Analisis Pengaruh Kegagalan Proteksi dan Koordinasi Rele Terhadap Indeks Keandalan Subsistem Transmisi 150kV Di Surabaya Selatan

dokumen-dokumen yang mirip
Analisa Keandalan Jaringan Distribusi Wilayah Surabaya Menggunakan Metode Monte Carlo Agung Arief Prabowo

Analisis Keandalan Sistem Distribusi Menggunakan Program Analisis Kelistrikan Transien dan Metode Section Technique

Studi Analisis Keandalan Sistem Distribusi Tenaga Listrik Surabaya Menggunakan Metode Latin Hypercube Sampling

Studi Keandalan Sistem Distribusi yang Terhubung ke Photovoltaic Menggunakan Metode Monte Carlo di PT. PLN (Persero) Distribusi Nusa Penida - Bali

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), ( X Print) B 1

Seminar TUGAS AKHIR. Fariz Mus abil Hakim LOGO.

ANALISIS KEANDALAN SISTEM JARINGAN DISTRIBUSI 20 KV DI PT PLN DISTRIBUSI JAWA TIMUR KEDIRI DENGAN METODE SIMULASI SECTION TECHNIQUE

Analisis Keandalan Sistem Jaringan Distribusi PT. PLN (Persero) Banda Aceh Menggunakan Metode Section Technique

Studi Perbaikan Keandalan Jaringan Distribusi Primer Dengan Pemasangan Gardu Induk Sisipan Di Kabupaten Enrekang Sulawesi Selatan

Perencanaan Rekonfigurasi Jaringan Tegangan Menengah Pada Kampus Universitas Udayana Bukit Jimbaran

Agung Yanuar W Prof. Dr. Ir. Adi Soeprijanto.MT, I Gusti Ngurah Satriyadi Hernanda,ST.,MT.

Analisa Keandalan Jaringan Sistem Distribusi Tegangan Menengah 20kV di PT. Astra Daihatsu Motor

Studi Dampak Pemeliharaan Sistem Pembangkit Terhadap Keandalan Sistem Tenaga Listrik di PT. Petrokimia Gresik

BAB II LANDASAN TEORI

Studi Keandalan Sistem Kelistrikan Hingga Level Beban Tegangan Menengah di PT.Pupuk Kalimantan Timur Nama : Prita Lukitasari NRP :

Analisa Keandalan Sistem Distribusi 20 kv PT.PLN Rayon Lumajang dengan Metode FMEA (Failure Modes and Effects Analysis)

Studi Keandalan Sistem Distribusi 20kV di Bengkulu dengan Menggunakan Metode Failure Mode Effect Analysis (FMEA)

PROCEEDING SEMINAR TUGAS AKHIR TEKNIK ELEKTRO FTI-ITS (2012) 1

ada, apakah bisa dikatakan nilai yang didapat sudah baik atau tidak, serta mengetahui indeks keandalan ditinjau dari sisi pelanggan.

Keandalan Sistem Tenaga Listrik Jaringan Distribusi 20 kv menggunakan Metode RIA

BAB III METODOLOGI PENELITIAN. (Reliability Index Assessment). Adapun hasil dari metode ini adalah nilai indeks

STUDI PENEMPATAN SECTIONALIZER PADA JARINGAN DISTRIBUSI 20 KV DI PENYULANG KELINGI UNTUK MENINGKATKAN KEANDALAN

Peningkatan Keandalan Sistem Distribusi Tenaga Listrik 20 kv PT. PLN (Persero) APJ Magelang Menggunakan Static Series Voltage Regulator (SSVR)

BAB I PENDAHULUAN. dengan energi, salah satunya energi listrik yang sudah menjadi

Laju Kegagalan Metode FMEA Single Line Diagram Yang di Evaluasi Indeks Kegagalan Peralatan Sistem Distribusi

Teknologi Elektro, Vol. 14, No.2, Juli - Desember

STUDI PERBANDINGAN KEANDALAN SISTEM DISTRIBUSI 20 KV MENGGUNAKAN METODE SECTION TECHNIQUE DAN RNEA PADA PENYULANG RENON

Evaluasi Keandalan Sistem Jaringan Distribusi 20 kv Menggunakan Metode Reliability Network Equivalent Approach (RNEA) di PT. PLN Rayon Mojokerto

STUDI KEANDALAN JARINGAN DISTRIBUSI 20 KV YANG TERINTERKONEKSI DENGAN DISTRIBUTED GENERATION

STUDI ANALISIS KEANDALAN SISTEM DISTRIBUSI PT

BAB I PENDAHULUAN. memenuhi standar. Sistem distribusi yang dikelola oleh PT. PLN (Persero)

EVALUASI KOORDINASI RELE PENGAMAN PADA JARINGAN DISTRIBUSI 20 KV DI GARDU INDUK GARUDA SAKTI, PANAM-PEKANBARU

BAB 2 TINJAUAN PUSTAKA

BAB III METODOLOGI PENELITIAN

Gunawan Hadi Prasetiyo, Optimasi Penempatan Recloser pada Penyulang Mayang Area Pelayanan dan Jaringan (APJ) Jember Menggunakan Simplex Method

EVALUASI KEANDALAN SISTEM TENAGA LISTRIK SUBSISTEM KRIAN GRESIK 150 KV DENGAN METODE ANALISIS KONTINGENSI (N-1)

Studi Koordinasi Proteksi Sistem Kelistrikan di Project Pakistan Deep Water Container Port

BAB I PENDAHULUAN. adanya daya listrik, hampir semua peralatan kebutuhan sehari-hari membutuhkan

BAB I PENDAHULUAN. menyalurkan tenaga listrik dari sumber daya listrik besar sampai ke konsumen.

