ARTIFICIAL INTELLIGENCE
|
|
|
- Ade Setiabudi
- 9 tahun lalu
- Tontonan:
Transkripsi
1 ARTIFICIAL INTELLIGENCE Team teaching: Sri Winiarti, Andri Pranolo, dan Anna Hendri SJ Andri Pranolo W : apranolo.tif.uad.ac.id M : E : [email protected] Informatics Engineering, Universitas Ahmad Dahlan, Yogyakarta
2 POKOK BAHASAN 1. Masalah, Ruang Keadaan, dan Pencarian 2. Refresentasi Pengetahuan 3. Metode Inferensi 4. Penalaran (Penentuan Ketidakpastian dan Keyakinan) 5. Sistem Pakar 6. Pengolahan Bahasa Alami 7. Jaringan Syaraf Tiruan 8. Logika Fuzzy 9. Algoritma Genetika
3 15 OKTOBER 2015 Pokok Bahasan : Representasi Pengetahuan Outcome: Mahasiswa memahami representasi pengetahuan yang umum digunakan dalam Kecerdasan Buatan Referensi: [1] Kusumadewi, S. Artificial Intelligence: Teknik dan Aplikasinya, Graha Ilmu, Yogyakarta, 2003 [2] Komputer Masa Depan, Pengenalan Artificial Intelligence, Suparman & Marlan, Andi Offset, 2007 [3] Konsep Kecerdasan Buatan: Anita Desiani & Muhammad Arhami, Andi Offset, 2006 [4] Artificial Intelligence, Searching, Reasoning, Planning, and Learning, Suyanto, Penerbit Informatika, 2007 [5] Bahan-bahan dari Internet
4 1. REPRESENTASI Representasi secara umum: Deskripsi Dunia ideal (tidak hanya sekedar simbolik) Simbolis Representasi internal: memerlukan bahasa simbol yang umum, di mana kita dapat mengekspresikan dan memanipulasi proposisi tentang dunia Pilihan bagus untuk representasi simbolik dengan bahasa logika Namun, beberapa persiapan harus dibuat...
5 2. PENGETAHUAN Definisi umum : fakta atau kondisi sesuatu atau keadaan yang timbul karena suatu pengalaman. Diklasifikasikan menjadi 3 Procedural Knowledge Declarative Knowledge Tacit Knowledge
6 2.1. Procedural knowledge : Bagaimana melakukan sesuatu Bagaimana mendidihkan air dalam mangkok Bagaimana memasak mie instan Bagaimana menjalankan mobil 2.2. Declarative knowledge : Mengetahui sesuatu itu benar atau salah Fakultas Teknologi Industri mempunyai 4 program studi. Dekan Fakultas Teknologi Informasi adalah Kartika Firdausy, S.T, M.T Tacit knowledge : Tidak dapat diungkapkan dengan bahasa Bagaimana kita menggerakkan tangan Bagaimana memejamkan mata
7 3. REPRESENTASI PENGETAHUAN Metode yang digunakan untuk mengodekan pengetahuan dalam sebuah sistem cerdas (ex. sistem pakar) Dimaksudkan untuk Menangkap sifat-sifat penting problema Membuat informasi itu dapat diakses oleh prosedur pemecahan problema Karakteristik representasi pengetahuan Dapat diprogram dengan bahasa komputer dan disimpan dalam memori Fakta dan pengetahuan lain yang terkandung di dalamnya dapat digunakan untuk melakukan penalaran
8 Bagaimana merepresentasikan pengetahuan ke dalam basis pengetahuan dan menguji kebenaran penalaran Cara-cara lama: List, digunakan pada LISP Predicate Calculus, digunakan pada Prolog Tree, untuk heuristic search Harus terdiri dari struktur data dan prosedur untuk penafsiran Hal yang berhubungan dengan RP: Object pengetahuan itu sendiri Event: kejadian-kejadian dalam dunia nyata dan hubungannya Performa: bagaimana melakukan suatu tugas tertentu Meta knowledge: pengetahuan tentang pengetahuan yang direpresentasikan
9 4. PENGGUNAAN PENGETAHUAN Acuisition: mengintegrasikan informasi baru kedalam pengetahuan sistem. Dua level: Menyusun fakta ke dalam database Pembuatan fungsi untuk mengintegrasikannya dengan cara belajar dan mengadaptasikannya terlebih dahulu Retrieval: mengingat kembali, menyusun ulang pengetahuan berdasarkan hubungan pengetahuan terhadap masalah Linking: mengekstrak informasi baru tersebut Lumping: mengelompokkan hasil ekstraksi pengetahuan baru tersebut kedalam struktur yang lebih besar seperti yang dibutuhkan dalam menyelesaikan masalah Reasoning: pengetahuan digunakan untuk menalar suatu permasalahan Formal reasoning: menggunakan logika proporsional Procedural reasoning: menggunakan aturan produksi ( IF-THEN) Analogical reasoning: sangat sulit
10 5. MODEL/TEKNIK REPRESENTASI PENGETAHUAN Pengetahuan dapat direpresentasikan dalam bentuk yang sederhana atau kompleks, tergantung dari masalahnya. (Schnupp, 1989) Beberapa model/teknik representasi pengetahuan 1. Logika (logic) 2. List 3. Jaringan semantik (semantic nets) 4. Bingkai (frame) 5. Tabel Keputusan (decision table) 6. Graph/Pohon Keputusan (decision tree) 7. Kaidah/aturan produksi (production rule) 8. Naskah (script)
