Osilasi Harmonis Sederhana: Beban Massa pada Pegas

dokumen-dokumen yang mirip
SASARAN PEMBELAJARAN

menganalisis suatu gerak periodik tertentu

Karakteristik Gerak Harmonik Sederhana

KARAKTERISTIK GERAK HARMONIK SEDERHANA

00:48:27. Fisika I. mengenal persamaan matematik. harmonik sederhana. osilasi harmonik Mahasiswa. Mahasiswa. Kompetensi: Osilasi

FISIKA I. OSILASI Bagian-2 MODUL PERKULIAHAN. Modul ini menjelaskan osilasi pada partikel yang bergerak secara harmonik sederhana

19:25:08. Fisika I. mengenal persamaan matematik. harmonik sederhana. osilasi harmonik Mahasiswa. Mahasiswa. Kompetensi: Osilasi

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GETARAN DAN GELOMBANG

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

KATA PENGANTAR. Semarang, 28 Mei Penyusun

GERAK HARMONIK SEDERHANA

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Fisika Dasar I (FI-321)

GETARAN DAN GELOMBANG

Materi Pendalaman 01:

Uji Kompetensi Semester 1

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG GETARAN

K 1. h = 0,75 H. y x. O d K 2

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

GETARAN, GELOMBANG DAN BUNYI

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

GERAK HARMONIK SEDERHANA. Program Studi Teknik Pertambangan

dibutuhkan untuk melakukan satu getaran adalah Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara

K13 Revisi Antiremed Kelas 10 FISIKA

TUJUAN PERCOBAAN II. DASAR TEORI

Jawaban Soal OSK FISIKA 2014

Antiremed Kelas 11 FISIKA

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO

HUKUM - HUKUM NEWTON TENTANG GERAK.

Getaran, Gelombang dan Bunyi

TES STANDARISASI MUTU KELAS XI

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

GERAK HARMONIK Gerak Harmonik terdiri atas : 1. Gerak Harmonik Sederhana (GHS) 2. Gerak Harmonik Teredam

Bab III Elastisitas. Sumber : Fisika SMA/MA XI

DASAR PENGUKURAN MEKANIKA

dy dx B. Tujuan Adapun tujuan dari praktikum ini adalah

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

GERAK OSILASI. Penuntun Praktikum Fisika Dasar : Perc.3

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Soal SBMPTN Fisika - Kode Soal 121

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

Benda B menumbuk benda A yang sedang diam seperti gambar. Jika setelah tumbukan A dan B menyatu, maka kecepatan benda A dan B

LAPORAN HASIL PRAKTIKUM FISIKA DASAR I

FISIKA. Sesi GELOMBANG BERJALAN DAN STASIONER A. GELOMBANG BERJALAN

Teori & Soal GGB Getaran - Set 08

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

BANDUL SEDERHANA BANDUL SEDERHANA

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

1. Sebuah beban 20 N digantungkan pada kawat yang panjangnya 3,0 m dan luas penampangnya 8 10

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : 12 JP (6 x 90 menit)

Gerak Harmonis. Sederhana SUB- BAB. A. Gaya Pemulih

1. a) Kesetimbangan silinder m: sejajar bidang miring. katrol licin. T f mg sin =0, (1) tegak lurus bidang miring. N mg cos =0, (13) lantai kasar

Gejala Gelombang. gejala gelombang. Sumber:

Antiremed Kelas 11 FISIKA

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

Kumpulan soal-soal level Olimpiade Sains Nasional: solusi:

Hukum gravitasi yang ada di jagad raya ini dijelaskan oleh Newton dengan persamaan sebagai berikut :

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

LAPORAN PRAKTIKUM FISIKA DASAR I PENGUKURAN KONSTANTA PEGAS DENGAN METODE PEGAS DINAMIK

BAB 1 Keseimban gan dan Dinamika Rotasi

SELEKSI OLIMPIADE NASIONAL MIPA PERGURUAN TINGGI (ONMIPA-PT) 2014 TINGKAT UNIVERSITAS MUHAMMADIYAH JAKARTA BIDANG FISIKA

SOAL DINAMIKA ROTASI

K13 Revisi Antiremed Kelas 10 Fisika

Pembahasan UAS I = 2/3 m.r 2 + m.r 2 = 5/3 m.r 2 = 5/3 x 0,1 x (0,05) 2

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG ELASTISITAS DAN HUKUM HOOKE (Pegas)