EVALUASI INDEKS KEANDALAN SISTEM JARINGAN DISTRIBUSI 20 KV DI SURABAYA MENGGUNAKAN LOOP RESTORATION SCHEME

Evaluasi Ground Fault Relay Akibat Perubahan Sistem Pentanahan di Kaltim 1 PT. Pupuk Kaltim

Evaluasi Tingkat Keandalan Jaringan Distribusi 20 kv Pada Gardu Induk Bangkinang Dengan Menggunakan Metode FMEA (Failure Mode Effect Analysis)

BAB III PENGUKURAN DAN PENGUMPULAN DATA

Politeknik Negeri Sriwijaya

OPTIMISASI PENEMPATAN RECLOSER UNTUK MEMINIMALISIR NILAI SAIFI DAN SAIDI PADA PENYULANG PDP 04 MENGGUNAKAN PARTICLE SWARM OPTIMIZATION (PSO)

Studi Koordinasi Proteksi PT. PJB UP Gresik (PLTGU Blok 3)

ANALISIS KOORDINASI ISOLASI SALURAN UDARA TEGANGAN TINGGI 150 KV TERHADAP SAMBARAN PETIR DI GIS TANDES MENGGUNAKAN PERANGKAT LUNAK EMTP RV

KETERSEDIAAN TENAGA LISTRIK SISTEM TRANSMISI 500 KV BALI PADA TAHUN 2030

STUDI KOORDINASI RELE ARUS LEBIH DAN PENGARUH KEDIP TEGANGAN AKIBAT PENAMBAHAN BEBAN PADA SISTEM KELISTRIKAN DI PT. ISM BOGASARI FLOUR MILLS SURABAYA

ANALISIS KEANDALAN DAN NILAI EKONOMIS DI PENYULANG PUJON PT. PLN (PERSERO) AREA MALANG

Jurusan Teknik Elektro Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya

BAB II LANDASAN TEORI

BAB I PENDAHULUAN. Kebutuhan akan energi listrik selama ini selalu meningkat dari tahun ke

JURNAL TEKNIK POMITS Vol. 1, No 1, (2013) 1-6

Canggi Purba Wisesa, Analisis Keandalan Sistem Distribusi 20 kv di PT. PLN APJ Banyuwangi dengan metode Reliability Network Equivalent Approach

BAB I PENDAHULUAN. sehingga penyaluran energi listrik ke konsumen berjalan lancar dengan kualitas

ABSTRAK Kata Kunci :

Pendekatan Adaptif Multi Agen Untuk Koordinasi Rele Proteksi Pada Sistem Kelistrikan Industri

BAB III METODOLOGI PENELITIAN

Analisis Koordinasi Sistem Pengaman Incoming dan Penyulang Transformator 3 di GI Sukolilo Surabaya

Analisis Koordinasi Sistem Pengaman Incoming dan Penyulang Transformator 3 di GI Sukolilo Surabaya

ANALISIS KEANDALAN PADA PENYULANG BATU BELIG

BAB III METODOLOGI PENELITIAN

BAB IV PEMBAHASAN. Secara geografis Gardu Induk Kentungan letaknya berada di Jl. Kaliurang

Perencanaan Koordinasi Rele Pengaman Pada Sistem Kelistrikan Di PT. Wilmar Gresik Akibat Penambahan Daya

ANALISIS KEANDALAN SISTEM DISTRIBUSI 20kV PADA PENYULANG PEKALONGAN 8 DAN 11

EVALUASI KEANDALAN SISTEM DISTRIBUSI TENAGA LISTRIK BERDASARKAN SAIDI DAN SAIFI PADA PT. PLN (PERSERO) RAYON KAKAP

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

Analisis Sistem Koordinasi OCR pada Gardu Induk Sukolilo

Koordinasi Rele Pada Jaringan Transmisi 150 kv

Analisa Koordinasi Over Current Relay Dan Ground Fault Relay Di Sistem Proteksi Feeder Gardu Induk 20 kv Jababeka

Dosen Pembimbing Prof. Ir. Ontoseno Penangsang, M.Sc., Ph.D I.G.N. Satriyadi Hernanda, ST., MT

BAB III METODE PENELITIAN. keras dan perangkat lunak, yaitu sebagai berikut:

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO

STUDI KOORDINASI RELE ARUS LEBIH DAN PENGARUH KEDIP TEGANGAN AKIBAT PENAMBAHAN BEBAN PADA SISTEM KELISTRIKAN DI PT. ISM BOGASARI FLOUR MILLS SURABAYA

