembuang lahan berbukit, asal air harus diperiksa.untuk konstrusi pada tanah-tanah non-kohesif kecepatan dasar yang diijinkan adalah 0,6 m/det. Suatu daftar kecepatan maksimum yang diijinkan berdasarkan jenis tanah dan kandungan lumpur air yang mengalir adalah seperti pada Tabel Kecepatan Minimum Kecepatan minimum adalah batas kecepatan terrendah yang mengakibatkan adanya sedimentasi, pertumbuhan gulma dan perkembang-biakan nyamuk yang dapat menyebabkan penyakit malaria. Untuk mencegah pertumbuhan gulma air diperlukan kecepatan minimum 0,75 m/detik, sedangkan untuk mencegah malaria dan bilharzia (penyakit kaki gajah) kecepatan minimum 0,4 m/detik.

36 36 Tabel 5.3. Koefisien kekasaran Manning (n) Jenis bahan saluran Minimum Normal Maksimum 1. Pipa dan Saluran Berlapis : logam,kayu,plastik, semen,beton bata pipa bergelombang (corrugated) 2. Saluran tanah galian : saluran tanah,lurus,seragam bersih tanpa rumputan berumput pendek 0,010 0,025 0,016 0,022 0,013 0,030 0,024 0,018 0,027 0,015 0,035 0,020 0,023 saluran tanah, tidak lurus tanpa vegetasi berumput berumput rapat dan gulma air 0,023 0,025 0,030 0,025 0,030 0,035 0,030 0,033 0,040 Sumber : Ven Te Chow, Open Channel Hydraulics. McGraw Hill, New York Tinggi Muka Air Tinggi muka air di saluran pembuang tergantung pada fungsi saluran tersebut. Di jaringan tersier, kelebihan air di lahan dibuang langsung ke saluran pembuang kuarter atau tersier sehingga elevasi muka air rencana dapat diambil sama dengan elevasi permukaan lahan. Jaringan pembuang sekunder menerima air buangan dari jaringan tersier di loksi tertentu. Elevasi muka air rencana di sekunder ditentukan oleh elevasi muka air di ujung saluran pembuang tersier. Demikian pula dengan saluran primer ditentukan oleh muka air rencana di ujung saluran sekunder. Di saluran pembuang primer (atau sekunder) pada debit puncak elevasi muka air harus dapat dikendalikan dengan adanya tanggul banjir (Gambar 5.8), dengan tinggi jagaan sektar 0,4 sampai 1,0 m Potongan Melintang Saluran Pembuang Geometri Potongan melintang saluran pembuang dirancang relatif lebih dalam daripada saluran irigasi dengan alasan sebagai berikut : Untuk mengurangi biaya pelaksanaan dan pembebasan lahan Variasi tinggi muka air akibat variasi debit dapat diterima untuk saluran pembuang Saluran pembuang yang dalam akan memiliki aliran lebih stabil pada debit rendah, sedangkan saluran pembuang yang lebar akan cenderung menyebabkan aliran yang berkelok. Perbandingan lebar dasar dan kedalaman aliran (b/h) untuk saluran pembuang sekunder diambil antara 1 sampai 3. Untuk saluran yang lebih besar nilai ini harus paling tidak 3. Untuk saluran sekunder dan primer, lebar dasar minimum sebesar 0,6 m, sedangkan untuk saluran lapangan lebar dasar minimum 0,3 m. Suatu petunjuk hubungan antara Q, h dan b/h pada umumnya untuk saluran drainase adalah seperti pada Tabel 5.6. Untuk saluran irigasi hubungan Q, z, b/h dan km yang umumnya dipakai adalah seperti pada Tabel 5.7 di bawah ini.

DRAINASE LAHAN PERTANIAN

DRAINASE LAHAN PERTANIAN DRAINASE LAHAN PERTANIAN ASEP SAPEI DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN IPB (Asep Sapei, 2017) 1 PENDAHULUAN DEFINISI DRAINASE: TINDAKAN MEMBUANG AIR LEBIH (DI PERMUKAAN TANAH ATAU DI DALAM TANAH/DAERAH

Lebih terperinci

PERSYARATAN JARINGAN DRAINASE

PERSYARATAN JARINGAN DRAINASE PERSYARATAN JARINGAN DRAINASE Untuk merancang suatu sistem drainase, yang harus diketahui adalah jumlah air yang harus dibuang dari lahan dalam jangka waktu tertentu, hal ini dilakukan untuk menghindari

Lebih terperinci

TINJAUAN PUSTAKA. Faktor Lingkungan Tumbuh Kelapa Sawit

TINJAUAN PUSTAKA. Faktor Lingkungan Tumbuh Kelapa Sawit TINJAUAN PUSTAKA Faktor Lingkungan Tumbuh Kelapa Sawit Tanaman kelapa sawit semula merupakan tanaman yang tumbuh liar di hutan-hutan maupun daerah semak belukar tetapi kemudian dibudidayakan. Sebagai tanaman

Lebih terperinci

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat

II. TINJAUAN PUSTAKA. sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat 4 II. TINJAUAN PUSTAKA A. Jagung Jagung merupakan tanaman yang dapat hidup di daerah yang beriklim sedang sampai beriklim panas (Rochani, 2007). Pada masa pertumbuhan, jagung sangat membutuhkan sinar matahari

Lebih terperinci

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya,

BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, BAB III LANDASAN TEORI A. Hidrologi Menurut Triatmodjo (2008), Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifatsifatnya dan hubungan

Lebih terperinci

Manfaat Penelitian. Ruang Lingkup Penelitian

Manfaat Penelitian. Ruang Lingkup Penelitian 2 Manfaat Penelitian Manfaat penelitian adalah sebagai berikut : 1. Menjadi panduan untuk petani dalam pengelolaan air hujan dan aliran permukaan di kebun pala untuk menekan penurunan hasil akibat kekurangan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Menurut (Triatmodjo, 2008:1).Hidrologi merupakan ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya. Penerapan ilmu hidrologi