BAHAN AJAR PENERAPAN HUKUM KEKEKALAN ENERGI MEKANIK DALAM KEHIDUPAN SEHARI-HARI

BAHAN AJAR FISIKA KELAS XI IPA SEMESTER GENAP MATERI : DINAMIKA ROTASI

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

SOAL DAN PEMBAHASAN FINAL SESI II LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

Latihan Soal UAS Fisika Panas dan Gelombang

INTERFERENSI GELOMBANG

ANTIREMED KELAS 11 FISIKA

Satuan Pendidikan. : XI (sebelas) Program Keahlian

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1

BAB 5: DINAMIKA: HUKUM-HUKUM DASAR

2 H g. mv ' A, x. R= 2 5 m R2 ' A. = 1 2 m 2. v' A, x 2

SOAL TRY OUT FISIKA 2

Uraian Materi. W = F d. A. Pengertian Usaha

(translasi) (translasi) Karena katrol tidak slip, maka a = αr. Dari persamaan-persamaan di atas kita peroleh:

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

SASARAN PEMBELAJARAN

DINAMIKA ROTASI DAN KESETIMBANGAN

FISIKA XI SMA 3

D. 15 cm E. 10 cm. D. +5 dioptri E. +2 dioptri

Transkripsi:

OSILASI

Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang. Contoh : perahu kecil yang berayun turun naik, bandul jam yang berayun ke kiri dan ke kanan, senar gitar yang bergetar, dll Gerak gelombang berhubungan erat dengan gerak osilasi. Contoh : gelombang bunyi dihasilkan oleh getaran (seperti senar gitar), getaran selaput gendang, dll.

Osilasi

Osilasi Harmonis Sederhana: Beban Massa pada Pegas Salah satu gerak osilasi yang sangat lazim dan sangat penting adalah gerak harmonis sederhana. Apabila sebuah benda disimpangkan dari kedudukan setimbangnya, gerak harmonik akan terjadi jika ada gaya pemulih yang sebanding dengan simpangannya dan simpangan tersebut kecil. Suatu sistem yang menunjukkan gejala harmonik sederhana adalah sebuah benda yang tertambat pada sebuah pegas. Pada keadaan setimbang, pegas tidak mengerjakan gaya pada benda. Apabila benda disimpangkan sejauh x dari setimbang, pegas mengerjakan gaya kx. x F = -kx

Osilasi Harmonis Sederhana: Beban Massa pada Pegas Perhatikan kembali sistem benda pegas! Gaya pemulih yang bekerja pada benda adalah F = - kx, tanda timbul karena gaya pegas berlawanan arah dengan simpangan. Gabungkan gaya tersebut dengan hukum kedua Newton, kita mendapatkan dx F= -kx = ma = m dt dx k a = = - ( )x dt m Percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum gerak harmonik sederhana dan bahkan dapat digunakan untuk mengidentifikasi sistem-sistem yang dapat menunjukkan gejala gerak harmonik sederhana. F = -kx

Osilasi Harmonis Sederhana: Beban Massa pada Pegas dx dt k = - ( )x m Persamaan Diferensial untuk OHS. Solusi persamaan di atas yang berbentuk osilasi harmonik sederhana adalah X = A sin(ωt + θ) atau X = A cos(ωt + θ) Di mana A simpangan maksimum = amplitudo, ω=frekuensi sudut, θ = fasa awal, (ωt + θ) = fasa, ω = πf = π/t, T = waktu yang diperlukan suatu benda untuk melakukan satu osilasi. Fasa awal θ bergantung pada kapan kita memilih t = 0. Satuan A sama dengan X yaitu meter, satuan fasa (ωt + θ) adalah radian Satuan f adalah Hz (s -1 ) dan satuan T adalah s (detik)