BAB IV ANALISA DATA. distribusi 20 KV di PT.ADM ini menggunakan software ETAP7, kemudian nilai

PERBAIKAN KEANDALAN SISTEM MELALUI PEMASANGAN DISTRIBUTED GENERATION

BAB I PENDAHULUAN. berbagai peralatan listrik. Berbagai peralatan listrik tersebut dihubungkan satu

BAB I PENDAHULUAN. tahun ke tahun. Sejalan dengan meningkatnya pertumbuhan ekonomi dan industri

Analisis Rele Pengaman Peralatan dan Line Transmisi Switchyard GITET Baru 500kV PT PLN (PERSERO) di Kediri

BAB II GARDU INDUK 2.1 PENGERTIAN DAN FUNGSI DARI GARDU INDUK. Gambar 2.1 Gardu Induk

JURNAL TEKNIK ELEKTRO ITP, Vol. 6, No. 2, JULI

ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4.

SIMULASI PEMISAHAN BEBAN BERDASARKAN TINGKAT FLUKTUASI BEBAN PADA SUBSISTEM TENAGA LISTRIK 150KV

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

EVALUASI EXPECTED ENERGY NOT SUPPLIED (EENS) TERHADAP KEANDALAN SISTEM DISTRIBUSI 20 kv KOTA PADANG

Jl. Prof. Sudharto, Tembalang, Semarang, Indonesia Abstrak

Kata kunci : Hubung Singkat 3 Fasa, Kedip Tegangan, Dynamic Voltage Restorer, Simulink Matlab.

Studi Koordinasi Rele Pengaman Sistem Tenaga Listrik di PT. Plaza Indonesia Realty Tbk.

BAB I PENDAHULUAN. penting dalam kehidupan masyarakat, baik pada sektor rumah tangga, penerangan,

BAB I PENDAHULUAN. Transmisi, dan Distribusi. Tenaga listrik disalurkan ke masyarakat melalui jaringan

Pendekatan Adaptif Multi Agen Untuk Koordinasi Rele Proteksi Pada Sistem Kelistrikan Industri

OPTIMASI PENEMPATAN RECLOSER TERHADAP KEANDALAN SISTEM TENAGA LISTRIK DENGAN ALGORITMA GENETIKA

BAB I PENDAHULUAN. Pada sistem penyaluran tenaga listrik, kita menginginkan agar pemadaman tidak

BAB I PENDAHULUAN. meningkat. Hal ini akan menyebabkan permintaan energi listrik akan mengalami

STUDI ANALISIS SETTING BACKUP PROTEKSI PADA SUTT 150 KV GI KAPAL GI PEMECUTAN KELOD AKIBAT UPRATING DAN PENAMBAHAN SALURAN

Keandalan dan kualitas listrik

Analisis Sympathetic Trip pada Penyulang Ungasan dan Bali Resort, Bali

ANALISIS KEANDALAN SISTEM 150 KV DI WILAYAH JAWA TIMUR

KOORDINASI RELE ARUS LEBIH DI GARDU INDUK BUKIT SIGUNTANG DENGAN SIMULASI (ETAP 6.00)

Transkripsi:

