BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan panas adalah proses perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga pada satu saat akan tercapai kesetimbangan panas. Kesetimbangan panas terjadi jika panas dari sumber panas sama dengan jumlah panas yang dilepas oleh benda atau material tersebut ke lingkungan sekitarnya. Proses perpindahan panas berlangsung dalam 3 mekanisme, yaitu: [3] 1. Konduksi. 2. Konveksi. 3. Radiasi. Dalam prakteknya ketiga proses perpindahan panas tersebut sering terjadi secara bersama-sama. Dalam bab ini akan dijelaskan teori perpindahan panas secara konduksi, konveksi, dan radiasi Konduksi Laju Perpindahan Panas Konduksi adalah proses perpindahan panas dari suatu bagian benda padat atau material ke bagian lainnya. Perpindahan panas secara konduksi dapat berlangsung pada benda padat umumnya logam. Jika salah satu ujung sebuah batang logam diletakkan di atas nyala api, sedangkan ujung yang satu lagi dipegang, bagian batang yang dipegang ini suhunya akan naik, walaupun tidak kontak secara langsung dengan nyala api. Pada perpindahan panas secara konduksi tidak ada bahan dari logam yang berpindah. Yang terjadi adalah molekul-molekul logam yang diletakkan di atas nyala api membentur molekul-molekul yang berada di dekatnya dan memberikan sebagian panasnya. Molekul-molekul terdekat kembali membentur molekul-molekul terdekat lainnya dan memberikan sebagian panasnya, dan begitu seterusnya di sepanjang bahan sehingga suhu logam naik. 4

2 Jika pada suatu logam terdapat perbedaan suhu, maka pada pada logam tersebut akan terjadi perpindahan panas dari bagian bersuhu tinggi ke bagian bersuhu rendah. Besarnya laju perpindahan panas (q) berbanding lurus dengan luas bidang (A) dan perbedaan suhu ( T x) pada logam tersebut seperti ditunjukkan pada Gambar 2.1. Secara matematis dinyatakan sebagai : q = A T x 2 1 Gambar 2.1 Perpindahan laju panas pada sebuah konduktor Dengan memasukkan konstanta kesetaraan yang disebut konduktifitas termal didapat persamaan berikut yang disebut juga dengan hukum Fourier tentang konduksi: q = ka T x 2 2 Dimana : q = Laju perpindahan panas (W) k = Konduktifitas termal (W/m 0 C) A = Luas penampang (m 2 ) T x = Gradien suhu,yaitu laju perubahan suhu T dalam arah aliran x( 0 C/m) Tanda minus (-) menunjukkan arah perpindahan panas terjadi dari bagian yang bersuhu tinggi ke bagian bersuhu rendah. Nilai kondukitivitas thermal suatu bahan menunjukkan laju perpindahan panas yang mengalir dalam suatu bahan. Konduktifitas thermal kebanyakan bahan merupakan fungsi suhu, dan bertambah sedikit kalau suhu naik, akan tetapi variasinya kecil dan sering kali diabaikan. Jika nilai konduktifitas thermal suatu bahan makin besar, maka makin besar juga panas yang mengalir melalui benda tersebut. Karena itu, bahan yang 5

3 harga k-nya besar adalah penghantar panas yang baik, sedangkan bila k-nya kecil bahan itu kurang menghantar atau merupakan isolator. Nilai Konduktifitas thermal berbagai bahan diberikan pada Tabel 2.1. Tabel 2.1 Konduktifitas thermal berbagai bahan [1] Bahan K(W/m. 0 C) Bahan K(W/m. 0 C) Logam Bukan logam Perak 410 Kuarsa 41,6 Tembaga 385 Magnesit 4,15 Aluminium 202 Marmar 2,08 - Nikel 93 Batu pasir 2,94 Besi 73 Kaca jendela 1,83 Baja karbon 43 Kayu 0,78 Timbal 35 Serbuk gergaji 0,08 Baja krom- 16,3 Wol kaca 0,059 nikel 314 Karet 0,038 Emas Polystyrene 0,2 Polyethylene 0,157 Polypropylene 0,33 Polyvinyl Chlorida 0,16 Kertas 0,09 0,166 Zat Cair Gas Air raksa 8,21 Hidrogen 0,175 Air 0,556 Helium 0,141 Amonia 0,540 Udara 0,024 Minyak lumas 0,147 Uap air (jenuh) 0,0206 SAE 50 0,073 Karbondioksida 0,0146 Freon 12 6

4 Konduksi pada bidang Datar [6] Perpindahan panas pada suatu dinding datar seperti yang ditunjukkan pada Gambar 2.2, dapat diturunkan dengan menerapkan Persamaan 2-2. Jika Persamaan 2-2 diintegrasikan : Maka akan diperoleh Gambar 2.2 Konduktifitas pada bidang datar q x = ka T Q x = ka T Q = ka x (T 2 T 1 ) 2 3 Dimana : T1 = Suhu dinding sebelah kiri ( 0 C) T2 = Suhu dinding sebelah kanan ( 0 C) x = Tebal dinding (m) Apabila dalam sistem itu terdapat lebih dari satu macam bahan, misalnya dinding berlapis rangkap seperti pada Gambar 2.3, maka aliran panas dapat dituliskan sebagai : 7

5 Q = k AA x A (T 2 T 1 ) = k BA x B (T 3 T 2 ) = k CA x C (T 4 T 3 ) 2 4 Gambar 2.3 Dinding konduktor yang yang terdiri dari tiga lapisan Persamaan tersebut mirip dengan hukum Ohm dalam aliran listrik. Dengan demikian perpindahan panas dapat dianalogikan dengan aliran arus listrik seperti ditunjukkan pada Gambar 2.4. Q Gambar 2.4 Analogi listrik aliran panas pada konduktor berlapis tiga Menurut analogi diatas, perpindahan panas sama dengan: Q = T keseluruhan R th 2 5 Jika ketiga Persamaan 2-4 dipecahkan serentak, maka aliran panas adalah: Q = T 1 T 4 x A kaa + x B kab + x C kac 2 6 Sehingga persamaan Fourier dapat dituliskan sebagai berikut : Aliran Panas = Beda Potensial Panas Tahanan Termal 8

6 Harga tahanan thermal total R th tergantung pada susunan dinding penyusunnya, apakah bersusun seri atau paralel atau gabungan Konduksi pada Silinder [6] Arah perpindahan panas pada benda berbentuk silinder seperti tabung atau pipa adalah radial. Pada Gambar 2.5 ditunjukkan suatu pipa logam dengan jari- jari dalam r i, jari-jari luar r o, dan panjang L, perbedaan suhu permukaan dalam dengan permukaan luar adalah T = T i T o. Perpindahan panas pada elemen dr yang jaraknya r dan titik pusat adalah : q r = ka r t r 2 7 Gambar 2.5 Aliran radial panas di dalam silinder Luas bidang permukaan silinder berjari jari r adalah A r = 2πrL 2 8 Sehingga q r = 2πkrL t 2 9 r Perpindahan panas dari permukaan dalam ke permukaan luar silinder adalah : Q = q r = 2πkL r T r 2 10 Batas integral suhu adalah Tt dan To, sedang batas integral r adalah ri dan ro. Dengan demikian penyelesaian Persamaan 2-10 adalah : 9

7 Q = 2πkL(T i T o ) ln ( r o ri ) 2 11 Menurut Persamaan 2-11 di atas: 1 R th = 2πkL ln ( r o ri ) Maka tahanan thermal silinder adalah : R th = ln (r o ri ) 2πkL 2 12 Dengan demikian, analogi listrik aliran panas pada silinder dapat dibuat seperti pada Gambar 2.6. Gambar 2.6 Analogi listrik aliran panas pada silinder Konsep tahanan thermal dapat juga digunakan pada silinder berlapis seperti halnya dengan dinding datar berlapis. Pada Gambar 2.7 ditunjukkan silinder berlapis dan analogi listriknya. Q 10

8 Gambar 2.7 Silinder berlapis dan analogi listrik : Untuk silinder berlapis seperti pada Gambar 2.7 penyelesaiannya adalah Q = ln ( r 2 r1 ) k A 2πL(T 1 T 4 ) + ln (r3 ) r2 k B + ln (r4 ) r3 k C 2 13 Dimana : ka kb kc = Konduktifitas termal bahan A = Konduktifitas termal bahan B = Konduktifitas termal bahan C Konveksi Konveksi adalah perpindahan panas oleh gerakan massa pada fluida dari suatu daerah ke daerah lainnya. Perpindahan panas konveksi merupakan mekanisme perpindahan panas antar permukaan benda padat dengan fluida. Pada Gambar 2.8 ditunjukkan sebuah plat panas yang suhunya Tw. Di atas plat datar mengalir fluida dengan kecepatan U yang merata dengan suhu T. Dengan adanya perbedaan suhu maka panas akan terdistribusi dari plat ke fluida. 11