11 Klasifikasi kategori representasi pengatahuan menurut Mylopoulus dan Levesque: Representasi Logika: menggunakan logika formal. Digunakan pada PROLOG Representasi Prosedural: menggambarkan prosedur sebagai kumpulan instruksi untuk memecahkan masalah. Digunakan dalam pemrograman: IF-THEN Representasi Network: menggambarkan pengetahuan sebagai Graph dan Tree Representasi Terstruktur: memperluas konsep Representsi Network dengan membuat node-nodenya menjadi struktur data yang kompleks. Contoh: script, frame, dan object
12 MODEL/TEKNIK REPRESENTASI PENGETAHUAN
13 5.1. LOGIKA Adalah representasi pengetahuan yang paling tua. Proses menarik kesimpulan dari fakta yang sudah ada Input: premis-premis dan Ouput: kesimpulan Terdiri dari: sintaks (simbol), semantik (fakta), dan proses pengambilan keputusan (inferensi) Proses penalaran: Deduktif (umum-khusus) Induktif (khusus-umum) Logika (disebut logika komputasional): Logika Preposisi: and, or, not, implikasi, dan ekuivalensi Logika Predikat: representasi fakta dalam bentuk well formed formula Lihat dibuku Artificial Intelligence (Sri Kusuma Dewi)
14 14 Suatu pengkajian ilmiah tentang serangkaian penalaran, sistem kaidah, dan prosedur yang membantu penalaran. Komputer harus dapat menggunakan proses penalaran deduktif dan induktif ke dalam bentuk yang sesuai dengan manipulasi komputer, yaitu logika simbolik atau matematika
15 PENALARAN DEDUKTIF Bergerak dari penalaran umum menuju ke konklusi khusus Atau pernyataan premis dan inferensi Premis Mayor Premis Minor Konklusi Contoh Premis mayor : Jika hujan turun saya tidak akan kuliah Premis minor : Pagi ini hujan turun Konklusi : Oleh karena itu pagi ini saya tidak akan kuliah
16 PENALARAN INDUKTIF Bergerak dari masalah khusus ke masalah umum Menggunakan sejumlah fakta atau premis yang mantap untuk menarik kesimpulan umum Contoh Premis 1 : Aljabar adalah pelajaran yang sulit Premis 2 : Geometri adalah pelajaran yang sulit Premis 3 : Kalkulus adalah pelajaran yang sulit Konklusi : Matematika adalah pelajaran yang sulit Konklusi tidak selalu mutlak, dapat berubah jika ditemukan fakta baru Contoh Premis 4 : AI adalah pelajaran yang sulit
17 5.1.3 LOGIC: PROPOSITION LOGIC P Q P AND Q T T T T F F F T F F F F P Q P OR Q T T T T F T F T T F F F P Q P Q T T T T F F F T T F F T P Q P Q T T T T F F F T F F F T
18 LIST Struktur sederhana untuk representasi pengetahuan Daftar dari rangkaian materi yang terkait List digunakan untuk objek yang dikelompokkan, dikategorikan atau digabungkan
19 TREE / POHON Struktur sederhana untuk representasi pengetahuan Merupakan struktur grafik hirarki
20 JARINGAN SEMANTIK Struktur sederhana untuk representasi pengetahuan grafis yang menunjukkan hubungan antar berbagai objek
21 FRAME Frame kumpulan pengetahuan tentang suatu objek tertentu, peristiwa, lokasi, situasi, berdasarkan pengalaman Frame memiliki slot yang menggambarkan rincian (atribut) dan karakteristik objek. Hirarki Frame susunan hirarki dari frame mengijinkan pewarisan frame
22 HIRARKI FRAME 22
23 HIRARKI FRAME 23
24 5.6 TABEL KEPUTUSAN (DECISION TABLE) 24 Tabel keputusan dalam format tabel Tabel dibagi 2 bagian pertama untuk atribut & bagian kedua untuk nilai & kesimpulan
25 POHON KEPUTUSAN (DECISION TREE) Pohon keputusan mudah dikonversi ke dalam bentuk aturan (rule)
26 Contoh : Gejala Utama : Daun Menguning (GU1) No Penyakit Gejala pendukung Tanda G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 T1 T2 T3 1. Embun tepung 2. Damping off 3. Embun Jelaga 4. Karat puru 5. Antraknosa 6. Busuk akar x x x x x x 7. Madu x x x x X 8. Kanker Kaidah 1. IF daun menguning AND daun pucat AND daun rontok AND layu AND terdapat tubuh buah AND terdapat miselium AND terdapat spora THEN busuk akar Kaidah 2. IF daun menguning AND daun pucat AND daun rontok AND layu AND terdapat miselium AND terdapat spora THEN madu
27 5.8. SCRIPT Mirip dengan frame, merepresentasikan pengetahuan berdasarkan pengalaman-pengalaman Frame menggambarkan obyek, sedangkan script menggambarkan urutan peristiwa Elemen script: Kondisi input: start, awal Track: variasi yang mungkin terjadi Prop: obyek pendukung Role: peran yang dimainkan oleh suatu obyek Scence: adegan yang terjadi Hasil (result): kondisi akhir yang terjadi
28 28 NASKAH (SCRIPT) Naskah sama dengan frame, bedanya menggambarkan urutan peristiwa Elemen script meliputi : 1. Kondisi input kondisi yang harus dipenuhi 2. Track variasi yang mungkin terjadi 3. Prop berisi objek-objek pendukung 4. Role peran yang dimainkan oleh seseorang 5. Scene adegan yang dimainkan 6. Hasil kondisi yang ada setelah urutan peristiwa dalam script terjadi.