JURAL TEKIK POMITS Vol. 1, o. 1 (2014) 1-5 1 Analisis Pengaruh Kegagalan Proteksi dan Koordinasi Terhadap Indeks Keandalan Subsistem Transmisi 150kV Di Surabaya Selatan Evril ursukma Kartinisari 1), I.G. Satriyadi Hernanda 2), Dimas Anton Asfani 3) Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh opember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia e-mail:evril.nursukma@gmail.com 1), didit@ee.its.ac.id 2), anton_dimas@ee.its.ac.id 3) Abstrak - Sistem tenaga harus bisa menyalurkan tenaga listrik meskipun gangguan terjadi. Kegagalan dari sistem proteksi merupakan salah satu penyebab padamnya suatu aliran listrik. Maka untuk menjaga kontinuitas daya, setting dari rele harus tepat. Pada penelitian ini membahas tentang algoritma berbasis simulasi untuk mendapatkan nilai indeks keandalan dari koordinasi rele arus lebih yang berbeda beda berdasarkan pada pengaturan waktu pada masing-masing rele arus lebih. Indeks keandalan yang digunakan antara lain, SAIDI, CAIDI. Metode ini merupakan suatu prosedur simulasi untuk memperoleh indeks keandalan dengan menggunakan pembangkitan bilangan acak dan disimulasikan melalui program yang disusun di Matlab. Hasil yang diperoleh dari simulasi, yaitu penentuan gangguan pada suatu line untuk mengetahui rele arus lebih yang bekerja kemudian menentukan indeks keandalan pada konsumen yang parameternya berasal dari jumlah laju kegagalan dan laju perbaikan dari line dan transformator. Pada sistem yang terhubung secara ring, hasil running simulasi ETAP hanya menghitung kegagalan pada transformator saja dan hasil 0,013 dan SAIDI 0,1819. Sedangkan pada simulasi dengan menentukan gangguan pada line dengan pembangkitan bilangan acak pada iterasi ke 2000 diperoleh nilai 0,0139 dan SAIDI 0.8032. Kata Kunci Keandalan, Koordinasi. I. PEDAHULUA ebutuhan energi listrik merupakan suatu hal vital yang K wajib dipenuhi, dan kebutuhannya meningkat dari tahun ke tahun. Suatu transmisi dikatakan handal jika penyaluran listriknya aman, effisien dan ekonomis. Sistem tenaga harus bisa menyalurkan tenaga meskipun gangguan terjadi. Subsistem tenaga listrik 150 kv di Surabaya Selatan merupakan subsistem dari sistem tenaga listrik Jawa Timur. Perusahaan listrik tersebut harus menyediakan dan menyalurkan tenaga listrik yang andal kepada pelanggan. amun hal tersebut belum seperti yang diharapkan. Masih adanya gangguan pada suatu saluran atau elemen sistem yang menyebabkan terjadinya pemutusan dan meluas ke saluran atau ke elemen sistem yang lain yang berakibat terlepasnya sistem secara bertingkat. Kegagalan dari sistem proteksi merupakan salah satu penyebab padamnya suatu aliran listrik. Maka untuk menjaga kontinuitas daya maka setting dari rele harus tepat. Penyusunan koordinasi rele berdasarkan pada pengaturan waktu dan arus maksimum pada masingmasing rele arus lebih. Kegagalan proteksi dilihat berdasarkan pada kesalahan operasi dan pemutusan beban. Disini penulis mencoba menggunakan simulasi monte carlo untuk mengetahui keandalan suatu sistem dari koordinasi rele. Sehingga indeks keandalan pada subsistem transmisi 150kV diperoleh dari penyusunan koordinasi proteksi dan kegagalan proteksi. II. KOORDIASI RELE DA KEADALA SISTEM TEAGA LISTRIK A. Keandalan Sistem Tenaga Listrik Pemadaman listrik yang sering terjadi dalam waktu yang lama dan tegangan listrik yang tidak stabil, merupakan penyaluran dari keandalan dan kualitas listrik yang kurang baik, yang akibatnya dapat dirasakan secara langsung oleh pelanggan. Sistem tenaga listrik yang andal dan energi listrik dengan kualitas yang baik atau memenuhi standar, mempunyai peranan penting bagi masyarakat modern karena peranannya sangat dominan dibidang industri, telekomunikasi, teknologi informasi, pertambangan, transportasi umum, dan lain-lain. Perusahaan-perusahaan yang bergerak di berbagai bidang sebagaimana disebutkan diatas, akan mengalami kerugian cukup besar jika terjadi pemadaman listrik tiba-tiba atau tegangan listrik yang tidak stabil, dimana aktifitasnya akan terhenti atau produk yang dihasilkannya menjadi rusak atau cacat. B. Koordinasi Setting arus untuk rele arus lebih mempunyai batas maksimum dan minimum dari besarnya arus yang mengalir. Pada dasarnya batas minimum setting rele arus lebih yaitu rele tidak boleh beroperasi pada saat mengalir arus beban penuh. Dan pada setting arus maksimum pada rele arus lebih perlu memperhitungkan arus hubung singkat yang melewati rele. Suatu gangguan hubung singkat tiga fasa pada pembangkitan maksimum akan menyebabkan mengalirnya arus gangguan maksimum dan gangguan hubung singkat antar fasa akan menyebabkan mengalirnya arus hubung singkat minimum. harus dapat merespon terhadap dua kondisi yaitu kondisi maksimum dan kondisi minimum.