9 Gambar 2.8 Perpindahan panas konveksi dari suatu plat Mekanisme fisis perpindahan panas konveksi berhubungan dengan proses konduksi. Guna menyatakan pengaruh konduksi secara menyeluruh digunakan hukum Newton tentang pendinginan : Q = ha(t w T ) 2-14 Dimana Q = Laju perpindahan panas (W) h = Koefisien perpindahan panas konveksi (W/m 2 o C) A = Luas permukaan (m 2 ) Tw = suhu dinding ( o C) T = Suhu fluida ( o C) Koeisien perpindahan panas konveksi diberikan pada Tabel 2.2. Tabel 2.2 Koefisien perpindahan panas konveksi [1] Fluida-Kondisi H(W/m 2. o C) Udara konveksi bebas 6-30 Udara konveksi paksa Minyak konveksi paksa Air konveksi bebas Air konveksi paksa Didihan air Kondensasi uap Apabila fluida tidak bergerak (atau tanpa sumber penggerak) maka perpindahan panas tetap ada karena adanya pergerakan fluida akibat perbedaan massa jenis fluida. Peristiwa ini disebut dengan konveksi alami (natural convection) atau konveksi bebas (free convection). Lawan dari konveksi ini adalah konveksi paksa (Forced convection) yang terjadi apabila fluida dengan sengaja dialirkan (dengan suatu penggerak) di atas plat Radiasi Radiasi adalah perpindahan panas tanpa memerlukan zat perantara (medium) tetapi dalam bentuk gelombang elektromagnetik. Sebagai contoh perpindahan panas dari matahari ke bumi. Panas dari 12

10 matahari tidak dapat mengalir melalui atmosfer bumi secara konduksi karena antara bumi dan matahari adalah hampa udara. Panas matahari tidak dapat sampai ke bumi melalui proses konveksi karena konveksi juga harus melalui pemanasan bumi terlebih dahulu. Selain itu, konduksi dan konveksi memerlukan medium sebagai perantara untuk membawa panas. Jadi walaupun antara bumi dan matahari merupakan ruang hanpa, panas matahari tetap akan sampai ke bumi melalui perpindahan panas secara radiasi. Besarnya laju perpindahan panas secara radiasi adalah: Q = eσa(t 1 4 T 2 4 ) 2-15 Dimana: Q = Laju perpindahan panas (W) e = Emisivitas benda yang terkena radiasi (0<e<1) σ = Konstanta Stefan-Bolztman = 5,67 x 10-5 W/m 2 K 4 T1 = Suhu benda ( o K) T2 = Suhu lingkungan ( o K) Emisivitas benda adalah besaran yang bergantung pada sifat permukaan benda. Benda hitam sempurna (black body) memiliki harga emisivitas (e = 1). Benda ini merupakan pemancar dan penyerap yang paling baik. Permukaan pemantul sempurna memilki nilai e = Perpindahan Panas Pada Kabel [6] Pada penghantar kawat telanjang yang dialiri arus listrik, arus akan menimbulkan panas pada penghantar. Perpindahan panas pada kawat telanjang yang dialiri arus listrik berlangsung dengan konveksi seperti di tunjukkan Gambar

11 Gambar 2.9 Perpindahan panas pada kawat telanjang dan analogi listriknya Perpindahan panas yang terjadi adalah : Q = ha(t i T ) Jika panjang kawat adalah L, maka luas permukaan kawat adalah Sehingga A = 2πr i L Q = 2πr i Lh(T i T ) Menurut persamaan diatas, sepertahanan termal adalah : Atau 1 R th = 2πr i Lh R th = 1 2πr i Lh 2 16 Perpindahan panas dapat dituliskan sebagai berikut: Q = T i T 1 2πr i Lh 2 17 Dimana: Q = Laju perpindahan panas (W) Ti = Suhu kawat ( o C) T = Suhu lingkungan ( o C) ri L = Jari-jari kabel (m) = Panjang kabel (m) 14

12 h = Koefisien perpindahan panas konveksi (W/m 2 o C) Perpindahan panas pada kabel yang dialiri arus listrik berlangsung dengan cara konduksi dan konveksi. Konduksi terjadi dari permukaan dalam isolasi (atau permukaan luar tembaga) ke permukaan luar isolasi. Sedangkan secara konveksi, dari permukaan luar isolasi ke lingkungan. Dengan demikian tahanan thermal yang dilalui panas adalah Rkonduksi dan Rkonveksi seperti yang ditunjukkan pada Gambar Q Q Gambar 2.10 Perpindahan panas pada kabel berisolasi dan analogi listriksnya Dengan demikian perpindahan panas yang terjadi dapat dituliskan sebagai berikut : T i T Q = R kond + R konv Q = T i T ln( r 0 ri ) 2πLk + 1 2πr 0 Lh Q = 2πL(T i T ) ln( r 0 ri ) + 1 k r 0 h 2 18 Diman : Q = Laju perpindahan panas (W) Ti = Suhu permukaan dalam isolasi ( o C) Ti = Suhu lingkungan ( o C) 15

13 ro ri L = Jari-jari luar isolasi (m) = Jari-jari kabel (m) = Panjang kabel (m) h = Koefisien perpindahan panas konveksi (W/m 2 o C) Untuk kabel lapis rangkap dengan jenis isolasi yang berbeda seperti yang ditunjukkan pada Gambar 2.11, maka perpindahan panas yang terjadi adalah : Q = ln( r 2 r1 ) k A 2πL(T i T ) + ln(r 3 r2 ) + 1 k B r 3 h 2 19 Gambar 2.11 Perpindahan panas pada kabel berisolasi rangkap dan analogi listriknya 2.2 BAHAN ISOLASI Bahan isolasi digunakan untuk memisahkan bagian-bagian peralatan listrik yang berbeda tegangan. Hal yang sangat penting diperhatikan pada suatu bahan isolasi adalah sifat kelistrikannya. Namun demikian sifat mekanis, sifat thermal, dan ketahanan terhadap bahan kimia perlu juga diperhatikan. Dalam bab ini akan dijelaskan sifat kelistrikan, sifat mekanis, sifat thermal, dan ketahanan terhadap bahan kimia dari bahan isolasi Sifat Kelistrikan Berikut ini dijelaskan 4 hal sifat kelistrikan suatu bahan isolasi yakni: 1. Kekuatan dielektrik. 2. Konduktansi. 16

14 3. Rugi-rugi dielektrik 4. Tahanan isolasi Kekuatan Dielektrik [2] Suatu dielektrik tidak mempunyai elektron-elektron bebas, melainkan elektron-elektron yang terikat pada inti atom unsur yang membentuk dielektrik tersebut. Pada Gambar 2.12 ditunjukkan suatu bahan dilektrik yang ditempatkan di antara dua elektroda piring sejajar. Elektroda Dielektrik Elektroda Gambar 2.12 Medan elektrik dalam dielektrik [2] Bila elektroda diberi tegangan searah V, maka timbul medan elektrik (E) di dalam dielektrik. Medan elektrik ini memberi gaya kepada elektron- elektron agar terlepas dari ikatannya dan menjadi elektron bebas. Dengan kata lain, medan elektrik merupakan suatu beban yang menekan dielektrik agar berubah sifat menjadi konduktor. Beban yang dipikul dielektrik ini disebut terpaan medan elektrik (Volt/cm). Setiap dielektrik mempunyai batas kekuatan untuk memikul terpaan elektrik. Jika terpaan elektrik yang dipikul melebihi batas tersebut, dan berlangsung cukup lama, maka dielektrik akan menghantar arus atau gagal melaksanakan fungsinya sebagai isolator. Dalam hal ini dielektrik disebut tembus listrik atau breakdown. Terpaan elektrik tertinggi yang dapat dipikul suatu dielektrik tanpa menimbulkan tembus listrik pada dielektrik disebut kekuatan dielektrik. Jika suatu dielektrik mempunyai kekuatan dielektrik Ek, maka terpaan 17