29 29 CONTOH NASKAH (SCRIPT) Berikut ini adalah contoh script kejadian yang ada di Ujian Akhir Jalur (track) : ujian tertulis matakuliah Kecerdasan Buatan Role (peran) : mahasiswa, pengawas Prop (pendukung) : lembar soal, lembar jawab, presensi, pena, dll Kondisi input : mahasiswa terdaftar untuk mengikuti ujian Adegan (scene) -1 : Persiapan pengawas Pengawas menyiapkan lembar soal Pengawas menyiapkan lembar jawab Pengawas menyiapkan lembar presensi Adegan-2 : Mahasiswa masuk ruangan Pengawas mempersilahkan mahasiswa masuk Pengawas membagikan lembar soal Pengawas membagikan lembar jawab Pengawas memimpin doa
30 30 Adegan 3 : Mahasiswa mengerjakan soal ujian Mahasiswa menuliskan identitas di lembar jawab Mahasiswa menandatangai lembar jawab Mahasiswa mengerjakan soal Mahasiswa mengecek jawaban Adegan 4 : Mahasiswa telah selesai ujian Pengawas mempersilahkan mahasiswa keluar ruangan Mahasiswa mengumpulkan kembali lembar jawab Mahasiswa keluar ruangan
31 31 Adegan 5 : Mahasiswa mengemasi lembar jawab Pengawas mengurutkan lembar jawab Pengawas mengecek lembar jawab dan presensi Pengawas meninggalkan ruangan Hasil : Mahasiswa merasa senang dan lega Mahasiswa merasa kecewa Mahasiswa pusing Mahasiswa memaki maki Mahasiswa sangat bersyukur
32 SCHEMAS: SCRIPTS
33 5.9. ATURAN PRODUKSI Paling populer (sejak tahun 1943-Post, Chomsky, 1972-Alan Newell) Terdiri dari antecedent/premis/situasi dan konsekuen/kesimpulan/tindakan Digambarkan dalam IF-THEN rules Digunakan pada Sistem Pakar Contoh: IF temp > 30 C THEN hidupkan AC IF permintaan meningkat AND persediaan menipis THEN pemesanan barang IF pelamar <= 25 OR lulusan komputer THEN bisa diterima menjadi pegawai
34 Memiliki 3 elemen: Global Database: mulai dari matriks sederhana, list, atau basis data untuk menyimpan aturan produksi dan memory kerja Aturan Produksi: berisi aturan IF-THEN Sistem Kontrol: program pengkontrol urutan mana aturan kaidah-kaidah produksi yang harus dipilih dan menyelesaikan konflik pada saat pemilihan
35 35 2 metode penalaran yang menggunakan aturan : Forward Reasoning (penalaran maju) Pelacakan dimulai dari keadaan awal (informasi atau fakta yang ada) dan kemudian dicoba untuk mencocokkan dengan tujuan yang diharapkan Gunakan jika jumlah keadaan awal lebih kecil daripada tujuan & kejadian itu berupa fakta baru Backward Reasoning (Penalaran mundur) Penalaran dimulai dari tujuan atau hipotesa, baru dicocokkan dengan keadaan awal atau fakta-fakta yang ada. Jika jumlah keadaan awal lebih banyak daripada tujuan Jika kejadian itu berupa query
36 CONTOH FORWARD REASONING 36 R1 : IF suku bunga turun THEN harga obligasi naik R2 : IF suku bunga naik THEN harga obligasi turun R3 : IF suku bunga tidak berubah THEN harga obligasi tidak berubah R4 : IF dolar naik THEN suku bunga turun R5 : IF dolar turun THEN suku bunga naik R6 : IF harga obligasi turun THEN beli obligasi Apabila diketahui bahwa dolar turun, apa keputusan yang diambil, apakah akan membeli obligasi atau tidak Forward Reasoning : Dari fakta dolar turun, berdasarkan Rule 5, diperoleh konklusi suku bunga naik. Dari Rule 2, suku bunga naik menyebabkan harga obligasi turun. Dengan Rule 6, jika harga obligasi turun, maka kesimpulan yang diambil adalah membeli obligasi.
37 CONTOH BACKWARD REASONING 37 R1 : IF suku bunga turun THEN harga obligasi naik R2 : IF suku bunga naik THEN harga obligasi turun R3 : IF suku bunga tidak berubah THEN harga obligasi tidak berubah R4 : IF dolar naik THEN suku bunga turun R5 : IF dolar turun THEN suku bunga naik R6 : IF harga obligasi turun THEN beli obligasi Apabila diketahui bahwa dolar turun, apa keputusan yang diambil, apakah akan membeli obligasi atau tidak Backward Reasoning : Dari solusi yaitu membeli obligasi dengan menggunakan Rule 6 diperoleh anteseden harga obligasi turun Dari Rule 2 dibuktikan harga obligasi turun bernilai benar jika suku bunga naik bernilai benar. Dari Rule 5 suku bunga naik memang bernilai benar karena diketahui fakta dolar turun.
38 RESOLUSI KONFLIK Urutkan aturan berdasarkan prioritas, kemudian pilih aturan pertama yang memiliki prioritas tertinggi Pilih aturan yang paling strict (ketat) Pilih aturan yang paling sering digunakan Pilih aturan yang paling akhir dimasukkan di dalam sistem Pilih semua aturan yang memungkinkan
39 METODE PENALARAN Forward reasoning (data driven): dimulai dari keadaan awal (dari fakta), kemudian menuju ke arah kesimpulan / tujuan Backward reasoning (goal driven): dimulai dari tujuan / hipotesa baru dicocokkan dengan keadaan awal / fakta-fakta
40 ALASAN PEMILIHAN METODE Tergantung dari banyaknya keadaan awal dan tujuan. Jika jml awal lebih kecil dari tujuan gunakan penalaran maju. Jika jml tujuan lebih banyak dari awal, gunakan penalaran mundur
KECERDASAN BUATAN REPRESENTASI PENGETAHUAN (PART - II) ERWIEN TJIPTA WIJAYA, ST., M.KOM
KECERDASAN BUATAN REPRESENTASI PENGETAHUAN (PART - II) ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH List Tree / Pohon Jaringan Semantik Frame Tabel Keputusan Pohon Keputusan Naskah (Script) Sistem
Artificial Intelegence EKA YUNIAR
Artificial Intelegence EKA YUNIAR Pokok Bahasan Representasi Pengetahuan Jaringan Semantik Knowledge Base The first step in constructing an AI program is to build a knowledge base Will be used by the inference
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Basis Pengetahuan Langkah pertama dalam membuat sistem kecerdasan buatan adalah membangun basis pengetahuan Digunakan oleh motor inferensi dalam menalar dan mengambil kesimpulan
KECERDASAN BUATAN REPRESENTASI PENGETAHUAN (PART - I) ERWIEN TJIPTA WIJAYA, ST., M.KOM
KECERDASAN BUATAN REPRESENTASI PENGETAHUAN (PART - I) ERWIEN TJIPTA WIJAYA, ST., M.KOM KERANGKA MASALAH Logika Logika Predikat Pengukuran Kuantitas PENGETAHUAN Diklasifikasikan menjadi 3 : 1. Procedural
Dua bagian dasar sistem kecerdasan buatan (menurut Turban) : dalam domain yang dipilih dan hubungan diantara domain-domain tersebut
REPRESENTASI PENGETAHUAN (MINGGU 3) Pendahuluan Dua bagian dasar sistem kecerdasan buatan (menurut Turban) : - Basis pengetahuan : Berisi fakta tentang objek-objek dalam domain yang dipilih dan hubungan
MATERI 5. Representasi Pengetahuan
MATERI 5 Representasi Pengetahuan FAKTA DAN RELASI Prolog terdiri dari kumpulan data-data objek yang merupakan suatu fakta. Fakta menunjukkan suatu keadaan atau situasi nyata maka fakta selalu benar. Contoh
ARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCE Team teaching: Sri Winiarti, Andri Pranolo, dan Anna Hendri SJ Andri Pranolo W : apranolo.tif.uad.ac.id M : 081392554050 E : [email protected] Informatics Engineering,
BAB IV REPRESENTASI PENGETAHUAN
BAB IV REPRESENTASI PENGETAHUAN Dua bagian dasar sistem kecerdasan buatan (menurut Turban) - Basis pengetahuan : Berisi fakta tentang objek-objek dalam domain yang dipilih dan hubungan diantara domain-domain
Knowledge Representation
Kecerdasan Buatan Pertemuan 2 Knowledge Representation IT-EEPIS Basis Pengetahuan Langkah pertama untuk membangun Kecerdasan Buatan adalah bagaimana membangun sebuah knowledge base Selanjutnya kita akan
Representasi Pengetahuan dan Penalaran
Representasi Pengetahuan dan Penalaran PENGETAHUAN Pengetahuan (knowledge) adalah pemahaman secara praktis maupun teoritis terhadap suatu obyek atau domain tertentu. Pengetahuan merupakan hal yang penting
ARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCE Team teaching: Sri Winiarti, Andri Pranolo, dan Anna Hendri SJ Andri Pranolo W : apranolo.tif.uad.ac.id M : 081392554050 E : [email protected] Informatics Engineering,
Representasi Pengetahuan. Oleh : Cahyo Anggoro Seto Yusuf Hadi
Representasi Pengetahuan Oleh : Cahyo Anggoro Seto Yusuf Hadi Representasi Pengetahuan merepresentasikan pengetahuan ke dalam basis pengetahuan dan menguji kebenaran penalaran Suatu sistem walaupun mempunyai
BAB I PENDAHULUAN. Perkembangan komputer sekarang ini sangat pesat dan salah. satu pemanfaatan komputer adalah dalam bidang kecerdasan buatan.
BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan komputer sekarang ini sangat pesat dan salah satu pemanfaatan komputer adalah dalam bidang kecerdasan buatan. Di dalam bidang kecerdasan buatan, termasuk
REPRESENTASI PENGETAHUAN (KNOWLEDGE REPRESENTATION)
REPRESENTASI PENGETAHUAN (KNOWLEDGE REPRESENTATION) KNOWLEDGE IS POWER! Pengetahuan adalah kekuatan! Representasi Pengetahuan : Definisi dlm ES: Metode yang digunakan untuk mengkodekan pengetahuan dalam
BAB 2 TINJAUAN TEORI. Artificial Intelligence. Jika diartikan Artificial memiliki makna buatan,
BAB 2 TINJAUAN TEORI 2.1 Kecerdasan Buatan Kecerdasan buatan adalah sebuah istilah yang berasal dari bahasa Inggris yaitu Artificial Intelligence. Jika diartikan Artificial memiliki makna buatan, sedangkan
Representasi Pengetahuan
Representasi Pengetahuan Representasi masalah state space Pengetahuan dan kemampuan melakukan penalaran merupakan bagian terpenting dari sistem yang menggunakan AI. Cara representasi pengetahuan: Logika
REPRESENTASI PENGETAHUAN. Pertemuan 6 Diema Hernyka Satyareni, M. Kom
REPRESENTASI PENGETAHUAN Pertemuan 6 Diema Hernyka Satyareni, M. Kom KOMPETENSI DASAR Mahasiswa dapat merepresentasi pengetahuan dalam Sistem Intelegensia MATERI BAHASAN Logika Jaringan Semantik Frame
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Representasi pengetahuan adalah cara untuk menyajikan pengetahuan yang diperoleh ke dalam suatu skema/diagram tertentu sehingga dapat diketahui relasi antara suatu pengetahuan
BAB III TEORI DASAR SISTEM PAKAR DAN SISTEM KONTROL BERBASIS SISTEM PAKAR 20 BAB III TEORI DASAR SISTEM PAKAR DAN SISTEM KONTROL BERBASIS SISTEM PAKAR
SISTEM PAKAR 20 BAB III TEORI DASAR SISTEM PAKAR DAN SISTEM KONTROL BERBASIS SISTEM PAKAR 3.1 Sistem Pakar Sistem pakar adalah suatu program komputer cerdas yang menggunakan knowledge (pengetahuan) dan
BAB III REPRESENTASI PENGETAHUAN
BAB III REPRESENTASI PENGETAHUAN Basis pengetahuan dan kemampuan untuk melakukan penalaran merupakan bagian terpenting dari sistem yang menggunakan kecerdasan buatan. Meskipun suatu sistem memiliki banyak
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1. Kecerdasan Buatan Artificial Intelligence atau kecerdasan buatan merupakan salah satu bagian ilmu komputer yang membuat agar mesin (komputer) dapat melakukan pekerjaan seperti
BAB V REPRESENTASI PENGETAHUAN
BAB V REPRESENTASI PENGETAHUAN A. Pengenalan Representasi Pengetahuan Dalam menyelesaian masalah tentu membutuhkan pengetahuan pengetahuan yang cukup. Selain itu sistem harus bissa untuk menalar. Representasi
Artificial intelligence
Artificial intelligence Team teaching: Sri Winiarti, Andri Pranolo, dan Anna Hendri SJ Andri Pranolo W : apranolo.tif.uad.ac.id M : 081392554050 E : [email protected] Informatics Engineering,
Dian Wirdasari, S.Si.,M.Kom
IntelijensiBuatan Dian Wirdasari, S.Si.,M.Kom IntelijensiBuatan Materi-4 Representasi Pengetahuan-1 Dian Wirdasari, S.Si.,M.Kom Definisi: fakta atau kondisi sesuatu atau keadaan yg timbul karena suatu
Knowledge Representation
Entiti Representasi Pengetahuan Knowledge Representation By: Uro Abdulrohim, S.Kom, MT Fakta Adalah kejadian sebenarnya, fakta ini yang akan kita representasikan Representasi dari fakta Bagaimana cara
Sistem Pakar untuk Mendiagnosa Penyakit Kucing Menggunakan Metode Backward Chaining
Sistem Pakar untuk Mendiagnosa Penyakit Kucing Menggunakan Metode Backward Chaining Mardiah Fadhli Politeknik Caltex Riau Jl. Umbansari No.1, telp/fax: 0761 53939/0761 554224 e-mail: [email protected] Abstrak
TK36301 PENGANTAR KECERDASAN BUATAN
RENCANA PEMBELAJARAN SEMESTER (RPS) TK36301 PENGANTAR KECERDASAN BUATAN DISUSUN OLEH : APRIANTI PUTRI SUJANA, S.KOM., M.T. PROGRAM STUDI S1 SISTEM KOMPUTER FAKULTAS TEKNIK DAN ILMU KOMPUTER UNIVERSITAS
Kecerdasan Buatan (Artificial Intelligence) Muhammad Dahria
Kecerdasan Buatan (Artificial Intelligence) Muhammad Dahria Abstrak Kecerdasan Buatan (Artificial Intelligence) merupakan salah satu bagian dari ilmu komputer yang mempelajari bagaimana membuat mesin (komputer)
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Sistem Cerdas 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
Artificial Intelligence. uthie 1
Artificial Intelligence uthie 1 Cabang-cabang AI 1. Logical AI Logika (matematis) yang merepresentasikan sekumpulan fakta dan tujuan ---> RUANG KEADAAN: Graph Tree uthie 2 Cabang-cabang AI 2. Search Pencarian
Sistem Pakar. Pertemuan 2. Sirait, MT
Sistem Pakar Pertemuan 2 Definisi Sistem pakar adalah suatu program komputer yang dirancang untuk mengambil keputusan seperti keputusan yang diambil oleh seorang atau beberapa orang pakar. Menurut Marimin
L ctur er: M. Mift Mi ak ft ul Am A i m n i,,s. Kom om,. M. M. ng.
