Algoritma Brute Force
|
|
|
- Agus Kurniawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Algoritma Brute Force
2 Definisi Brute Force Brute force adalah sebuah pendekatan yang lempang (straightforward( straightforward) ) untuk memecahkan suatu masalah, biasanya didasarkan pada pernyataan masalah (problem( statement) ) dan definisi konsep yang dilibatkan. Algoritma brute force memecahkan masalah dengan sangat sederhana, langsung dan dengan cara yang jelas (obvious( way).
3 Contoh-contoh Brute Force 1. Menghitung a n (a > 0, n adalah bilangan bulat tak-negatif) a n = a x a x x a (n kali), jika n > 0 = 1, jika n = 0 Algoritma: kalikan 1 dengan a sebanyak n kali
4 2. Menghitung n!! (n( bilangan bulat tak- negatif) n!! = n, jika n > 0 = 1, jika n = 0 Algoritma: kalikan n buah bilangan, yaitu 1, 2, 3,, n,, bersama-sama
5 3. Mengalikan dua buah matrik yang berukuran n n. Misalkan C = A B dan elemen-elemen matrik dinyatakan sebagai c ij, a ij, dan b ij c ij = a b + a b + L i j i j Algoritma: hitung setiap elemen hasil perkalian satu per satu, dengan cara mengalikan dua vektor yang panjangnya n. a in b nj = n k = 1 a ik b kj
6 procedure PerkalianMatriks(input A, B : Matriks, input n : integer, output C : Matriks) { Mengalikan matriks A dan B yang berukuran n n, menghasilkan matriks C yang juga berukuran n n Masukan: matriks integer A dan B, ukuran matriks n Keluaran: matriks C } Deklarasi i, j, k : integer Algoritma for i 1 to n do for j 1 to n do C[i,j] 0 { inisialisasi penjumlah } for k 1 to n do C[i,j] C[i,j] + A[i,k]*B[k,j] endfor endfor endfor Adakah algoritma perkalian matriks yang lebih mangkus daripada brute force?
7 4. Menemukan semua faktor dari bilangan bulat n selain dari 1 dan n itu sendiri. Definisi: Bilangan bulat a adalah faktor dari bilangan bulat b jika a habis membagi b.
8 procedure CariFaktor(input n : integer) { Mencari faktor dari bilangan bulat n selain 1 dan n itu sendiri. Masukan: n Keluaran: setiap bilangan yang menjadi faktor n dicetak. } Deklarasi k : integer Algoritma: k 1 ketemu false for k 2 to n - 1 do if n mod k = 0 then write(k) endif endfor Adakah algoritma pemfaktoran yang lebih baik daripada brute force?
9 5. Mencari elemen terbesar (atau terkecil) Persoalan: Diberikan sebuah himpunan yang beranggotakan n buah bilangan bulat. Bilangan-bilangan bulat tersebut dinyatakan sebagai a 1, a 2,, a n. Carilah elemen terbesar di dalam himpunan tersebut.
10 procedure CariElemenTerbesar(input a 1, a 2,..., a n : integer, output maks : integer) { Mencari elemen terbesar di antara elemen a 1, a 2,..., a n. Elemen terbesar akan disimpan di dalam maks. Masukan: a 1, a 2,..., a n Keluaran: maks } Deklarasi k : integer Algoritma: maks a 1 for k 2 to n do if a k > maks then maks a k endif endfor Kompleksitas algoritma ini adalah O(n).
11 6. Sequential Search Persoalan: Diberikan n buah bilangan bulat yang dinyatakan sebagai a 1, a 2,, a n. Carilah apakah x terdapat di dalam himpunan bilangan bulat tersebut. Jika x ditemukan, maka lokasi (indeks) elemen yang bernilai x disimpan di dalam peubah idx. Jika x tidak terdapat di dalam himpunan tersebut, maka idx diisi dengan nilai 0.
12 procedure PencarianBeruntun(input a 1, a 2,..., a n : integer, x : integer, output idx : integer) { Mencari x di dalam elemen a 1, a 2,..., a n. Lokasi (indeks elemen) tempat x ditemukan diisi ke dalam idx. Jika x tidak ditemukan, maka idx diisi dengan 0. Masukan: a 1, a 2,..., a n Keluaran: idx } Deklarasi k : integer Algoritma: k 1 while (k < n) and (a k x) do k k + 1 endwhile { k = n or a k = x } if a k = x then { x ditemukan } idx k else idx 0 { x tidak ditemukan } endif Kompleksitas algoritma ini adalah O(n). Adakah algoritma pencarian elemen yang lebih mangkus daripada brute force?
13 7. Bubble Sort Apa metode yang paling lempang dalam memecahkan masalah pengurutan? Jawabnya adalah algoritma pengurutan bubble sort. Algoritma bubble sort mengimplementasikan teknik brute force dengan jelas sekali.