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

RC MODUL 2 KEBUTUHAN AIR IRIGASI

RC MODUL 2 KEBUTUHAN AIR IRIGASI RC14-1361 MODUL 2 KEBUTUHAN AIR IRIGASI SISTEM PENGAMBILAN AIR Irigasi mempergunakan air yang diambil dari sumber yang berupa asal air irigasi dengan menggunakan cara pengangkutan yang paling memungkinkan

Lebih terperinci

Surface Runoff Flow Kuliah -3

Surface Runoff Flow Kuliah -3 Surface Runoff Flow Kuliah -3 Limpasan (runoff) gabungan antara aliran permukaan, aliran yang tertunda ada cekungan-cekungan dan aliran bawah permukaan (subsurface flow) Air hujan yang turun dari atmosfir

Lebih terperinci

Limpasan (Run Off) adalah.

Limpasan (Run Off) adalah. Limpasan (Run Off) Rekayasa Hidrologi Universitas Indo Global Mandiri Limpasan (Run Off) adalah. Aliran air yang terjadi di permukaan tanah setelah jenuhnya tanah lapisan permukaan Faktor faktor yang mempengaruhi

Lebih terperinci

1.5. Potensi Sumber Air Tawar

1.5. Potensi Sumber Air Tawar Potensi Sumber Air Tawar 1 1.5. Potensi Sumber Air Tawar Air tawar atau setidaknya air yang salinitasnya sesuai untuk irigasi tanaman amat diperlukan untuk budidaya pertanian di musim kemarau. Survei potensi

Lebih terperinci

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian

TINJAUAN PUSTAKA. secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian TINJAUAN PUSTAKA Daerah Aliran Sungai Sungai merupakan jaringan alur-alur pada permukaan bumi yang terbentuk secara alamiah. Mulai dari bentuk kecil di bagian hulu sampai besar di bagian hilir. Air hujan

Lebih terperinci

Berfungsi mengendalikan limpasan air di permukaan jalan dan dari daerah. - Membawa air dari permukaan ke pembuangan air.

Berfungsi mengendalikan limpasan air di permukaan jalan dan dari daerah. - Membawa air dari permukaan ke pembuangan air. 4.4 Perhitungan Saluran Samping Jalan Fungsi Saluran Jalan Berfungsi mengendalikan limpasan air di permukaan jalan dan dari daerah sekitarnya agar tidak merusak konstruksi jalan. Fungsi utama : - Membawa

Lebih terperinci

BKM IV. HASIL DAN PEMBAHASAN Parameter dan Kurva Infiltrasi

BKM IV. HASIL DAN PEMBAHASAN Parameter dan Kurva Infiltrasi % liat = [ H,( T 68),] BKM % debu = 1 % liat % pasir 1% Semua analisis sifat fisik tanah dibutuhkan untuk mengetahui karakteristik tanah dalam mempengaruhi infiltrasi. 3. 3... pf pf ialah logaritma dari

Lebih terperinci

TINJAUAN PUSTAKA. penanaman sangat penting. Oleh karena air menggenang terus-menerus maka

TINJAUAN PUSTAKA. penanaman sangat penting. Oleh karena air menggenang terus-menerus maka TINJAUAN PUSTAKA Lingkungan Tumbuh Tanaman Padi Padi (Oryza sativa L.) tumbuh baik di daerah tropis maupun subtropis. Untuk padi sawah, ketersediaan air yang mampu menggenangi lahan tempat penanaman sangat

Lebih terperinci

HUBUNGAN AIR DAN TANAMAN STAF LAB. ILMU TANAMAN

HUBUNGAN AIR DAN TANAMAN STAF LAB. ILMU TANAMAN HUBUNGAN AIR DAN TANAMAN STAF LAB. ILMU TANAMAN FUNGSI AIR Penyusun tubuh tanaman (70%-90%) Pelarut dan medium reaksi biokimia Medium transpor senyawa Memberikan turgor bagi sel (penting untuk pembelahan

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat-sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

Pemberian air pada lahan dengan sistem surjan

Pemberian air pada lahan dengan sistem surjan Konstruksi dan Bangunan Pemberian air pada lahan dengan sistem surjan Keputusan Menteri Permukiman dan Prasarana Wilayah Nomor : 360/KPTS/M/2004 Tanggal : 1 Oktober 2004 DEPARTEMEN PERMUKIMAN DAN PRASARANA

Lebih terperinci

Bab I Pendahuluan. I.1 Latar Belakang

Bab I Pendahuluan. I.1 Latar Belakang 1 Bab I Pendahuluan I.1 Latar Belakang Erosi adalah proses terkikis dan terangkutnya tanah atau bagian bagian tanah oleh media alami yang berupa air. Tanah dan bagian bagian tanah yang terangkut dari suatu

Lebih terperinci

BAB II DASAR TEORI 2.1 Perhitungan Hidrologi Curah hujan rata-rata DAS

BAB II DASAR TEORI 2.1 Perhitungan Hidrologi Curah hujan rata-rata DAS BAB II DASAR TEORI 2.1 Perhitungan Hidrologi 2.1.1 Curah hujan rata-rata DAS Beberapa cara perhitungan untuk mencari curah hujan rata-rata daerah aliran, yaitu : 1. Arithmatic Mean Method perhitungan curah

Lebih terperinci

TINJAUAN PUSTAKA Budidaya Jenuh Air

TINJAUAN PUSTAKA Budidaya Jenuh Air 4 TINJAUAN PUSTAKA Budidaya Jenuh Air Budidaya jenuh air merupakan sistem penanaman dengan membuat kondisi tanah di bawah perakaran tanaman selalu jenuh air dan pengairan untuk membuat kondisi tanah jenuh