POLITEKNIK NEGERI SRIWIJAYA Jurusan Teknik Komputer Program Studi D3 Teknik Komputer Lecturer: M. Miftakul Amin, S. Kom., M. Eng. Intelegensi Buatan Sesi 1 Pengantar Intelegensi Buatan 2015 Intelegensi
Kelas A & B Jonh Fredrik Ulysses, ST.
Kelas A & B Jonh Fredrik Ulysses, ST [email protected] Knowledge / pengetahuan merupakan kunci utama dari sistem pakar. Analoginya dengan ekspresi klasik dari Wirth adalah: Algoritma + Struktur
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124907 / Sistem Cerdas Revisi 4 Satuan Kredit Semester : 2 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam seminggu :
Expert System. Siapakah pakar/ahli. Pakar VS Sistem Pakar. Definisi
Siapakah pakar/ahli Expert System Seorang pakar atau ahli adalah: seorang individu yang memiliki kemampuan pemahaman superior dari suatu masalah By: Uro Abdulrohim, S.Kom, MT Definisi Program komputer
SISTEM PRODUKSI (PRODUCTION SYSTEM) -Muhlis Tahir-
SISTEM PRODUKSI (PRODUCTION SYSTEM) -Muhlis Tahir- Sistem yang menggunakan aturan-aturan untuk merepresentasikan pengetahuan dinamakan productions system. Production system, ada 3 bagian : Rule base /
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Representasi Pengetahuan (Knowledge Representation) dimaksudkan untuk menangkap sifatsifat penting masalah dan membuat infomasi dapat diakses oleh prosedur pemecahan masalah. Bahasa
SATUAN ACARA PERKULIAHAN(SAP)
SATUAN ACARA PERKULIAHAN(SAP) Nama Mata Kuliah : Kecerdasan Buatan Kode Mata Kuliah : SI 044 Bobot Kredit : 3 SKS Semester Penempatan : 3 Kedudukan Mata Kuliah : Mata Kuliah Prasyarat : - Penanggung Jawab
PEMANFAATAN TEKNOLOGI KNOWLEDGE-BASED EXPERT SYSTEM UNTUK MENGIDENTIFIKASI JENIS ANGGREK DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN JAVA
Yogyakarta, 22 Juli 2009 PEMANFAATAN TEKNOLOGI KNOWLEDGE-BASED EXPERT SYSTEM UNTUK MENGIDENTIFIKASI JENIS ANGGREK DENGAN MENGGUNAKAN BAHASA PEMROGRAMAN JAVA Ana Kurniawati, Marliza Ganefi, dan Dyah Cita
LEMBAR TUGAS MAHASISWA ( LTM )
LEMBAR TUGAS MAHASISWA ( LTM ) SISTEM PAKAR Program Studi Teknik Informatika Program Strata Satu (S1) Tahun 2015 NIM NAMA KELAS :. :.. :. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER NUSAMANDIRI Jakarta
Pengetahuan 2.Basis data 3.Mesin Inferensi 4.Antarmuka pemakai (user. (code base skill implemetation), menggunakan teknik-teknik tertentu dengan
Bab II TINJAUAN PUSTAKA 2.1 Pengertian Sistem Pakar Sistem pakar (expert system) adalah sistem yang berusaha mengapdosi pengetahuan manusia ke komputer, agar komputer dapat menyelesaikan masalah seperti
RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS)
RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) 1. Nama Matakuliah : KECERDASAN BUATAN 2. Kode/SKS : IES5353 / 3 sks 3. Semester : 5 4. Sifat Mata Kuliah : Wajib 5. Prasyarat : Tidak ada 6.