14 procedure BubbleSort (input/output L : TabelInt, input n : integer) { Mengurutkan tabel L[1..N] sehingga terurut menaik dengan metode pengurutan bubble sort. Masukan : Tabel L yang sudah terdefenisi nilai-nilainya. Keluaran: Tabel L yang terurut menaik sedemikian sehingga L[1] L[2] L[N]. } Deklarasi i : integer { pencacah untuk jumlah langkah } k : integer { pencacah,untuk pengapungan pada setiap langkah } temp : integer { peubah bantu untuk pertukaran } Algoritma: for i 1 to n - 1 do for k n downto i + 1 do if L[k] < L[k-1] then {pertukarkan L[k] dengan L[k-1]} temp L[k] L[k] L[k-1] L[k-1] temp endif endfor endfor Kompleksitas algoritma ini adalah O(n 2 ). Adakah algoritma pengurutan elemen elemen yang lebih mangkus daripada brute force?
15 8. Uji keprimaan Persoalan: Diberikan sebuah bilangan bilangan bulat positif. Ujilah apakah bilangan tersebut merupakan bilangan prima atau bukan.
16 function Prima(input x : integer) boolean { Menguji apakah x bilangan prima atau bukan. Masukan: x Keluaran: true jika x prima, atau false jika x tidak prima. } Deklarasi k, y : integer test : boolean Algoritma: if x < 2 then { 1 bukan prima } return false else if x = 2 then { 2 adalah prima, kasus khusus } return true else y x test true while (test) and (y 2) do if x mod y = 0 then test false else y y - 1 endif endwhile { not test or y < 2 } return test endif endif Adakah algoritma pengujian bilangan prima yang lebih mangkus daripada brute force?
17 9. Menghitung nilai polinom secara brute force Persoalan: Hitung nilai polinom p(x) ) = a n x n + a n-1 x n a 1 x + a 0 pada titik x = x 0.
18 function polinom(input x0 : real) real { Menghitung nilai p(x) pada x = x0. Koefisien-koefisein polinom sudah disimpan di dalam tabel a. Derajat polinom (n) juga sudah terdefinisi. Masukan: x0 Keluaran: nilai polinom pada x = x0. } Deklarasi i, j : integer p, pangkat : real Algoritma: p 0 for i n downto 0 do pangkat 1 for j 1 to i do {hitung x i } pangkat pangkat * x0 endfor p p + a i * pangkat endfor return p Kompleksitas algoritma ini adalah O(n 2 ).
19 Perbaikan (improve): function polinom2(input x0 : real) real { Menghitung nilai p(x) pada x = x0. Koefisien-koefisein polinom sudah disimpan di dalam tabel a. Derajat polinom (n) juga sudah terdefinisi. Masukan: x0 Keluaran: nilai polinom pada x = x0. } Deklarasi i, j : integer p, pangkat : real Algoritma: p a 0 pangkat 1 for i 1 to n do pangkat pangkat * x0 p p + a i * pangkat endfor return p Kompleksitas algoritma ini adalah O(n). Adakah algoritma perhitungan nilai polinom yang lebih mangkus daripada brute force?
20 Karakteristik Algoritma Brute Force 1. Algoritma brute force umumnya tidak cerdas dan tidak mangkus, karena ia membutuhkan jumlah langkah yang besar dalam penyelesaiannya. Kadang- kadang algoritma brute force disebut juga algoritma naif (naïve algorithm). 2. Algoritma brute force seringkali merupakan pilihan yang kurang disukai karena ketidakmangkusannya itu, tetapi dengan mencari pola-pola yang mendasar, keteraturan, atau trik-trik khusus, biasanya akan membantu kita menemukan algoritma yang lebih cerdas dan lebih mangkus.
21 3. Untuk masalah yang ukurannya kecil, kesederhanaan brute force biasanya lebih diperhitungkan daripada ketidakmangkusannya. Algoritma brute force sering digunakan sebagai basis bila membandingkan beberapa alternatif algoritma yang mangkus.
22 4. Algoritma brute force seringkali lebih mudah diimplementasikan daripada algoritma yang lebih canggih, dan karena kesederhanaannya, kadang-kadang algoritma brute force dapat lebih mangkus (ditinjau dari segi implementasi).