15 elektrik yang dapat dipikulnya adalah lebih kecil atau sama dengan Ek. Jika terpaan elektriknya melebihi Ek, maka di dalam dielektrik akan terjadai proses ionisasi berantai yang dapat membuat dielektrik mengalami tembus listrik. Proses ini membutuhkan waktu dan lamanya tidak tentu tetapi bersifat statistik. Waktu yang dibutuhkan sejak mulai terjadi ionisasi sampai terjadi tembus listrik disebut waktu tunda tembus (time lag). Jadi, tidak selamanya terpaan elektrik dapat menimbulkan tembus listrik, tetapi harus memenuhi dua syarat yaitu: 1. Terpaan elektrik yang dipikul dielektrik harus lebih besar atau sama dengan kekuatan dielektriknya, dan 2. Lama terpaan elektrik berlangsung lebih besar atau sama dengan waktu tunda tembus. Untuk tegangan sinusoidal frekuensi daya dan untuk tegangan searah, syarat kedua tidak berlaku, karena waktu puncak tegangan berlangsung dalam orde mili detik sedang waktu tunda tembus ordenya dalam mikro detik. Tetapi untuk tegangan impuls yang durasinya dalam orde mikro detik kedua syarat tersebut dipenuhi. Untuk tegangan impuls, sekalipun tegangan yang diberikan telah menimbulkan terpaan elektrik yang lebih besar daripada kekuatan dielektrik, masih ada kemungkinan dielektrik tidak tembus listrik. Kemungkinan ini terjadi jika terpaan elektrik itu berlangsung lebih singkat daripada waktu tunda tembus. Tembus listrik terjadi jika terpaan elektrik yang melebihi kekuatan dielektrik itu berlangsung lebih lama daripada waktu tunda tembusnya. Lamanya waktu tunda tembus tidak tentu, oleh karena itu ditentukan dengan statistik. Jadi, tembus listrik suatu dielektrik bersifat statistik, sehingga terpaan elektrik yang menimbulkan tembus listrik dinyatakan dalam suatu harga statistik, yaitu harga yang memberikan probabilitas tembus 50%. Tegangan tembus yang menyebabkan dielektrik tersebut tembus listrik disebut tegangan tembus atau breakdown voltage. Tegangan tembus adalah besar tegangan yang menimbulkan terpaan elektrik pada dielektrik sama dengan atau lebih besar daripada kekutan dielektriknya. Untuk tegangan impuls, tegangan tembus dinyatakan dalam harga tegangan yang 18

16 memberi probabilitas tembus 50% (V50%) yang artinya adalah: [2] 1. Jika suatu dielektrik diberi n kali tegangan impuls sebesar V50%, maka dielektrik tersebut akan mengalami tembus listrik sebanyak 0,5n kali. 2. Jika ada sejumlah dielektrik yang sama, masing-masing diberi tegangan impuls V50%, maka setengah dari dielektrik itu akan tembus listrik Konduktansi [2] Pada Gambar 2.13.a ditunjukkan suatu dielektrik yang ditempatkan diantara dua elektroda piring sejajar. Kedua elektroda dan dielektrik merupakan suatu kondensator. (a) (b) (c) Gambar 2.13 Konduksi pada suatu dielektrik [2] Jika kondensator ini merupakan kondensator murni dan dihubungkan ke sumber arus searah seperti yang ditunjukkan pada Gambar 2.13.a, maka muatan mengalir ke kondensator sehingga tegangan kondensator naik. Aliran muatan akan berhenti ketika tegangan kondensator telah sama dengan tegangan sumber. Dengan perkataan lain, arus mengalir melalui dieletrik hanya selama berlangsung pengisian muatan ke kondensator dan arus ini berlangsung hanya dalam waktu yang sangat singkat. Kurva pengisian ditunjukkan pada Gambar 2.13.b. Jika kondesator yang dibentuk dielektrik dengan kedua elektroda adalah berupa kondensator komersial, maka kurva arus adalah seperti ditunjukkan pada Gambar 2.13.c. arus pengisian terjadi selama waktu t1. kemudian arus berkurang perlahan-lahan selama waktu t2, arus ini disebut absorpsi. Akhirnya arus mencapai suatu harga tertentu (ik) arus ini disebut arus konduksi. Arus konduksi k selalu ada karena tahanan dari dielektrik tidak benar- 19

17 benar tak berhingga. Beda tegangan (V) diantara kedua elektroda menimbulkan terpaan elektrik (E) dalam dielektrik. Terpaan elektrik ini menggerakkan molekul-molekul dielektrik sampai semuanya terpolarisasi. Molekul-molekul tersebut ada yang bergerak cepat dan ada yang bergerak lamban. Molekulmolekul yang bergerak cepat terpolarisasi dengn cepat yang menimbulkan arus pengisian. Sedangkan molekul-molekul yang bergerak lamban, terpolarisasi dengan lambat yang menimbulkan arus absorpsi. [2] Rugi-Rugi Dielektrik [2] Tegangan yang diterapkan pada suatu dilektrik menimbulkan tiga komponen arus, yaitu: arus pengisian, arus absorpsi dan arus konduksi. Oleh karena itu rangkaian ekivalen suatu dielektrik harus dapat menampilkan adanya ketiga komponen arus tersebut diatas. Rangkaian ekivalen yang mendekati ditunjukkan pada Gambar a b Gambar 2.14 Rangkaian ekivalen suatu dielektrik [2] Keterangan: Cg = Kapasitansi geometris Rk Ra Ca = Tahanan dielektrik = Tahanan arus absorbsi = Kapasitansi arus absorsi Jika terminal a-b dihubungkan ke sumber tegangan searah maka ada ketiga komponen arus mengalir pada terminal a-b. Arus ip yang mengisi kondensator Cg, arus ia yang mengisi kondensator Ca dan arus ik yang mengalir 20

18 melalui tahanan Rk. Karena adanya tahanan Ra, maka arus ia berlangsung lebih lambat dari arus ip. Arus ip berlangsung dengan cepat dan berhenti jika tegangan kondensator telah sama dengan tegangan sumber. Ketika arus pengisian ip berhenti, ia masih mengalir mengisi kondensator Ca dan arus ini juga akan berhenti ketika tegangan kondensator Ca telah sama dengan tegangan sumber. Akhirnya arus yang tersisa adalah arus konduksi yang mengalir melalui tahanan Rk, dan rangkaian dapat disederhanakan menjadi Gambar 2.15 berikut dan terminal a-b dihubungkan ke sumber tegangan bolak-balik. a b Gambar 2.15 Rangkaian ekivalen penyederhanaan Maka arus tiap komponen: I R = V R e 2 20 I C = ωc e V 2 21 Arus total yang diberikan sumber tegangan seperti yang ditunjukkan pada Gambar 2.16 adalah: I = I R 2 + I C

19 Gambar 2.16 Komponen arus dielektrik Arus IR menimbulkan rugi-rugi daya pada tahanan Re. Rugi-rugi ini disebut rugi-rugi dielektrik. Rugi-rugi dielektrik adalah rugi-rugi pada dielektrik yang berbentuk panas karena adanya arus yang mengalir pada dielektrik dan adanya tahanan dielektrik. Besarnya rugi-rugi dielektrik adalah perkalian V dan IR atau: P d = VI R = VI Cos φ = VI Sin δ 2 23 Menurut Gambar 2.16, cos δ = I c, sehingga arus sumber adalah : I I = I c cos δ Dengan mensubstitusi Persamaan 2-21 ke Persamaan 2-24 maka diperoleh: I = ωc ev cos δ Dari Persamaan 2-25 dan Persamaan 2-23, maka dieroleh: P d = ωc ev cos δ V Sin δ = ωc ev 2 tan δ 2 26 Rugi-rugi dielektrik menimbulkan panas yang dapat menaikkan temperatur dielektrik dan pada akhirnya dapat mempercepat penuaan dielektrik. Rugi-rugi dielektrik tergantung kepada frekuensi tegangan sumber. Oleh karena itu, rugi- rugi dielektrik tidak terjadi jika dielektrik dihubungkan ke sumber tegangan searah. Rugi-rugi dielektrik sebanding dengan faktor rugi-rugi dielektrik (Tan δ). Jika Tan δ besar, maka rugi-rugi dielektrik makin besar. [2] Tahanan Isolasi [2] 22

20 Jika suatu dielektrik diberi tegangan searah seperti ditunjukkan pada Gambar 2.17, maka arus yang mengalir pada dielektrik terdiri atas dua komponen yaitu: 1. Arus yang mengalir pada permukaan dielektrik (arus permukaan, I s ). 2. Arus yang mengalir melalui volume dielektrik (arus volume, I v ). Sehingga arus sumber adalah : I a = I s + I v 2 30 Hambatan yang dialami arus permukaan disebut tahanan permukaan (Rs) sedang hambatan yang dialami arus volum disebut tahanan volume (Rv). Gambar 2.17 Arus pada suatu dielektrik [2] Dalam prakteknya, hasil pengukuran tahanan isolasi tergantung kepada besar dan polaritas tegangan pengukuran serta jenis bahan isolasi. Pada Gambar 2.18 ditunjukkan pengaruh tegangan terhadap hasil pengukuran tahanan isolasi, masing-masing untuk bahan isolasi gas, cair, dan bahan isolasi padat. Untuk keperluan evaluasi, didefenisikan suatu faktor yang disebut faktor titik lemah, yaitu perbandingan tahanan pada tegangan V1 dengan tahanan pada tegangan V2, dimana V2 lebih nggi daripada V1. 23