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah Kode / SKS Program Studi Fakultas : Sistem : IT012234 / 2 SKS : Sistem Komputer : Ilmu Komputer & Teknologi Informasi 1 Review Sistem Mahasiswa mengingat mbali konsep serta ruang lingkup dan
SATUAN ACARA PERKULIAHAN MATA KULIAH : PENGANTAR KECERDASAN BUATAN (AK ) (**) FAKULTAS / JURUSAN : TEKNIK INFORMATIKA / S-1 SKS/SEMESTER : 2/8
SATUAN ACARA PERKULIAHAN MATA KULIAH : PENGANTAR KECERDASAN BUATAN (AK-045218) (**) FAKULTAS / JURUSAN : TEKNIK INFORMATIKA / S-1 SKS/SEMESTER : 2/8 Minggu Pokok Bahasan Ke Dan TIU 1 Pengenalan (KB) 2
Sistem Pakar Metode Inferensi 1. Kelas A & B Jonh Fredrik Ulysses, ST
Sistem Pakar Metode Inferensi 1 Kelas A & B Jonh Fredrik Ulysses, ST [email protected] Pengantar Bab ini akan mendiskusikan berbagai macam metode penalaran atau inferensi. Topik ini merupakan topik
Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004
Seminar Nasional Aplikasi Teknologi Informasi 2004 Yogyakarta, 19 Juni 2004 Visualisasi Sistem Pakar Dalam Menganalisis Tes Kepribadian Manusia (Empat Aspek Tes Kepribadian Peter Lauster) Sri Winiarti
INTELEGENSI BUATAN. Pertemuan 4,5 Representasi Pengetahuan. M. Miftakul Amin, M. Eng. website :
INTELEGENSI BUATAN Pertemuan 4,5 Representasi Pengetahuan M. Miftakul Amin, M. Eng. e-mail: [email protected] website : http://mafisamin.web.ugm.ac.id Jurusan Teknik Komputer Jurusan Teknik Komputer
H. A. Simon [1987] : Rich and Knight [1991]:
H. A. Simon [1987] : Kecerdasan buatan (artificial intelligence) merupakan kawasan penelitian, aplikasi dan instruksi yang terkait dengan pemrograman komputer untuk melakukan sesuatu hal yang - dalam pandangan
BAB II DASAR TEORI. Sistem pakar atau Expert System biasa disebut juga dengan knowledge
BAB II DASAR TEORI 2.1 Sistem Pakar 2.1.1 Pengertian Sistem Pakar Sistem pakar atau Expert System biasa disebut juga dengan knowledge based system yaitu suatu aplikasi komputer yang ditujukan untuk membantu
RANCANGAN SISTEM PAKAR DENGAN METODE FORWARD CHAINING DAN HETEROASSOCOATIVE MEMORY UNTUK MENDETEKSI TINGKAT DEPRESI SESEORANG
RANCANGAN SISTEM PAKAR DENGAN METODE FORWARD CHAINING DAN HETEROASSOCOATIVE MEMORY UNTUK MENDETEKSI TINGKAT DEPRESI SESEORANG Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Depresi
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54605 / Kecerdasan Buatan Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Februari 2014 Jml Jam kuliah dalam seminggu
PENGEMBANGAN SISTEM PAKAR DALAM MEMBANGUN SUATU APLIKASI
PENGEMBANGAN SISTEM PAKAR DALAM MEMBANGUN SUATU APLIKASI Muhammad Dahria Program Studi Sistem Informasi, STMIK Triguna Dharma [email protected] ABSTRACT: Expert system is one branch of AI (Artificial
Sistem Pakar untuk Mendiagnosa Penyakit yang Disebabkan Nyamuk dengan Metode Forward Chainning
Nur Nafi iyah dkk: Sistem Pakar untuk Mendiagnosa Penyakit 20 Sistem Pakar untuk Mendiagnosa Penyakit yang Disebabkan Nyamuk dengan Metode Forward Chainning Nur Nafi iyah dan Endang Setyati Program Pascasarjana
INFERENCE & EXPLANATION TEKNIK PENARIKAN KESIMPULAN & MEMBERI PENJELASAN
INFERENCE & EXPLANATION TEKNIK PENARIKAN KESIMPULAN & MEMBERI PENJELASAN Pendahuluan Inferensi adalah suatu program komputer yang merupakan suatu algoritma yang mengontrol beberapa proses penalaran dan
1. PENGANTAR KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE)
1. PENGANTAR KECERDASAN BUATAN (ARTIFICIAL INTELLIGENCE) 1.1 DEFINISI KECERDASAN BUATAN Definisi Kecerdasan Buatan H. A. Simon [1987] : Kecerdasan buatan (artificial intelligence) merupakan kawasan penelitian,
2/22/2017 IDE DASAR PENGANTAR SISTEM PAKAR MODEL SISTEM PAKAR APLIKASI KECERDASAN BUATAN
APLIKASI KECERDASAN BUATAN PENGANTAR SISTEM PAKAR Shinta P. Sari Prodi. Informatika Fasilkom UIGM, 2017 Definisi : Sebuah program komputer yang dirancang untuk memodelkan kemampuan menyelesaikan masalah
INTELEGENSI BUATAN. Sistem Pakar. M. Miftakul Amin, M. Eng. website :
INTELEGENSI BUATAN Sistem Pakar M. Miftakul Amin, M. Eng. e-mail: [email protected] website : http://mafisamin.web.ugm.ac.id Jurusan Teknik Komputer Politeknik Negeri Sriwijaya Palembang 2015 1 Definisi
Jurnal Komputasi. Vol. 1, No. 1, April Pendahuluan. Hal 1 dari 90
Pengembangan Sistem Pakar Berbasis Web Mobile untuk Mengidentifikasi Penyebab Kerusakan Telepon Seluler dengan Menggunakan Metode Forward dan Backward Chaining 1 Wamiliana 2 Aristoteles 3 Depriyanto 1
KECERDASAN BUATAN Artificial intelligence TRI WAHYUDI TIPA 15
KECERDASAN BUATAN Artificial intelligence TRI WAHYUDI 1530055401001 TIPA 15 DAFTAR isi BAB I pengantar kecerdasan buatan BAB II Bidang Ilmu Ai BAB III Machine Learning BAB I PENGANTAR KECERDASAN BUATAN
Semoga Tuhan memberi berkah pada kelas ini.
Semoga Tuhan memberi berkah pada kelas ini. 1 TUJUAN Agar mahasiswa memahami Sistem Pakar Agar mahasiswa dapat memahami aplikasi dan penerapan dari sistem pakar 2 MATERI POKOK Pertemuan Pokok Bahasan ke-
SILABUS ATIFICIAL INTELIGENCE
Kode Formulir : FM-STMIK MDP-KUL-04.02/R3 SILABUS ATIFICIAL INTELIGENCE A. IDENTITAS MATA KULIAH Program Studi Mata Kuliah Kode Bobot Semester : 6 Mata kuliah prasyarat : - : Sistem Informasi : Artificial
MENGENAL SISTEM PAKAR
MENGENAL SISTEM PAKAR Bidang teknik kecerdasan buatan yang paling popular saat ini adalah system pakar. Ini disebabkan penerapannya diberbagai bidang, baik dalam pengembangan ilmu pengetahuan dan terutama
Pengenalan Kecerdasan Buatan (KB)
Pengenalan Kecerdasan Buatan (KB) Pengertian Kecerdasan Buatan VS Kecerdasan Alami Komputasi KB VS Komputasi Konvensional Sejarah KB Lingkup KB Soft Computing Referensi Luger & Stubblefield - bab 1 Sri
APLIKASI SISTEM PAKAR UNTUK MENGIDENTIFIKASI PENYAKIT DALAM PADA MANUSIA MENGGUNAKAN METODE FORWARD CHAINING
APLIKASI SISTEM PAKAR UNTUK MENGIDENTIFIKASI PENYAKIT DALAM PADA MANUSIA MENGGUNAKAN METODE FORWARD CHAINING 1 Diah Malis Oktaviani (0089), 2 Tita Puspitasari (0365) Program Studi Teknik Informatika Universitas
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Strategi Pembelajaran KONTRAK KULIAH DAN PREVIEW MATERI. PENGENALAN KECERDASAN BUATAN a.