AlgoritmaBrute Force. Desain dan Analisis Algoritma (CS3024)
AlgoritmaBrute Force Desain dan Analisis Algoritma (CS3024) Definisi Brute Force Brute forceadalah sebuah pendekatan yang lempang (straightforward) untuk memecahkan suatu masalah, biasanya didasarkan pada
Algoritma Brute Force (Bagian 1) Oleh: Rinaldi Munir
Algoritma Brute Force (Bagian 1) Oleh: Rinaldi Munir Bahan Kuliah IF2251 Strategi Algoritmik 1 Definisi Brute Force Brute force : pendekatan yang lempang (straightforward) untuk memecahkan suatu masalah
Algoritma Brute Force
Algoritma Brute Force Deskripsi Materi ini membahas tentang algoritma brute force dengan berbagai studi kasus Definisi Brute Force Straighforward (lempeng) Sederhana dan jelas Lebih mempertimbangkan solusi
Algoritma Brute Force Oleh: Rinaldi Munir
Algoritma Brute Force Oleh: Rinaldi Munir Bahan Kuliah IF3051 Strategi Algoritma 1 ?? 2 Definisi Brute Force Brute force : pendekatan yang lempang (straightforward) untuk memecahkan suatu masalah Biasanya
Algoritma Brute Force
Algoritma Brute Force Oleh: Rinaldi Munir Bahan Kuliah IF2211 Strategi Algoritma Program Studi Informatika Sekolah teknik Elektro dan Informatika, ITB, 2014 1 2 Definisi Brute Force Brute force : pendekatan
Kompleksitas Algoritma
Kompleksitas Algoritma Sebuah algoritma tidak saja harus benar, tetapi juga harus mangkus (efisien). Algoritma yang bagus adalah algoritma yang mangkus. Kemangkusan algoritma diukur dari berapa jumlah
Algoritma Brute Force
Algoritma Brute Force Oleh: Rinaldi Munir Bahan Kuliah IF2211 Strategi Algoritma Program Studi Informatika Sekolah teknik Elektro dan Informatika, ITB, 2014 1 2 Definisi Brute Force Brute force : pendekatan
Algoritma Divide and Conquer (Bagian 2)
Algoritma Divide and Conquer (Bagian 2) Bahan Kuliah IF2251 Strategi Algoritmik Oleh: Rinaldi Munir 1 (c) Quick Sort Termasuk pada pendekatan sulit membagi, mudah menggabung (hard split/easy join) Tabel
Pendahuluan. Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien. Algoritma yang bagus adalah algoritma yang efektif dan efisien.
Pendahuluan Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien. Algoritma yang bagus adalah algoritma yang efektif dan efisien. Algoritma yang efektif diukur dari berapa jumlah waktu dan
Algoritma Divide and Conquer. (Bagian 2)
Algoritma Divide and Conquer (Bagian 2) (c) Quick Sort Termasuk pada pendekatan sulit membagi, mudah menggabung (hard split/easy join) Tabel A dibagi (istilahnya: dipartisi) menjadi A1 dan A2 sedemikian
AnalisisFramework. Mengukur ukuran atau jumlah input Mengukur waktu eksekusi Tingkat pertumbuhan Efiesiensi worst-case, best-case dan average-case
AnalisisFramework Review Tujuan analisa : mengukur efesiensi algoritma Efisiensi diukur dari diukur dari: waktu (time) dan memori(space). Dua besaran yang digunakan: kompleksitas algoritma 1. Kompleksitas
Sebuah algoritma tidak saja harus benar, tetapi juga harus mangkus (efisien). Algoritma yang bagus adalah algoritma yang mangkus.
Waktu komputasi (dalam detik) Kompleksitas Algoritma Sebuah algoritma tidak saja harus benar, tetapi juga harus mangkus (efisien). Algoritma yang bagus adalah algoritma yang mangkus. Kemangkusan algoritma
Kompleksitas Algoritma
Kompleksitas Algoritma 1 Pendahuluan Sebuah masalah dapat mempunyai banyak algoritma penyelesaian. Contoh: masalah pengurutan (sort), ada puluhan algoritma pengurutan Sebuah algoritma tidak saja harus
PENCARIAN BERUNTUN (SEQUENTIAL SEARCHING)
PENCARIAN BERUNTUN (SEQUENTIAL SEARCHING) a. Introduction b. Tanpa Boolean c. Dengan Boolean d. Penggunaan dalam Fungsi INTRODUCTION Merupakan algoritma pencarian yang paling sederhana. Proses Membandingkan
Perbandingan Kecepatan/Waktu Komputasi Beberapa Algoritma Pengurutan (Sorting)
Perbandingan Kecepatan/Waktu Komputasi Beberapa Algoritma Pengurutan (Sorting) Indrayana 1, Muhamad Ihsan Fauzi 2 Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi
Kompleksitas Algoritma (1)
Kompleksitas Algoritma (1) Pendahuluan Sebuah algoritma tidak saja harus benar, tetapi juga harus efisien Algoritma yang bagus adalah algoritma yang efisien. Kebutuhan waktu dan ruang suatu algoritma bergantung
Divide and Conqueradalah strategi militer yang dikenal dengan nama divide ut imperes.
Divide and Conquer Divide and Conqueradalah strategi militer yang dikenal dengan nama divide ut imperes. Strategi tersebut menjadi strategi fundamental di dalam ilmu komputer dengan nama Divide and Conquer.
