ENERGY ANALYSIS OF CLOSED SYSTEMS Omil C.Chatib, M.Si

dokumen-dokumen yang mirip
10/3/2011. panas. massa, kecepatan alir volumetrik dan sifat-sifat fluida lokal.

BASIC THERMODYNAMIC CONCEPTS

Introduction to Thermodynamics

Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya

PERBANDINGAN KOMPETENSI ANTARA KURIKULUM KTSP DENGAN IGSE (Physics Science) Heru Kuswanto. Kompetensi Dasar

Exercise 1c Menghitung efisiensi

PHYSICAL CHEMISTRY I

ENTROPI. Untuk gas ideal, dt dan V=RT/P. Dengan subtitusi dan pembagian dengan T, akan diperoleh persamaan:

V Reversible Processes

FISIKA THERMAL II Ekspansi termal dari benda padat dan cair

ANALISIS SUB-BULUH PADA MODEL REAKTOR SUSUNAN BAHAN BAKAR BUJURSANGKAR ATAU HEKSAGONAL

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu

TERMODINAMIKA LANJUT: ENTROPI

Termodinamika. Energi dan Hukum 1 Termodinamika

6/12/2014. Distillation

TRANSPORTASI FLUIDA di INDUSTRI PANGAN

PEMBUATAN PERANGKAT LUNAK UNTUK PREDIKSI SIFAT TERMODINAMIKA DAN TRANSPORT CAMPURAN TERNER HIDROKARBON

THERMODINAMIKA. Oleh: Dr. Eng. Yulius Deddy Hermawan.

LAPORAN TUGAS AKHIR PEMBUATAN SISTEM SIRKULASI AIR PENDINGIN KONDENSOR PERALATAN PIROLISIS SAMPAH PLASTIK

ANALISA TERMODINAMIKA PADA SISTEM PEMBANGKIT TENAGA UAP DENGAN VARIASI PEMBEBANAN DI UNIT PEMBANGKIT TENAGA UAP PT

THERMODINAMIKA. Oleh: Dr. Eng. Yulius Deddy Hermawan.

Abstrak Kata Kunci :

Kalor dan Hukum Termodinamika

RANCANGAN KEGIATAN BELAJAR MENGAJAR (SATUAN ACUAN PERKULIAHAN) Kode MK/SKS : TM 322/2 SKS

Isyarat. Oleh Risanuri Hidayat. Isyarat. Bernilai real, skalar Fungsi dari variabel waktu Nilai suatu isyarat pada waktu t harus real

Fisika Dasar I (FI-321)

SIFAT, KEUNTUNGAN, DAN KERUGIAN UDARA BERTEKANAN

II HUKUM THERMODINAMIKA I

KESETIMBANGAN MASSA Q&A

DINAMIKA PROSES PENGUKURAN TEMPERATUR (Siti Diyar Kholisoh)

BAB 1 Energi : Pengertian, Konsep, dan Satuan

4/16/2017. Start-up CSTR A, B Q A, B A, B. I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh. (Levenspiel, 1999, page 84)

TERMODINAMIKA SIKLUS KERJA DAN PEMAKAIAN BAHAN BAKAR MESIN DIESEL EMPAT LANGKAH 350 HP, 400 RPM (KAJIAN TEORITIS) Aloysius Eddy Liemena *) Abstract

KAJI EKSPERIMENTAL PENGARUH ANGLE MIXING CHAMBER TERHADAP UNJUK KERJA STEAM EJECTOR REFRIGERATION

RANCANG BANGUN ALAT PENGERING TIPE TRAY DENGAN MEDIA UDARA PANAS DITINJAU DARI LAMA WAKTU PENGERINGAN TERHADAP EXERGI PADA ALAT HEAT EXCHANGER

Bab 3. MA2151 Simulasi dan Komputasi Matematika

DINAMIKA FLUIDA II. Makalah Mekanika Fluida KELOMPOK 8: YONATHAN SUROSO RISKY MAHADJURA SWIT SIMBOLON

Refrigerant. Proses pendinginan atau refrigerasi pada hakekatnya merupakan proses pemindahan energi panas yang terkandung di dalam ruangan tersebut.

Keseimbangan Torsi Coulomb

The ATP CYCLE and Cell Bioenergetic

Analisis Pengaruh Rasio Reheat Pressure dengan Main Steam Pressure terhadap Performa Pembangkit dengan Simulasi Cycle-Tempo

Disusun untuk Memenuhi Syarat Menyelesaikan Pendidikan Sarjana Terapan (D-IV)Teknik Energi pada Jurusan Teknik Kimia Politeknik Negeri Sriwijaya

Laju massa. Laju massa akumulasi dalam sistem. Laju massa masuk sistem. keluar sistem. exit. inlet. system. = m& accumulation.