21 a. Isolasi cair dan gas b. Isolasi padat Gambar 2.18 Pengaruh tegangan terhadap tahanan isolasi Jika faktor titik lemah semakin besar, merupakan pertanda bahwa isolasi semakin buruk. α t1 = R v1 R v Akibat adanya arus absorpsi, maka hasil pengukuran tergantung juga pada waktu pengukuran. Pada Gambar 2.19 ditunjukkan perubahan tahanan isolasi terhadap waktu. Perbandingan tahanan pada saat 1 menit dan 10 menit disebut indeks polarisasi. α p = R 10 menit R 1 menit 2 32 Indeks polarisasi untuk dielektrik kelas isolasi A>1,5 dan kelas isolasi B>2,5. Tahanan dielektrik juga tergantung kepada temperature, kelembapan, dan bentuk benda uji. R R Isolas R 1 t(me Gambar 2.19 Perubahan tahanan terhadap waktu [2] 24

22 Sifat Terhadap Panas Suatu bahan isolasi dapat rusak disebabkan oleh panas dalam kurun waktu tertentu. Waktu tertentu disebut sebagai umur-panas bahan isolasi. Sedangkan kemampuan bahan menahan suatu panas tanpa terjadi kerusakan disebut ketahanan panas (heat resistance). Klasifikasi bahan isolasi menurut IEC (International Electrotechnical Commision) didasarkan atas batas suhu kerja bahan, seperti di tunjukkan pada Tabel 2.3. Tabel 2.3 Klasifikasi bahan isolasi [1] Suhu kerja Kelas Bahan maksimum Y A E B F H Katun, sutera alam, wol sintetis, rayon, serat poliamid, kertas, prespan, kayu, poliakrilat, polietilen, polivinil, karet Bahan kelas Y yang telah dicelup dalam vernis, aspal, minyak trafo. yang dicampur dengan vernis dan poliamid. kawat yang terbuat dari : polivinil formal, poli urethan dan damar, bubuk plastik, bahan selulosa pengisi pertinaks, tekstolit, triasetat, polietilen tereftalat. Bahan non organik (mika, fiberglas, asbes) dicelup atau direkat menjadi satu dengan pernis atau kompon, bitumen, bakelit, poli monochloro tri flour etilen, poli etilen tereftalat, poli karbonat, sirlak. Bahan-bahan anorganik yang dicelup atau direkat menjadi satu dengan epoksi, poliurethan atau vernis dengan ketahanan panas yang tinggi. Mika, fiberglas, dan asbes yang dicelup dalam silicon tanpa campuran bahan 90 O C 105 O C 120 O C 130 O C 155 O C 180 O C 25

23 C berserat, karet silikon, kawat poliamid murni. Bahan-bahan anorganik yang tidak dicelup dan tidak terikat dengan substansi organik misalnya mika, mikanit yang tahan panas, mikaleks, gelas, keramik, Teflon (politetra fluoroetilen) adalah satu-satunya substansi organik. Diatas 180 O C Sifat Kimia Beberapa sifat kimia yang dibahas adalah: sifat kemampuan larut, resistansi kimia, higroskopisitas, permeabilitas uap, pengaruh tropis dan resistansi radio aktif Sifat Kemampuan Larut Sifat ini diperlukan untuk menentukan macam bahan pelarut suatu bahan, misalnya: vernis, plastik dan sebagainya. Sifat ini juga diperlukan untuk menguji kemampuan ketahanan bahan isolasi di dalam cairan selama diimpregnasi dan selama pemakaiannya (bahan isolasi minyak trafo). Kemampuan larut bahan padat dapat dievaluasi berdasarkan banyaknya bagian permukaan bahan yang dapat larut setiap satuan waktu jika diberi bahan pelarut. Kemampuan larut suatu bahan akan lebih besar jika suhunya dinaikkan. Umumnya bahan pelarut komposisi kimianya sama dengan bahan yang dilarutkan. Contohnya : hidro karbon (parafin, karet alam) dilarutkan dengan cairan hidro karbon atau phenol formaldehida Resistansi Kimia Bahan isolasi mempunyai kemampuan yang berbeda ketahanannya terhadap korosi yang disebabkan oleh: gas, air, asam, basa dan garam. Hal ini perlu diperhatikan untuk pemakaian bahan isolasi yang digunakan di daerah yang konsentrasi kimianya aktif, suhu di atas normal. Karena kecepatan korosi dipengaruhi pula oleh kenaikan suhu. 26

24 Bahan isolasi yang digunakan pada instalasi tegangan tinggi harus mampu menahan terjadinya ozon. Artinya, bahan tersebut harus mempunyai resistansi ozon yang tinggi. Karena ozon dapat menyebabkan isolasi berubah menjadi regas. Pada prakteknya, bahan isolasi anorganik mempunyai ketahanan terhadap ozon yang baik Higroskopisitas Beberapa bahan isolasi ternyata mempunyai sifat higroskopisitas, yaitu sifat menyerap air di sekelilingnya. Uap air ternyata dapat mengakibatkan perubahan mekanis fisik dan memperkecil daya isolasi. Untuk itu selama penyimpanan atau pemakaian bahan isolasi agar tidak terjadi penyerapan uap air oleh bahan isolasi, maka hendaknya ditambahkan bahan penyerap uap air yaitu senyawa P2O5 atau CaCl Permeabilitas Uap Kemampuan bahan isolasi untuk dilewati uap disebut permeabilitas uap bahan tersebut. Faktor ini perlu diperhatikan bagi bahan yang digunakan untuk: isolasi kabel, rumah kapasitor. Banyak uap M dalam satuan mikro-gram, selama t jam, melalui permukaan S meter persegi, dengan beda tekanan pada kedua sisi bahan P dalam satuan mm-hg, adalah: M = A. h. 102 S. t. P Dimana : A = Permeabilitas uap yang disebut juga konstanta difusi 6 33 g = Permeabilitas uap air ( g cm. jam. mmhg ) Pada Tabel 2.4 ditunjukkan permeabilitas uap beberapa bahan Tabel 2.4 Permeabilitas beberapa bahan [1] No. Nama Bahan A ( g cm. jam. mmhg ) 1 Parafin 0,007 27

25 Polistirin Karet Selulosa triasetat Cellophane Kaca atau logam 0,03 0,03-0, Pengaruh Tropis Terdapat 2 macam daerah tropis yaitu tropis yang basah (termasuk Indonesia) dan daerah tropis yang kering. Di daerah tropis basah memungkinkan tumbuhnya jamur dan serangga dapat hidup dengan baik. Suhu yang cukup tinggi disertai kelembaban yang terjadi dalam waktu lama dapat menyebabkan turunnya resistivitas isolasi, menambah besarnya sudut rugi dielektrik, menambah permitivitas dan mengurangi kemampuan kelistrikan bahan. Pada penggunaan bahan isolasi di daerah tropis harus diperhatikan 2 hal yaitu: perubahan sifat kelistrikan setelah bahan direndam dan kecepatan pertumbuhan jamur pada bahan tersebut. Karena hal-hal tersebut maka bahan isolasi sebaiknya dilapisi dengan bahan anti jamur, antara lain: paranitro phenol, penthachloro phenol Resistansi Radiasi Sifat bahan isolasi sering dipengaruhi energi radiasi yang menerpa bahan isolasi tersebut, pengaruh ini dapat mengubah sifat bahan isolasi. Radiasi sinar matahari mempengaruhi umur bahan isolasi, khususnya jika bahan tersebut bersinggungan langsung dengan oksigen. Sinar ultra violet dapat merusak beberapa bahan organik yaitu menurunnya kekuatan mekanik, elastisitas dan retak-retak. Sinar X, sinar-sinar dari reaktor nuklir misalnya: sinar α, β,dan γ partikelpartikel radio isotop, mempunyai pengaruh sangat besar pada bahan isolasi. Bahan polimer organik akan menjadi lebih keras dan akan menjadi lebih 28