JURAL TEKIK POMITS Vol. 1, o. 1 (2014) 1-5 2 I SCmin adalah arus hubung singkat dua fasa dengan pembangkitan minimum yang terjadi pada ujung saluran pada daerah perlindungan berikutnya. arus lebih biasanya memiliki pengaturan pengganda yang disebut sebagai Pengaturan Plug (PS). amun, variable yang paling penting dalam masalah mengoptimalkan koordinasi adalah Pengaturan Waktu Pengganda (TSMs) / berurutan. Metode koordinasi terbaik harus mengisolasi kesalahan segera mungkin, terutama di saluran sensitive (penting). Penundaan waktu dalam pengoperasian rele meningkatkan kemungkinan perjalanan yang tidak diinginkan dari backup rele atau aktifnya rele poin lain dalam jaringan. C. Indeks Keandalan Parameter - parameter keandalan yang digunakan dalam mengevaluasi keandalan suatu system adalah lamda ( ) yaitu frekuensi rata rata kegagalan pada setiap tahun (Kali/Tahun) dan miu ( ) yang merupakan laju perbaikan (per Jam/Tahun). Berdasarkan indeks keandalan mendasar di atas, diperoleh beberapa indeks keandalan untuk keseluruhan sistem yang dapat dievaluasi dan didapatkan mengenai kinerja sistem. [1] Indeks keandalan untuk keseluruhan sistem, yaitu : a. System Average Interruption Frequency Index () Adalah jumlah rata-rata kegagalan yang terjadi pada tiap pelanggan yang dilayani per satuan waktu (tahun). Persamaan dapat dilihat seperti berikut: = b. System Average Interruption Duration Index (SAIDI) Adalah nilai rata-rata dari lamanya kegagalan untuk setiap pelanggan selama satu tahun. Persamaan dapat dilihat seperti berikut: SAIDI = (jam/customer.tahun) c. Customer Average Interruption Duration Index (CAIDI) CAIDI (Customer Average Interruption Duration Index) adalah index durasi gangguan konsumen rata-rata tiap tahun, menginformasikan tentang waktu rata-rata untuk penormalan kembali gangguan tiap-tiap pelanggan dalam satu tahun. Persamaan dapat dilihat seperti berikut: CAIDI = Dimana λ k merupakan laju kegagalan saluran, µ k adalah laju perbaikan saluran dan M k merupakan jumlah pelanggan serta M yaitu total pelanggan pada suatu sistem. D. Metode dan Simulasinya Simulasi terdiri dari sebuah model matematis yang diset di dalam program komputer dan menggunakan random sampling dari distribusi kegagalan dan distribusi perbaikan dari masing masing komponen dalam sistem. Random sampling ini digunakan untuk melakukan penilaian reliability atau availability atau parameter lainnya yang dikehendaki. III. SISTEM KELISTRIKA A. Pemodelan Sistem Kelistrikan di Surabaya Selatan Jawa Timur Untuk permodelan sistem dalam Tugas Akhir ini hanya menggunakan 4 Gardu Induk yang terhubung secara ring dengan sumber pembangkit thermal. Single line diagram permodelan dari sistem terdapat dalam Gambar 1. Gambar 1. Single line diagram pemodelan Subsistem Transmisi 150kV di Surabaya Selatan Berdasarkan single line pada Gambar 1 terdapat satu blok PLTU yakni PLTU Gresik dan satu blok PLTGU yakni PLTGU Gresik Blok 1. Dan dari data Operasi Desember 2013 untuk PLTU GRESIK memiliki kemampuan daya 493MW dan PLTGU GRESIK Blok 1 memiliki kemampuan daya 480MW sehingga jumlah daya yang disalurkan adalah 973 MW. B. Data Saluran Transmisi dan pada Saluran Transmisi Untuk data rele yang terdapat pada masing masing saluran transmisi dengan pasangan rele masing- masing terdapat pada Tabel 1. Dan untuk pasangan rele primer dan rele backup terdapat pada Tabel 2. Tabel 1 Data nomor Saluran dan omor PEGHATAR omor yang o Dari Ke terdapat pada Saluran 1 Waru 1 Gresik Lama 1 11 2 Waru 2 Gresik Lama 2 12 3 Waru 1 Sawahan 1 13 16 4 Waru 2 Sawahan 2 14 15 5 Waru 1 Dharmogrand 1 9 8 6 Waru 2 Dharmogrand 2 10 7 7 Tandes 1 Gresik Baru 2 1 8 Tandes 2 Gresik Baru 2 2 9 Tandes 1 Sawahan 1 17 20 10 Tandes 2 Sawahan 2 18 19 11 Tandes 1 Dharmogrand 1 3 6 12 Tandes 2 Dharmogrand 2 4 5 Tabel 2 Data primer dan Backup