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54605 / Kecerdasan Buatan 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot
BAB II LANDASAN TEORI. tubuh. Bagi tubuh, kulit mempunyai fungsi yang sangat penting dan fungsi ini
BAB II LANDASAN EORI 2.1. Penyakit Kulit Kulit merupakan salah satu panca indera manusia yang terletak di permukaan tubuh. Bagi tubuh, kulit mempunyai fungsi yang sangat penting dan fungsi ini sepertinya
BAB 2 LANDASAN TEORI. berkonsultasi dengan seorang pakar atau ahli. Seorang pakar adalah seseorang yang
BAB 2 LANDASAN TEORI 2.1 Sistem Pakar Ketika dihadapkan pada sebuah kasus dan diharuskan membuat suatu keputusan yang komplek untuk memecahkan suatu masalah, tidak jarang kita meminta nasehat atau berkonsultasi
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Farah Zakiyah Rahmanti, M.T Overview Definisi Representasi Pengetahuan Entitas Representasi Pengetahuan Kategori dari Representasi Ilustrasi Representasi Pengetahuan Logika Contoh
---Sistem Pakar--- By Anjik Sukmaaji
Sistem Berbasis Aturan ---Sistem Pakar--- By Anjik Sukmaaji Objectives Review Pertemuan-1 Rules Based Sistem Inferensi Forward Chaining Studi Kasus I : Identifikasi Binatang Inferensi Backward Chaining
Untung Subagyo, S.Kom
Untung Subagyo, S.Kom Keahlian ahli/pakar pengalihan keahlian Mengambil keputusan Aturan kemampuan menjelaskan Keahlian bersifat luas dan merupakan penguasaan pengetahuan dalam bidang khusus yang diperoleh
Jurnal Mahajana Informasi, Vol.1 No 2, 2016 e-issn: SIMULASI PERGERAKAN CHESS KNIGHT DALAM PAPAN CATUR
SIMULASI PERGERAKAN CHESS KNIGHT DALAM PAPAN CATUR Dini MH. Hutagalung Program Studi Sistem Informasi Universitas Sari Mutiara Indonesia [email protected] ABSTRAK Sistem produksi ( production system) merupakan
INFERENSI DAN PENALARAN. PERTEMUAN 8 Oleh : Diema Hernyka Satyareni, M.Kom
INFERENSI DAN PENALARAN PERTEMUAN 8 Oleh : Diema Hernyka Satyareni, M.Kom Strategi Penalaran Runut Maju / Forward Chaining Runut Balik / Backward Chaining Forward Chaining Penalaran dimulai dari keadaan
SATUAN ACARA PERKULIAHAN MATA KULIAH INTELIGENSI BUATAN (TK) KODE / SKS : KK / 4 SKS
SATUAN ACARA PERKULIAHAN MATA KULIAH INTELIGENSI BUATAN (TK) KODE / SKS : KK-014420 / 4 SKS Minggu Pokok Bahasan dan 1 1. Konsep dasar AI 2 memahami konsep dasar AI 2. Penyelesaian Masalah berdasarkan
Backward Chaining & Forward Chaining UTHIE
Backward Chaining & Forward Chaining UTHIE Inferensi merupakan proses untuk menghasilkan informasi dari fakta yang diketahui atau diasumsikan. Inferensi adalah konklusi logis (logical conclusion) atau
PEMAKAI SISTEM PAKAR UTHIE
SISTEM PAKAR KONSEP sistem berbasis komputer yang menggunakan pengetahuan, fakta dan teknik penalaran dalam memecahkan masalah yang biasanya hanya dapat dipecahkan oleh seorang pakar dalam bidang tersebut.
PENERAPAN POHON PELACAKAN DALAM MENCARI LINTASAN YANG DAPAT DILALUI OLEH SEEKOR SEMUT PADA BIDANG KARTESIAN DENGAN METODE BREADTH FIRST SEARCH
PENERAPAN POHON PELACAKAN DALAM MENCARI LINTASAN YANG DAPAT DILALUI OLEH SEEKOR SEMUT PADA BIDANG KARTESIAN DENGAN METODE BREADTH FIRST SEARCH Rosdianah Mahasiswa Program Studi Teknik Informatika STMIK
Kecerdasan Bab 3: 3/18/2015
Kecerdasan Bab 3: Prio Handoko, S. Kom., M.T.I. Program Studi Teknik Informatika Universitas Pembangunan Jaya Jl. Boulevard - Bintaro Jaya Sektor VII Tangerang Selatan Banten 15224 Kompetensi Dasar Mahasiswa
REPRESENTASI PENGETAHUAN
REPRESENTASI PENGETAHUAN Reasoning, Jaringan Semantik, Frame, Script Farah Zakiyah Rahmanti, M.T 2015 Overview Reasoning Jaringan Semantik Frame Script Reasoning Reasoning Reasoning adalah cara merepresentasikan
Wawan Yunanto
Algoritma Backward Chaining pada Rule-Based Expert System Wawan Yunanto [email protected] http://www.pcr.ac.id/~wawan Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan
UNIVERSITAS GUNADARMA
QUIZ PENGANTAR KECERDASAN BUATAN Kelompok : Hasbi Nur Haqi (50407406) (Ketua) M. Isramuddin (50407572) Septo Aditiyo (50407796) Yusup Bachtiar (50407929) Kelas : 4IA03 UNIVERSITAS GUNADARMA 2010 Soal dan
KECERDASAN BUATAN Artificial Intelligence (AI)
KECERDASAN BUATAN Artificial Intelligence (AI) Pengertian AI Putu Putra Astawa S.Kom.,M.kom [email protected] Ptputraastawa.wordpress.com Kedudukan Ilmu Kecerdasan Buatan Kecerdasan? Kecerdasan berasal
APLIKASI SHELL SISTEM PAKAR
APLIKASI SHELL SISTEM PAKAR Yeni Agus Nurhuda 1, Sri Hartati 2 Program Studi Teknik Informatika, Sekolah Tinggi Manajemen Informatika dan Komputer Teknokrat Lampung Jl. Z.A. Pagar Alam 9-11 Labuhan Ratu,