POLA ALIRAN DUA FASE (AIR+UDARA) PADA PIPA HORISONTAL DENGAN VARIASI KECEPATAN SUPERFISIAL AIR

Work and Energy. (average power)

ANALISA SISTEM PENDINGIN KAPASITAS GPM PADA MESIN DIESEL DI PLTD TITI KUNING

HUKUM 1 THERMODINAMIKA. Agung Ari Wibowo S.T., M.Sc Politeknik Negeri Malang

ANALISA POMPA SENTRIFUGAL KAPASITAS 417 LITER/MENIT, HEAD 28,5 METER UNTUK MENGISI RESERVOAR II POLITEKNIK NEGERI MEDAN

BAB III ANALISA DAN PEMBAHASAN

UJI ALAT DINAMIKA PROSES ORDE DUA INTERACTING CAPACITIES BUKAAN VALVE 1/3 (33,33%), 1/6 (16,67%) DAN 1/9 (11,11%)

PERUBAHAN MOMENTUM IMPULS TUMBUKAN. Berlaku hukum kelestarian Momentum dan energi kinetik LENTING SEMPURNA

LAPORAN HASIL PENELITIAN HIBAH PENELITIAN STRATEGIS NASIONAL DIPA UNIVERSITAS BRAWIJAYA TAHUN 2010

Heat Transfer Nur Istianah-THP-FTP-UB-2016

Session 4. Diesel Power Plant. 1. Siklus Otto dan Diesel 2. Prinsip PLTD 3. Proses PLTD 4. Komponen PLTD 5. Kelebihan dan Kekurangan PLTD

E V A P O R A S I PENGUAPAN

Informasi Data Pokok Kota Surabaya Tahun 2012 BAB I GEOGRAFIS CHAPTER I GEOGRAPHICAL CONDITIONS

PERENCANAAN PABRIK PENGOLAHAN PERMEN COKELAT DENGAN BAHAN BAKU 250 KG PASTA COKELAT/HARI TUGAS PERENCANAAN UNIT PENGOLAHAN PANGAN

METODA ELEMEN BATAS UNTUK ANALISIS PROBLEM MEDIUM INFINITE DAN SEMI-INFINITE ELASTIS DUA DIMENSI. Thesis

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat Memperoleh Gelar Sarjana Teknik DENI RAFLI NIM : DEPARTEMEN TEKNIK MESIN

7. Analisis Kebutuhan - 1 (System Actors & System Use Cases )

TOPIK PRESENTASI: Liquid, Steam & Gas Measuring Instrumentation And Its Application. PT. Petrokimia Nusantara Interindo

ABSTRAK. Kata kunci : industri cat otomotif, investasi jangka panjang, ekspansi, estimasi arus kas, studi kelayakan, capital budgeting,

Electric Field. Wenny Maulina

Lesson 3C Heat Capacities Mempelajari 2 definisi kapasitas panas: kapasitas panas volume konstan dan kapasitas panas tekanan konstan.

RANCANG BANGUN TEMPORARY AIR CONDITIONER BERBASIS PENYIMPANAN ENERGI TERMAL ES

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

EVALUASI METODE ANALISIS KURVA PENURUNAN LAJU PRODUKSI DENGAN PEUBAH PENURUNAN TEKANAN ATAU PEUBAH LAJU ALIRAN

BAB III METODOLOGI PENELITIAN

Session 17 Steam Turbine Theory. PT. Dian Swastatika Sentosa

Lampiran A: Gambar Bagian- bagian dari Alat Penukar Kalor Berdasarkan Standar TEMA

RESPONSI MATA KULIAH: DASAR KETEKNIKAN PENGOLAHAN

Model Transien Aliran Gas pada Pipa

P konstan m w.cp.dt = m w.du + m w.p.dv Asumsi : Cp dan V konstan, maka,

PADA DEGRADASI SAMPAH KOTA SECARA ANAEROBIK AKIBAT PENGARUH KELEMBABAN DAN UMUR SAMPAH TES1S MAGISTER. Oleh. Tina Mulya Gantina

PERANCANGAN SISTEM PENGENDALIAN LEVEL DAN INTERLOCK STEAM DRUM DENGAN DUA ELEMEN KONTROL DI PT. INDONESIA POWER UBP SUB UNIT PERAK.