Kompleksitas Algoritma
Kompleksitas Algoritma Bahan Kuliah IF2120 Matematika Disktit Rinaldi M/IF2120 Matdis 1 Rinaldi M/IF2120 Matdis 2 Pendahuluan Sebuah masalah dapat mempunyai banyak algoritma penyelesaian. Contoh: masalah
Matematika Diskrit Kompleksitas Algoritma. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskrit Kompleksitas Algoritma Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Pendahuluan Sebuah masalah dapat mempunyai banyak algoritma penyelesaian. Contoh: masalah pengurutan (sort), ada
Yaitu proses pengaturan sekumpulan objek menurut urutan atau susunan tertentu Acuan pengurutan dibedakan menjadi :
PENGURUTAN Yaitu proses pengaturan sekumpulan objek menurut urutan atau susunan tertentu Acuan pengurutan dibedakan menjadi : 1. Ascending / menaik Syarat : L[1] L[2] L[3] L[N] 2. Descending / menurun
MODUL IV PENCARIAN DAN PENGURUTAN
MODUL IV PENCARIAN DAN PENGURUTAN 4.1 Tujuan Tujuan modul IV ini, adalah: Praktikan bisa membuat beberapa program pencarian berdasarkan metode algoritma pencarian Praktikan bisa membuat beberapa program
Kompleksitas Algoritma
Kompleksitas Algoritma Pendahuluan Sebuah algoritma tidak saja harus benar, tetapi juga harus mangkus (efisien). Algoritma yang bagus adalah algoritma yang mangkus. Kemangkusan algoritma diukur dari berapa
Perbandingan Algoritma Brute Force dan Backtracking dalam Permainan Word Search Puzzle
Perbandingan Algoritma Brute Force dan Backtracking dalam Permainan Word Search Puzzle Veren Iliana Kurniadi 13515078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
Kuliah ke : 4 Algoritma & Stuktur Data. Pengurutan (Sorting)
Kuliah ke : 4 Algoritma & Stuktur Data Pengurutan (Sorting) Pengurutan adalah proses mengatur sekumpulan obyek menurut urutan atau susunan tertentu. Urutan obyek tersebut dapat menaik atau menurun. Bila
Algoritma Runut-balik (Backtracking) Bahan Kuliah IF2251 Strategi Algoritmik Oleh: Rinaldi Munir
Algoritma Runut-balik (Backtracking) Bahan Kuliah IF2251 Strategi Algoritmik Oleh: Rinaldi Munir 1 Pendahuluan Runut-balik (backtracking) adalah algoritma yang berbasis pada DFS untuk mencari solusi persoalan
Algoritma Brute Force (lanjutan)
Algoritma Brute Force (lanjutan) Contoh-contoh lain 1. Pencocokan String (String Matching) Persoalan: Diberikan a. teks (text), yaitu (long) string yang panjangnya n karakter b. pattern, yaitu string dengan
Design and Analysis Algorithm
Design and Analysis Algorithm Pertemuan 05 Drs. Achmad Ridok M.Kom Imam Cholissodin, S.Si., M.Kom M. Ali Fauzi, S.Kom., M.Kom. Ratih Kartika Dewi, ST, M.Kom 1 Contents 31 1.1 Algoritma Brute Force Exhaustive
Pengurutan (Sorting) Algoritma Pemrograman
Pengurutan (Sorting) Algoritma Pemrograman [email protected] 1 Definisi Sorting /pengurutan proses mengatur sekumpulan obyek menurut urutan atau susunan tertentu. Bentuk susunan/urutan : Ascending menaik/membesar
PENGURUTAN (SORTING) 1. Introduction 2. Bubble Sort 3. Selection Sort 4. Insertion Sort
PENGURUTAN (SORTING) 1. Introduction 2. Bubble Sort 3. Selection Sort 4. Insertion Sort INTRODUCTION Pengurutan merupakan proses mengatur sekumpulan obyek menurut aturan atau susunan tertentu. Urutan obyek
Pengurutan (Sorting) Keuntungan Data Terurut. Pengurutan Terbagi Dua Kelompok:
Pengurutan (Sorting) Pengurutan adalah proses mengatur sekumpulan obyek menurut urutan atau susunan tertentu. Urutan obyek tersebut dapat menaik atau menurun. Bila N obyek disimpan dalam larik L, maka
Penerapan Algoritma Brute Force dalam mencari Faktor Prima pada suatu Bilangan
Penerapan Algoritma Brute Force dalam mencari Faktor Prima pada suatu Bilangan Widhaprasa Ekamatra Waliprana - 13508080 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
Algoritma dan Struktur Data
Algoritma dan Struktur Data Mia Fitriawati, M.Kom FUNGSI Modul program yang mengembalikan/ memberikan (return) sebuah nilai yang bertipe sederhana. tipe data sederhana : integer, real, boolean, dan string
Strategi Algoritma Penyelesaian Puzzle Hanjie
Strategi Algoritma Penyelesaian Puzzle Hanjie Whilda Chaq 13511601 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
Algoritma Runut-balik (Backtracking) Bagian 1
Algoritma Runut-balik (Backtracking) Bagian 1 Pendahuluan Algoritma Runut-balik (backtracking) adalah algoritma yang berbasis pada DFS untuk mencari solusi persoalan secara lebih mangkus. Runut-balik,