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN JUDUL MATA KULIAH : TEKNIK IRIGASI DAN DRAINASE NOMOR KODE / SKS : TEP 403 DESKRIPSI SINGKAT TUJUAN INSTRUKSIONAL UMUM : Pada Mata Kuliah Ini Mahasiswa Mempelajari

Lebih terperinci

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993).

tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian (Sri Harto, 1993). batas topografi yang berarti ditetapkan berdasarkan aliran air permukaan. Batas ini tidak ditetapkan air bawah tanah, karena permukaan air tanah selalu berubah sesuai dengan musim dan tingkat pemakaian

Lebih terperinci

HASIL DAN PEMBAHASAN. Berdasarkan hasil penelitian di DAS Ciliwung hulu tahun ,

HASIL DAN PEMBAHASAN. Berdasarkan hasil penelitian di DAS Ciliwung hulu tahun , HASIL DAN PEMBAHASAN Berdasarkan hasil penelitian di DAS Ciliwung hulu tahun 1990 1996, perubahan penggunaan lahan menjadi salah satu penyebab yang meningkatkan debit puncak dari 280 m 3 /det menjadi 383

Lebih terperinci

BAB III LANDASAN TEORI. A. Hidrologi

BAB III LANDASAN TEORI. A. Hidrologi BAB III LANDASAN TEORI A. Hidrologi Hidrologi adalah ilmu yang berkaitan dengan air di bumi, baik mengenai terjadinya, peredaran dan penyebarannya, sifat sifatnya dan hubungan dengan lingkungannya terutama

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana.

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana. BAB II PENDEKATAN PEMECAHAN MASALAH A. Intensitas Curah Hujan Menurut Joesron (1987: IV-4), Intensitas curah hujan adalah ketinggian curah hujan yang terjadi pada suatu kurun waktu. Analisa intensitas

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Perbandingan Evapotranspirasi Tanaman Acuan Persyaratan air tanaman bervariasi selama masa pertumbuhan tanaman, terutama variasi tanaman dan iklim yang terkait dalam metode

Lebih terperinci

Pengelolaan Air di Areal Pasang Surut. Disampaikan Pada Materi Kelas PAM

Pengelolaan Air di Areal Pasang Surut. Disampaikan Pada Materi Kelas PAM Pengelolaan Air di Areal Pasang Surut Disampaikan Pada Materi Kelas PAM Pundu Learning Centre - 2012 DEFINISI Disampaikan Pada Materi Kelas PAM Pundu Learning Centre - 2012 DEFINISI Areal Pasang Surut

Lebih terperinci

I. PENDAHULUAN. Nanas merupakan tanaman buah berupa semak yang mempunyai nama ilmiah

I. PENDAHULUAN. Nanas merupakan tanaman buah berupa semak yang mempunyai nama ilmiah 1 I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Nanas merupakan tanaman buah berupa semak yang mempunyai nama ilmiah Ananas comosus (L) Merr. Tanaman ini berasal dari benua Amerika, tepatnya negara Brazil.

Lebih terperinci

II. TINJAUAN PUSTAKA A.

II. TINJAUAN PUSTAKA A. II. TINJAUAN PUSTAKA A. Tanaman Durian 1. Karakteristik tanaman durian Durian (Durio zibethinus Murr.) merupakan salah satu tanaman hasil perkebunan yang telah lama dikenal oleh masyarakat yang pada umumnya

Lebih terperinci

TINJAUAN PUSTAKA. yang mungkin dikembangkan (FAO, 1976). Vink, 1975 dalam Karim (1993)

TINJAUAN PUSTAKA. yang mungkin dikembangkan (FAO, 1976). Vink, 1975 dalam Karim (1993) TINJAUAN PUSTAKA Pengertian Evaluasi Lahan Evaluasi lahan adalah proses penilaian penampilan atau keragaman lahan jika dipergunakan untuk tujuan tertentu, meliputi pelaksanaan dan interpretasi survei serta

Lebih terperinci

PENERAPAN SISTEM SEMI POLDER SEBAGAI UPAYA MANAJEMEN LIMPASAN PERMUKAAN DI KOTA BANDUNG

PENERAPAN SISTEM SEMI POLDER SEBAGAI UPAYA MANAJEMEN LIMPASAN PERMUKAAN DI KOTA BANDUNG PENERAPAN SISTEM SEMI POLDER SEBAGAI UPAYA MANAJEMEN LIMPASAN PERMUKAAN DI KOTA BANDUNG ALBERT WICAKSONO*, DODDI YUDIANTO 1 DAN JEFFRY GANDWINATAN 2 1 Staf pengajar Universitas Katolik Parahyangan 2 Alumni

Lebih terperinci

TINJAUAN PUSTAKA Budidaya Tebu

TINJAUAN PUSTAKA Budidaya Tebu 3 TINJAUAN PUSTAKA Budidaya Tebu Tebu (Sacharum officinarum L.) termasuk ke dalam golongan rumputrumputan (graminea) yang batangnya memiliki kandungan sukrosa yang tinggi sehinga dimanfaatkan sebagai bahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bumi terdiri dari air, 97,5% adalah air laut, 1,75% adalah berbentuk es, 0,73% berada didaratan sebagai air sungai, air danau, air tanah, dan sebagainya. Hanya 0,001% berbentuk uap

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh

BAB II TINJAUAN PUSTAKA. Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh BAB II TINJAUAN PUSTAKA. Pengertian pengertian Berikut ini beberapa pengertian yang berkaitan dengan judul yang diangkat oleh penulis, adalah sebagai berikut :. Hujan adalah butiran yang jatuh dari gumpalan

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Aliran Permukaan 2.2. Proses Terjadinya Aliran Permukaan

II. TINJAUAN PUSTAKA 2.1. Aliran Permukaan 2.2. Proses Terjadinya Aliran Permukaan II. TINJAUAN PUSTAKA 2.1. Aliran Permukaan Aliran permukaan adalah air yang mengalir di atas permukaan tanah menuju saluran sungai. Sebagian dari aliran permukaan akan terinfiltrasi ke dalam tanah dan