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan) Definisi : - Awalnya komputer difungsikan sebagai alat hitung. - Seiring dengan perkembangan jaman, komputer diharapkan dapat diberdayakan untuk mengerjakan
Sistem Pakar Untuk Mendeteksi Kerusakan Pada Sepeda Motor 4-tak Dengan Menggunakan Metode Backward Chaining
Sistem Pakar Untuk Mendeteksi Kerusakan Pada Sepeda Motor 4-tak Dengan Menggunakan Metode Backward Chaining Maria Shusanti F Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas Bandar Lampung
PERANCANGA SISTEM PAKAR PENDETEKSI GANGGUAN KEHAMILAN ABSTRAK
PERANCANGA SISTEM PAKAR PENDETEKSI GANGGUAN KEHAMILAN Budiya Surya Putra, S.Kom. ABSTRAK Sistem pakar pendeteksian gangguan kehamilam ini merupakan sistem untuk mengetahui jenis-jenis gangguan kehamilan
KBKF63307 INTELIGENSI BUATAN
RENCANA PEMBELAJARAN SEMESTER (RPS) KBKF63307 INTELIGENSI BUATAN Disusun oleh: PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER (FILKOM) UNIVERSITAS PUTRA INDONESIA YPTK PADANG LEMBAR PENGESAHAN
Artificial Intelligence. (Teknik dan Aplikasinya)
Artificial Intelligence (Teknik dan Aplikasinya) Artificial Intelligence (Teknik dan Aplikasinya) Sri Kusumadewi Artificial Intelligence (Teknik dan Aplikasinya) Oleh: Sri Kusumadewi Edisi Pertama Cetakan
SISTEM PAKAR MENGGUNAKAN MESIN INFERENSI FUZZY. Wilis Kaswidjanti. Abstrak
Jurnal Teknik Elektro Vol. No. Juli - Desember 0 9 SISTEM PAKAR MENGGUNAKAN MESIN INFERENSI FUZZY Wilis Kaswidjanti Abstrak Salah satu cara untuk menangani ketidakpastian pada bidang sistem pakar dapat
JARINGAN SEMANTIK (SEMANTIC NETWORK) & Muhlis Tahir SKEMA (SCHEME)
JARINGAN SEMANTIK (SEMANTIC NETWORK) & Muhlis Tahir SKEMA (SCHEME) JARINGAN SEMANTIK Jaringan semantik merupakan penggambaran grafis dari pengetahuan yang melibatkan hubungan antara obyek-obyek. Obyek
SISTEM PAKAR ANALISIS PENYAKIT LUPUS ERITEMATOSIS SISTEMIK PADA IBU HAMIL MENGGUNAKAN METODE FORWARD CHAINING
SISTEM PAKAR ANALISIS PENYAKIT LUPUS ERITEMATOSIS SISTEMIK PADA IBU HAMIL MENGGUNAKAN METODE FORWARD CHAINING Sry Yunarti Program Studi Sistem Informasi STMIK Profesional Makassar [email protected]
MODEL HEURISTIK. Capaian Pembelajaran. N. Tri Suswanto Saptadi
1 MODEL HEURISTIK N. Tri Suswanto Saptadi 2 Capaian Pembelajaran Mahasiswa dapat memahami dan mampu mengaplikasikan model Heuristik untuk menyelesaikan masalah dengan pencarian solusi terbaik. 1 3 Model
Pengantar Teknologi Informasi
Pengantar Teknologi Informasi Kecerdasan Buatan (Artificial Intelligence) Defri Kurniawan, M.Kom Fasilkom 1/7/2016 What s Artificial Intelligence What is Artificial Intelligence (AI) Cabang Science yang
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Proposisi adalah pernyataan yang dapat ditentukan nilai kebenarannya, bernilai benar atau salah tetapi tidak keduanya. Sedangkan, Kalkulus Proposisi (Propositional
Jurnal TIME, Vol. II No 2 : 18-26, 2013 ISSN
Jurnal TIME, Vol II No 2 : 18-26, 2013 Analisis Penggunaan Algoritma Breadth First Search Dalam Konsep Artificial Intellegencia Edi Wijaya STMIK Time Medan Jalan Merbabu No 32 AA BB Telp 061 456 1932,
PENGEMBANGAN SISTEM PAKAR DIAGNOSIS PENYAKIT CABAI PAPRIKA BERBASIS ANDROID
PENGEMBANGAN SISTEM PAKAR DIAGNOSIS PENYAKIT CABAI PAPRIKA BERBASIS ANDROID Resi Resmiati¹, Asep Deddy Supriatna 2 Jurnal Algoritma Sekolah Tinggi Teknologi Garut Jl. Mayor Syamsu No. 1 Jayaraga Garut
STMIK GI MDP. Program Studi Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil Tahun 2009/2010
STMIK GI MDP Program Studi Teknik Informatika Skripsi Sarjana Komputer Semester Ganjil Tahun 2009/2010 SISTEM PAKAR UNTUK DIAGNOSA PENYAKIT KULIT WAJAH Dewi Khatina Kusuma 2006250102 Desi Febrianti M.P.
16.1 Pengertian Dan Tujuan
Bab 16 Sistem Pakar 16.1 Pengertian Dan Tujuan Kecerdasan buatan adalah salah satu bidang ilmu komputer yang mendayagunakan komputer sehingga dapat berperilaku cerdas seperti manusia. Ilmu komputer tersebut
PENGEMBANGAN SISTEM PAKAR BERBASIS ATURAN UNTUK MENENTUKAN MATA KULIAH YANG AKAN DIAMBIL ULANG (REMEDIAL) DENGAN METODE FORWARD CHAINING
PENGEMBANGAN SISTEM PAKAR BERBASIS ATURAN UNTUK MENENTUKAN MATA KULIAH YANG AKAN DIAMBIL ULANG (REMEDIAL) DENGAN METODE FORWARD CHAINING HARIYADI Program Studi Teknik Elektro UMSB ABSTRAK Nilai IP (Indeks
APLIKASI SISTEM PAKAR DIAGNOSA PENYAKIT GINJAL DENGAN METODE DEMPSTER-SHAFER
APLIKASI SISTEM PAKAR DIAGNOSA PENYAKIT GINJAL DENGAN METODE DEMPSTER-SHAFER Aprilia Sulistyohati, Taufiq Hidayat Laboratorium Sistem Informasi dan Perangkat Lunak Jurusan Teknik Informatika Fakultas Teknologi