Algoritma Brute Force(lanjutan) Lecture 6 CS3024
Algoritma Brute Force(lanjutan) Lecture 6 CS3024 String Matching Persoalan: Diberikan a. teks (text), yaitu (long) stringyang panjangnya n karakter b. pattern, yaitu string dengan panjang m karakter (m
Kompleksitas Algoritma
Kompleksitas Algoritma Pendahuluan Mengapa kita memerlukan algoritma yang mangkus? Waktu komputasi (dalam detik) 10 5 10 4 10 3 10 2 1 0 1 10-1 1 hari 1 jam 1 detik 1 menit 5 1 0 1 5 2 0 10-4 x 2 n 10-6
Algoritma Divide and Conquer (Bagian 1)
Algoritma Divide and Conquer (Bagian 1) Bahan Kuliah IF2251 Strategi Algoritmik Oleh: Rinaldi Munir 1 Divide and Conquer dulunya adalah strategi militer yang dikenal dengan nama divide ut imperes. Sekarang
ANALISIS ALGORITMA. Disusun Oleh: Analisis Masalah dan Running Time. Adam Mukharil Bachtiar Teknik Informatika UNIKOM
ANALISIS ALGORITMA Analisis Masalah dan Running Time Disusun Oleh: Adam Mukharil Bachtiar Teknik Informatika UNIKOM [email protected] AGENDA PERKULIAHAN DEFINISI MASALAH f x = a 0 + a n cos nπx +
Decrease and Conquer
Decrease and Conquer Bahan Kuliah IF2211 Strategi Algoritma Oleh: Rinaldi Munir Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 1 Decrease and conquer: metode desain algoritma
Algoritma Brute Force (Bagian 2) Oleh: Rinaldi Munir Bahan Kuliah IF2251 Strategi Algoritmik
Algoritma Brute Force (Bagian 2) Oleh: Rinaldi Munir Bahan Kuliah IF2251 Strategi Algoritmik 1 Contoh-contoh lain 1. Pencocokan String (String Matching) Persoalan: Diberikan a. teks (text), yaitu (long)
LOOPING. Brigida Arie Minartiningtyas, M.Kom
LOOPING Brigida Arie Minartiningtyas, M.Kom Program yang efisien adalah program yang memungkinkan pengguna bekerja sesedikit mungkin dan komputer bekerja sebanyak mungkin. Kondisi perulangan Ekspresi boolean
Pendahuluan. Algoritma greedy merupakan metode yang paling populer untuk memecahkan persoalan optimasi.
Algoritma Greedy Pendahuluan Algoritma greedy merupakan metode yang paling populer untuk memecahkan persoalan optimasi. Persoalan optimasi (optimization problems): persoalan mencari solusi optimum. Hanya
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bab ini berisi landasan dan dasar teori yang akan digunakan dalam melakukan analisis, perancangan, dan implementasi tugas akhir yang dilakukan pada bab-bab selanjutnya. 2.1 Bar Steel
Searching [pencarian] Algoritma Pemrograman
Searching [pencarian] Algoritma Pemrograman [email protected] 1 Jenis Pencarian Pencarian Internal proses pencarian dilakukan pada memori utama (RAM). Pencarian Eksternal proses pencarian dilakukan
PENGGUNAAN BRUTE FORCE UNTUK MERETAS PASSWORD FILE RAR
PENGGUNAAN BRUTE FORCE UNTUK MERETAS PASSWORD FILE RAR Fajar Zaki Al Faris NIM : 13505084 Program studi Teknik Informatika, STEI, Institut Teknologi Bandung Jln. Ganesha 10, Bandung e-mail: [email protected]
PERBANDINGAN KOMPLEKSITAS ALGORITMA PENCARIAN BINER DAN ALGORITMA PENCARIAN BERUNTUN
PERBANDINGAN KOMPLEKSITAS ALGORITMA PENCARIAN BINER DAN ALGORITMA PENCARIAN BERUNTUN Yudhistira NIM 13508105 Mahasiswa Program Studi Teknik Informatika ITB Jalan Ganesha No.10 Bandung e-mail: [email protected]
DIKTAT STRUKTUR DATA Oleh: Tim Struktur Data IF
DIKTAT STRUKTUR DATA Oleh: Tim Struktur Data IF ARRAY STATIS (lanjutan) OPERASI ARRAY STATIS (lanjutan) 3. Pencarian (searching) array Proses menemukan suatu data yang terdapat dalam suatu array. Proses
ANTIMAGIC PUZZLE. Alwi Afiansyah Ramdan
ANTIMAGIC PUZZLE Alwi Afiansyah Ramdan 135 08 099 Program Studi Teknik Informatika Institut Teknologi Bandung Jl. Ganesha 10, Bandung e-mail: [email protected] ABSTRAK Makalah ini membahas tentang
Algoritma Pemrograman
Algoritma Pemrograman Pertemuan Ke-2 (Teks Algoritma) Noor Ifada [email protected] S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Pendahuluan Judul Algoritma Deklarasi Deskripsi Translasi
BAB VI SEARCHING (PENCARIAN)
BAB VI SEARCHING (PENCARIAN) 7. 1 Pencarian Beruntun (Sequential Search) Prinsip kerja pencarian beruntun adalah membandingkan setiap elemen larik satu per satu secara beruntun, mulai dari elemen pertama
*** SELAMAT MENGERJAKAN
SOAL : Diketahui data dalam bentuk ARRAY 2 dimensi sebagai berikut : 70 50 6 77 37 12 94 75 81 58 75 47 67 14 35 33 63 9 49 97 57 6 90 92 41 18 48 92 36 22 80 11 50 21 17 Buatlah algoritma dan tuliskan