Lebih terperinci

HUBUNGAN AIR DAN TANAMAN STAF LAB. ILMU TANAMAN

HUBUNGAN AIR DAN TANAMAN STAF LAB. ILMU TANAMAN HUBUNGAN AIR DAN TANAMAN STAF LAB. ILMU TANAMAN FUNGSI AIR Penyusun tubuh tanaman (70%-90%) Pelarut dan medium reaksi biokimia Medium transpor senyawa Memberikan turgor bagi sel (penting untuk pembelahan

Lebih terperinci

dampak perubahan kemampuan lahan gambut di provinsi riau

dampak perubahan kemampuan lahan gambut di provinsi riau dampak perubahan kemampuan lahan gambut di provinsi riau ABSTRAK Sejalan dengan peningkatan kebutuhan penduduk, maka kebutuhan akan perluasan lahan pertanian dan perkebunan juga meningkat. Lahan yang dulunya

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN IV.1 Menganalisa Hujan Rencana IV.1.1 Menghitung Curah Hujan Rata rata 1. Menghitung rata - rata curah hujan harian dengan metode aritmatik. Dalam studi ini dipakai data

Lebih terperinci

1.3. Tujuan Penulisan Tujuan dari penulisan ini adalah untuk mengetahui pola jaringan drainase dan dasar serta teknis pembuatan sistem drainase di

1.3. Tujuan Penulisan Tujuan dari penulisan ini adalah untuk mengetahui pola jaringan drainase dan dasar serta teknis pembuatan sistem drainase di BAB I PENDAHULUAN 1.1. Latar Belakang Perkebunan kelapa sawit merupakan jenis usaha jangka panjang. Kelapa sawit yang baru ditanam saat ini baru akan dipanen hasilnya beberapa tahun kemudian. Sebagai tanaman

Lebih terperinci

BAB III LANDASAN TEORI. A. Metode MUSLE

BAB III LANDASAN TEORI. A. Metode MUSLE BAB III LANDASAN TEORI A. Metode MUSLE Metode MUSLE (Modify Universal Soil Loss Equation) adalah modifikasi dari metode USLE (Soil Loss Equation), yaitu dengan mengganti faktor erosivitas hujan (R) dengan

Lebih terperinci

DAERAH ALIRAN SUNGAI

DAERAH ALIRAN SUNGAI DAERAH ALIRAN SUNGAI PENGEMBANGAN SUMBER DAYA AIR UNIVERSITAS INDO GLOBAL MANDIRI Limpasan (Runoff) Dalam siklus hidrologi, bahwa air hujan yang jatuh dari atmosfer sebelum air dapat mengalir di atas permukaan

Lebih terperinci

Rawa pasang surut adalah rawa yang terletak di pantai atau dekat pantai, di muara atau dekat muara sungai sehingga dipengaruhi oleh pasang surutnya

Rawa pasang surut adalah rawa yang terletak di pantai atau dekat pantai, di muara atau dekat muara sungai sehingga dipengaruhi oleh pasang surutnya RAWA adalah sumber air berupa genangan air terus menerus atau musiman yang terbentuk secara alamiah merupakan satu kesatuan jaringan sumber air dan mempunyai ciri-ciri khusus secara phisik, kimiawi dan

Lebih terperinci

KEBUTUHAN AIR. penyiapan lahan.

KEBUTUHAN AIR. penyiapan lahan. 1. Penyiapan lahan KEBUTUHAN AIR Kebutuhan air untuk penyiapan lahan umumnya menentukan kebutuhan air irigasi pada suatu proyek irigasi. Faktor-faktor penting yang menentukan besarnya kebutuhan air untuk

Lebih terperinci

Suatu kriteria yang dipakai Perancang sebagai pedoman untuk merancang

Suatu kriteria yang dipakai Perancang sebagai pedoman untuk merancang Kriteria Desain Kriteria Desain Suatu kriteria yang dipakai Perancang sebagai pedoman untuk merancang Perancang diharapkan mampu menggunakan kriteria secara tepat dengan melihat kondisi sebenarnya dengan

Lebih terperinci

PERENCANAAN SALURAN. Rencana pendahuluan dari saluran irigasi harus menunjukkan antara lain :

PERENCANAAN SALURAN. Rencana pendahuluan dari saluran irigasi harus menunjukkan antara lain : PERENCANAAN SALURAN Perencanaan Pendahuluan. Rencana pendahuluan dari saluran irigasi harus menunjukkan antara lain : - Trase jalur saluran pada peta tata letak pendahuluan. - Ketinggian tanah pada jalar

Lebih terperinci

KULIAH 2 HUBUNGAN AIR, TANAH DAN TANAMAN

KULIAH 2 HUBUNGAN AIR, TANAH DAN TANAMAN KULIAH 2 HUBUNGAN AIR, TANAH DAN TANAMAN HUBUNGAN AIR, TANAH DAN TANAMAN Hubungan air tanah dan Tanaman Fungsi air bagi tanaman Menjaga tekanan sel Menjaga keseimbangan suhu Pelarut unsur hara Bahan fotosintesis

Lebih terperinci

RC MODUL 1 TEKNIK IRIGASI

RC MODUL 1 TEKNIK IRIGASI RC14-1361 MODUL 1 TEKNIK IRIGASI PENDAHULUAN PENGERTIAN DAN MAKSUD IRIGASI Irigasi: Berasal dari istilah Irrigatie (Bhs. Belanda) atau Irrigation (Bahasa Inggris) diartikan sebagai suatu usaha yang dilakukan