Osilasi Harmonis Sederhana: Beban Massa pada Pegas Misalkan persamaan simpangan OHS adalah X = A sin(ωt + θ), substitusikan persamaan ini ke dalam persamaan diferensial OHS diperoleh ω = k/m. Dalam menyelesaikan persoalan OHS secara umum kita harus mencari terlebih dahulu 3 besaran yaitu A, ω, dan θ. Setelah ke-3nya diketahui maka kita mengetahui persamaan posisi untuk osilasi, kemudian dengan cara mendeferensiasi x terhadap t kita memperoleh kecepatan dan percepatan osilasi. x =Acos(ωt+θ) dx v = =ωacos(ωt+θ) dt dv d x a = = = -ω Asin(ω t + θ ) dt a = -ω x dt V berharga maksimum (ωa) saat x = 0, pada saat tersebut a = 0. a berharga maksimum (ω A) saat x =±A, pada saat tersebut v = 0

Osilasi Harmonik Sederhana : soal-soal Sebuah partikel memiliki simpangan x = 0,3 cos (t + π/6) dengan x dalam meter dan t dalam sekon. a. Berapakah frekuensi, periode, amplitudo, frekuensi sudut, dan fasa awal? b. Di manakah partikel pada t = 1 s? c. Carilah kecepatan dan percepatan pada setiap t! d. Carilah posisi dan kecepatan awal partikel! Sebuah benda 0,8 kg dihubungkan pada sebuah pegas dengan k = 400 N/m. Carilah frekuensi dan perode gerak benda ketika menyimpang dari kesetimbangan. Sebuah benda 5 kg berosilasi pada pegas horizontal dengan amplitudo 4 cm. Percepatan maksimumnya 4 cm/s. Carilah a. Konstanta pegas b. Frekunsi dan perioda gerak

Osilasi Harmonis Sederhana: Energi Bila sebuah benda berosilasi pada sebuah pegas, energi kinetik benda dan energi potensial sistem benda-pegas berubah terhadap waktu. Energi total (jumlah energi kinetik dan energi potensial) konstan. Energi potensial sebuah pegas dengan konstanta k yang teregang sejauh x adalah U = ½ kx. Energi kinetik benda (m) yang bergerak dengan laju v adalah K = ½ mv. Energi total = ½ kx +½mv =½kA. Persamaan energi total memberikan sifat umum yang dimiliki OHS yaitu berbanding lurus dengan kuadrat amplitudo.

Osilasi Harmonis Sederhana: Energi Sebuah sistem benda pegas disimpangkan sejauh A dari posisi setimbangnya, kemudian dilepaskan. Pada keadaan ini benda dalam keadaan diam dan pegas memiliki energi potensial sebesar ½ ka. Saat benda mencapai titik setimbang energi potensial pegas nol. Dan benda bergerak dengan laju maksimum vmaks, energi kinetik benda ½ mv maks. Bagaimana energi pada saat pegas tersimpangkan sejauh x? E = ½ mv + ½ kx

Osilasi Harmonis Sederhana: Energi contoh Sebuah benda 3 kg yang dihubungkan pada sebuah pegas berosilasi dengan amplitudo 4 cm dan periode s. a.berapakah energi total? b.b. Berapakah kecepatan maksimum benda? Sebuah benda bermassa kg dihubungkan ke sebuah pegas berkonstanta k = 40 N/m. Benda bergerak dengan laju 5 cm/s saat berada pada posisi setimbang. a.berapa energi total benda? b.berapakah frekuensi gerak? c.berapakah amplitudo gerak?

Osilasi Harmonis Sederhana: Benda pada pegas vertikal Perhatikan sebuah pegas yang tergantung secara vertikal! setimbang y o y Pada ujung pegas digantung benda bermassa m sehingga pegas teregang sepanjang y o, sistem setimbang. Dalam hal ini ky o = mg atau y o = mg/k. Benda disimpangkan sejauh y dari posisi setimbang kemudian dilepaskan! d y F= -ky + mg = ma = m dt d (y o +y') o -k(y +y') + mg = m dt d y' d y' k dt dt m -ky' = m atau = - y' Perhatikan bahwa persamaannya identik dengan sistem pegasbenda horizontal. Solusinya Y = A sin (ωt+θ), Y = y

Osilasi Harmonis Sederhana: Benda pada pegas vertikal Benda 4 kg digantung pada sebuah pegas dengan k = 400 N/m. a. Cari regangan pegas ketika dalam keadaan setimbang. b. Carilah energi potensial total termasuk energi potensial gravitasi, ketika pegas diregangkan 1 cm. (Asumsikan energi potensial gravitasi nol saat setimbang) Benda,5 kg tergantung pada pegas dengan k = 600 N/m. Benda berosilasi dengan amplitudo 3 cm. Bila benda berada pada simpangan arah bawah maksimumnya. Cari energi potensial sistem.