26 tahan terhadap panas jika terkena sinar-sinar tersebut, misalnya: politetra flouroethilen. Kemampuan suatu bahan isolasi untuk menahan pengaruh radiasi tanpa mengalami kerusakan disebut resistansi radiasi Sifat-sifat Mekanis Kekuatan mekanis bahan-bahan isolasi maupun logam adalah kemampuan menahan beban dari dalam atau luar. Beberapa sifat mekanis yang dibahas adalah: Kekuatan (strength), modulus elastisitas, kekerasan Kekuatan (Strength) Kekuatan adalah kemampuan bahan untuk tahan terhadap gaya-gaya luar tanpa mengalami kerusakan. Kekuatan bahan isolasi terbagi menjadi 4 jenis yaitu kekuatan regangan, kekuatan tekuk, kekuatan tekanan, dan kekuatan tekanan dadakan Kekuatan bahan isolasi merupakan salah satu sifat mekanis terpenting dalam isolasi. Jenis kekuatan bahan isolasi yang dibutuhkan tergantung pada pemakaiannya, seperti yang diberikan pada Tabel 2.4. Tabel 2.5 Contoh isolator dan sifat mekanis terpenting [2] No. Pemakaian Bahan Isolasi Jenis kekuatan yang paling dibutuhkan Isolator hantaran udara Isolator pendukung pada gardu induk Isolator antenna Pemutus daya Kekuatan regangan Kekuatan tekuk Kekuatan tekanan Ketahanan tekanan dadakan Modulus Elastisitas Elastisitas adalah sifat dari suatu bahan dalam batas tegangan tertentu yang memungkinkan bahan kembali ke bentuk semula setelah gaya yang mengubah bentuknya dihilangkan. Batas elastisitas adalah tegangan satuan dimana di luar tegangan tersebut suatu bahan isolasi tidak kembali lagi ke bentuk semula. Set 29

27 permanen adalah perubahan bentuk yang tetap yang dialami suatu bahan elastisitas akibat mengalami tegangan di luar batas elastis. Ukuran elastisitas suatu bahan tertentu disebut modulus elasitisitas yang merupakan ukuran dari kekauan suatu bahan elastis atau ketahanannya terhadap perubahan bentuk akibat pembebanan Kekerasan Kekerasan adalah kemampuan suatu bahan untuk tahan terhadap penetrasi. Pengujian derajat kekerasan dapat dilakukan dengan penggoresan atau penumbukan dengan benda lancip terhadap bahan yang dapat mengalami deformasi plastis yaitu logam dan plastik. Satuan derajat kekerasan bahan dengan penggoresan adalah Moh dengan intan sebagai bahan terkeras nilainya 10 dan kapur sebagai yang terlunak dengan nilai 1. Sedangkan untuk mengukur derajat kekerasan berdasarkan tumbukan digunakan metode-metode: Brinell, Rockwell dan Vickres. Pada cara pengujian dengan metode Brinell, sebuah bola baja dengan diameter 10 mm dan sudah diperkeras, ditekankan ke permukaan bahan yang diuji dengan beban statis sehingga menimbulkan lekukan pada permukaan bahan yang diuji. Derajat kekerasan dapat dihitung dengan persamaan: Kekerasan = Gaya yang diberikan (kg) Luas bidang lekukan (mm 2 ) Derajat kekerasannya dinyatakan dengan satuan Brinell (HG) Pada pengujian derajat kekerasan metode Vickres menggunakan intan yang berbentuk piramid. Pengujian dengan cara ini lebih menguntungkan dibanding dengan metode Brinell, karena pada intan tidak akan terjadi deformasi plastis. Untuk menetukan derajat kekerasannya digunakan p Persamaan 2-34 yang membedakan di sini, lekukannya tidak berbentuk bidang bola. Pada pengujian dengan metode Vickres satuannya dalah Vickres (HD). Pada pengujian kekerasan dengan metode Rockwell hasil pengujiannya dapat langsung terbaca pada alat pengujian. Sehingga pengujian dengan metode ini lebih mudah dan cepat. Mata penumbuk yang digunakan adalah intan bebentuk kerucut untuk bahan yang keras atau bola baja jika bahan yang diuji lunak. 30

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan

BAB II TEGANGAN TINGGI. sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan BAB II TEGANGAN TINGGI 2.1 Umum Pengukuran tegangan tinggi berbeda dengan pengukuran tegangan rendah, sehingga perlu penjelasan khusus mengenai pengukuran ini. Ada tiga jenis tegangan tinggi yang akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim

BAB II TINJAUAN PUSTAKA. Es krim adalah sejenis makanan semi padat. Di pasaran, es krim BAB II TINJAUAN PUSTAKA 2.1 Kualitas dan pembuatan es krim Es krim adalah sejenis makanan semi padat. Di pasaran, es krim digolongkan atas kategori economy, good average dan deluxe. Perbedaan utama dari

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

BAB II KABEL DAN PERPINDAHAN PANAS

BAB II KABEL DAN PERPINDAHAN PANAS BAB II KABEL DAN PERPINDAHAN PANAS II.1 Umum Kemampuan hantar arus kabel dipengaruhi oleh perpindahan panas yang terjadi dari kabel ke lingkungan sekitar. Secara umum sumber panas dalam kabel dapat dibagi

Lebih terperinci

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer

T P = T C+10 = 8 10 T C +10 = 4 5 T C+10. Pembahasan Soal Suhu dan Kalor Fisika SMA Kelas X. Contoh soal kalibrasi termometer Soal Suhu dan Kalor Fisika SMA Kelas X Contoh soal kalibrasi termometer 1. Pipa kaca tak berskala berisi alkohol hendak dijadikan termometer. Tinggi kolom alkohol ketika ujung bawah pipa kaca dimasukkan

Lebih terperinci

PENGARUH KETEBALAN ISOLASI TERHADAP KESEIMBANGAN SUHU KABEL

PENGARUH KETEBALAN ISOLASI TERHADAP KESEIMBANGAN SUHU KABEL PENGARUH KETEBALAN ISOLASI TERHADAP KESEIMBANGAN SUHU KABEL OLEH: HOTMAN P SIMANULLANG NIM: 060422010 PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA

Lebih terperinci

BAHAN DIELEKTRIK. Misal:

BAHAN DIELEKTRIK. Misal: BAHAN DIELEKTRIK BAHAN DIELEKTRIK BAHAN DIELEKTRIK. Bahan dielektrik yaitu bahan yang apabila diberikan medan potensial (tegangan) dapat mempertahankan perbedaan potensial yang timbul diantara permukaan

Lebih terperinci

BAB 2 DASAR TEORI. k = A T. = kecepatan aliran panas [W] A = luas daerah hantaran panas [m 2 ] ΔT/m = gradient temperatur disepanjang material

BAB 2 DASAR TEORI. k = A T. = kecepatan aliran panas [W] A = luas daerah hantaran panas [m 2 ] ΔT/m = gradient temperatur disepanjang material 3 BAB 2 DASAR TEORI 2.1 Dasar Dasar Mekanisme Perpindahan Energi Panas Pada dasarnya terdapat tiga macam proses perpindahan energi panas. Proses tersebut adalah perpindahan energi secara konduksi, konveksi,

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

PENGUKURAN KONDUKTIVITAS TERMAL

PENGUKURAN KONDUKTIVITAS TERMAL PENGUKURAN KONDUKTIVITAS TERMAL A. TUJUAN 1. Mengukur konduktivitas termal pada isolator plastisin B. ALAT DAN BAHAN Peralatan yang digunakan dalam kegiatan pengukuran dapat diperhatikan pada gambar 1.

Lebih terperinci

BAB II ISOLATOR PENDUKUNG HANTARAN UDARA

BAB II ISOLATOR PENDUKUNG HANTARAN UDARA BAB II ISOLATOR PENDUKUNG HANTARAN UDARA Isolator memegang peranan penting dalam penyaluran daya listrik dari gardu induk ke gardu distribusi. Isolator merupakan suatu peralatan listrik yang berfungsi

Lebih terperinci

BAB II BUSUR API LISTRIK

BAB II BUSUR API LISTRIK BAB II BUSUR API LISTRIK II.1 Definisi Busur Api Listrik Bahan isolasi atau dielekrik adalah suatu bahan yang memiliki daya hantar arus yang sangat kecil atau hampir tidak ada. Bila bahan isolasi tersebut

Lebih terperinci

Fisika EBTANAS Tahun 1996

Fisika EBTANAS Tahun 1996 Fisika EBTANAS Tahun 1996 EBTANAS-96-01 Di bawah ini yang merupakan kelompok besaran turunan A. momentum, waktu, kuat arus B. kecepatan, usaha, massa C. energi, usaha, waktu putar D. waktu putar, panjang,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 ISOLATOR PIRING 2.1.1 Umum Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki tegangan dan juga tidak bertegangan. Sehingga bagian yang tidak bertegangan