JURAL TEKIK POMITS Vol. 1, o. 1 (2014) 1-5 3 o. Primer Back Up o. Primer Back Up 1 9 6 10 10 16 2 10 5 11 13 17 3 7 3 12 14 18 4 8 4 13 15 20 5 5 1 14 16 19 6 6 2 15 17 4 7 3 1 16 18 3 8 4 2 17 19 1 9 9 15 18 20 2 Tabel 3 Spesifikasi Arus Lebih Berarah SETTIG O RELE CT PABRIK TYPE fasa fasa I T 1 R1 3150/5 GEC MCGG 5,5 0,5 2 R2 3150/5 GEC MCGG 5,5 0,5 3 R3 1000/5 GEC MCGG 4,25 0,525 4 R4 1000/5 GEC MCGG 4,25 0,525 5 R5 1000/5 GEC MCGG 4,25 0,5 6 R6 1000/5 GEC MCGG 4,25 0,5 7 R7 1000/5 GEC MCGG 4,25 0,5 8 R8 1000/5 GEC MCGG 4,25 0,5 9 R9 1000/5 GEC MCGG 4,25 0,525 10 R10 1000/5 GEC MCGG 4,25 0,525 11 R11 2000/5 GEC MCGG 3 0,5 12 R12 2000/5 GEC MCGG 3 0,5 13 R13 2000/5 GEC MCGG 4 0,5 14 R14 2000/5 GEC MCGG 4 0,5 15 R15 2000/5 GEC MCGG 4 0,5 16 R16 2000/5 GEC MCGG 4 0,5 17 R17 2000/5 GEC MCGG 5 0,35 18 R18 2000/5 GEC MCGG 5 0,35 19 R19 2000/5 GEC MCGG 4 0,5 20 R20 2000/5 GEC MCGG 4 0,5 C. Data Beban Listrik di Sisitem Besarnya beban dapat diketahui melalui penyaluran daya pada trafo yang berada pada load bus dengan spesifikasi : Tabel 4 Spesifikasi beban Jumlah ID MW MVAR o Customer 1 GIS Waru 129.3 43.5 57448 2 GIS Sawahan 39.7 15.6 51523 3 GIS Tandes 107.7 23.1 68236 4 GIS Dharmogrand 58 49 41963 Pada Tabel 4 merupakan penjumlahan beban di tiap-tiap transformator. Beban dari tiap-tiap Gardu Induk (GI) merupakan data real yang di dapat dari PT PL (Persero) APB Jawa Timur Data Gangguan pada Saluran Tabel 5 Data Gangguan Tahun 2006 2013 o Line Tahun Lama Perbaikan 1 Waru 1 Dharmogrand 1 2006 2 jam 6 menit 2 Waru 2 Dharmogrand 2 2006 2 jam 7 menit 3 Tandes 1 Dharmogrand 1 2006 2 jam 5 menit 4 Tandes 2 Dharmogrand 2 2006 2 jam 5 menit 5 Waru 1 Gresik 1 2006 8 jam 58 menit 6 Waru 1 Sawahan 1 2011 8 jam 53 menit 7 Waru 2 Sawahan 2 2011 26 jam 18 menit 8 Tandes 1 Sawahan 1 2011 8 jam 53 menit 9 Tandes 2 Sawahan 2 2011 26 jam 18 menit 10 Waru 2 Sawahan 2 2013 38 menit 11 Waru 2- Dharmogrand 2 2013 40 menit IV. EVALUASI KEADALA Evaluasi keandalan bertujuan untuk melihat performa dari suatu sistem dan memprediksi sistem tersebut di waktu yang akan datang. Tingkat keandalan suatu sistem dipengaruhi oleh tingkat keandalan masing masing komponen yang berada pada sistem tersebut. Sebelum mengevaluasi keandalan suatu sistem, parameter keandalan masing masing komponen harus diketahui terlebih dahulu. Tabel 6 Parameter Keandalan Sistem o Saluran Dari Ke (Kali/ Tahun) r (jam/ gangguan µ (jam/ tahun) 1 Waru 1 Gresik Lama 1 0,125 8,972 1,1215 2 Waru 2 Gresik Lama 2 - - - 3 Waru 1 Sawahan 1 0,125 8,883 1,11037 4 Waru 2 Sawahan 2 0,25 6,73 1,6825 5 Waru 1 Dharmogrand 1 0,125 2,1 0,2625 6 Waru 2 Dharmogrand 2 0,25 0,696 0,174 7 Tandes 1 Gresik Baru 2 - - - 8 Tandes 2 Gresik Baru 2 - - - 9 Tandes 1 Sawahan 1 0,125 8,883 1,11037 10 Tandes 2 Sawahan 2 0,125 26,3 3,2875 11 Tandes 1 Dharmogrand 1 0,125 2,083 0.26037 12 Tandes 2 Dharmogrand 2 0,125 2,083 0.26037 Berdasarkan Power System Technologies Committee of the IEEE Industry Application Society (1980) data nilai keandalan peralatan listrik terdapat pada Tabel 7, data ini digunakan untuk data parameter dari transformator dan line yang pada data tidak pernah mengalami gangguan. Tabel 7 Data ilai Keandalan Peralatan Listrik Berdasarkan IEEE o Peralatan Kelas Peralatan Rata- rata kegagalan (per tahun) Waktu perbaikan (jam/gangguan) 1 Transformator diatas 15000 V 0,013 1076 2 Line ( per 1000feet) diatas 15000 V 0,0075 17,5 A. Evaluasi Keandalan Menggunakan ETAP (Electrical Transient Analysis Program) Tabel 8 Hasil Running ETAP o. Open CAIDI 1-0,013 0,1819 13,99 2 1 0,013 0,1819 13,99 3 3 0,013 0,1819 13,99 4 7 0,013 0,1819 13,99 5 11 0,013 0,1819 13,99 6 13 0,013 0,1819 13,99 7 17 0,013 0,1819 13,99 Dari data diatas diperoleh nilai (Sistem Average Interruption Frequency Index) dan SAIDI (Sistem Average Interruption Duration Index) yang kecil. Data sesuai dengan data lamda (kali gangguan per tahun) pada trafo yaitu 0,013 karena lamda dari line tidak