Bandul Sederhana θ L mg sinθ mg cosθ Perhatikan sebuah bandul bermassa m yang digantungkan pada ujung tali sepanjang L, massa tali di abaikan dan tegangan tali T. Benda berayun ke kiri dan ke kanan mengikuti busur lingkaran berjari-jari L. Benda setimbang dalam arah radial T = mgcosθ. Dalam arah tangensial bekerja gaya mgsinθ, gaya ini selalu berlawanan arah dengan arah perubahan θ. Jadi mgsinθ = ma = m d s/dt, di mana s = Lθ. mgsinθ = m Ld θ/dt d θ/dt = (g/l)sinθ Perhatikan persamaan d θ/dt = (g/l)sinθ, untuk sudut kecil sinθ θ. Diperoleh d θ/dt = (g/l)θ, ini adalah persamaan getaran harmonik dengan ω = (g/l).

Bandul Fisis Perhatikan sebuah benda tegar dengan massa m! Benda dapat berputar pada titik O. Jarak titik O ke pusat massa adalah r. Momen inersia benda adalah I O θ r pm Perhatikan gaya berat yang bekerja pada pusat massa! Gaya dapat diuraikan menjadi komponen! Gaya yang menyebabkan benda berayun pada pusat massa adalah mgsinθ atau τ = mgrsinθ (τ = r x F). mgsinθ mg mgcosθ Hukum Newton τ = Iα, di mana α = d θ/dt. Untuk sudut kecil sinθ θ. d θ/dt = (mgr/i)θ, ini adalah persamaan getaran harmonik dengan ω = (mgr/i)

BANDUL FISIS : soal-soal Sebuah batang bermassa m dan panjang L digantung secara vertikal pada salah satu ujungnya. Batang berosilasi di sekitar titik setimbangnya. Berapa frekuensi sudut osilasi? (ω=(3g/l) 1/ ) Sebuah piringan tipis bermassa 5 kg dan jari-jari 0 cm digantung dengan suatu sumbu horizontal tegak lurus terhadap lingkaran melalui pinggir lingkaran. Piringan disimpangkan sedikit dari posisi setimbangnya dan dilepas. Cari frekuensi sudut osilasi? (ω=(00/6) 1/ )

Bandul Puntir Gambar di samping memperlihatkan sebuah bandul puntir, yang terdiri dari benda yang digantung dengan kawat yang disangkutkan pada titik tetap. Bila dipuntir hingga sudut Φ, kawat akan mengerjakan sebuah torka (momen gaya) pemulih sebanding dengan Φ, yaitu τ = κ Φ. Di mana κ adalah konstanta puntir. Φ Jika I adalah momen inersia benda terhadap sumbu putar sepanjang kawat, hukum Newton untuk gerak rotasi memberikan τ= κφ = I d Φ/dt atau d Φ/dt = (κ/i) Φ Persamaan di atas adalah osilasi harmonis sederhana dengan ω = (κ/i)

Osilasi Teredam Pada semua gerak osilasi yang sebenarnya,energi mekanik terdisipasi karena adanya suatu gaya gesekan. Bila dibiarkan, sebuah pegas atau bandul akhirnya berhenti berosilasi. Bila energi mekanik gerak osilasi berkurang berkurang terhadap waktu, gerak dikatakan teredam.

Osilasi Teredam Grafik simpangan terhadap waktu untuk osilator yang teredam sedikit. Gerak hampir berupa osilasi harmonik sederhana dengan amplitudo berkurang secara lambat terhadap waktu Osilasi benda teredam karena pengaduk yang terendam dalam cairan. Laju kehilangan energi dapat bervariasi dengan mengubah ukuran pengaduk atau kekentalan cairan. Meskipun analisis terinci gaya teredam untuk sistem ini cukup rumit, kita sering dapat menyajikan gaya seperti itu dengan suatu persamaan empirik yang bersesuaian dengan hasil eksperimen dan pengolahan matematisnya relatif sederhana.