Lebih terperinci

TATA CARA PEMBUATAN RENCANA INDUK DRAINASE PERKOTAAN

TATA CARA PEMBUATAN RENCANA INDUK DRAINASE PERKOTAAN 1. PENDAHULUAN TATA CARA PEMBUATAN RENCANA INDUK DRAINASE PERKOTAAN Seiring dengan pertumbuhan perkotaan yang amat pesat di Indonesia, permasalahan drainase perkotaan semakin meningkat pula. Pada umumnya

Lebih terperinci

I. PENDAHULUAN. Penanaman palawija, khususnya kedelai, di lahan sawah biasanya dilakukan

I. PENDAHULUAN. Penanaman palawija, khususnya kedelai, di lahan sawah biasanya dilakukan I. PENDAHULUAN 1.1 Latar Belakang Penanaman palawija, khususnya kedelai, di lahan sawah biasanya dilakukan dengan pola tanam padi-padi-palawija. Penanaman kedelai setelah penanaman padi di lahan sawah

Lebih terperinci

Tabel Posisi titik acuan (BM, dalam meter) di lokasi MIFEE

Tabel Posisi titik acuan (BM, dalam meter) di lokasi MIFEE 1 1.6. Hidrotopografi Lahan Peta hidro-topografi adalah peta yang memperlihatkan elevasi lahan relatif terhadap elevasi muka air sungai di sekitarnya. Pada lokasi yang terpengaruh oleh pasangsurut, elevasi

Lebih terperinci

TINJAUAN PUSTAKA. Daerah Aliran Sungai (DAS) didefinisikan sebagai suatu wilayah yang

TINJAUAN PUSTAKA. Daerah Aliran Sungai (DAS) didefinisikan sebagai suatu wilayah yang TINJAUAN PUSTAKA 2.1 Daerah Aliran Sungai Daerah Aliran Sungai (DAS) didefinisikan sebagai suatu wilayah yang dibatasi oleh batas batas topografi secara alami sehingga setiap air hujan yang jatuh dalam

Lebih terperinci

PERANCANGAN SISTEM DRAINASE

PERANCANGAN SISTEM DRAINASE PERANCANGAN SISTEM DRAINASE Perencanaan saluran pembuang harus memberikan pemecahan dengan biaya pelak-sanaan dan pemeliharaan yang minimum. Ruas-ruas saluran harus stabil terhadap erosi dan sedimentasi

Lebih terperinci

BAB IV ANALISA DATA 4.1 Tinjauan Umum 4.2 Data Geologi dan Mekanika Tanah

BAB IV ANALISA DATA 4.1 Tinjauan Umum 4.2 Data Geologi dan Mekanika Tanah BAB IV ANALISA DATA 4.1 Tinjauan Umum Gagasan untuk mewujudkan suatu bangunan harus didahului dengan survey dan investigasi untuk mendapatkan data yang sesuai guna mendukung terealisasinya sisi pelaksanaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 )

II. TINJAUAN PUSTAKA. Gambar 2. Lokasi Kabupaten Pidie. Gambar 1. Siklus Hidrologi (Sjarief R dan Robert J, 2005 ) II. TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Pada umumnya ketersediaan air terpenuhi dari hujan. Hujan merupakan hasil dari proses penguapan. Proses-proses yang terjadi pada peralihan uap air dari laut ke

Lebih terperinci

BAB II KONDISI WILAYAH STUDI

BAB II KONDISI WILAYAH STUDI II-1 BAB II 2.1 Kondisi Alam 2.1.1 Topografi Morfologi Daerah Aliran Sungai (DAS) Pemali secara umum di bagian hulu adalah daerah pegunungan dengan topografi bergelombang dan membentuk cekungan dibeberapa

Lebih terperinci

II. TINJAUAN PUSTAKA. vegetasinya termasuk rumput-rumputan, berakar serabut, batang monokotil, daun

II. TINJAUAN PUSTAKA. vegetasinya termasuk rumput-rumputan, berakar serabut, batang monokotil, daun II. TINJAUAN PUSTAKA 2.1 Tanaman Padi Tanaman padi merupakan tanaman tropis, secara morfologi bentuk vegetasinya termasuk rumput-rumputan, berakar serabut, batang monokotil, daun berbentuk pita dan berbunga

Lebih terperinci

TINJAUAN PUSTAKA. Tanah Sawah. tanaman padi sawah, dimana padanya dilakukan penggenangan selama atau

TINJAUAN PUSTAKA. Tanah Sawah. tanaman padi sawah, dimana padanya dilakukan penggenangan selama atau TINJAUAN PUSTAKA Tanah Sawah Lahan sawah adalah lahan yang dikelola sedemikian rupa untuk budidaya tanaman padi sawah, dimana padanya dilakukan penggenangan selama atau sebagian dari masa pertumbuhan padi.

Lebih terperinci

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan

II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan II. TINJAUAN PUSTAKA 2.1. Karakteristik Hujan Curah hujan adalah volume air yang jatuh pada suatu areal tertentu (Arsyad, 2010). Menurut Tjasyono (2004), curah hujan yaitu jumlah air hujan yang turun pada

Lebih terperinci

Keperluan air irigasi dengan Pola tanam seperti pada Tabel 1. Tabel 1. Pola tanam. antar blok 1 MT blok

Keperluan air irigasi dengan Pola tanam seperti pada Tabel 1. Tabel 1. Pola tanam. antar blok 1 MT blok RINGKASAN 1. Keperluan Air Irigasi Keperluan air irigasi dengan Pola tanam seperti pada Tabel 1. Tabel 1. Pola tanam Tanaman Luas Neto Beda tanam Jumlah Awal tanam Jumlah tanam antar blok 1 MT blok MT1

Lebih terperinci

DAFTAR PUSTAKA LAMPIRAN... 93

DAFTAR PUSTAKA LAMPIRAN... 93 DAFTAR ISI Halaman RINGKASAN... v ABSTRAK... vi KATA PENGANTAR... vii DAFTAR ISI... viii DAFTAR GAMBAR... x DAFTAR TABEL... xii DAFTAR LAMPIRAN... xiii BAB I. PENDAHULUAN... 1 1.1. Latar Belakang... 1