PENGARUH KIPAS TERHADAP WAKTU DAN LAJU PENGERINGAN MESIN PENGERING PAKAIAN

TRANSFER MOMENTUM. Massa = m B

ANALISA TURBIN UAP SHINCO TYPE BGS-RY-K DENGAN DAYA 4500 KVA DI PABRIK GULA SEI SEMAYANG

Pengecoran logam. Pengecoran (casting)

LAMPIRAN. Lampiran 1 LANGKAH-LANGKAH ANALISA DENGAN. MENGGUNAKAN ANSYS 15.0 : a. Geometry dan Mesh

10/2/2012 TANK SYSTEM AQUACULTURE ENGINEERING

KESETIMBANGAN ENERGI

BAB I KONSEP DASAR. massa (m ) kg lbm 1 lbm = 0,454 kg. panjang (L) m ft 1 ft = 0,3048 m. gaya N lbf 1N=1kg m /s 2. kerja J Btu 1 J = 1 Nm

Heat Transfer Nur Istianah-THP-FTP-UB-2015

Fakultas Teknik Universitas Ibn Khaldun Bogor Jl. KH. Soleh Iskandar KM.2 Bogor 16162

BAB I PENDAHULUAN. 1.1 Latar Belakang. Indonesia merupakan Negara yang memiliki sumber panas bumi yang sangat

III ZAT MURNI (PURE SUBSTANCE)

TUGAS AKHIR ANALISA SISTEM PENDINGINAN PADA PESAWAT KINGAIR B200GT

SIMULASI PERPINDAHAN PANAS GEOMETRI FIN DATAR PADA HEAT EXCHANGER DENGAN ANSYS FLUENT

DISTILASI 08/03/2018 Nur Istianah-KP1-Distilasi-2015

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK

IDENTIFIKASI INDIVIDU BERDASARKAN CITRA SILUET BERJALAN MENGGUNAKAN PENGUKURAN JARAK KONTUR TERHADAP CENTROID ABSTRAK

PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25%

Aquaro. Oceans WS8821

PERANCANGAN HEAT EXCHANGER

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

1-x. dimana dan dihubungkan oleh teorema Pythagoras.

STUDI EKSPERIMEN PENGARUH PEMBEBANAN GENERATOR PADA PERFORMA SISTEM ORGANIC RANKINE CYCLE (ORC)

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION

PENGARUH ALAT EKSPANSI TERHADAP TEMPERATUR DAN TEKANAN PADA MESIN PENDINGIN SIKLUS KOMPRESI UAP

Transkripsi:

ENERGY ANALYSIS OF CLOSED SYSTEMS Omil C.Chatib, M.Si

1. Moving Boundary Work

1. Moving Boundary Work

1. Moving Boundary Work (Isokhoric)

1. Moving Boundary Work (Isobaric)

1. Moving Boundary Work (Isobaric)

1. Moving Boundary Work (Isothermal)

1. Moving Boundary Work (Polytropic)

1. Moving Boundary Work (Polytropic)

1. Moving Boundary Work (Polytropic)

1. Moving Boundary Work (Polytropic)

1. Moving Boundary Work (Polytropic) Contoh Soal : 1. Suatu fluida pada tekanan 3 bar dengan volume spesifik 0,18 m 3 /kg, diisikan dalam suatu silinder yang berpiston (torak), berekspansi secara reversibel mencapai tekanan 0,6 bar yang mengikuti persamaan p = c/v 2, dengan c adalah konstanta. Hitung kerja yang dilakukan oleh fluida pada piston!

1. Moving Boundary Work (Polytropic) Contoh Soal : 2. Sebanyak 1 kg fluida diisikan dalam sebuah silinder pada tekanan awal 20 bar. Dilanjutkan ekspansi secara reversibel dibelakang suatu piston dengan mengikuti hukum pv 2 = konstan sampai volumenya mencapai 2 kali. Fluida kemudian didinginkan secara reversibel pada tekanan konstan sampai piston kembali ke posisi awalnya. Panas kemudian diberikan secara reversibel dengan piston dikunci tertutup dalam suatu posisi sampai tekanannya naik mencapai nilai awal 20 bar. Hitung kerja bersih yang dilakukan oleh fluida! Untuk volume awal 0,05 m 3.

1. Moving Boundary Work (Polytropic) Contoh Soal : 3. Fluida tertentu pada 10 bar diisikan pada silinder yang berdampingan dengan suatu piston, volume awalnya 0,05 m 3. Hitung kerja yang dilakukan bila fluida tersebut mengembang secara reversibel a. Pada tekanan konstan sampai volume akhirnya 0,2 m 3. b. Menurut persamaan linier sampai volume akhirnya 0,2 m 3 dan tekanan akhirnya 2 bar. c. Menurut persamaan p.v = c sampai volume akhirnya 0,1 m 3. d. Menurut persamaan p.v 3 = c sampai volume akhirnya 0,06 m 3. e. Menurut persamaan p = (A/V 2 ) (B/V) sampai volume akhirnya 0,1 m 3 dan tekanan akhirnya 1 bar.