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

BAB XII KALOR DAN PERUBAHAN WUJUD

BAB XII KALOR DAN PERUBAHAN WUJUD BAB XII KALOR DAN PERUBAHAN WUJUD 1. Apa yang dimaksud dengan kalor? 2. Bagaimana pengaruh kalor pada benda? 3. Berapa jumlah kalor yang diperlukan untuk perubahan suhu benda? 4. Apa yang dimaksud dengan

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

BAB XII KALOR DAN PERUBAHAN WUJUD

BAB XII KALOR DAN PERUBAHAN WUJUD BAB XII KALOR DAN PERUBAHAN WUJUD Kalor dan Perpindahannya BAB XII KALOR DAN PERUBAHAN WUJUD 1. Apa yang dimaksud dengan kalor? 2. Bagaimana pengaruh kalor pada benda? 3. Berapa jumlah kalor yang diperlukan

Lebih terperinci

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi

7. Menerapkan konsep suhu dan kalor. 8. Menerapkan konsep fluida. 9. Menerapkan hukum Termodinamika. 10. Menerapkan getaran, gelombang, dan bunyi Standar Kompetensi 7. Menerapkan konsep suhu dan kalor 8. Menerapkan konsep fluida 9. Menerapkan hukum Termodinamika 10. Menerapkan getaran, gelombang, dan bunyi 11. Menerapkan konsep magnet dan elektromagnet

Lebih terperinci

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA

PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Edu Physic Vol. 3, Tahun 2012 PEMBUATAN ALAT UKUR KONDUKTIVITAS PANAS BAHAN PADAT UNTUK MEDIA PRAKTEK PEMBELAJARAN KEILMUAN FISIKA Vandri Ahmad Isnaini, S.Si., M.Si Program Studi Pendidikan Fisika IAIN

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

MARDIANA LADAYNA TAWALANI M.K.

MARDIANA LADAYNA TAWALANI M.K. KALOR Dosen : Syafa at Ariful Huda, M.Pd MAKALAH Diajukan untuk memenuhi salah satu syarat pemenuhan nilai tugas OLEH : MARDIANA 20148300573 LADAYNA TAWALANI M.K. 20148300575 Program Studi Pendidikan Matematika

Lebih terperinci

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari.

KALOR. Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. KALOR A. Pengertian Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan

Lebih terperinci

Suhu dan kalor 1 SUHU DAN KALOR

Suhu dan kalor 1 SUHU DAN KALOR Suhu dan kalor 1 SUHU DAN KALOR Pengertian Sifat Termal Zat. Sifat termal zat ialah bahwa setiap zat yang menerima ataupun melepaskan kalor, maka zat tersebut akan mengalami : - Perubahan suhu / temperatur

Lebih terperinci

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam!

TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA. 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! TOPIK: PANAS DAN HUKUM PERTAMA TERMODINAMIKA SOAL-SOAL KONSEP: 1. Berikanlah perbedaan antara temperatur, panas (kalor) dan energi dalam! Temperatur adalah ukuran gerakan molekuler. Panas/kalor adalah

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB II ARUS BOCOR DAN KELEMBABAN UDARA

BAB II ARUS BOCOR DAN KELEMBABAN UDARA BAB II ARUS BOCOR DAN KELEMBABAN UDARA II.1 Jenis Isolator Isolator merupakan salah satu bahan dielektrik yang digunakan untuk memisahkan konduktor bertegangan dengan kerangka penyangga yang dibumikan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

BAB II PEMBUMIAN PERALATAN LISTRIK DENGAN ELEKTRODA BATANG. Tindakan-tindakan pengamanan perlu dilakukan pada instalasi rumah tangga

BAB II PEMBUMIAN PERALATAN LISTRIK DENGAN ELEKTRODA BATANG. Tindakan-tindakan pengamanan perlu dilakukan pada instalasi rumah tangga BAB II PEMBUMIAN PERALATAN LISTRIK DENGAN ELEKTRODA BATANG II.1. Umum (3) Tindakan-tindakan pengamanan perlu dilakukan pada instalasi rumah tangga untuk menjamin keamanan manusia yang menggunakan peralatan

Lebih terperinci

KALOR SEBAGAI ENERGI B A B B A B

KALOR SEBAGAI ENERGI B A B B A B Kalor sebagai Energi 143 B A B B A B 7 KALOR SEBAGAI ENERGI Sumber : penerbit cv adi perkasa Perhatikan gambar di atas. Seseorang sedang memasak air dengan menggunakan kompor listrik. Kompor listrik itu

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2005

SOAL UN FISIKA DAN PENYELESAIANNYA 2005 2. 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

1 BAB I PENDAHULUAN. Energi listrik merupakan kebutuhan utama dan komponen penting dalam

1 BAB I PENDAHULUAN. Energi listrik merupakan kebutuhan utama dan komponen penting dalam 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan kebutuhan utama dan komponen penting dalam kehidupan. Energi listrik dibangkitkan melalui pembangkit dan disalurkan ke konsumen-konsumen

Lebih terperinci

KEGIATAN BELAJAR 6 SUHU DAN KALOR

KEGIATAN BELAJAR 6 SUHU DAN KALOR KEGIATAN BELAJAR 6 SUHU DAN KALOR A. Pengertian Suhu Suhu atau temperature adalah besaran yang menunjukkan derajat panas atau dinginnya suatu benda. Pengukuran suhu didasarkan pada keadaan fisis zat (

Lebih terperinci

BAB II DASAR TEORI. 2.1 Isolator. Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki

BAB II DASAR TEORI. 2.1 Isolator. Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki BAB II DASAR TEORI 2.1 Isolator Pada suatu sistem tenaga listrik terdapat berbagai bagian yang memiliki tegangan dan juga tidak bertegangan. Sehingga bagian yang tidak bertegangan ini harus dipisahkan

Lebih terperinci

ILMU BAHAN LISTRIK_edysabara. 1 of 6. Pengantar

ILMU BAHAN LISTRIK_edysabara. 1 of 6. Pengantar ILMU BAHAN LISTRIK_edysabara. 1 of 6 Pengantar Bahan listrik dalam sistem tanaga listrik merupakan salah satu elemen penting yang akan menentukan kualitas penyaluran energi listrik itu sendiri. Bahan listrik

Lebih terperinci

9/17/ KALOR 1

9/17/ KALOR 1 9. KALOR 1 1 KALOR SEBAGAI TRANSFER ENERGI Satuan kalor adalah kalori (kal) Definisi kalori: Kalor yang dibutuhkan untuk menaikkan temperatur 1 gram air sebesar 1 derajat Celcius. Satuan yang lebih sering

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

SUHU DAN KALOR DEPARTEMEN FISIKA IPB

SUHU DAN KALOR DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB Pendahuluan Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalambentukkalor: Memasak makanan Ruang pemanas/pendingin Dll. TUJUAN INSTRUKSIONAL

Lebih terperinci

KALOR. system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitatif pertukaran kalor.

KALOR. system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitatif pertukaran kalor. 59 60 system yang lain; ini merupakan dasar kalorimetri, yang merupakan pengukuran kuantitati pertukaran kalor. KALOR. Energi termal, atau energi dalam, U, mengacu pada energi total semua molekul pada

Lebih terperinci

D. 80,28 cm² E. 80,80cm²

D. 80,28 cm² E. 80,80cm² 1. Seorang siswa melakukan percobaan di laboratorium, melakukan pengukuran pelat tipis dengan menggunakan jangka sorong. Dari hasil pengukuran diperoleh panjang 2,23 cm dan lebar 36 cm, maka luas pelat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan

BAB II TINJAUAN PUSTAKA. sama yaitu isolator. Struktur amorf pada gelas juga disebut dengan istilah keteraturan 5 BAB II TINJAUAN PUSTAKA 2.1. Material Amorf Salah satu jenis material ini adalah gelas atau kaca. Berbeda dengan jenis atau ragam material seperti keramik, yang juga dikelompokan dalam satu definisi

Lebih terperinci

PREDIKSI UN FISIKA V (m.s -1 ) 20

PREDIKSI UN FISIKA V (m.s -1 ) 20 PREDIKSI UN FISIKA 2013 1. Perhatikan gambar berikut Hasil pengukuran yang bernar adalah. a. 1,23 cm b. 1,23 mm c. 1,52mm d. 1,73 cm e. 1,73 mm* 2. Panjang dan lebar lempeng logam diukur dengan jangka

Lebih terperinci

Hukum Ohm. Fisika Dasar 2 Materi 4

Hukum Ohm. Fisika Dasar 2 Materi 4 Hukum Ohm Fisika Dasar 2 Materi 4 Arus Listrik Pada listrik statis, kita selalu membahas muatan yang diam. Pada listrik dinamik muatan dipandang bergerak pada suatu bahan yang disebut konduktor Muatan-muatan