Lebih terperinci

Pengelolaan tanah dan air di lahan pasang surut

Pengelolaan tanah dan air di lahan pasang surut Pengelolaan tanah dan air di lahan pasang surut Pengelolaan Tanah dan Air di Lahan Pasang Surut Penyusun IPG Widjaja-Adhi NP Sri Ratmini I Wayan Swastika Penyunting Sunihardi Setting & Ilustrasi Dadang

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang 1 PENDAHULUAN Latar Belakang Hutan tropis di Indonesia meliputi areal seluas 143 juta hektar dengan berbagai tipe dan peruntukan (Murdiyarso dan Satjaprapdja, 1997). Kerusakan hutan (deforestasi) masih

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Siklus Hidrologi Siklus hidrologi (hydrological cycle) merupakan rangkaian proses perubahan fase dan pergerakan air dalam suatu sistem hidrologi (Hendrayanto 2009). Menurut

Lebih terperinci

Rawa pasang surut adalah rawa yang terletak di pantai atau dekat pantai, di muara atau dekat muara sungai sehingga dipengaruhi oleh pasang surutnya

Rawa pasang surut adalah rawa yang terletak di pantai atau dekat pantai, di muara atau dekat muara sungai sehingga dipengaruhi oleh pasang surutnya PENGETAHUAN RAWA RAWA adalah sumber air berupa genangan air terus menerus atau musiman yang terbentuk secara alamiah merupakan satu kesatuan jaringan sumber air dan mempunyai ciri-ciri khusus secara phisik,

Lebih terperinci

TINJAUAN PUSTAKA. Botani tanaman. Tanaman jagung termasuk dalam keluarga rumput rumputan dengan

TINJAUAN PUSTAKA. Botani tanaman. Tanaman jagung termasuk dalam keluarga rumput rumputan dengan TINJAUAN PUSTAKA Botani tanaman Tanaman jagung termasuk dalam keluarga rumput rumputan dengan spesies Zea mays L. Jagung merupakan tanaman semusim, sama seperti jenis rumput-rumputan yang lain, akar tanaman

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang dihasilkan dibawa oleh udara yang bergerak.dalam kondisi yang

BAB II TINJAUAN PUSTAKA. yang dihasilkan dibawa oleh udara yang bergerak.dalam kondisi yang BAB II TINJAUAN PUSTAKA 2.1. Hidrologi Hidrologi adalah suatu ilmu pengetahuan yang mempelajari tentang kejadian, perputaran dan penyebaran air baik di atmosfir, di permukaan bumi maupun di bawah permukaan

Lebih terperinci

DRAINASE BAWAH PERMUKAAN (SUB SURFACE)

DRAINASE BAWAH PERMUKAAN (SUB SURFACE) BAB 5 DRAINASE BAWAH PERMUKAAN (SUB SURFACE) Tujuan Untuk mengeringkan lahan agar tidak terjadi genangan air apabila terjadi hujan. Lahan pertanian, dampak Genangan di lahan: Akar busuk daun busuk tanaman

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Tanah dan Air Secara Umum Tanah merupakan suatu sistem mekanik yang kompleks terdiri dari bahan padat, cair dan gas. Tanah yang ideal terdiri dari sekitar 50% padatan, 25% cairan,

Lebih terperinci

II. TINJAUAN PUSTAKA. Tanaman kopi merupakan tanaman yang dapat mudah tumbuh di Indonesia. Kopi

II. TINJAUAN PUSTAKA. Tanaman kopi merupakan tanaman yang dapat mudah tumbuh di Indonesia. Kopi II. TINJAUAN PUSTAKA A. Tanaman Kopi Tanaman kopi merupakan tanaman yang dapat mudah tumbuh di Indonesia. Kopi merupakan tanaman dengan perakaran tunggang yang mulai berproduksi sekitar berumur 2 tahun

Lebih terperinci

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di

II. TINJAUAN PUSTAKA. Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di II. TINJAUAN PUSTAKA A. Embung Embung berfungsi sebagai penampung limpasan air hujan/runoff yang terjadi di Daerah Pengaliran Sungai (DPS) yang berada di bagian hulu. Konstruksi embung pada umumnya merupakan

Lebih terperinci

BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA

BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA 4 BAB III METODOLOGI 3.1 METODE ANALISIS DAN PENGOLAHAN DATA Dalam penyusunan Tugas Akhir ini ada beberapa langkah untuk menganalisis dan mengolah data dari awal perencanaan sampai selesai. 3.1.1 Permasalahan

Lebih terperinci

TINJAUAN PUSTAKA. Botani Tanaman. akar-akar cabang banyak terdapat bintil akar berisi bakteri Rhizobium japonicum

TINJAUAN PUSTAKA. Botani Tanaman. akar-akar cabang banyak terdapat bintil akar berisi bakteri Rhizobium japonicum TINJAUAN PUSTAKA Botani Tanaman Susunan akar kedelai pada umumnya sangat baik, pertumbuhan akar tunggang lurus masuk kedalam tanah dan mempunyai banyak akar cabang. Pada akar-akar cabang banyak terdapat

Lebih terperinci

MEMBUAT TANGGUL DAN PENATAAN SISTEM DRAINASE DAPAT MENGURANGI GENANGAN AIRDALAM KOMPLEK PERUMAHAN SUNGAI PAWOH KOTA LANGSA

MEMBUAT TANGGUL DAN PENATAAN SISTEM DRAINASE DAPAT MENGURANGI GENANGAN AIRDALAM KOMPLEK PERUMAHAN SUNGAI PAWOH KOTA LANGSA MEMBUAT TANGGUL DAN PENATAAN SISTEM DRAINASE DAPAT MENGURANGI GENANGAN AIRDALAM KOMPLEK PERUMAHAN SUNGAI PAWOH KOTA LANGSA Fauzi Abdul Gani 1* dan Munardy 2 1,2 Staf Pengajar Jurusan Teknik Sipil Politeknik