JURAL TEKIK POMITS Vol. 1, o. 1 (2014) 1-5 4 dihitung karena meskipun sala satu line terjadi gangguan daya dari sumber masih bisa disalurkan melalui line lainnya. Sama seperti hasil perhitungan, hasil perhitungan SAIDI juga hanya pada trafo, nilai SAIDI berasal dari nilai gangguan pertahun dikalikan waktu perbaikan sehingga didapat nilai SAIDI = jam per pelanggan per tahun. B. Evaluasi Keandalan Menggunakan Simulasi Monte Carlo Penentuan indeks keandalan dilakukan untuk memperoleh data seberapa handal suatu sistem dalam melayani konsumen. Langkah- langkah perhitungan untuk memperoleh nilai indeks keandalan sistem adalah pertama mengumpulkan dan mengolah data dari setiap bus (Gardu induk) (jumlah pelanggan PL, kapasitas daya, laju kegagalan dan laju perbaikan), setiap line (jumlah line, panjang line, laju kegagalan dan laju perbaikan), data setiap rele (urutan rele, data setting waktu), kemudian melakukan pengolahan data dari skenario gangguan pada setiap line dan dampak gangguan tersebut terhadap bus yang terdapat di sistem. Setelah itu, menentukan pusat gangguan pada line dari pemanggilan bilangan acak yang dilakukan oleh program. Dengan membuat simulasi perhitungan harian selama 1tahun (365 hari) yang dihitung secara berulang ulang. Bila terjadi gangguan pada line, maka tentukan rele yang terhubung dengan line. dengan setting waktu tercepat yang akan bekerja. Tetapi bila waktu rele backup lebih cepat dari rele primer maka rele backup akan trip dan memadamkan line yang harusnya tidak terjadi gangguan. Setelah rele sudah trip, nilai laju kegagalan dan durasi perbaikan dari masing masing beban dihitung ( data perhitungan yang diambil untuk hasil simulasi berasal dari file excel datakeandalan.xlsx). Lalu melakukan perhitungan indeks keandalan yaitu, SAIDI, CAIDI berdasarkan rumus lamda, miu dan banyaknya jumlah customer pada sistem tersebut. Dan langkah - langkah (3), (4), (5), (6), dan (7) dilakukan sebanyak jumlah iterasi yang diinginkan. Flowchart dari perhitungan untuk memperoleh indeks keandalan sistem dapat dilihat pada Gambar 2. Berdasarkan flowchart tersebut, perhitungan indeks keandalan pada sistem jaringan distribusi didasarkan pada laju kegagalan dan laju perbaikan dari line dan transformator serta jumlah pelanggan dari sistem. Proses penentuan gangguan berdasarkan pada jumlah iterasi dan nilai lamda dari masing masing line. Flowchart ini menggambarkan tata urutan program dalam melakukan perhitungan indeks keandalan dari sistem. Perhitungan dari indeks keandalan sisem dilakukan dengan cara pemanggilan data yang telah ada. Dimana program memilih data sesuai dengan nomor rele yang trip pada line tertentu. Susunan rele merupakan suatu koordinasi dari beberapa rele arus lebih berarah yang bekerja secara berurutan. Urutan dari rele sesuai dengan data dari PL. Gambar 2 Flow Chart Perhitungan Indeks Keandalan Tabel 9 Hasil simulasi o. Iterasi Line Trip Elapse Time (detik) 1 250 11 6 3,054372 0,0140 0,2119 2 500 4 18 3,131260 0,0139 0,2697 3 1000 3 17 2,824919 0,0132 0,1901 4 1500 6 7 3,030009 0,0135 0,2032 5 2000 4 18 3,095086 0,0139 0,2697 6 2500 6 7 3,503353 0,0135 0,2032 7 3000 10 17 3,498066 0,0132 0,1901 Dari beberapa iterasi didapatkan data line yang sering terjadi gangguan adalah line 4 dan line 6 yaitu pada line 4 gangguan terjadi pada iterasi ke 500dan 2000 dan untuk line 6 gangguan terjadi pada iterasi 1500 dan 2500. Untuk rele trip pada line 3 seharusnya yang bekerja adalah rele 13 atau 16 tetapi dalam program yang bekerja adalah rele 17 karena merupakan rele backup dari rele 13 dimana waktu kerjanya lebih cepat dari rele 13. Dengan demikian sistem proteksi mengalami kegagalan. ilai CAIDI pada iterasi ke 1500 adalah 15,136 jam/ customer.