1. Kompetensi Mengenal dan memahami algoritma percabangan yang komplek.
LAB SHEET ALGORITMA DAN STRUKTUR DATA Semester : 4 Percabangan Komplek dan case of 200 menit No. : LST/EKA/EKA 305/03 Revisi : Tgl. : Hal. 1 dari 3 hal. 1. Kompetensi Mengenal dan memahami algoritma percabangan
Algoritma Brute Force (lanjutan)
Algoritma Brute Force (lanjutan) Contoh lain Mencari Pasangan Titik yang Jaraknya Terdekat Persoalan: Diberikan n buah titik (2-D atau 3- D), tentukan dua buah titik yang terdekat satu sama lain. y p 5
SEQUENTIAL SEARCH 11/11/2010. Sequential Search (Tanpa Variabel Logika) untuk kondisi data tidak terurut
Tujuan Searching & Sorting Pertemuan 9-10 Dosen Pembina Danang Junaedi TUJUAN MATERI Setelah mengikuti materi pertemuan ini, mahasiswa diharapkan dapat 1. Menjelaskan dan menggunakan metode pencarian dalam
Algoritma Runut-balik (Backtracking)
Algoritma Runut-balik (Backtracking) Bahan Kuliah IF2211 Strategi Algoritma Oleh: Rinaldi Munir Program Studi Informatika STEI-ITB 1 2 Pendahuluan Backtracking dapat dipandang sebagai salah satu dari dua
Algoritma dan Kompleksitas Algoritma
Algoritma dan Kompleksitas Algoritma Algoritma Algoritma adalah urutan logis langkah-langkah penyelesaian masalah yang ditinjau secara sistematis. Asal Usul Algoritma Kata ini tidak muncul dalam kamus
ALGORITMA PENGURUTAN & PENCARIAN
Materi kuliah ALGORITMA PENGURUTAN & PENCARIAN Ir. Roedi Goernida, MT. ([email protected]) Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung 2011 1 Pengelompokan
STRUKTUR DASAR ALGORITMA
STRUKTUR DASAR ALGORITMA Tujuan Mahasiswa mampu memecahkan masalah dalam sebuah algoritma pemecahan masalah menggunakan struktur pemilihan dan pengulangan. Mahasiswa mengetahui struktur program bahasa
Penerapan Algoritma Brute Force di Permainan Nonogram
Penerapan Algoritma Brute Force di Permainan Nonogram Aurelia 13512099 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Algoritma greedy merupakan metode yang paling populer untuk memecahkan persoalan optimasi.
Algoritma greedy merupakan metode yang paling populer untuk memecahkan persoalan optimasi. Persoalan optimasi (optimization problems): persoalan mencari solusi optimum. Hanya ada dua macam persoalan optimasi:
Algoritma Pemrograman
Algoritma Pemrograman Pertemuan Ke-7 (Pengulangan atau Looping [2]) Noor Ifada [email protected] S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Struktur WHILE Struktur REPEAT WHILE vs REPEAT
Design and Analysis of Algorithm
Design and Analysis of Algorithm Week 6: Brute Force Algorithm Part 1: Design Strategy Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry
Pencarian. 1. Memahami konsep pencarian 2. Mengenal beberapa algoritma pencarian 3. Menerapkan algoritma pencarian dalam program
Pencarian Overview Pencarian merupakan sebuah algoritma dasar yang sering diperlukan dalam pembuatan program. Berbagai algoritma pencarian telah diciptakan dan dapat digunakan. Pemahaman tentang beberapa
Struktur Pengulangan
ALGORITMA & STRUKTUR DATA1 Mia Fitriawati S.Kom, M.Kom Struktur Pengulangan Struktur pengulangan secara umum terdiri atas dua bagian: Kondisi pengulangan Badan (body) pengulangan Struktur pengulangan secara
Bubble Sort (Pengurutan Gelembung / Pemberatan)
Pertemuan XIII, XIV - PENGURUTN Pengertian lgoritma Pengurutan dibuat untuk menghasilkan kumpulan data yang terurut. Jenis da banyak jenis pengurutan. Tiga jenis yang paling sederhana adalah Bubble Sort,
PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: [email protected]
PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: [email protected] Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu
FUNGSI MINGGU KE: 4 TUJUAN: Mahasiswa dapat memahami definisi fungsi. Mahasiswa dapat mendefinisikan fungsi. Mahasiswa dapat menggunakan fungsi.
FUNGSI MINGGU KE: 4 TUJUAN: Mahasiswa dapat memahami definisi fungsi. Mahasiswa dapat mendefinisikan fungsi. Mahasiswa dapat menggunakan fungsi. TEORI PENGANTAR: Definisi Fungsi Fungsi adalah sub-program
Penerapan Algoritma Backtracking pada Pewarnaan Graf
Penerapan Algoritma Backtracking pada Pewarnaan Graf Deasy Ramadiyan Sari 1, Wulan Widyasari 2, Eunice Sherta Ria 3 Laboratorium Ilmu Rekayasa dan Komputasi Departemen Teknik Informatika, Fakultas Teknologi
PERBANDINGAN APLIKASI ALGORITMA BRUTE-FORCE DAN KOMBINASI ALGORITMA BREADTH FIRST SEARCH DAN GREEDY DALAM PENCARIAN SOLUSI PERMAINAN TREASURE HUNT
PERBANDINGAN APLIKASI ALGORITMA BRUTE-FORCE DAN KOMBINASI ALGORITMA BREADTH FIRST SEARCH DAN GREEDY DALAM PENCARIAN SOLUSI PERMAINAN TREASURE HUNT Adi Purwanto Sujarwadi (13506010) Program Studi Teknik
PENGULANGAN. pencacah harus bertipe integer atau karakter pernyataan adalah satu atau lebih instruksi yang. Pernyataan
Algoritma dan Pemrograman 2 PENGULANGAN Struktur pengulangan terdiri atas : Kondisi pengulangan : ekspresi boolean Badan pengulangan Inisialisasi Terminasi Instruksi (pernyataan) pengulangan 1. for 2.