Lebih terperinci

IV. HASIL DAN PEMBAHASAN A.

IV. HASIL DAN PEMBAHASAN A. IV. HASIL DAN PEMBAHASAN A. Tata Guna Lahan Tata guna lahan merupakan upaya dalam merencanakan penyebaran penggunaan lahan dalam suatu kawasan yang meliputi pembagian wilayah untuk pengkhususan fungsi-fungsi

Lebih terperinci

BAB V ANALISA DATA. Analisa Data

BAB V ANALISA DATA. Analisa Data BAB V ANALISA DATA 5.1 UMUM Analisa data terhadap perencanaan jaringan drainase sub sistem terdiri dari beberapa tahapan untuk mencapai suatu hasil yang optimal. Sebelum tahapan analisa dilakukan, terlebih

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Kandungan nitrogen tanah bervariasi dari satu tempat ke tempat lainnya. Variasi kandungan nitrogen dalam tanah terjadi akibat perubahan topografi, di samping pengaruh iklim, jumlah

Lebih terperinci

3. List Program Pertanyaan Untuk Ciri-Ciri Asal Terjadinya Tanah. 4. List Program Pertanyaan Untuk Ciri-Ciri Sifat Dan Bentuk Tanah

3. List Program Pertanyaan Untuk Ciri-Ciri Asal Terjadinya Tanah. 4. List Program Pertanyaan Untuk Ciri-Ciri Sifat Dan Bentuk Tanah 1. List Program Untuk Menu Utama MPenjelasan_Menu_Utama.Show 1 2. List Program Untuk Penjelasan Menu Utama MPenjelasan_Tanah.Show 1 3. List Program Pertanyaan Untuk Ciri-Ciri Asal Terjadinya Tanah MSifat_Bentuk2.Show

Lebih terperinci

Oleh Agus Salam Tiara Amran NIM : Fakultas Teknik Sipil dan Lingkungan, Program Studi Teknik Sipil Institut Teknologi Bandung ABSTRAK

Oleh Agus Salam Tiara Amran NIM : Fakultas Teknik Sipil dan Lingkungan, Program Studi Teknik Sipil Institut Teknologi Bandung ABSTRAK STUDI KELAYAKAN PROYEK PEMBUKAAN DAN PENCETAKAN SAWAH DAN INFRASTRUKTUR LAINNYA (PPSI) PADA LAHAN GAMBUT DI KUALA SATONG KABUPATEN KETAPANG KALIMANTAN BARAT Oleh Agus Salam Tiara Amran NIM : 15009064 Fakultas

Lebih terperinci

PENGEMBANGAN SUMBER DAYA AIR (PSDA) Dosen : Fani Yayuk Supomo, ST., MT ATA 2011/2012

PENGEMBANGAN SUMBER DAYA AIR (PSDA) Dosen : Fani Yayuk Supomo, ST., MT ATA 2011/2012 PENGEMBANGAN SUMBER DAYA AIR (PSDA) Dosen : Fani Yayuk Supomo, ST., MT ATA 2011/2012 BAB VI Air Tanah Air Tanah merupakan jumlah air yang memiliki kontribusi besar dalam penyelenggaraan kehidupan dan usaha

Lebih terperinci

Pengelolaan Tanah dan Air di Lahan Pasang Surut

Pengelolaan Tanah dan Air di Lahan Pasang Surut Pengelolaan Tanah dan Air di Lahan Pasang Surut Penyusun IPG Widjaja-Adhi NP. Sri Ratmini I Wayan Swastika Penyunting Sunihardi Setting & Ilustrasi Dadang Suhendar Proyek Penelitian Pengembangan Pertanian

Lebih terperinci

BAB II. TINJAUAN PUSTAKA

BAB II. TINJAUAN PUSTAKA BAB II. TINJAUAN PUSTAKA 2.1 Definisi Daerah Aliran Sungai (DAS) Definisi daerah aliran sungai dapat berbeda-beda menurut pandangan dari berbagai aspek, diantaranya menurut kamus penataan ruang dan wilayah,

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di Laboratorium Lapang Terpadu Fakultas Pertanian

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di Laboratorium Lapang Terpadu Fakultas Pertanian III. BAHAN DAN METODE 3.1 Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di Laboratorium Lapang Terpadu Fakultas Pertanian Universitas Lampung pada bulan Mei-Agustus 2015 di 5 unit lahan pertanaman

Lebih terperinci

TINJAUAN PUSTAKA Padi Gogo

TINJAUAN PUSTAKA Padi Gogo 3 TINJAUAN PUSTAKA Padi Gogo Padi gogo adalah budidaya padi di lahan kering. Lahan kering yang digunakan untuk tanaman padi gogo rata-rata lahan marjinal yang kurang sesuai untuk tanaman. Tanaman padi

Lebih terperinci

TINJAUAN PUSTAKA. Lahan merupakan sumberdaya alam strategis bagi pembangunan di sektor

TINJAUAN PUSTAKA. Lahan merupakan sumberdaya alam strategis bagi pembangunan di sektor II. TINJAUAN PUSTAKA Lahan merupakan sumberdaya alam strategis bagi pembangunan di sektor pertanian, kehutanan, perumahan, industri, pertambangan dan transportasi.di bidang pertanian, lahan merupakan sumberdaya

Lebih terperinci

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir

BAB III METODOLOGI. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir III-1 BAB III METODOLOGI 3.1. Tinjauan Umum Metodologi yang digunakan dalam penyusunan Tugas Akhir dapat dilihat pada Gambar 3.1. Gambar 3.1 Diagram Alir Penyusunan Tugas Akhir III-2 Metodologi dalam perencanaan

Lebih terperinci

Menurut van Steenis (2003), sistematika dari kacang tanah dalam. taksonomi termasuk kelas Dicotyledoneae; ordo Leguminales; famili