JURAL TEKIK POMITS Vol. 1, o. 1 (2014) 1-5 5 C. Perbandingan ilai Indeks Keandalan Subsistem Transmisi 150kv di Surabaya Selatan dengan Software ETAP dan Simulasi serta Gangguan yang Sering Terjadi Di Lapangan. Hasil perbandingan dari running ETAP dan simulasi dapat dilihat pada Tabel 6. Tabel 10 ilai, SAIDI pada ETAP dan Metode o. Trip ETAP Iterasi 1 6 0,013 0,1819 250 0,0140 0,2119 2 18 0,013 0,1819 500 0,0139 0,2697 3 17 0,013 0,1819 1000 0,0132 0,1901 4 7 0,013 0,1819 1500 0,0135 0,2032 5 18 0,013 0,1819 2000 0,0139 0,2697 6 7 0,013 0,1819 2500 0,0135 0,2032 7 17 0,013 0,1819 3000 0,0132 0,1901 Pada software ETAP nilai keandalan pada line tidak berpengaruh karena supply daya yang dibutuhkan masih bisa disalurkan melalui line yang lainnya. Dan untuk mengetahui letak gangguan, pada software ETAP dilakukan trial error atau sesuai data lapangan yang ada tidak bisa secara acak oleh software. Tabel 11 Perbandingan Data Gangguan Line Line Simulasi o Dari Ke (kali) (kali) 1 Waru 1 Gresik Lama 1 - - 2 Waru 2 Gresik Lama 2 1-3 Waru 1 Sawahan 1 1 1 4 Waru 2 Sawahan 2 2 2 5 Waru 1 Dharmogrand 1 1-6 Waru 2 Dharmogrand 2 2 2 7 Tandes 1 Gresik Baru 2 - - 8 Tandes 2 Gresik Baru 2 - - 9 Tandes 1 Sawahan 1 1-10 Tandes 2 Sawahan 2 1 1 11 Tandes 1 Dharmogrand 1 1 1 12 Tandes 2 Dharmogrand 2 1 - Line hanya di uji sebanyak 7 kali dengan nilai iterasi yang berbeda beda. IV. KESIMPULA Berdasarkan hasil perhitungan dan analisis yang telah dilakukan, dapat diambil beberapa kesimpulan yaitu pada line transmisi sangat jarang sekali terjadi gangguan ini dibuktikan dengan data yang diperoleh yaitu hanya terjadi maksimal dua kali gangguan yang mengakibatkan pemadaman dalam waktu delapan tahun dengan waktu perbaikan 6,73 jam/ gangguan. Untuk sistem ring, saat running program ETAP hasil dan SAIDI hanya berdasarkan nilai kegagalan transformator. Sedangkan penentuan terjadinya gangguan menggunakan simulasi gangguan line yang sering terjadi adalah pada line yang memiliki lamda terbesar. Pada hasil simulasi jika terdapat gangguan pada line 3 dan 4, rele primer tidak bekerja karena waktu kerja rele backup lebih cepat yaitu 0,35 detik. ilai dan SAIDI pada simulasi didapat dari pengambilan data excel yang merupakan perhitungan secara exponensial dari susunan seri parallel. ilai terbesar yaitu pada iterasi ke 250 dengan nilai 0,0140 dan nilai terkecil yaitu pada iterasi ke 1000 dan 3000 dengan nilai 0.0132. Untuk nilai SAIDI terbesar adalah pada iterasi ke 500 dan 2000 dengan nilai 0,2697 dan nilai SAIDI terkecil adalah pada iterasi ke1000 dan 3000 dengan nilai 0,1901. nilai- nilai ini lebih besar dibandingkan dengan hasil ETAP karena pada perhitungan eksponensial ini lamda dan miu dari line yang terhubung dengan bus beban diperhitungkan. DAFTAR PUSTAKA [1] C. Singh, R. Billinton, System Reliability Modelling and Evaluation, Hutchinson Publishing Group, London, UK. 1977 [2] F. Razavi, H. Askarian Abyaneha, M. Al-Dabbagh, R. Mohammadi, H. Torkaman, A new comprehensive genetic algorithm method for optimal overcurrent relays coordination, Electric Power Systems Research 78 (April (4)) (,8) 713 720 [3] Kazem Mazlumi, Hossein Askarian Abyaneh. coordination and protection failure effects on reliability indices in an interconnected sub-transmission system. Science Direct. 2009 [4] L. Goel, simulation-based reliability studies of a distribution test system, Electric Power System Research 54 (April (1)) (2000) 55 65. [5] L. Goel, Y. Ou, Reliability worth assessment in radial distribution systems using the simulation technique, Electric Power System Research 51 (July (1)) (1999) 43 53. [6] Permana, Moch. Fajar Sandya, Analisis Kontingensi untuk Mengatasi Undervoltage dan Overload pada Saluran Transmisi 150 KV di Jawa Timur Jurusan Teknik Elektro, Institut Teknologi Sepuluh opember Surabaya. 2011 [7] R.E Brown, Electric Power Distribution Reliability (Second Edition), CRC Press,Taylor and Francis Group, ew York. 2002 [8] R. Billinton, R.. Allan, Reliability Evaluation of Power System (Second Edition), Plenum Press, ew York. 1994 BIODATA PEULIS Penulis yang bernama Evril ursukma Kartinisari dilahirkan di kota kecil Jombang pada tanggal 21 April 1991. Pada tahun 1997 memulai pendidikan di SD Tanggungan, Gudo. Kemudian pada tahun 2003 melanjutkan sekolah di SMP 2 Jombang, dan pada tahun 2006 menempuh pendidikan di SMA 2 Jombang. Selanjutnya penulis melanjutkan pendidikan ke jenjang yang lebih tinggi pada tahun 2009 di Bidang Studi Elektro Industri, Program D3 Teknik Elektro, ITS. Tak cukup hanya bergelar Amd. Penulis melanjutkan pendidikan Lintas Jalur di Institut Teknologi Sepuluh opember Surabaya pada tahun 2012. Semasa SMA penulis mengikuti ekstrakulikuler Kempo dan sampai sekarang bergabung sebagai anggota di UKM Kempo ITS. Email yang bisa dihubungi evril.nursukma@gmail.com