Lebih terperinci

BAB II L I S T R I K. Muatan ada 3 : 1. Proton : muatan positif. 2. Neutron : muatan netral 3. Elektron : muatan negative

BAB II L I S T R I K. Muatan ada 3 : 1. Proton : muatan positif. 2. Neutron : muatan netral 3. Elektron : muatan negative BB II L I S T I K. ELEKTOSTTIK. Muatan () F Materi Molekul tom Muatan ada 3 :. Proton : muatan positif Benda bermuatan ada 3 :. Benda bermuatan positif 2. Benda bermuatan negatif 3. Benda bermuatan netral

Lebih terperinci

Terjemahan ZAT PADAT. Kristal padat

Terjemahan ZAT PADAT. Kristal padat Terjemahan ZAT PADAT Zat padat adalah sebuah objek yang cenderung mempertahankan bentuknya ketika gaya luar mempengaruhinya. Karena kepadatannya itu, bahan padat digunakan dalam bangunan yang semua strukturnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Umum Lightning Arrester merupakan alat proteksi peralatan listrik terhadap tegangan lebih yang disebabkan oleh petir atau surja hubung (switching surge). Alat ini bersifat

Lebih terperinci

3. besarnya gaya yang bekerja pada benda untuk tiap satuan luas, disebut... A. Elastis D. Gaya tekan B. Tegangan E. Gaya C.

3. besarnya gaya yang bekerja pada benda untuk tiap satuan luas, disebut... A. Elastis D. Gaya tekan B. Tegangan E. Gaya C. LATIHAN SOAL PERSIAPAN UJIAN KENAIKAN KELAS BAB 1 ELASTISITAS A. Soal Konsep 1. Sifat benda yan dapat kembali ke bentuk semula setelah gaya yang bekerja pada benda dihilangkan merupakan penjelasan dari...

Lebih terperinci

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA Firmansyah Burlian, M. Indaka Khoirullah Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A PREDIKSI 7 1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A B C D E 2. Pak Pos mengendarai sepeda motor ke utara dengan jarak 8 km, kemudian

Lebih terperinci

Materi Listrik. LISTRIK STATIS Hukum Coulomb Medan Listrik Potensial Listrik Kapasitor Contoh Soal

Materi Listrik. LISTRIK STATIS Hukum Coulomb Medan Listrik Potensial Listrik Kapasitor Contoh Soal Materi Listrik LISTRIK STATIS Hukum Coulomb Medan Listrik Potensial Listrik Kapasitor Contoh Soal LISTRIK DINAMIS Arus Listrik Hukum Ohm Rangkaian hambatan Rangkaian Sumber tegan Hukum Kirchoff I.II Sumber

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Pentanahan Sistem pentanahan mulai dikenal pada tahun 1900. Sebelumnya sistemsistem tenaga listrik tidak diketanahkan karena ukurannya masih kecil dan tidak membahayakan.

Lebih terperinci

PERPINDAHAN PANAS. Pertemuan 9 Fisika 2. Perpindahan Panas Konduksi

PERPINDAHAN PANAS. Pertemuan 9 Fisika 2. Perpindahan Panas Konduksi PERPINDHN PNS Pertemuan 9 Fisika 2 Perpindahan Panas onduksi dalah proses transport panas dari daerah bersuhu tinggi ke daerah bersuhu rendah dalam satu medium (padat, cair atau gas), atau antara medium

Lebih terperinci

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG

PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG PENGUJIAN TEGANGAN TEMBUS MEDIA ISOLASI UDARA DAN MEDIA ISOLASI MINYAK TRAFO MENGGUNAKAN ELEKTRODA BIDANG Zainal Abidin Teknik Elektro Politeknik Bengkalis Jl. Bathin Alam, Sei-Alam, Bengkalis Riau zainal@polbeng.ac.id

Lebih terperinci

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur.

KALOR. Peta Konsep. secara. Kalor. Perubahan suhu. Perubahan wujud Konduksi Konveksi Radiasi. - Mendidih. - Mengembun. - Melebur. KALOR Tujuan Pembelajaran: 1. Menjelaskan wujud-wujud zat 2. Menjelaskan susunan partikel pada masing-masing wujud zat 3. Menjelaskan sifat fisika dan sifat kimia zat 4. Mengklasifikasikan benda-benda

Lebih terperinci

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar!

Soal Suhu dan Kalor. Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! Soal Suhu dan Kalor Jawablah pertanyaan-pertanyaan di bawah ini dengan benar! 1.1 termometer air panas Sebuah gelas yang berisi air panas kemudian dimasukkan ke dalam bejana yang berisi air dingin. Pada

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN

STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN STUDI DISTRIBUSI TEGANGAN DAN ARUS BOCOR PADA ISOLATOR RANTAI DENGAN PEMBASAHAN Riza Aryanto. 1, Moch. Dhofir, Drs., Ir., MT. 2, Hadi Suyono, S.T., M.T., Ph.D. 3 ¹Mahasiswa Jurusan Teknik Elektro, ² ³Dosen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

Penghantar Fungsi penghantar pada teknik tenaga listrik adalah untuk menyalurkan energi listrik dari satu titik ketitik lain. Penghantar yang lazim

Penghantar Fungsi penghantar pada teknik tenaga listrik adalah untuk menyalurkan energi listrik dari satu titik ketitik lain. Penghantar yang lazim KONDUKTOR Penghantar Fungsi penghantar pada teknik tenaga listrik adalah untuk menyalurkan energi listrik dari satu titik ketitik lain. Penghantar yang lazim digunakan adalah aluminium dan tembaga. Aluminium

Lebih terperinci

KALOR DAN KALOR REAKSI

KALOR DAN KALOR REAKSI KALOR DAN KALOR REAKSI PENGERTIAN KALOR Kalor Adalah bentuk energi yang berpindah dari benda yang suhunya tinggi ke benda yang suhunya rendah ketika kedua benda bersentuhan. Satuan kalor adalah Joule (J)

Lebih terperinci

Dibuat oleh invir.com, dibikin pdf oleh

Dibuat oleh invir.com, dibikin pdf oleh 1. Energi getaran selaras : A. berbanding terbalik dengan kuadrat amplitudonya B. berbanding terbalik dengan periodanya C. berbanding lurus dengan kuadrat amplitudonya. D. berbanding lurus dengan kuadrat

Lebih terperinci

1. Persamaan keadaan gas ideal ditulis dalam bentuk = yang tergantung kepada : A. jenis gas B. suhu gas C. tekanan gas

1. Persamaan keadaan gas ideal ditulis dalam bentuk = yang tergantung kepada : A. jenis gas B. suhu gas C. tekanan gas 1. Persamaan keadaan gas ideal ditulis dalam bentuk = yang tergantung kepada : jenis gas suhu gas tekanan gas D. volume gas E. banyak partikel 2. Seorang anak duduk di atas kursi pada roda yang berputar

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN Paket C 2011 Program IP Mata Ujian : Fisika Jumlah Soal : 20 1. Pembacaan jangka sorong berikut ini (bukan dalam skala sesungguhnya) serta banyaknya angka penting adalah. 10 cm 11 () 10,22

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Tekanan Mekanis Benda memiliki suatu massa atau berat. Berat sebuah benda berasal dari dua hal yaitu internal dan eksternal. Berat yang berasal dari bahan tersebut

Lebih terperinci

LEMBAR KERJA (LAPORAN ) PRAKTIKUM IPA SD PDGK 4107 MODUL 5. KALOR PERUBAHAN WUJUD ZAT dan PERPINDAHANNYA PADA SUATU ZAT

LEMBAR KERJA (LAPORAN ) PRAKTIKUM IPA SD PDGK 4107 MODUL 5. KALOR PERUBAHAN WUJUD ZAT dan PERPINDAHANNYA PADA SUATU ZAT LEMBAR KERJA (LAPORAN ) PRAKTIKUM IPA SD PDGK 4107 MODUL 5 KALOR PERUBAHAN WUJUD ZAT dan PERPINDAHANNYA PADA SUATU ZAT NAMA NIM : : KEGIATAN PRAKTIKUM A. PERCOBAAN TITIK LEBUR ES 1. Suhu es sebelum dipanaskan

Lebih terperinci

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion)

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion) ARUS LISTRIK Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion) Konduktor terisolasi Elektron-elektron tersebut tidak mempunyai

Lebih terperinci

SIMAK UI Fisika

SIMAK UI Fisika SIMAK UI 2016 - Fisika Soal Halaman 1 01. Fluida masuk melalui pipa berdiameter 20 mm yang memiliki cabang dua pipa berdiameter 10 mm dan 15 mm. Pipa 15 mm memiliki cabang lagi dua pipa berdiameter 8 mm.