ANALISIS PERBANDINGAN ALGORITMA SELECTION SORT DENGAN MERGE SORT
ANALISIS PERBANDINGAN ALGORITMA SELECTION SORT DENGAN MERGE SORT Disusun untuk memenuhi tugas UTS mata kuliah : Analisis Algoritma Oleh : Eka Risky Firmansyah 1110091000043 Program Studi Teknik Informatika
MODUL PRAKTIKUM PERCABANGAN DAN PENGULANGAN
PERCABANGAN DAN PENGULANGAN Pada BAB ini akan membahas tentang PERCABANGAN dan PERULANGAN. PERCABANGAN : a) IF THEN b) CASE OF PENGULANGAN: a) REPEAT N TIMES b) REPEAT UNTIL c) WHILE DO d) ITERATE STOP
ALGORITMA DIVIDE AND CONQUER
ALGORITMA DIVIDE AND CONQUER By Gapra. Email : [email protected] 1. Pengertian Algoritma Divide and Conquer merupakan algoritma yang sangat populer di dunia Ilmu Komputer. Divide and Conquer merupakan
STRUKTUR DASAR ALGORITMA DAN PEMROGRAMAN STMIK AMIKOM YOGYAKARTA
STRUKTUR DASAR ALGORITMA DAN PEMROGRAMAN STMIK AMIKOM YOGYAKARTA Khusnawi, S.Kom, M.Eng 2010 ( Structure(pErulanGan RePetiTion Pendahuluan Saat membuat suatu program setiap instruksi bisa dimulai dari
BAB V SORTING (PENGURUTAN) INTERNAL
BAB V SORTING (PENGURUTAN) INTERNAL Sorting Internal : Proses pengurutan sekelompok data yang berada didalam memori utama komputer. Sorting External : Proses pengurutan sekelompok data yang sebagian saja
Pencarian pada Array. Tim PHKI Modul Dasar Pemrograman Fakultas Ilmu Komputer UDINUS Semarang
Pencarian pada Array Tim PHKI Modul Dasar Pemrograman Fakultas Ilmu Komputer UDINUS Semarang Latar Belakang Merupakan proses yang penting karena sering dilakukan terhadap sekumpulan data yang disimpan
c. Hasil pencarian berupa nilai Boolean yang menyatakan status hasil pencarian. Versi 1 (Pembandingan elemen dilakukan sebagai kondisi pengulangan)
ALGORITMA PENCARIAN MINGGU KE: 9 TUJUAN: Mahasiswa dapat memahami masalah pencarian. Mahasiswa dapat memahami algoritma pencarian beruntun. Mahasiswa dapat memahami algoritma pencarian beruntun Versi 1
Algoritma Pemrograman
Algoritma Pemrograman Pertemuan Ke-7 (Pengulangan atau Looping [2]) :: Noor Ifada :: S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Struktur WHILE Struktur REPEAT S1 Teknik Informatika-Unijoyo 2 Struktur
MAKALAH ALGORITMA DIVIDE AND CONQUER
MAKALAH ALGORITMA DIVIDE AND CONQUER Galih Pranowo Jurusan Matematika Ilmu Komputer FAKULTAS SAINS TERAPAN INSTITUT SAINS & TEKNOLOGI AKPRIND YOGYAKARTA 1. Pengertian Algoritma Divide and Conquer merupakan
Algoritma Pemrograman
Algoritma Pemrograman Pertemuan Ke-2 (Teks Algoritma) :: Noor Ifada :: S1 Teknik Informatika-Unijoyo 1 Sub Pokok Bahasan Pendahuluan Judul Algoritma Deklarasi Deskripsi Translasi Teks Algoritma ke dalam
Penerapan Algoritma Greedy dalam Pencarian Rantai Penjumlahan Terpendek
Penerapan Algoritma Greedy dalam Pencarian Rantai Penjumlahan Terpendek Irwan Kurniawan 135 06 090 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl Ganesha 10, Bandung e-mail: [email protected]
Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma
Soal dan Jawaban Materi Graf, Pohon, dan Kompleksitas Algoritma POHON 1. Ubahlah graf berikut ini dengan menggunakan algoritma prim agar menjadi pohon merentang minimum dan tentukan bobot nya! 2. Diberikan
ALGORITMA DAN PEMROGRAMAN 2. 3 SKS By : Sri Rezeki Candra Nursari
ALGORITMA DAN PEMROGRAMAN 2 3 SKS By : Sri Rezeki Candra Nursari MATERI Teks/string Pointer File Struktur Kelas/Class Konstruktor dan Destruktor Kelas dan Obyek Overloading Operator Inheritance (Pewarisan)
Sieve of Eratosthenes, Algoritma Bilangan Prima
Sieve of Eratosthenes, Bilangan Prima M. R. Al-ghazali NIM. 13509068 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
Algoritma Brute Force pada Fluid Particle Engine
Algoritma Brute Force pada Fluid Particle Engine Alfian Ramadhan 13509078 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