2. Energy Balance for Closed Systems For constant rates, the total quantities during a time interval t are related to the quantities per unit time as... For a closed system undergoing a cycle, the initial and final states are identical, and thus E system = E 2 - E 1 = 0 Then the energy balance for a cycle simplifies to E in E out = 0 or E in = E out Noting that a closed system does not involve any mass flow across its boundaries, the energy balance for a cycle can be expressed in terms of heat and work interactions as

2. Energy Balance for Closed Systems

2. Energy Balance for Closed Systems

2. Energy Balance for Closed Systems

2. Energy Balance for Closed Systems

2. Energy Balance for Closed Systems

2. Energy Balance for Closed Systems

2. Energy Balance for Closed Systems

3. Specific Heats The specific heat is defined as... the energy required to raise the temperature of a unit mass of a substance by one degree In general, this energy depends on how the process is executed. In thermodynamics, we are interested in two kinds of specific heats: specific heat at constant volume c v and specific heat at constant pressure c p.

3. Specific Heats The specific heat at constant pressure cp is always greater than cv because at constant pressure the system is allowed to expand and the energy for this expansion work must also be supplied to the system.

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

4. Internal Energy, Enthalpy, and Specific Heats of Ideal Gases

5. Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids Internal Energy Changes Enthalpy Changes

5. Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids Enthalpy Changes

5. Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids

5. Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids

5. Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids

MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Omil C.Chatib, M.Si

Flow Work and The Energy of a Flowing Fluid Unlike closed systems, control volumes involve mass flow across their boundaries, and some work is required to push the mass into or out of the control volume. This work is known as the flow work, or flow energy, and is necessary for maintaining a continuous flow through a control volume.

Flow Work and The Energy of a Flowing Fluid To push the entire fluid element into the control volume, this force must act through a distance L. Thus, the work done in pushing the fluid element across the boundary (i.e., the flow work) is...

Flow Work and The Energy of a Flowing Fluid Total Energy of a Flowing Fluid

Flow Work and The Energy of a Flowing Fluid Energy Transport by Mass

Flow Work and The Energy of a Flowing Fluid Energy Transport by Mass Steam is leaving a 4-L pressure cooker whose operating pressure is 150 kpa. It is observed that the amount of liquid in the cooker has decreased by 0.6 L in 40 min after the steady operating conditions are established, and the cross-sectional area of the exit opening is 8 mm2. Determine... (a) the mass flow rate of the steam and the exit velocity, (b) the total and flow energies of the steam per unit mass, and (c) the rate at which energy leaves the cooker by steam.

Flow Work and The Energy of a Flowing Fluid Energy Transport by Mass (a) Saturation conditions exist in a pressure cooker at all times after the steady operating conditions are established. Therefore, the liquid has the properties of saturated liquid and the exiting steam has the properties of saturated vapor at the operating pressure. The amount of liquid that has evaporated, the mass flow rate of the exiting steam, and the exit velocity are...

Flow Work and The Energy of a Flowing Fluid Energy Transport by Mass (b) Noting that h = u + Pv and that the kinetic and potential energies are disregarded, the flow and total energies of the exiting steam are... (c) The rate at which energy is leaving the cooker by mass is simply the product of the mass flow rate and the total energy of the exiting steam per unit mass,

Energy Analysis of Steady-Flow Systems

Energy Analysis of Steady-Flow Systems

Energy Analysis of Steady-Flow Systems

Some Stedy-Flow Engineering Devices 1. Nozzels and Diffusers

Some Stedy-Flow Engineering Devices 1. Nozzels and Diffusers

Some Stedy-Flow Engineering Devices 1. Nozzels and Diffusers

Some Stedy-Flow Engineering Devices 2. Turbines and Compressors

Some Stedy-Flow Engineering Devices 2. Turbines and Compressors

Some Stedy-Flow Engineering Devices 2. Turbines and Compressors

Some Stedy-Flow Engineering Devices 2. Turbines and Compressors

Some Stedy-Flow Engineering Devices 3. Throttling Valves

Some Stedy-Flow Engineering Devices 3. Throttling Valves

Some Stedy-Flow Engineering Devices 4. Mixing Chambers and Heat Exchangers

Some Stedy-Flow Engineering Devices 4. Mixing Chambers and Heat Exchangers

Some Stedy-Flow Engineering Devices 4. Mixing Chambers and Heat Exchangers

Some Stedy-Flow Engineering Devices 4. Mixing Chambers and Heat Exchangers

Some Stedy-Flow Engineering Devices 4. Mixing Chambers and Heat Exchangers

Some Stedy-Flow Engineering Devices 4. Mixing Chambers and Heat Exchangers

Some Stedy-Flow Engineering Devices 5. Pipe and Duct Flow

Some Stedy-Flow Engineering Devices 5. Pipe and Duct Flow

Energy Analysis of Unstedy-Flow Processes

Energy Analysis of Unstedy-Flow Processes

Energy Analysis of Unstedy-Flow Processes

Energy Analysis of Unstedy-Flow Processes

Energy Analysis of Unstedy-Flow Processes

Energy Analysis of Unstedy-Flow Processes