Lebih terperinci

ILMU BAHAN. : Ferdian Ronilaya Desain sampul : Maziyatuzzahra Munasib. Hak Cipta 2016, pada penulis Anggota APPTI Hak publikasi pada Polinema Press

ILMU BAHAN. : Ferdian Ronilaya Desain sampul : Maziyatuzzahra Munasib. Hak Cipta 2016, pada penulis Anggota APPTI Hak publikasi pada Polinema Press ILMU BAHAN Oleh : Ferdian Ronilaya Desain sampul : Maziyatuzzahra Munasib Hak Cipta 2016, pada penulis Anggota APPTI Hak publikasi pada Polinema Press Dilarang memperbanyak, sebagian atau seluruh isi dart

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

UN SMA IPA Fisika 2015

UN SMA IPA Fisika 2015 UN SMA IPA Fisika 2015 Latihan Soal - Persiapan UN SMA Doc. Name: UNSMAIPA2015FIS999 Doc. Version : 2015-10 halaman 1 01. Gambar berikut adalah pengukuran waktu dari pemenang lomba balap motor dengan menggunakan

Lebih terperinci

BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH

BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH BAB II IMPEDANSI SURJA MENARA DAN KAWAT TANAH II. 1 TEORI GELOMBANG BERJALAN II.1.1 Pendahuluan Teori gelombang berjalan pada kawat transmisi telah mulai disusun secara intensif sejak tahun 1910, terlebih-lebih

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dielektrik Dielektrik adalah suatu bahan yang memiliki daya hantar arus yang sangat kecil atau bahkan hampir tidak ada.bahan dielektrik dapat berwujud padat, cair dan gas. Pada

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

BAB I PENDAHULUAN. dalam pengelolaan listrik, salah satunya adalah isolasi. Isolasi adalah suatu alat

BAB I PENDAHULUAN. dalam pengelolaan listrik, salah satunya adalah isolasi. Isolasi adalah suatu alat BAB I PENDAHULUAN 1.1 Latar Belakang Manusia dalam kehidupannya sangat bergantung pada kebutuhan energi. Energi tersebut diperoleh dari berbagai sumber, kemudian didistribusikan dalam bentuk listrik. Listrik

Lebih terperinci

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi

BAB II MOTOR ARUS SEARAH. tersebut berupa putaran rotor. Proses pengkonversian energi listrik menjadi energi BAB II MOTOR ARUS SEARAH II.1 Umum Motor arus searah ialah suatu mesin listrik yang berfungsi mengubah energi listrik arus searah (listrik DC) menjadi energi gerak atau energi mekanik, dimana energi gerak

Lebih terperinci

SOAL UN FISIKA DAN PENYELESAIANNYA 2007

SOAL UN FISIKA DAN PENYELESAIANNYA 2007 1. Suatu segi empat setelah diukur dengan menggunakan alat yang berbeda panjang 0,42 cm, lebar 0,5 cm. Maka luas segi empat tersebut dengan penulisan angka penting 2. adalah... A. 0,41 B. 0,21 C. 0,20

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA DASAR II RESISTIVITAS. Oleh: Dina Puji Lestari PROGRAM STUDI PENDIDIKAN FISIKA

LAPORAN PRAKTIKUM FISIKA DASAR II RESISTIVITAS. Oleh: Dina Puji Lestari PROGRAM STUDI PENDIDIKAN FISIKA LAPORAN PRAKTIKUM FISIKA DASAR II RESISTIVITAS Oleh: Dina Puji Lestari 120210102019 PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

- - KALOR - - Kode tujuh3kalor - Kalor 7109 Fisika. Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila.

- - KALOR - - Kode tujuh3kalor - Kalor 7109 Fisika. Les Privat dirumah bimbelaqila.com - Download Format Word di belajar.bimbelaqila. - - KALOR - - KALOR Definisi Kalor Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama

Lebih terperinci

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2006

Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2006 Evaluasi Belajar Tahap Akhir F I S I K A Tahun 2006 EBTA-SMK-06-01 Sebatang kawat baja mempunyai luas penampang 2,20 mm 2, dan panjangnya 37,55 mm. Besarnya volume kawat baja tersebut A. 80,875 mm 3 B.

Lebih terperinci

dan Hukum I Kirchhoff

dan Hukum I Kirchhoff Bab 9 Hukum Ohm dan Hukum I Kirchhoff Pada suatu malam Ani belajar fisika, tiba-tiba ia melihat nyala lampu pijar di depannya meredup. Sambil berpikir Ani berjalan ke ruang tamu lalu menyalakan lampu neon.

Lebih terperinci

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan Nama : Ahmad Sulaiman NIM : 5202414055 Rombel :2 PERPINDAHAN KALOR J.P. HOLMAN BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan energi yang berpindah antar

Lebih terperinci

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut.

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut. 1 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut. Panjang Lebar (menggunakan mistar) (menggunakan jangka sorong) Luas plat logam di atas

Lebih terperinci

UN SMA IPA 2011 Fisika

UN SMA IPA 2011 Fisika UN SMA IPA 2011 Fisika Kode Soal Doc. Name: UNSMAIPA2011FIS999 Doc. Version : 2012-12 halaman 1 1. Sebuah benda bergerak dengan lintasan seperti grafik berikut : Perpindahan yang dialami benda sebesar.

Lebih terperinci

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK

Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK Lampiran 1 Nilai awal siswa No Nama Nilai Keterangan 1 Siswa 1 35 TIDAK TUNTAS 2 Siswa 2 44 TIDAK TUNTAS 3 Siswa 3 32 TIDAK TUNTAS 4 Siswa 4 36 TIDAK TUNTAS 5 Siswa 5 40 TIDAK TUNTAS 6 Siswa 6 40 TIDAK

Lebih terperinci

RINGKASAN DAN LATIHAN - - LISTRIK STATIS - LISTRIK STATI S

RINGKASAN DAN LATIHAN - - LISTRIK STATIS - LISTRIK STATI S RINGKASAN DAN LATIHAN Listrik Statis - - LISTRIK STATIS - LISTRIK STATI S Hukum Coulomb ------------------------------- 1 Listrik Statis Medan Listrik Medan Listrik oleh titik bermuatan Fluk Listrik dan

Lebih terperinci

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 i KONDUKTIVITAS TERMAL LAPORAN Oleh: LESTARI ANDALURI 100308066 I LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012 ii KONDUKTIVITAS

Lebih terperinci

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA

BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA BAB III TEGANGAN GAGAL DAN PENGARUH KELEMBABAN UDARA 3.1. Pendahuluan Setiap bahan isolasi mempunyai kemampuan menahan tegangan yang terbatas. Keterbatasan kemampuan tegangan ini karena bahan isolasi bukanlah

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

KAJIAN JURNAL : PENGUKURAN KONDUKTIVITAS TERMAL BATA MERAH PEJAL

KAJIAN JURNAL : PENGUKURAN KONDUKTIVITAS TERMAL BATA MERAH PEJAL KAJIAN JURNAL : PENGUKURAN KONDUKTIVITAS TERMAL BATA MERAH PEJAL Disusun Oleh : Brigita Octovianty Yohana W 125100601111030 Jatmiko Eko Witoyo 125100601111006 Ravendi Ellyazar 125100600111006 Riyadhul

Lebih terperinci

Rudi Susanto

Rudi Susanto LISTRIK STATIS Rudi Susanto http://rudist.wordpress.com Tujuan Instruksional Dapat menentukan gaya, medan, energi dan potensial listrik yang berasal dari muatanmuatan statik serta menentukan kapasitansi

Lebih terperinci

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini :

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini : 1. Tiga buah vektor gaya masing-masing F 1 = 30 N, F 2 = 70 N, dan F 3 = 30 N, disusun seperti pada gambar di atas. Besar resultan ketiga vektor tersebut adalah... A. 0 N B. 70 N C. 85 N D. 85 N E. 100

Lebih terperinci

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan MEKANISME By : Dewi Maya Maharani Pengeringan Prinsip Dasar Pengeringan Proses pemakaian panas dan pemindahan air dari bahan yang dikeringkan yang berlangsung secara serentak bersamaan Konduksi media Steam

Lebih terperinci

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut!

UJIAN SEKOLAH 2016 PAKET A. 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! SOAL UJIAN SEKOLAH 2016 PAKET A 1. Hasil pengukuran diameter dalam sebuah botol dengan menggunakan jangka sorong ditunjukkan pada gambar berikut! 2 cm 3 cm 0 5 10 Dari gambar dapat disimpulkan bahwa diameter

Lebih terperinci