Menurut van Steenis (2003), sistematika dari kacang tanah dalam. taksonomi termasuk kelas Dicotyledoneae; ordo Leguminales; famili Menurut van Steenis (2003), sistematika dari kacang tanah dalam taksonomi termasuk kelas Dicotyledoneae; ordo Leguminales; famili Papilionaceae; genus Arachis; dan spesies Arachis hypogaea L. Kacang tanah

Lebih terperinci

PROSEDUR DALAM METODA RASIONAL

PROSEDUR DALAM METODA RASIONAL PROSEDUR DALAM METODA RASIONAL 1. Mulai hitung dari titik terawal (hulu) dari lateral tertinggi dan diteruskan ke titik pertemuan 1. 2. Lanjutkan perhitungan untuk akhir cabang yang masuk ke pertemuan

Lebih terperinci

BAB 2 KAJIAN PUSTAKA

BAB 2 KAJIAN PUSTAKA BAB 2 KAJIAN PUSTAKA 2.1 Peil Banjir Peil Banjir adalah acuan ketinggian tanah untuk pembangunan perumahan/ pemukiman yang umumnya di daerah pedataran dan dipakai sebagai pedoman pembuatan jaringan drainase

Lebih terperinci

2013, No.1041 BAB I PENDAHULUAN A. Latar Belakang

2013, No.1041 BAB I PENDAHULUAN A. Latar Belakang 5 2013, No.1041 LAMPIRAN PERATURAN MENTERI PERTANIAN REPUBLIK INDONESIA NOMOR 79/Permentan/OT.140/8/2013 TENTANG PEDOMAN KESESUAIAN LAHAN PADA KOMODITAS TANAMAN PANGAN PEDOMAN KESESUAIAN LAHAN PADA KOMODITAS

Lebih terperinci

TINJAUAN PUSTAKA. Survei Tanah. potensi sumber dayanya adalah survei. Sebuah peta tanah merupakan salah satu

TINJAUAN PUSTAKA. Survei Tanah. potensi sumber dayanya adalah survei. Sebuah peta tanah merupakan salah satu TINJAUAN PUSTAKA Survei Tanah Salah satu kegiatan yang dilakukan untuk mempelajari lingkungan alam dan potensi sumber dayanya adalah survei. Sebuah peta tanah merupakan salah satu dokumentasi utama sebagai

Lebih terperinci

BIOFISIK DAS. LIMPASAN PERMUKAAN dan SUNGAI

BIOFISIK DAS. LIMPASAN PERMUKAAN dan SUNGAI BIOFISIK DAS LIMPASAN PERMUKAAN dan SUNGAI SUNGAI Air yang mengalir di sungai berasal dari : ALIRAN PERMUKAAN ( (surface runoff) ) ALIRAN BAWAH PERMUKAAN ( (interflow = subsurface flow) ALIRAN AIR TANAH

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Kadar Air Tanah Air merupakan salah satu komponen penting yang dibutuhkan oleh tanaman baik pohon maupun tanaman semusim untuk tumbuh, berkembang dan berproduksi. Air yang

Lebih terperinci

TINJAUAN PUSTAKA. disukai dan popular di daerah-daerah yang memiliki masalah kekurangan air.

TINJAUAN PUSTAKA. disukai dan popular di daerah-daerah yang memiliki masalah kekurangan air. TINJAUAN PUSTAKA Irigasi Tetes Irigasi tetes adalah suatu metode irigasi baru yang menjadi semakin disukai dan popular di daerah-daerah yang memiliki masalah kekurangan air. Irigasi tetes merupakan metode

Lebih terperinci

BAHAN DAN METODE PENELITIAN

BAHAN DAN METODE PENELITIAN BAHAN DAN METODE PENELITIAN Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan April 2011 di lahan percobaan Fakulas Pertanian Universitas Sumatera Utara. Bahan dan Alat Penelitian Adapun

Lebih terperinci

HUBUNGAN TANAH - AIR - TANAMAN

HUBUNGAN TANAH - AIR - TANAMAN MINGGU 2 HUBUNGAN TANAH - AIR - TANAMAN Irigasi dan Drainasi Widianto (2012) TUJUAN PEMBELAJARAN 1. Memahami sifat dan karakteristik tanah untuk menyediakan air bagi tanaman 2. Memahami proses-proses aliran

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 35 BAB V HASIL DAN PEMBAHASAN 5.1 Curah Hujan Data curah hujan yang terjadi di lokasi penelitian selama 5 tahun, yaitu Januari 2006 hingga Desember 2010 disajikan dalam Gambar 5.1. CH (mm) 600 500 400

Lebih terperinci

BAB V KESIMPULAN DAN REKOMENDASI. Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan

BAB V KESIMPULAN DAN REKOMENDASI. Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan BAB V KESIMPULAN DAN REKOMENDASI 5.1 Kesimpulan Berdasarkan hasil analisis mengenai dampak perubahan penggunaan lahan terhadap kondisi hidrologis di Sub Daerah Aliran Ci Karo, maka penulis dapat menarik

Lebih terperinci

DISAIN SALURAN IRIGASI. E f f e n d y Staf Pengajar Jurusan Teknik Sipil Politeknik Negeri Sriwijaya Jln. Srijaya Negara Bukit Besar Palembang 30139

DISAIN SALURAN IRIGASI. E f f e n d y Staf Pengajar Jurusan Teknik Sipil Politeknik Negeri Sriwijaya Jln. Srijaya Negara Bukit Besar Palembang 30139 PILAR Jurnal Teknik Sipil, Volume 7, No., September 01 ISSN: 1907-6975 DISAIN SALURAN IRIGASI E f f e n d y Staf Pengajar Jurusan Teknik Sipil Politeknik Negeri Sriwijaya Jln. Srijaya Negara Bukit Besar

Lebih terperinci