ALGORITMA RUNUT-BALIK UNTUK MENGGANTIKAN ALGORITMA BRUTE FORCE DALAM PERSOALAN N-RATU
ALGORITMA RUNUT-BALIK UNTUK MENGGANTIKAN ALGORITMA BRUTE FORCE DALAM PERSOALAN N-RATU Nur Cahya Pribadi-NIM: 13505062 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung
Array. Teknik Informatika Politeknik Negeri Batam
Array Teknik Informatika Politeknik Negeri Batam Pendahuluan Array Array A 1 158 2 157 3 162 4 169 5 172 6 155 7 170 8 163 Isi A[1] adalah 158 Isi A[2] adalah 157 Isi A[8] adalah 163 Struktur data statik
Algoritma Pencarian String dalam Pemilihan Anggota Sebuah Organisasi
Algoritma Pencarian String dalam Pemilihan Anggota Sebuah Organisasi Kevin Alfianto Jangtjik / 13510043 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Algoritma dan Pemrograman Searching/Pencarian
Adam Mukharil Bachtiar Informatics Engineering 2011 Algoritma dan Pemrograman Searching/Pencarian Materi Definisi Pencarian Pencarian Sekuensial Pencarian Biner Definisi Pencarian All About Searching Definisi
Algoritma dan Pemrograman 2 PENGURUTAN
Algoritma dan Pemrograman 2 PENGURUTAN III. METODE PENGURUTAN SISIPAN (INSERTION SORT) Metode ini melakukan pengurutan dengan cara menyisipkan elemen array pada posisi yang tepat. Pencarian posisi yang
CCH1A4 / Dasar Algoritma & Pemrogramanan
CCH1A4 / Dasar Algoritma & Pemrogramanan Yuliant Sibaroni M.T, Abdurahman Baizal M.Kom KK Modeling and Computational Experiment Pencarian dalam Tabel Pendahuluan Pencarian Sekuensial Pencarian Sekuensial
Algoritma Shell Sort Ascending Dan Binary Sequential Search Menggunakan C
TUGAS STRUKTUR DATA Shell Sort Ascending Dan Binary Sequential Search Menggunakan C IF-5 Nama Anggota : - Rohendi 10107193 - Andri Andriyan 10107210 - Yuli Yanti A 10107218 - Jajang Kusmita 10107227 JURUSAN
CCH1A4 / Dasar Algoritma & Pemrogramanan
CCH1A4 / Dasar Algoritma & Pemrogramanan Yuliant Sibaroni M.T, Abdurahman Baizal M.Kom KK Modeling and Computational Experiment Tabel Pendahuluan Deklarasi Tabel Pengaksesan Tabel Program dengan Tabel
STRUKTUR DASAR ALGORITMA
STRUKTUR DASAR ALGORITMA Pertemuan 5 Muhamad Haikal, S.Kom., MT Struktur Dasar Algoritma 1. Struktur Sequence (Runtunan) 2. Struktur Selection (Pemilihan) 3. Struktur Repetition (Perulangan) Struktur Sequence
Penerapan Algoritma Brute Force pada Teka-teki Magic Square 3 x 3
Penerapan Algoritma Brute Force pada Teka-teki Magic Square 3 x 3 Dzar Bela Hanifa 13515007 Teknik Informatika Institut Teknologi Bandung Bandung, Indonesia [email protected] Abstract Teka-teki
Algoritma dan Pemrograman 2 PENCARIAN
Algoritma dan Pemrograman 2 PENCARIAN Pencarian (searching) merupakan proses yang fundamental dalam pengolahan data. Proses pencarian adalah menemukan nilai (data) tertentu didalam sekumpulan data yang
Algoritma & Pemrograman
Algoritma & Pemrograman PENGULANGAN Pendahuluan Salah satu kelebihan komputer dibandingkan dengan manusia adalah kemampuannya untuk melaksanakan suatu instruksi berulang kali tanpa mengenal lelah dan bosan.
Penerapan Algoritma Runut-balik pada Permainan Math Maze
Penerapan Algoritma Runut-balik pada Permainan Math Maze Angela Lynn - 13513032 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
SEARCHING. Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
SEARCHING Pencarian data (searching) yang sering juga disebut dengan table look-up atau storage and retrieval information, adalah suatu proses untuk mengumpulkan sejumlah informasi di dalam pengingat komputer
Design and Analysis of Algorithms CNH2G3- Week 6 Brute Force Algorithm Part 1: Design Strategy
Design and Analysis of Algorithms CNH2G3- Week 6 Brute Force Algorithm Part 1: Design Strategy Dr. Putu Harry Gunawan (PHN) Daftar Isi 1 Introduction and Definitions........................... 2 2 Contoh-contoh
